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Motivation: Increasing
Diversity of Data

® Vector data
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¢ Groups of ‘ltem Data
continuous data from
multiple sources

Could be result of
feature extraction
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“Patterns of Usefulness”

Supervised learning as well as some pattern
mining approaches assume relationships exist

Find which vector attribute is most relevant to
which item: Multi-dimensional feature selection

Find item sets that result in the clearest
patterns (design of coatings)

Establish relationship: Multi-dimensional
hypothesis testing




Problem Statement
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Is classification
significant?




Common Approach in
Bioinformatics

® (Cluster, then look
for enrichment of
clusters

® Can miss significant
relationships
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Approach

Define density, using kernel function (uniform kernel)

Compare densities of points with item to densities of
all points

Previous approach used histograms

Kullback-Leibler divergence quantifies difference
between distributions directly
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Algorithm (simplified)

® One parameter: Similarity threshold thresh (next slide)

® For each item
® For all points with item

® Find number of neighbors with item closer than
thresh and divide by overall support of item: p(x)

® Find total number of neighbors closer than thresh
and divide by total number of points: q(x)

® C(Calculate Kullback-Leibler divergence and compare
with distribution of K-L divergences for random data




Parameter Choice

® Only parameter: Expected number of neighbors

® Choice of one intuitive (can be justified
mathematically)

® Confirmed by experiments




Calculation of thresh

® C(Calculate surface of cap of /
hypersphere
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Genomics Application

® Finding protein domains that are related to a set
of experiments in yeast

® Protein domains

® Binary attributes

® From Interpro database

® (Gene expression data

® All come from cell cycle experiments and are expected to represent
related information

® Four time series, each one consisting of 14 - 24 experiments




Results for Gene
Expression Data

® Significance not known independently

® Results should be consistent over comparable
experiments

® Top right: Overlap
® Bottom left: Significance that results are related

Table 1: Results for Gene Expression Data
All  Alpha Cdclb Cdc28 Elu
259 114 117 160 166 | All

119 67 89 79 | Alpha

0 134 86 72 | Cdcld

7TE-15 3E-12 173 107 | Cdc28
0 2E-16 T7E-12 198 | Elu

0 1E-7 0.027 5E-8




Labeled Data From
Time Series

Construct labeled Vector Time Series Randomized
data from time Data ltems ltems

series sub-sequences Time- | A 0|1 110 0
series1 | V7 110 110 0

Item data:

membership in time . O O
series Time-

series 2

Noisy data

(intentionally Random
chosen) Walk |I\\//\/\

Time-
series

Allows varying item
support by adding
random walk data




Comparison Approaches

® Histogram-based approach from

® AM.Denton and J.Wu, KAIS, 2009

® Summarizes density distributions as histograms
® (Classification-based approach

® Predict each item using classification (tree-based
classifier in MATLAB)

® Make prediction using 2-fold cross-validations

® C(Calculate significance based on confusion matrix




Accuracy Depending on
ltem Support

® Clearly
superior to
comparison
algorithms
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Accuracy Depending on
Amount of Noise
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® Accuracy
superior for all
settings
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Performance

Speed comparable
to other algorithms
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Parameter Choice

® Single
parameter
(expected #
of neighbors)
set to one
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Conclusions

® Solves an important problem

® Finding significant relationships between
vectors and items or item sets

® Use of Kullback-Leibler divergence better
justified theoretically than histograms

® Application to genomic data gives consistent
results

® Accuracy much improved on semi-artificial
data (constructed from real time series)




