GQS: Graph Query System

Thomas Fannes & Jan Ramon

[firstname.lastname]@cs.kuleuven.be
GQS

- Overview

- Target value algebras
 - Homomorphism
 - Isomorphism
 - Support measure & embedding significance

- Extras & current status
GQS

- Overview

- Target value algebras
 - Homomorphism
 - Isomorphism
 - Support measure & embedding significance

- Extras & current status
Many different flavors of graph databases:
- Single network vs multiple networks
- Standard graph vs hypergraph
- Query type:
 - Pattern
 - Embedding
 - Aggregated value
 - ... Embeddings under [iso|homo]-morphism
GQS overview

• Why a new graph query system?

• Use state-of-the-art graph algorithms
 – More efficient mining (special subclasses)
 – Results applicable for data mining

• GQS settings:
 – Single, large network database
 – Rooted, bounded treewidth pattern graphs
GQS overview

- Bounded treewidth decomposition
GQS overview

- Rooted bounded treewidth graph
GQS overview

- query operators:
 - List
 - Extend
 - Project
 - Join
 - Select

- Per embedding, calculate a target value:

 \[T(e) = \prod_{v \in e} T(v) \]
GQS overview

Pattern

Network

\[x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_2 x_4 + \]
\[x_1 x_3 x_2 + x_1 x_3^2 + x_1 x_3 x_4 + x_1 x_4 x_2 + x_1 x_4 x_3 + x_1 x_4^2 \]
GQS overview

- Target value (per embedding):

 Product of values associated with network vertices

- List: \(T(\ L(v) \) = T(v) \)
- Extend: \(T(\ E(e,v) \) = T(e) \cdot T(v) \)
- Join: \(T(\ J(e_1, e_2) \) = T(e_1) \cdot T(e_2 \setminus e_1) \)
- Project: \(T(\ P(e_1 \cup ... , e_1) \) = \Sigma T(e_1 \cup ...) \)
GQS

- Overview

- Target value algebras
 - Homomorphism
 - Isomorphism
 - Support measure & embedding significance

- Extras & current status
GQS: default

Task: List **homomorphic** root embeddings of a pattern

evaluation of (a projection of) a conjunctive query

- No target value (or count embeddings per root)
- Runtime:
 - Polynomial in network size
 - Polynomial in pattern size
 - Exponential in pattern treewidth
GQS

- Overview

- Target value algebras
 - Homomorphism
 - Isomorphism
 - Support measure & embedding significance

- Extras & current status
GQS: GF_2

Task: List **isomorphic** root embeddings of a pattern

$$x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_2 x_4 +$$

$$x_1 x_3 x_2 + x_1 x_3^2 + x_1 x_3 x_4 + x_1 x_4 x_2 + x_1 x_4 x_3 + x_1 x_4^2$$
Task: List isomorphic root embeddings of a pattern
Task: List **isomorphic** root embeddings of a pattern

\[x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_2 x_4 +
\]
\[x_1 x_3 x_2 + x_1 x_3^2 + x_1 x_3 x_4 + x_1 x_4 x_2 + x_1 x_4 x_3 + x_1 x_4^2\]

- Use $GF(2^l) \mathbb{Z}_2^k$ as target value algebra:
 - One embedding \leftrightarrow one term
 - Squares or higher are evaluated to zero
 - Randomized approach:
 - $T(e) \neq 0 \rightarrow$ isomorphic embedding of pattern
 - $T(e) = 0 \rightarrow$ Pr[non-isomorphic embedding of pattern] > $(1-\varepsilon)$
Task: List **isomorphic** root embeddings of a pattern

- Target value in randomized $GF(2^l) \mathbb{Z}_2^k$ algebra
- Runtime:
 - Polynomial in network size
 - Mildly exponential in pattern size $O(2^{|V(P)|})$
 - Exponential in pattern treewidth

- (Kibriya & Ramon, DMKD 2013)
Overview

Target value algebras
- Homomorphism
- Isomorphism
- Support measure & embedding significance

Extras & current status
GQS: s-measure

- Vertices: objects
- Hyperedges: examples
- Hyperedge overlap on shared objects.
 - these examples are not independent

- How do we learn from these examples?

![Diagram of GQS: s-measure](attachment:diagram.png)
• Measuring effective sample size
 – Given a networked training set, can we get information out of it equivalent to \(n \) i.i.d. examples? What is \(n \)?
 – What is the weight for each embedding w.r.t. \(n \)?

• For a pattern \(P \), the s-measure gives a anti-monotonic support measure
 \(\rightarrow \) e.g. finding frequent patterns

• (Wang & Ramon, DMKD 2013)
GQS: s-measure

- Influence of each embedding is at most 1:
- \(\max s \)
 \[s = w_1 + w_2 + w_3 + w_4 + w_5 + w_6 \]

Subject to
\[
\begin{align*}
 w_1 + w_2 &\leq 1, \quad w_1 + w_3 \leq 1, \\
 w_4 + w_5 &\leq 1, \quad w_5 + w_6 \leq 1, \\
 w_4 + w_6 &\leq 1 \\
 w_1, w_2, w_3, w_4, w_5, w_6 &\geq 0
\end{align*}
\]

\[s = 3.5 \]
GQS: s-measure

- Linear program \(\rightarrow\) efficient
 - Support measure for each pattern
 - Statistical significance of each embedding \((w_1, w_2, w_3, w_4, w_5, w_6)\)

- GQS target value?
 - Writes out program!

\(s = 3.5\)
GQS

- Overview

- Target value algebras
 - Homomorphism
 - Isomorphism
 - Support measure & embedding significance

- Extras & current status
GQS: extras

- Different query plan optimizations:
 - Memory footprint reducing
 - Optimizations specific for target value algebra

- 2-step approach:

 C++ runtime polymorphic system

 C++ template-based query program
GQS: Current status

- Query system
- Query optimization
- GF₂ isomorphism integration
- GF₂ extended tests
- s-measure integration
- s-measure extended tests
Thanks!

Any questions?