Cardinality Estimation

How Many Rows Does a Query Yield?
Cardinality Estimation

- Web Forms
- Applications
- SQL Interface

SQL Commands

- Executor
- Parser
- Operator Evaluator
- Optimizer

Files and Access Methods

- Transaction Manager
- Buffer Manager
- Disk Space Manager

Recovery Manager

DBMS

Database

data files, indices, …

Concepts:
- Estimating Operator Cardinality
 - Selection σ
 - Projection π
 - Set Operations \cup, \setminus, \times
 - Join \bowtie

- Histograms
 - Equi-Width
 - Equi-Depth

- Statistical Views

- Assumptions
Cardinality Estimation

• A relational query optimizer performs a phase of **cost-based plan search** to identify the—presumably—“cheapest” alternative among a set of equivalent execution plans (↗ Chapter on Query Optimization).

• Since page I/O cost dominates, the **estimated cardinality of a (sub-)query result** is crucial input to this search.

 • Cardinality typically measured in pages or rows.

• **Cardinality estimates** are also valuable when it comes to buffer “right-sizing” **before query evaluation starts** (e.g., allocate B buffer pages and determine blocking factor b for external sort).
Estimating Query Result Cardinality

There are two principal approaches to query cardinality estimation:

1. **Database Profile.**
 - Maintain statistical information about *numbers and sizes of tuples, distribution of attribute values* for *base relations*, as part of the *database catalog* (meta information) *during database updates*.

 - *Calculate* these parameters for *intermediate query results* based upon a (simple) statistical model during query optimization.

 - Typically, the statistical model is based upon the *uniformity* and *independence assumptions*.
 - Both are typically *not valid*, but they allow for simple calculations ⇒ *limited accuracy*.

 - In order to improve accuracy, the system can record *histograms* to more closely model the actual value distributions in relations.
Sampling Techniques.
Gather the necessary characteristics of a query plan (base relations and intermediate results) at query execution time:

• Run query on a small sample of the input.
• Extrapolate to the full input size.

• It is crucial to find the right balance between sample size and the resulting accuracy.

These slides focus on Database Profiles.
Keep profile information in the **database catalog**. Update whenever SQL DML commands are issued (database updates):

Typical database profile for relation R

$	R	$	number of records in relation R
N_R	number of disk pages allocated for these records		
$s(R)$	average record size		
$V(A, R)$	number of distinct values of attribute A		

\[adjustment\]: possibly many more
Database Profiles: IBM DB2

Excerpt of IBM DB2 catalog information for a TPC-H database

```sql
1. db2 => SELECT TABNAME, CARD, NPAGES
2. db2 (cont.) => FROM SYSCAT.TABLES
3. db2 (cont.) => WHERE TABSCHEMA = 'TPCH';
```

<table>
<thead>
<tr>
<th>TABNAME</th>
<th>CARD</th>
<th>NPAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDERS</td>
<td>1500000</td>
<td>44331</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>150000</td>
<td>6747</td>
</tr>
<tr>
<td>NATION</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>REGION</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>PART</td>
<td>200000</td>
<td>7578</td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>10000</td>
<td>406</td>
</tr>
<tr>
<td>PARTSUPP</td>
<td>800000</td>
<td>31679</td>
</tr>
<tr>
<td>LINEITEM</td>
<td>6001215</td>
<td>207888</td>
</tr>
</tbody>
</table>

8 record(s) selected.

- **Note:** Column `CARD` $\equiv |R|$, column `NPAGES` $\equiv N_R$.
Database Profile: Assumptions

In order to obtain tractable cardinality estimation formulae, assume one of the following:

Uniformity & independence (simple, yet rarely realistic)

All values of an attribute uniformly appear with the same probability. Values of different attributes are independent of each other.
Database Profile: Assumptions

In order to obtain tractable cardinality estimation formulae, assume *one of the following*:

Uniformity & independence (simple, yet rarely realistic)

All values of an attribute uniformly appear with the same probability. Values of different attributes are independent of each other.

Worst case (unrealistic)

No knowledge about relation contents at all. In case of a selection σ_p, assume all records will satisfy predicate p.

(May only be used to compute upper bounds of expected cardinality.)
Database Profile: Assumptions

In order to obtain tractable cardinality estimation formulae, assume one of the following:

Uniformity & independence (simple, yet rarely realistic)

All values of an attribute uniformly appear with the same probability. Values of different attributes are independent of each other.

Worst case (unrealistic)

No knowledge about relation contents at all. In case of a selection σ_p, assume all records will satisfy predicate p.

(May only be used to compute upper bounds of expected cardinality.)

Perfect knowledge (unrealistic)

Details about the exact distribution of values are known. Requires huge catalog or prior knowledge of incoming queries.

(May only be used to compute lower bounds of expected cardinality.)
Cardinality Estimation for σ (Equality Predicate)

<table>
<thead>
<tr>
<th>Query: $Q \equiv \sigma_{A=c}(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectivity $sel(A = c)$</td>
</tr>
<tr>
<td>Cardinality $</td>
</tr>
<tr>
<td>Record size $s(Q)$</td>
</tr>
</tbody>
</table>
| **Value Distribution** $V(A', Q)$ | \[
\begin{cases}
1, & \text{for } A' = A, \\
c(V(A', R), |Q|), & \text{otherwise.}
\end{cases}
\]

with (¬ of distinct colors obtained by drawing r balls from a bag of balls of m colors):

$$c(m, r) = \begin{cases}
 r, & \text{for } r < m/2, \\
 (r + m)/3, & \text{for } m/2 \leq r < 2m, \\
 m, & \text{for } r \geq 2m
\end{cases}$$

1"Selection without replacement": $c(m, r) = m \cdot (1 - (1 - 1/m)^r)$.

Cardinality Estimation
Database Profiles
Assumptions
Estimating Operator
Cardinality
Selection σ
Projection π
Set Operations \cup, \setminus, \times
Join \bowtie
Histograms
Equi-Width
Equi-Depth
Statistical Views

Floris Geerts
Selectivity Estimation for σ (Other Predicates)

- **Equality between attributes** $(Q \equiv \sigma_{A=B}(R))$: Approximate selectivity by

 \[sel(A = B) = \frac{1}{\max(V(A, R), V(B, R))}. \]

 (Assumes that each value of the attribute with fewer distinct values has a corresponding match in the other attribute.)

- **Range selections** $(Q = \sigma_{A>c}(R))$: In the database profile, **maintain the minimum and maximum value** of attribute A in relation R, $\text{Low}(A, R)$ and $\text{High}(A, R)$.

 Approximate selectivity by

 \[sel(A > c) = \begin{cases} \frac{\text{High}(A, R) - c}{\text{High}(A, R) - \text{Low}(A, R)}, & \text{Low}(A, R) \leq c \leq \text{High}(A, R) \\ 0, & \text{otherwise} \end{cases} \]
Cardinality Estimation for \(\pi \)

- For \(Q \equiv \pi_L(R) \), estimating the number of result rows is difficult (\(L = \langle A_1, A_2, \ldots, A_n \rangle \): list of projection attributes):

\[
Q \equiv \pi_L(R) \\
\begin{align*}
|Q| &= \begin{cases}
 V(A, R), & \text{if } L = \langle A \rangle \\
 |R|, & \text{if keys of } R \in L \\
 |R|, & \text{no dup. elim.} \\
 \min (|R|, \prod_{A_i \in L} V(A_i, R)), & \text{otherwise}
\end{cases}
\end{align*}
\]

- Independence

Record size \(s(Q) \) \(\sum_{A_i \in L} s(A_i) \)

Val. Dist. \(V(A_i, Q) \) \(V(A_i, R) \) for \(A_i \in L \)
Cardinality Estimation for \cup, \setminus, \times

$Q \equiv R \cup S$

$$\begin{align*}
|Q| &\leq |R| + |S| \\
s(Q) &= s(R) = s(S) \quad \text{schemas of } R, S \text{ identical} \\
V(A, Q) &\leq V(A, R) + V(A, S)
\end{align*}$$

$Q \equiv R \setminus S$

$$\begin{align*}
\max(0, |R| - |S|) &\leq |Q| \leq |R| \\
s(Q) &= s(R) = s(S) \\
V(A, Q) &\leq V(A, R)
\end{align*}$$

$Q \equiv R \times S$

$$\begin{align*}
|Q| &= |R| \cdot |S| \\
s(Q) &= s(R) + s(S) \\
V(A, Q) &= \begin{cases}
V(A, R), & \text{for } A \in R \\
V(A, S), & \text{for } A \in S
\end{cases}
\end{align*}$$
Cardinality Estimation for

- Cardinality estimation for the general join case is challenging.
- A special, yet very common case: **foreign-key relationship** between input relations \(R \) and \(S \):

 \[
 \begin{align*}
 \text{Establish a foreign key relationship (SQL)} \quad & \\
 \text{(1)} & \text{CREATE TABLE} \ R \ (A \ \text{INTEGER NOT NULL}, \\
 \quad & \ldots \\
 \quad & \text{PRIMARY KEY} \ (A)); \\
 \text{(4)} & \text{CREATE TABLE} \ S \ (\ldots, \\
 \quad & A \ \text{INTEGER NOT NULL}, \\
 \quad & \ldots \\
 \quad & \text{FOREIGN KEY} \ (A) \ \text{REFERENCES} \ R); \\
 \text{(9)} & Q \equiv R \bowtie_{R.A=S.A} S
 \end{align*}
 \]

 The foreign key constraint guarantees \(\pi_A(S) \subseteq \pi_A(R) \). Thus:

 \[
 |Q| = |S|.
 \]
Cardinality Estimation for $Q \equiv R \bowtie_{R.A=S.B} S$

$$|Q| = \begin{cases} \frac{|R| \cdot |S|}{V(A, R)}, & \pi_B(S) \subseteq \pi_A(R) \\ \frac{|R| \cdot |S|}{V(B, S)}, & \pi_A(R) \subseteq \pi_B(S) \end{cases}$$

$$s(Q) = s(R) + s(S)$$

$$V(A', Q) \leq \begin{cases} V(A', R), & \text{if } A' \text{ attribute in } R \\ V(A', S), & \text{otherwise} \end{cases}$$
Histograms

- In realistic database instances, values are **not uniformly distributed** in an attribute’s **active domain** (actual values found in a column).
- To keep track of this non-uniformity for an attribute A, maintain a **histogram** to **approximate the actual distribution**:
 1. Divide the active domain of A into adjacent intervals by selecting **boundary values** b_i.
 2. Collect statistical parameters for each interval between boundaries, e.g.,
 - # of rows r with $b_{i-1} < r.A \leq b_i$, or
 - # of distinct A values in interval $(b_{i-1}, b_i]$.

- The histogram intervals are also referred to as **buckets**.

(Y. Ioannidis: The History of Histograms (Abridged), Proc. VLDB 2003)
Histograms in IBM DB2

DB2 Histogram maintained for a column in a TPC-H database

```sql
SELECT SEQNO, COLVALUE, VALCOUNT
FROM SYSCAT.COLDIST
WHERE TABNAME = 'LINEITEM'
AND COLNAME = 'L_EXTENDEDPRICE'
AND TYPE = 'Q';
```

<table>
<thead>
<tr>
<th>SEQNO</th>
<th>COLVALUE</th>
<th>VALCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+00000000000996.01</td>
<td>3001</td>
</tr>
<tr>
<td>2</td>
<td>+0000000004513.26</td>
<td>315064</td>
</tr>
<tr>
<td>3</td>
<td>+0000000007367.60</td>
<td>633128</td>
</tr>
<tr>
<td>4</td>
<td>+0000000011861.82</td>
<td>948192</td>
</tr>
<tr>
<td>5</td>
<td>+0000000015921.28</td>
<td>1263256</td>
</tr>
<tr>
<td>6</td>
<td>+0000000019922.76</td>
<td>1578320</td>
</tr>
<tr>
<td>7</td>
<td>+0000000024103.20</td>
<td>1896384</td>
</tr>
<tr>
<td>8</td>
<td>+0000000027733.58</td>
<td>2211448</td>
</tr>
<tr>
<td>9</td>
<td>+0000000031961.80</td>
<td>2526512</td>
</tr>
<tr>
<td>10</td>
<td>+0000000035584.72</td>
<td>2841576</td>
</tr>
<tr>
<td>11</td>
<td>+0000000039772.92</td>
<td>3159640</td>
</tr>
<tr>
<td>12</td>
<td>+0000000043395.75</td>
<td>3474704</td>
</tr>
<tr>
<td>13</td>
<td>+0000000047013.98</td>
<td>3789768</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```

- Catalog table `SYSCAT.COLDIST` also contains information like
  - the $n$ most frequent values (and their frequency),
  - the number of distinct values in each bucket.
- Histograms may even be manipulated **manually** to tweak optimizer decisions.
Histograms

- Two types of histograms are widely used:
  1. **Equi-Width Histograms.**
     All buckets have the **same width**, *i.e.*, boundary $b_i = b_{i-1} + w$, for some fixed $w$.
  2. **Equi-Depth Histograms.**
     All buckets contain the **same number of rows** (*i.e.*, their width is varying).

- Equi-depth histograms (2) are able to adapt to data skew (high uniformity).

- The number of buckets is the *tuning knob* that defines the *tradeoff* between estimation quality (**histogram resolution**) and **histogram size**: catalog space is limited.
Example (Actual value distribution)

Column A of SQL type `INTEGER` (domain `{..., -2, -1, 0, 1, 2, ...}`). Actual non-uniform distribution in relation R:

![Histogram](image)

- Column A of SQL type `INTEGER` with values `{..., -2, -1, 0, 1, 2, ...}`.
- Actual non-uniform distribution in relation R:
  - Values: 1, 2, 2, 0, 1, 6, 4, 8, 8, 9, 7, 3, 3, 5, 3, 2.
Equi-Width Histograms

- Divide **active domain** of attribute $A$ into $B$ buckets of equal width. The **bucket width** $w$ will be

$$w = \frac{High(A, R) - Low(A, R) + 1}{B}$$

Example (Equi-width histogram ($B = 4$))

- Maintain **sum of value frequencies** in each bucket (in addition to bucket boundaries $b_i$).
Equi-Width Histograms: Equality Selections

Example \((Q \equiv \sigma_{A=5}(R))\)

- Value 5 is in bucket \([5, 8]\) (with 19 tuples)
- Assume **uniform distribution within the bucket**:

\[
|Q| = \frac{19}{w} = \frac{19}{4} \approx 5 .
\]

**Actual:** \(|Q| = 1\)

What would be the cardinality under the uniformity assumption (no histogram)?
Equi-Width Histograms: Range Selections

Example \((Q \equiv \sigma_{A > 7 \text{ AND } A \leq 16}(R))\)

- Query interval \((7, 16]\) covers buckets \([9, 12]\) and \([13, 16]\).
  Query interval touches \([5, 8]\).

\[|Q| = 27 + 13 + 19/4 \approx 45.\]

Actual: \(|Q| = 48\)

What would be the cardinality under the uniformity assumption (no histogram)?
Equi-Width Histogram: Construction

• To **construct** an equi-width histogram for relation $R$, attribute $A$:
  1. Compute boundaries $b_i$ from $\text{High}(A, R)$ and $\text{Low}(A, R)$.
  2. Scan $R$ once sequentially.
  3. While scanning, maintain $B$ running tuple frequency counters, one for each bucket.

• If scanning $R$ in step 2 is prohibitive, scan small sample $R_{\text{sample}} \subset R$, then scale frequency counters by $|R|/|R_{\text{sample}}|$.

• To **maintain** the histogram under insertions (deletions):
  1. Simply increment (decrement) frequency counter in affected bucket.
Equi-Depth Histograms

- Divide **active domain** of attribute $A$ into $B$ buckets of roughly the same number of tuples in each bucket, **depth** $d$ of each bucket will be

$$d = \frac{|R|}{B}.$$

**Example (Equi-depth histogram ($B = 4, d = 16$))**

- Maintain **depth** (and bucket boundaries $b_i$).
Equi-Depth Histograms

**Example (Equi-depth histogram)** ($B = 4, d = 16$)

**Intuition:**
- High value frequencies are more important than low value frequencies.
- Resolution of histogram adapts to skewed value distributions.
Equi-Width vs. Equi-Depth Histograms

Example (Histogram on *customer age* attribute \(B = 8, |R| = 5,600\))

- Equi-depth histogram “invests” bytes in the densely populated customer age region between 30 and 59.
Equi-Depth Histograms: Equality Selections

Example \((Q \equiv \sigma_{A=5}(R))\)

- Value 5 is in first bucket \([1, 7]\) (with \(d = 16\) tuples)
- Assume **uniform distribution within the bucket**:
  \[|Q| = \frac{d}{7} = \frac{16}{7} \approx 2 .\]
  (Actual: \(|Q| = 1\))
**Example** \( (Q \equiv \sigma_{A>5 \land A \leq 16}(R)) \)

- Query interval \((5, 16]\) covers buckets \([8, 9]\), \([10, 11]\) and \([12, 16]\) (all with \(d = 16\) tuples). Query interval touches \([1, 7]\).

\[
|Q| = 16 + 16 + 16 + \frac{2}{7} \cdot 16 \approx 53.
\]

(Actual: \(|Q| = 59\))
Equi-Depth Histograms: Construction

- To **construct** an equi-depth histogram for relation $R$, attribute $A$:

  1. Compute depth $d = |R|/B$.
  2. Sort $R$ by sort criterion $A$.
  3. $b_0 = \text{Low}(A, R)$, then determine the $b_i$ by dividing the sorted $R$ into chunks of size $d$.

**Example** ($B = 4, |R| = 64$)

1. $d = 64/4 = 16$.
2. Sorted $R.A$:
   $$\langle 1, 2, 3, 3, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, \ldots \rangle$$
3. Boundaries of $d$-sized chunks in sorted $R$:
   $$\langle 1, 2, 3, 3, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, \ldots \rangle$$
   $$b_1 = 7$$
   $$b_2 = 9$$
A Cardinality (Mis-)Estimation Scenario

• Because exact cardinalities and estimated selectivity information is provided for base tables only, the DBMS relies on projected cardinalities for derived tables.

• In the case of foreign key joins, IBM DB2 promotes selectivity factors for one join input to the join result, for example.

\[ R \bowtie_{R.A = S.K} (\sigma_{B=10}(S)) \]

If \( \text{sel}(B = 10) = x \), then assume that the join will yield \( x \cdot |R| \) rows.

• Whenever the value distribution of \( A \) in \( R \) does not match the distribution of \( B \) in \( S \), the cardinality estimate may be severely off.
A Cardinality (Mis-)Estimation Scenario

Example (Excerpt of a data warehouse)

Dimension table STORE:

<table>
<thead>
<tr>
<th>STOREKEY</th>
<th>STORE_NUMBER</th>
<th>CITY</th>
<th>STATE</th>
<th>DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63 rows

Dimension table PROMOTION:

<table>
<thead>
<tr>
<th>PROMOKEY</th>
<th>PROMOTYPE</th>
<th>PROMODESC</th>
<th>PROMOVALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35 rows

Fact table DAILY_SALES:

<table>
<thead>
<tr>
<th>STOREKEY</th>
<th>CUSTKEY</th>
<th>PROMOKEY</th>
<th>SALES_PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

754,069,426 rows

Let the tables be arranged in a star schema:

• The fact table references the dimension tables,
• the dimension tables are small/stable, the fact table is large/continuously update on each sale.

⇒ Histograms are maintained for the dimension tables.
A Cardinality (Mis-)Estimation Scenario

Query against the data warehouse

Find the number of those sales in store ’01’ (18 of the overall 63 locations) that were the result of the sales promotion of type ’XMAS’ ("star join"):

```sql
SELECT COUNT(*)
FROM STORE d1, PROMOTION d2, DAILY_SALES f
WHERE d1.STOREKEY = f.STOREKEY
AND d2.PROMOKEY = f.PROMOKEY
AND d1.STORE_NUMBER = ’01’
AND d2.PROMOTYPE = ’XMAS’
```

The query yields 12,889,514 rows. The histograms lead to the following selectivity estimates:

\[
\text{sel}(\text{STORE_NUMBER} = ’01’) = \frac{18}{63} \quad (28.57 \%) \\
\text{sel}(\text{PROMOTYPE} = ’XMAS’) = \frac{1}{35} \quad (2.86 \%)
\]
A Cardinality (Mis-)Estimation Scenario

Estimated cardinalities and selected plan

```sql
SELECT COUNT(*)
FROM STORE d1, PROMOTION d2, DAILY_SALES f
WHERE d1.STOREKEY = f.STOREKEY
AND d2.PROMOKEY = f.PROMOKEY
AND d1.STORE_NUMBER = '01'
AND d2.PROMOTYPE = 'XMAS'
```

Plan fragment (top numbers indicates estimated cardinality):

|  | 2.15448e+07 | 2.15448e+08 |
|------------------|------------------|
| NLJOIN        | ( 9)                 |
| IXAND         | ( 8)                 |
| /--------------+------------------|
1.9694e+07	2.15448e+08	
FETCH	IXSCAN	
( 10)	( 12)	
/-------\	/-------\	
35	35	
IXSCAN	IXSCAN	
TABLE: DB2DBA	INDEX: DB2DBA	
PROMOTION	PROMO_FK_IDX	
( 11)	( 15)	
7.54069e+08	1.9694e+07	7.54069e+08
IXSCAN	IXSCAN	
TABLE: DB2DBA	INDEX: DB2DBA	
STORE	STORE_FK_IDX	
( 14)	( 16)	
63	35	
INDEX: DB2DBA	INDEX: DB2DBA	
PROMOTION_PK_IDX	STOREX1	
IBM DB2: Statistical Views

- To provide database profile information (estimate cardinalities, value distributions, ...) for **derived tables**:
  1. Define a **view** that precomputes the derived table (or possibly a small sample of it, IBM DB2: 10%),
  2. use the view result to gather and keep **statistics**, then delete the result.

```
CREATE VIEW sv_store_dailysales AS
 (SELECT s.*
 FROM STORE s, DAILY_SALES ds
 WHERE s.STOREKEY = ds.STOREKEY);

CREATE VIEW sv_promotion_dailysales AS
 (SELECT p.*
 FROM PROMOTION p, DAILY_SALES ds
 WHERE p.PROMOKEY = ds.PROMOKEY);

ALTER VIEW sv_store_dailysales ENABLE QUERY OPTIMIZATION;
ALTER VIEW sv_promotion_dailysales ENABLE QUERY OPTIMIZATION;

RUNSTATS ON TABLE sv_store_dailysales WITH DISTRIBUTION;
RUNSTATS ON TABLE sv_promotion_dailysales WITH DISTRIBUTION;
```
Cardinality Estimation with Statistical Views

**DB2®**
Estimated cardinalities and selected plan after reoptimization

<table>
<thead>
<tr>
<th>Estimated Cardinalities</th>
<th>Selected Plan after Reoptimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04627e+07 IXAND ( 8)</td>
<td>IXAND</td>
</tr>
<tr>
<td>6.99152e+07 NLJOIN ( 9)</td>
<td>NLJOIN</td>
</tr>
<tr>
<td>1.2845e+08 NLJOIN ( 13)</td>
<td>IXSCAN ( 12)</td>
</tr>
<tr>
<td>1.12845e+08</td>
<td>IXSCAN ( 14)</td>
</tr>
<tr>
<td>3.8846e+06 FETCH ( 10)</td>
<td>FETCH</td>
</tr>
<tr>
<td>7.54069e+08 IXSCAN ( 11)</td>
<td>IXSCAN ( 15)</td>
</tr>
<tr>
<td>63 STORE ( 15)</td>
<td>PROMOTION</td>
</tr>
<tr>
<td>63 STORE_FK_IDX ( 16)</td>
<td>PROMO_FK_IDX</td>
</tr>
<tr>
<td>18 STORE ( 11)</td>
<td>STORE_FK_IDX</td>
</tr>
<tr>
<td>7.54069e+08 INDEX: DB2DBA</td>
<td>INDEX: DB2DBA</td>
</tr>
<tr>
<td>35 INDEX: DB2DBA</td>
<td>INDEX: DB2DBA</td>
</tr>
<tr>
<td>35 STOREX1</td>
<td>PROMOTION_PK_ID</td>
</tr>
<tr>
<td></td>
<td>INDEX: DB2DBA</td>
</tr>
</tbody>
</table>

**Note new estimated selectivities after join:**

- Selectivity of PROMOTYPE = ’XMAS’ now only 14.96 % (was: 2.86 %)
- Selectivity of STORE_NUMBER = ’01’ now 9.27 % (was: 28.57 %)