AUTHORSHIP CLASSIFICATION: A SYNTACTIC TREE MINING APPROACH

SANGKYUM KIM, HYUNGSUL KIM, TIM WENINGER, JIAWEI HAN

DEPT OF COMPUTER SCIENCE UNIV OF ILLINOIS AT URBANA-CHAMPAIGN

UP@KDD'10 (July 2010, Washington DC)

Outline

- Background
- k-ee subtree pattern
- Two-step Discriminative Pattern Mining
- Experiments
- Conclusions

Document Clustering/Classification

□ Topic vs. Genre vs. Authorship

Торіс	Genre	Authorship
Kennedy	John F. Kennedy	John F. Kennedy/News
 John F. Kennedy JFK airport Kennedy space center 	 Blog News article Movie review Academic report 	• Writer 1 • Writer 2
 Subject-oriented words 	 Punctuation marks Simple common words Genre specific words 	Function/syntactic wordsPOS tagsRewrite rules

Existing Features for Authorship Classification

Existing features for authorship classification

- Function Words
 - the most common words (the, and, of, that, ...)
 - Ittle semantic content of their own but usually indicate a grammatical relationship or generic property
- Part-Of-Speech tags
 - verb, noun, pronoun, adjective, adverb, preposition, ...
 - explains not what the word is, but how the word is used.

Rewrite Rules

$$\mathbf{X} \rightarrow \mathbf{Y}_1 + \mathbf{Y}_2 + \dots + \mathbf{Y}_n$$

• e.g. NP \rightarrow DT+ JJ + JJ + NN

Syntactic Tree

Example. The major indexes fell more than 2 percent, and the surge that had lifted the troubled indexes by more than 20 percent in the last month showed signs of stalling as the reporting period for the first fiscal quarter of the year began.

k-embedded-edge Subtree Pattern

Example. The major indexes fell more than 2 percent, and the surge that had lifted the troubled indexes by more than 20 percent <u>in the last month</u> showed signs of stalling as the reporting period <u>for the first fiscal quarter of the year</u> began.

A 2-ee subtree pattern t is mined from two NY Times journalists Jack Healy and Eric Dash who worked in the same business department. On average, 21.2% of Jack's sentences contained t while only 7.2% of Eric's sentences contained t.}

Discriminative Score (Fisher Score)

Two-Step Discriminative Pattern Mining

- □ <Step 1>
 - Mine closed frequent k-ee subtree patterns
 - Pattern-growth approach
 - Pruning with
 - Minimum support
 - Closed checking (backward/forward extension pruning)

□ <Step 2>

Select discriminative patterns

Rules for Pruning

Backward Extension Pruning

 If there exists a backward extension node for a tree pattern t, then we do not need to extend t.

Forward Extension Pruning

If there exists a forward extension node at node v in t, then we do not need to extend t by adding new rightmost nodes to any proper ancestor of v.

Adapted from CMTREEMINER (TKDE'05)

Experiments

Data Sets (from NYTimes.com)

	# Authors	# Docs	# Sentences	# Words
News Articles	4	400	19K	381K
Movie Reviews	4	2К	51K	1.3M

□ Size of Comparison Feature Sets

	FW	POS	RR	0-ее	1 - ee	2-ee
News Articles	308	70	4K	280	560	790
Movie Reviews	308	70	9К	560	1.3K	2К

Experiments

Accuracy (News Articles)

	FW	POS	RR	0-ее	1-ee	2-ее
N12	91.5	87	94	96	95	95.5
N13	94	85	91	97.5	98	97.5
N14	95.5	92.5	96	94.5	96.5	95
N23	95	92.5	92.5	96.5	98.5	99
N24	97	95.5	97.5	98.5	98.5	98.5
N34	80.5	67.5	67.5	88.5	90	90
AVG	92.3	86.7	89.8	95.3	96.1	96

Experiments

Accuracy (Movie Reviews)

	FW	POS	RR	0-ее	1-ee	2-ее
N12	92.8	81	88	92.48	94.26	94.22
N13	93.6	92.5	92.7	95.22	95.06	95.8
N14	92.1	88	94.2	97	97.4	97.7
N23	94.4	92.8	94.8	97.58	97.92	97.58
N24	93.1	91	92.9	95.22	96.04	96.32
N34	93.1	88.6	94.9	97.12	97.22	97.12
AVG	93.2	89	92.9	95.8	96.3	96.5

Conclusions

- k-ee subtree pattern
 - Contains rich meaningful syntactic information
 - Bottleneck: Too many patterns
 - Adapt pruning methods of frequent and closed pattern mining
 - Mine only discriminative patterns
- Future work
 - Direct discriminative pattern mining
 - Two-step mining approach is still expensive
 - Avoid previous approaches of iteratively mining top-1 discriminative pattern