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Abstract—Methods for cleaning dirty data typically rely on
additional information about the data, such as user-specified con-
straints that specify when a database is dirty. These constraints
often involve domain restrictions and illegal value combinations.
Traditionally, a database is considered clean if all constraints
are satisfied. However, many real-world scenario’s only have a
dirty database available. In such a context, we adopt a dynamic
notion of data quality, in which the data is clean if an error
discovery algorithm does not find any errors. We introduce
forbidden itemsets which capture unlikely value co-occurences in
dirty data, and we derive properties of the lift measure to provide
an efficient algorithm for mining low lift forbidden itemsets.
We further introduce a repair method which guarantees that
the repaired database does not contain any low lift forbidden
itemsets. The algorithm uses nearest neighbour imputation to
suggest possible repairs. Optional user interaction can easily be
integrated into the proposed cleaning method. Evaluation on real-
world data shows that errors are typically discovered with high
precision, while the suggested repairs are of good quality and do
not introduce new forbidden itemsets, as desired.

I. INTRODUCTION

In recent years research on detecting inconsistencies in
data has focused on a constraint-based data quality approach:
a set of constraints in some logical formalism is associated
with a database, and the data is considered consistent or
clean if and only if all constraints are satisfied. Many such
formalisms exist, capturing a wide variety of inconsistencies,
and systematic ways of repairing the detected inconsistencies
are in place. A frequently asked question is, “where do these
constraints come from?”. The common answer is that they
are either supplied by experts, or automatically discovered
from the data [1], [2]. In most real-world scenario’s, however,
the underlying data is dirty. This raises concerns about the
reliability of the discovered constraints.

Assume for the moment that the constraints are reliable
and are used to repair (clean) a dirty database. For the sake
of the argument, what if one re-runs the constraint discovery
algorithm on the repair and finds other constraints? Does this
imply that the repair is not clean after all, or that the discovery
algorithm may in fact find unreliable constraints? It is a typical
chicken or the egg dilemma. The problem is that constraints
are considered to be static: once found, they are treated as a
gold standard. To remedy this, we propose a dynamic notion
of data quality. The idea is simple:

“We consider a given database to be clean if a
constraint discovery algorithm does not detect any
violated constraints on that data.”

Constraints thus reflect inconsistencies which may change
when the data changes. Clearly, this dynamic notion presents
a new challenge when repairing the data. Indeed, it does not
suffice to only resolve inconsistencies for the constraints found
on the original dirty data, one also has to ensure that no new
constraints (and thus new inconsistencies) can be found on the
repaired data. To our knowledge, this is a new view on data
quality, raising many interesting challenges.

The main contribution of this paper is to illustrate this
dynamic view on data quality for a particular class of con-
straints. In particular, we consider errors that can be caught
by so-called edits, which is “the” constraint formalism used
by census bureaus wordwide [3], [4] and can be seen as a
simple class of denial constraints [5], [6]. Intuitively, an edit
specifies forbidden value combinations. For example, an age
attribute cannot take a value higher than 130, a city can only
have certain zip codes, and people of young age cannot have a
driver’s license. These edits are typically designed by domain
experts and are generally accepted to be a good constraint
formalism for detecting errors that occur in single records.
In a situation where only dirty data is available, we aim to
automatically discover such edits in an unsupervised way by
using pattern mining techniques. To make the link to pattern
mining more explicit and to differentiate from standard edits,
we call our patterns forbidden itemsets.

Typically, pattern mining techniques are used to uncover
positive associations between items, measured by different
interestingness measures such as frequency, confidence, lift,
and many others. Based on experience, discovered patterns
often reveal errors in the data in addition to interesting
associations. For example, an association rule which holds for
99% of the data could be interesting in itself, but might also
represent a well-known dependency in the data which should
hold for 100%. The fact that the association doesn’t hold for
1% of the data is then more interesting. This 1% of the data
often points to unlikely co-occurrences of values in the data,
which forbidden itemsets aim to capture. In order to reliably
detect unlikely co-occurences, it is clear that a large body of
clean data is needed. We therefore focus on low error rate
data, such as census data or data that underwent some kind of
curation [7].

Apart from detecting errors we also aim to provide sug-
gestions for how to repair them, i.e., suggest modifications to
the data such that after these modifications, no new forbidden
itemsets are found. Here we again take inspiration from census
data imputation methods that assume the presence of enough
clean data [4] and take suggested modifications from similar,



Figure 1. Schematic overview of the proposed cleaning mechanism.

clean objects. The availability of clean data is commonly
assumed in repairing methods, either as a large part of the
input data or, for example, in the form of master data [8], [9].

Figure 1 gives a schematic overview of the proposed
cleaning mechanism in its entirety. We capture unlikely co-
occurrences by means of forbidden itemsets. Our algorithm
FBIMINER employs pruning strategies to optimise the discov-
ery of forbidden itemsets. Linking back to the beginning of the
introduction, we will regard data to be dirty if FBIMINER finds
forbidden itemsets in the data. Users may optionally filter out
forbidden itemsets by declaring them as valid. Furthermore, we
also devise a repairing algorithm that repairs a dirty dataset
and ensure that no forbidden itemsets exist in the repair, hence
it is indeed clean. To achieve this, we consider so-called almost
forbidden itemsets and present an algorithm A-FBIMINER
for mining them. Again, users can optionally filter out such
itemsets. All algorithms are experimentally validated.

Organisation of the paper. The paper is organised as
follows: In Sect. II we discuss the most relevant related
work. Notations and basic concepts are presented in Sect. III,
followed by a formal problem statement in Sect. IV. Sec-
tion V introduces forbidden itemsets, their properties, and the
FBIMINER algorithm. Section VI presents the repair algo-
rithm, focussing on our strategy to avoid new inconsistencies.
The possibility of user interaction is discussed in Sect. VII.
In Sect. VIII we show experimental results, before we pose a
conclusion in Sect. IX. Proofs and additional plots can found
in the appendix of the full version of the paper [10].

II. RELATED WORK

There has been a substantial amount of work on constraint-
based data quality in the database community (see [1], [2] for
recent surveys). Most relevant to our work are constraints that
concern single tuples such as constant conditional functional
dependencies [1] and constant denial constraints [5], [6].
Algorithms are in place to (i) discover these constraints from
data [11], [12], [1], [13]; and (ii) once the constraints are
fixed, to repair the errors [14], [15], [16], [5]. Moreover, user
interaction is often used to guide the repairing algorithms [17],
[18], [19] and statistical methods have been investigated to
measure the impact of repairing [20]. As previously mentioned,
all these methods use a static notion of cleanliness. Our notion
of forbidden itemsets is closest in spirit to edits, used by census
bureaus [3] and our repairing method is similar to hot-deck
imputation methods [4]. Capturing and detecting inconsisten-
cies is also closely related to anomaly and outlier detection
(see [21], [22], [23] for recent surveys). A recent study [24]
provides a comparison of detection methods. In the pattern
mining community many different interestingness measures
exist. We mention [25] in which outliers are discovered using

a measure that is similar to ours. Furthermore, Error-Tolerant
Itemsets (ETI) [26], [27] can be regarded as the inverse of the
forbidden itemsets. Compared to these methods, we identify
new properties of the lift measure to speed up the mining
process and use forbidden itemsets to both detect and clean
data.

III. PRELIMINARIES

We consider datasets D consisting of a finite collection
of objects. An object o is a pair 〈oid, I〉 where oid is an
object identifier, e.g., a natural number, and I is an itemset.
An itemset is a set of items, where the items are of the form
(A, v) where A comes from a set A of attributes and v is a
value taken from a finite domain of categorical values dom(A)
of A. An itemset contains at most one item for each attribute
in A. We define the value of an object o = 〈oid, I〉 in attribute
A, denoted by o[A], as the value v where (A, v) ∈ I , and let
o[A] be undefined otherwise. We denote by I the set of all
attribute/value pairs (A, v).

An object o = 〈oid, I〉 is said to support an itemset J if
J ⊆ I , i.e., J is contained in I . The cover of an itemset J in
D, denoted by cov(J,D), is the set of oid’s of objects in D that
support J . The support of J in D, denoted by supp(J,D), is
the number of oid’s in its cover in D. Similarly, the frequency
of an itemset J in D is the fraction of oid’s in its cover:
freq(J,D) = supp(J,D)|/|D|, where |D| is the number of
objects in D. We sometimes represent D in a vertical data
layout denoted by D↓. Formally, D↓= {(i, cov({i},D)) | i ∈
I, cov({i},D) 6= ∅}. Clearly, one can freely go from D to D↓,
and vice versa.

We assume that a similarity measure between objects is
given and denote by sim(o, o′) the similarity between objects
o and o′. The similarity between two datasets D and D′ is
denoted by sim(D,D′). Any similarity measure can be used
in our setting. We describe the similarity function used in our
experiments in Sect. VIII.

IV. PROBLEM STATEMENT

We first phrase our problem in full generality (follow-
ing [28]) before making things more specific in the next
section. Consider a dataset D and some constraint language L
for expressing properties that indicate dirtiness in the data, e.g.,
L could consist of conditional functional dependencies [1],
edits [4], or association rules [29]. Furthermore, let q be a
selection predicate (evaluating to true or false) that assesses
the relevance of constraints ϕ ∈ L in D. For example, when
ϕ is a conditional functional dependency, q(D, ϕ) may return
true if ϕ is violated in D. We denote by dirty(D,L, q) the
set of all dirty constraints, i.e., all ϕ ∈ L for which q(D, ϕ)
evaluates to true. For example, dirty(D,L, q) may consist of
all violated conditional functional dependencies, all edits that
apply to an object, or all low confidence association rules.
Definition 1. A dataset D is said to be clean relative to
language L and predicate q if dirty(D,L, q) is empty; D is
called dirty otherwise.

With this definition we take a completely new view on data
quality. Indeed, existing work in this area [1] typically fixes
the constraints up front, regardless of the data. For example,



Table I. EXAMPLE FORBIDDEN ITEMSETS FOUND IN UCI DATASETS

Forbidden Itemsets Dataset τ

Sex=Female, Relationship=Husband
Sex=Male, Relationship=Wife
Age=<18, Marital-status=Married-c-s
Age=<18, Relationship=Husband

Adult 0.01

Relationship=Not-in-family, Marital=Married-c-s
aquatic=0, breathes=0 (clam)
type=mammal, eggs=1 (platypus)
milk=1, eggs=1 (platypus)
type=mammal, toothed=0 (platypus)
eggs=0, toothed=0 (scorpion)
milk=1, toothed=0 (platypus)
tail=1, backbone=0 (scorpion)

Zoo 0.1

bruises=t, habitat=l
population=y, cap-shape=k
cap-surface=s, odor=n, habitat=d
cap-surface=s, gill-size=b, habitat=d
edible=e, habitat=d, cap-shape=k

Mushroom 0.025

edits are often designed by experts and then compared with
the data. In our definition, we only specify the class of
constraints, e.g., edits. Which edits are used for declaring the
data clean or dirty depends entirely on the underlying data.
We thus introduce a dynamic rather than a static notion of
dirtiness/cleanliness of data: when the data changes, so do the
edits under consideration. With this notion at hand, we are
next interested in repairs of the data. Intuitively, a repair of a
dirty dataset is a modified dataset that is clean.
Definition 2. Given datasets D and D′, language L, predicate
q and similarity function sim , we say that D′ is an (L, q)-
repair if (i) D′ has the same set of object identifiers as D; and
(ii) dirty(D′,L, q) is empty. An (L, q)-repair D′ is optimal if
sim(D,D′) is maximal amongst all (L, q)-repairs of D.

V. FORBIDDEN ITEMSETS

We first specialize constraint language L and predicate
q such that dirty(D,L, q) corresponds to inconsistencies in
D. We define L as the class of itemsets and define q such
that dirty(D,L, q) corresponds to what we will call forbidden
itemsets (Sect. V-A). Intuitively, these are itemsets which do
occur in the data, despite being very improbable with respect
to the rest of the data. Furthermore, we show how to compute
dirty(D,L, q) for low lift forbidden itemsets. As such itemsets
are typically infrequent, existing itemset mining algorithms are
not optimized for this task. We therefore derive properties of
the lift measure that allow for substantial pruning when mining
forbidden itemsets (Sect. V-B). We conclude by presenting a
version of the well-known Eclat algorithm [30] enhanced with
our derived pruning strategies and optimizations specific for
the task of mining low lift forbidden itemsets (Sect. V-C).

Before formally introducing forbidden itemsets as a con-
straint language L, let us provide some additional motivation
for considering invalid or unlikely value combinations (as
represented by forbidden itemsets) as error detection for-
malism. First of all, invalid value combinations have been
used for decades to detect errors in census data starting with
the seminal work by Fellegi and Holt [3]. Second, although
more expressive formalisms such as conditional functional
dependencies (CFDs) [31] and denial constraints (DCs) [5], [6]
have become popular for error detection and repairing, many
constraints used in practice are very simple. As an example,
most of the constraints reported in Table 4 in [24] can be

regarded as constraints that only involve constants. This is clear
for “checks” that specify invalid domain values. Additionally,
even a functional dependency such as (zip → state) can be
regarded as a (finite) collection of constant rules that associate
specific zip codes to state names. The violations of these rules
clearly are invalid value combinations. Similarly, almost half
of the DCs reported in [6] only involve constants and concern
single tuples. It therefore seems natural to first gain a better
understanding of these simple constraints in our dynamic data
quality setting. Finally, the discovery of CFDs and DCs [1],
[11], [12] in their full generality is very slow due to the
high expressiveness of these constraint languages. Experi-
ments show that the discovery process may take up to hours
on a single machine. This makes such powerful constraints
infeasible in settings where interactivity or quick response
times are needed, as in our setting. For all these reasons, we
believe that forbidden itemsets provide a good balance between
expressiveness, efficiency of discovery, and efficacy in error
detection. Furthermore, they are easily interpretable, allowing
users to inspect them and filter out false positives.

A. Low Lift Itemsets

We consider L consisting of the class of itemsets and want
to define q such that for an itemset I , q(D, I) is true if I
corresponds to a possible inconsistency in the data. In general,
we can use a likeliness function L : 2I×D → R that indicates
how likely the occurrence of an itemset is in D. If we denote by
τ a maximum likeliness threshold, then we define τ -forbidden
itemsets as follows.

Definition 3. Let D be a dataset, L a likeliness function, I
an itemset and τ a maximum likeliness threshold. Then, I is
called a τ -forbidden itemset whenever L(I,D) ≤ τ .

Phrased in the general framework from the previous sec-
tion, we thus have that L is the class of itemsets and q(D, I) is
true if I is a τ -forbidden itemset. Hence, dirty(D,L, q) consists
of all τ -forbidden itemsets in D.

In this paper, we propose to use the lift measure of an
itemset as likeliness function. Intuitively, it gives an indi-
cation of how probable the co-occurence of a set of items
is given their separate frequencies. Lift is generally used as
an interestingness measure in association rule mining, where
rules with a high lift between antecedent and consequent are
considered the most interesting [25], and has also been used
for constraint discovery [11]. A straightforward extension of
lift from rules to itemsets assumes “full” independence among
all individual items [32, p. 310]. In other words, an itemset
I is regarded as “unlikely” when freq(I,D) is much smaller
than freq({i1},D)× · · · × freq({ik},D), where i1, . . . , ik are
the items in I . However, this introduces an undesirable bias
towards larger itemsets: many items with a slight negative
correlation might have a lower lift than two items with a strong
negative correlation.

Instead of full independence we adopt “pairwise” indepen-
dence, in which freq(I,D) is compared against freq(J,D) ×
freq(I \ J,D) for any non-empty J ⊂ I , and the maximal
discrepancy ratio is taken as the lift of I in D:

Definition 4. Let D be a dataset and let I be an itemset. The



lift of I , denoted by lift(I,D), is defined as

lift(I,D) := |D| × supp(I,D)
min
∅⊂J⊂I

{
supp(J,D)× supp(I \ J,D)

}
We note that this definition is conceptually related to

association rules and has been used successfully in the context
of redundancy [25] and outlier detection [33], two concepts
very similar in spirit to our intended notion of inconsistencies.

One could further generalize the notion of lift by ranging
over partitions of I consisting of more than two parts, full
independence being a special case in which I is partitioned
in all its items. We find, however, that pairwise independence
is already effective for detecting unlikely value combinations
and is more efficient to compute.

From now on, we refer to τ -forbidden itemsets as itemsets
I for which lift(I,D) 6 τ holds, following Def. 3. When using
lift, τ will typically be small, and we assume that τ < 1.

Example 1. To illustrate that τ -forbidden itemsets are an
effective formalism for capturing unlikely value combinations,
we show some example forbidden itemsets found in UCI
datasets in Table I. In the Adult dataset, the co-occurence of
Female and Husband, as well as Male and Wife, are clearly
erroneous1. Other examples involve a married person under
the age of 18 and people who are married, yet living in with
an unrelated household. In the Zoo dataset, the first forbidden
itemset shows that the animal clam in the dataset is neither
aquatic nor breathing. To our knowledge, clams are in fact
aquatic, so these values are indeed in error. The other forbidden
itemsets detect animals that are in some way an exception in
nature. For example, the platypus is famous for being one
of few existing mammal species that lays eggs, the other
species being anteaters. Similar exceptional combinations are
encountered in the other UCI datasets, such as the Mushroom
dataset, although the forbidden itemsets are more difficult to
interpret for this dataset. While not all of these examples
represent actual errors, they show that the forbidden itemsets
are capable of detecting peculiar objects that require extra
attention. Of course, it makes little sense to repair objects such
as the platypus. Typically, user validation of the discovered
errors will be preferable over fully automatic repairs. This is
adressed in Sect. VII. ♦

B. Properties of the Lift Measure

Before presenting our algorithm FBIMINER that mines τ -
forbidden itemsets, we describe some properties of the lift
measure that underly our algorithm.

While the lift measure is neither monotonic nor anti-
monotonic, two properties that are typically used for pruning
in pattern mining algorithms, it still has some properties that
allow the pruning of large branches of the search tree: since a
low lift requires that an itemset occurs much less often than its
subsets, we can effectively use the relation between the support
of a τ -forbidden itemset and the support of its subsets to prune.
As we will explain shortly, FBIMINER performs a depth-first
search for forbidden itemsets. To make this search efficient,
pruning strategies should be in place that discard all supersets

1Same gender marriages were not allowed at the time of the 1994 Census

of a particular itemset. For this purpose, we derive properties
that must hold for all subsets of a τ -forbidden itemset.

Given an itemset I we denote by σmaxI the highest support
of an item {i} in I or any of I’s supersets J . This is the most
frequent item (A, v) for which I[A] = v or I[A] is undefined.
More formally,

σmaxI := max{supp({i},D) | i ∈ J, I ⊆ J}.
This quantity can be used to obtain a lower bound on the
support of subsets of J when J is a τ -forbidden itemset:

Proposition 1. For any two itemsets I and J such that I ⊂ J ,
if J is a τ -forbidden itemset then supp(I,D) ≥ |D|×supp(J,D)

σmax
I ×τ .

Furthermore, for any τ -forbidden itemset J in the dataset,
it trivially holds that supp(J,D) ≥ 1 and thus any itemset
I ⊂ J must have supp(I,D) ≥ |D|

σmax
I ×τ . This implies that

in the depth-first search, it suffices to expand itemsets I for
which supp(I,D) ≥ |D|

σmax
I ×τ .

Furthermore, Prop. 1 can be leveraged to show that a min-
imum reduction in support between subsets of a τ -forbidden
itemset is required.

Proposition 2. For any three itemsets I , J and K such that
I ⊂ J ⊆ K holds, if K is a τ -forbidden itemset then
supp(I,D)− supp(J,D) ≥ 1

τ −
σmax
I

|D| > 0.

In particular, for J to be τ -forbidden, we must have that
supp(I,D) − supp(J,D) ≥ 1

τ −
σmax
I

|D| > 0 holds for any of
its subsets I . During the depth-first search, when expanding
I to J , if this condition is not satisfied, then J and all of
its supersets K can be pruned. Furthermore, the proposition
implies that τ -forbidden itemsets are so-called generators [34],
i.e., if J is τ -forbidden then supp(I,D) > supp(J,D) for any
I ⊂ J . A known property of generators is that all their subsets
are generators as well, meaning that the entire subtree can be
pruned if a non-generator is encountered during the search.

Our next pruning method uses the lift of an itemset to
bound the support of its supersets. Indeed, the denominator of
the lift measure is in fact anti-monotonic.

Proposition 3. For any two itemsets I and J such that I ⊂ J ,
it holds that:

lift(J,D) ≥ supp(J,D)× |D|
min
S⊂I

{
supp(S,D)× supp(I \ S,D)

} .
Clearly, this lower bound can be used to prune itemsets

J that cannot lead to τ -forbidden itemsets. Note that to use
the lower bound, one needs a lower bound on supp(J,D). We
again use the trivial lower bound supp(J,D) ≥ 1.

Finally, since itemsets with low lift are obtained when
they occur much less often than their subsets, it is expected
that such forbidden itemsets will have a low support. In fact,
one can precisely characterise the maximal frequency of a τ -
forbidden itemset.

Proposition 4. If I is a τ -forbidden itemset then its frequency
is bounded by freq(I,D) 6 2

τ − 2
√

1
τ2 − 1

τ − 1. Furthermore,
for small τ -values this bound converges (from above) to τ

4 .



Algorithm 1 An Eclat-based algorithm for mining low lift
τ -forbidden itemsets

1: procedure FBIMINER(D↓, I ⊆ I, τ )
2: FBI← ∅
3: for all i ∈ I occuring in D in reverse order do
4: J ← I ∪ {i}
5: if not isGenerator(J) then
6: continue
7: storeGenerator(J)

8: if |J | > 1 & freq(J,D) ≤ 2
τ − 2

√
1
τ2 − 1

τ − 1 then
9: if a subset of J has been pruned then

10: continue
11: if lift(J,D) 6 τ then
12: FBI← FBI ∪ {J}
13: if |D|τ > min

S⊂J

{
supp(S,D)× supp(J \ S,D)

}
then

14: continue
15: if supp(J,D) < |D|

σmax
J ×τ then

16: continue
17: D↓[i]← ∅
18: for all j ∈ I in D such that j > i do
19: C ← cov({i},D) ∩ cov({j},D)
20: if supp(J,D)− |C| ≥ (1/τ)− (σmaxJ /|D|) then
21: if |C| > 0 then
22: D↓[i]← D↓[i] ∪ {(j, C)}
23: FBI← FBI ∪ FBIMINER(D↓[i], J, τ)
24: return FBI

The proposition tells that for small values of τ , τ -forbidden
itemsets are at most approximately τ/4-frequent and that
itemsets whose frequency exceeds 2

τ − 2
√

1
τ2 − 1

τ − 1 cannot
be τ -forbidden. This implies that itemsets that are too frequent
cannot be forbidden and can be pruned.

C. Forbidden Itemset Mining Algorithm

We now present an algorithm, FBIMINER, for mining
τ -forbidden itemsets in a dataset D. That is, the algorithm
computes dirty(D,L, q) for the language and predicate defined
earlier. The algorithm is based on the well-known Eclat
algorithm for frequent itemset mining [30]. Here, we only
describe the main differences with Eclat. The pseudo-code
of FBIMINER is shown in Alg. 1. The algorithm is initially
called with D↓ (D in vertical data layout), I = ∅ and the
lift threshold τ . Just like Eclat, FBIMINER employs a depth-
first search of the itemset lattice (for loop line 3 – 23, and
recursive call on line 23) using set intersections of the covers
of the items to compute the support of an itemset (line 19).
When expanding an itemset I in the search tree (line 4), new
itemsets are generated by extending I with all items in the
dataset that occur in the objects in I’s cover (lines 18 – 22).
Furthermore, these items are added according to some total
ordering on the items, i.e., items are only added when they
come after each item in I (line 18). We assume order items
by ascending support, as this is known to improve efficiency.

A first challenge is to tweak the Eclat algorithm such that
the lift of itemsets can be computed. Observe that the lift of an
itemset is dependent on the support of all of its subsets. For
this purpose, we use the same depth-first traversal as Eclat,
but traverse it in reverse order (line 3). Indeed, such a reverse

pre-order traversal of the search space visits all subsets of an
itemset J before visiting J itself [35]. This is exactly what is
required to compute the lift measure, provided that the support
of each processed itemset is stored. However, Eclat generates a
candidate itemset based on only two of its subsets [30]. Hence,
the supports of all subsets of an itemset are not immediately
available in the search tree. To remedy this, we store the
support of the processed itemsets using a prefix tree, for time-
and memory-efficient lookup during lift computation.

Having integrated lift computation in the algorithm, we
next turn to our pruning and optimisation strategies. We deploy
four pruning strategies (lines 9, 13, 15 and 20). The first
strategy (line 9) applies to itemsets J for which the lift cannot
be computed. This happens when some of its subsets are
pruned away in an earlier step. Since itemsets are only pruned
when none of their supersets can be τ -forbidden, this implies
that J cannot be tau-forbidden. The absence of subsets is
detected when the lift computation requests the support of a
subset that is not stored. Our pruning then implies that J and
its supersets cannot be τ -forbidden and thus can be pruned
(line 7).

The second pruning strategy (line 13) applies to itemsets
J for which we have been able to compute their lift. Indeed,
when |D|τ > min

S⊂J

{
supp(S,D)× supp(J \ S,D)

}
then Prop. 3

tells that J cannot be a subset of a τ -forbidden itemset. Hence,
all itemsets in the tree below J are pruned (line 12).

By contrast, the third strategy (line 15) leverages Prop. 1
and skips supersets of itemsets J , regardless of whether its
lift was computed. Indeed, when supp(J,D) < |D|

σmax
J ×τ holds

then J cannot be part of a τ -forbidden itemset, resulting in a
further pruning of the search space.

The fourth strategy employs Prop. 2 to prune extensions
of J that do not cause a sufficient reduction in support. This
check is performed prior to the recursive call (line 20).

Finally, we also implement an optimisation that avoids
certain lift computations (line 8). Only when the algorithm
encounters an itemset J with at least two items and a frequency
lower than the bound from Prop. 4, the lift of J is computed.
All other itemsets cannot be τ -forbidden by Prop. 4. Note that
this only eliminates the need for checking the lift of certain
itemsets but by itself does not lead to a pruning of its supersets.

A careful reader may have spotted the optimized pruning of
non-generators on lines 5-7. Recall that as a direct consequence
of Prop. 2, any τ -forbidden itemset must be a generator, i.e.,
have a support which is strictly lower than that of all of
its subsets. The Talky-G algorithm [36] implements specific
optimizations for mining such generators, using a hash-based
method that was introduced in the Charm algorithm for closed
itemset mining [37]. We use the same technique in FBIMINER
to efficiently prune non-generators.

During the mining process, all encountered generators are
stored in a hashmap (procedure storeGenerator on line
7). As hash value we use, just like the Charm algorithm, the
sum of the oid’s of all objects in which an itemset occurs. If
an itemset has the same support as one of its subsets, it is clear
that this itemset must occur in exactly the same objects, and
will map to the same hash value. Moreover, the probability of



unrelated itemsets having the same sum of oids is lower than
the probability of them having the same support. Therefore this
sum is taken as hash value instead of the support of itemsets.

Procedure isGenerator on line 5 checks all stored
itemsets with the same hash value as J . If any of these itemsets
are a subset of J with the same support, J is discarded as
a non-generator. Furthermore, since all supersets of a non-
generator are also non-generators, the entire subtree can be
pruned. If no subset with identical support is discovered for
an itemset J , then J is either a generator, or a subset with
identical support has previously been pruned, in which case J
will eventually be pruned on line 9.

VI. REPAIRING INCONSISTENCIES

The algorithm FBIMINER discovers a set of τ -forbidden
itemsets that describe inconsistencies in D. When this set is
non-empty, D is regarded as dirty. We next want to clean
D. Following the general framework outlined in section IV,
we wish to compute a repair D′ of D such that (i) D′ is
clean, i.e., no τ -forbidden itemsets should be found in D′;
and (ii) D′ differs minimally from D. Due to the dynamic
notion of data quality, (i) becomes more challenging than in a
traditional repair setting. We start by showing how the creation
of new τ -forbidden itemsets can be avoided by means of so-
called almost forbidden itemsets (Sect. VI-A) and explain how
these can be mined (Sect. VI-B), before describing the repair
algorithm itself (Sect. VI-C).

A. Ensuring a Clean Repair

Given a dataset D and its set of τ -forbidden itemsets
FBI(D, τ), we define the dirty objects in D, denoted by
Ddirty, as those objects in D that appear in the cover of an
itemset in FBI(D, τ). In other words, Ddirty consists of all
objects that support a τ -forbidden itemset. The remaining
set of clean objects in D is denoted by Dclean. The repair
algorithm will produce a dataset D′ by modifying all objects
in Ddirty to remove the forbidden itemsets. We consider value
modifications where values come from clean objects. Recall
however that we need to obtain a repair D′ of D such that
FBI(D′, τ) is empty, i.e., such that D′ is clean. We first present
an example to show that this is not a trivial problem.

Example 2. People typically graduate High School in the year
they turn 18. Depending on the timing of a census, there may
be graduates who are still only 17 years old. In the Adult
Census dataset, the itemset (AGE=<18, EDUCATION=HS-
GRAD) is rare, with a lift ≈ 0.072. Assume that τ -forbidden
itemsets were mined with τ = 0.07. The itemset is thus
not considered forbidden, and rightly so. However, an object
containing (AGE=<18, EDUCATION=HS-GRAD) could, for
example, contain the forbidden itemset (AGE=<18, MAR-
ITALSTATUS=DIVORCED), where MaritalStatus is in error.
If the repair algorithm were to change Age instead, the
lift of (AGE=<18, EDUCATION=HS-GRAD) would drop to
≈ 0.068! This itemset will then become τ -forbidden in D′,
yielding again a dirty dataset. ♦

A naive approach for avoiding new inconsistencies would
be to run FBIMINER on D′ for each candidate modification,
and reject the modification in case FBI(D′, τ) is non-empty.

In view of the possibly exponential number of candidate mod-
ifications, this approach is not feasible for all but the smallest
datasets. As an alternative, we propose to compute up front
enough information to ensure cleanliness of multiple repairs.
More specifically, the procedure A-FBIMINER computes a
set A of almost τ -forbidden itemsets, i.e., itemsets that could
become τ -forbidden after a given number of modifications k.
This computation relies only on the dataset D and its dirty
objects, and not on the particular modifications made during
repairing.

B Almost Forbidden Itemsets. Almost forbidden itemsets
are mined by algorithm A-FBIMINER. It mines itemsets J
similarly to FBIMINER, but uses a relaxed notion of lift,
called the minimal possible lift of J after k modifications, to
be explained below. More specifically, by using the minimal
possible lift measure, A-FBIMINER returns a set A of itemsets
such that for any dataset D′ obtained from D by at most k
modifications,

FBI(D′, τ) ⊆ A. (†)
We next explain what precisely A consists of and how it can
be used to avoid new inconsistencies whilst repairing. It is
crucial for our approach that A accommodates for any repair
D′ of D obtained from at most k modifications as it eliminates
the need for considering all possible repairs one by one.

B Minimal Possible Lift. To define the relaxed lift measure
used by A-FBIMINER, we consider the following problem:
Given an itemset J in D and its lift(J,D), can J become
τ -forbidden after k modifications to D have been made?
Let us first analyse the minimal possible lift in case a sin-
gle modification is made. Suppose that lift(J,D) = |D| ×
supp(J,D)/(supp(I,D) × supp(J \ I,D)) for some I ⊂ J ,
with supp(I,D) ≤ supp(J \ I,D). It can be shown that, after
one modification, the minimal possible lift is either

|D| × (supp(J,D)− 1)

supp(I,D)× (supp(J \ I,D)− 1)

or
|D| × supp(J,D)

(supp(I,D) + 1)× supp(J \ I,D)
.

Which case is minimal depends on the ratio of the supports of
the itemsets I , J \ I and J . Nevertheless, given these supports
we can return the smallest of the two as minimal possible lift
after one modification and denote the result by mpl(J, I, 1). To
generalise this to an arbitrary number k of modifications and
obtain mpl(J, I, k), we recursively repeat this computation k
times, with updated supports of the itemsets I , J and J \ I .
The crucial property of minimal possible lift is the following:

Proposition 5. Let J , I as above. If J ∈ FBI(D′, τ) for
some D′ obtained from D by at most k modifications, then
mpl(J, I, k) ≤ τ .

Hence, if A consists of all itemsets J for which
mpl(J, I, k) ≤ τ , for some I ⊂ J such that lift(J,D) =

|D|×supp(J,D)
supp(I,D)×supp(J\I,D) , then it is guaranteed that all itemsets in
FBI(D′, τ) are returned, as desired by property (†). Algorithm
A-FBIMINER mines all itemsets J for which mpl(J, I, k) ≤
τ , for I as above, and thus returns A.



B Avoiding New Inconsistencies. Before explaining how A-
FBIMINER works, we first explain how the set A of almost
forbidden itemsets can be used to guarantee clean repairs. We
come back to the repair algorithm in Sect. VI-C. Consider a
modification orep,i of a dirty object oi. Our repair algorithm
rejects this modification in the following cases:

— Old inconsistency: These are itemsets which should not be
present in the repaired dataset, as they are already known to
be inconsistent in D. This happens if orep,i covers an itemset
C ∈ A∩ FBI(D, τ). It also happens if orep,i covers an itemset
C ∈ A with supp(C,D) = 0, which are itemsets that do
not occur in the original dataset, but would be forbidden if
they did occur. Indeed, an uncautious repair could introduce
such an itemset in the “repaired” dataset. In other words, no
itemset should be present in orep,i that is already known to be
forbidden. We denote this set as Aold.

Repair Safety: Old inconsistencies are avoided when a repair
orep,i does not support any itemsets in Aold.

—Potential inconsistency: Object orep,i covers an itemset C ∈
A with lift(C,D) > τ and lift(C,D′i) < lift(C,D), where
D′i is D in which only oi is replaced by orep,i and all other
objects in D are preserved. In other words, when orep,i covers
an almost τ -forbidden itemset that is not yet τ -forbidden in
D, modifications that reduce the lift of this itemset should be
prevented. We denote this set as Apot.

Repair Safety: Since it is infeasible to recompute the lift of
all itemsets in Apot, we opt for a more efficient method which
suffices to ensure that the lift of the itemsets I ∈ Apot doesn’t
drop, by asserting that (i) no occurrence of I has been removed
(which would decrease the numerator in its lift) and (ii) no
occurrence of a strict subset of I has been added (which would
increase the denominator in its lift). By guaranteeing that
supp(I,D) ≥ supp(I,D′) and for all J ( I : supp(J,D) ≤
supp(J,D′), it follows that lift(I,D′) ≥ lift(I,D).

It can be shown that these two safety checks suffice to
guarantee that no forbidden itemsets will be found in accepted
repairs. We declare a candidate repair to be safe if it passes
both checks.

B. Mining Almost Forbidden Itemsets

We now describe algorithm A-FBIMINER. It is similar to
FBIMINER, except for the relaxed lift measure and different
pruning strategies. Recall that algorithm A-FBIMINER is to
mine almost forbidden itemsets without looking at repairs, i.e.,
only D and an upper bound k on the number of modified
objects is available. Clearly k is at most |Ddirty|. To adapt the
pruning strategies from FBIMiner, the underlying properties
must be revised to take possible modifications into account.
Since clean objects are never modified, a tight bound on the
support of an itemset in any D′, obtained from D by at most
k modifications, can be obtained. Indeed, observe that for any
itemset I , the following holds:

supp(I,Dclean) ≤ supp(I,D′) ≤ supp(I,Dclean) + k

An immediate consequence is that A-FBIMINER must also
consider itemsets I with supp(I,Dclean) = 0 as these can
become supported in repairs. Furthermore, we can now modify
Propositions 1 and 2:

Proposition 6. For any two itemsets I and J such that
I ⊂ J , if J is a τ -forbidden itemset in D′ then we have that
supp(I,Dclean) ≥ |D|×supp(J,D

′)
σmax
I,D′×τ

− k.

Proposition 7. For any three itemsets I , J and K such that
I ⊂ J ⊂ K, if K is a τ -forbidden itemset in D′ then
supp(I,Dclean)− supp(J,Dclean) ≥ 1

τ −
σmax
I,D′

|D| − k.

Similarly to the pruning strategies for FBIMiner, we again
use the trivial lower bound supp(J,D′) = 1. Furthermore, to
make use of these propositions for pruning, note that we do
not know σmaxI,D′ . Indeed, recall that we do not consider any
particular repair D′. Instead, σmaxI,Dclean

can be computed, and
it holds that σmaxI,D′ 6 σmaxI,Dclean

+k. As a consequence, Prop. 6
is used to prune supersets of I whenever supp(I,Dclean) <

|D|
(σmax

I,Dclean
+k)×τ − k.

From Prop. 7, it follows that non-generator pruning can
be applied to an itemset I if 1

τ −
σmax
I,D′

|D| > k. Observe that

0 <
σmax
I,D′

|D| 6 1 and hence the impact of this ratio is almost
negligible. Therefore, instead of computing σmaxI,D′ for every
I , we use an estimate for σmax∅,D′ instead, i.e., σmax∅,Dclean + k.
Prop. 7 implies that supp(I,Dclean)− supp(J,Dclean) ≥ 1

τ −
(σmax

∅,Dclean
+k)

|D| − k must hold for every I ⊆ J for which J is
τ -forbidden in any D′ obtained by using k modifications.

Finally, Prop. 3 also needs to be adapted to account for
possible modifications. Since the mpl measure depends on the
ratio of supp(J,D′) and its partitions, it does not preserve the
anti-monotonicity of the lift denominator. Instead, we need to
compute the worst case increase in the denominator of the lift
measure:

Proposition 8. For any two itemsets I and J such that I ⊂ J ,
it holds that lift(J,D′) ≥

supp(J,D′)× |D|
min
S⊂I

{
(supp(S,Dclean) + k)× (supp(I \ S,Dclean) + k)

} .
As before, we use this proposition for supp(J,D′) =

1. These three properties allow substantial pruning when
mining almost forbidden itemsets similarly as explained for
FBIMINER.

B Batch execution. Propositions 6 and 7 also show that the
number k of modifications considered has a direct impact on
the pruning capabilities of algorithm A-FBIMINER. Indeed,
suppose that k takes the maximal value, i.e., k = |Ddirty|.
Then, it is likely that the bounds given in these propositions
do not allow for any pruning. Worse still, the minimal possible
lift, which also depends on k, will declare many itemsets to
be almost forbidden. Although A-FBIMINER will need to be
run only once to obtain the set A and all dirty objects can
be repaired based on A, this set will be big and inefficient to
compute (due to lack of pruning). On the other hand, when
k = 1, pruning will be possible and A will be of reasonable
size. However, to clean all dirty objects, we need to deal with
them one-at-a-time, re-running A-FBIMINER for k = 1 after
a single dirty object is repaired.

Between these two extremes, we propose to process the
dirty objects in batches. More specifically, we partition Ddirty



Algorithm 2 Repairing dirty objects
1: procedure REPAIR(Ddirty, Dclean, linsim, τ )
2: for all Ri ∈ blocks(Ddirty, r) do
3: r := |Ri|
4: D′ := ∅; D′′ = ∅
5: Ai = A-FBIMINER(D ⊕D′, r, τ)
6: for all oi ∈ Ri do
7: success:=false
8: for all oc ∈ Dclean in sim(oc, oi) desc. order do
9: orep,i = MODIFY(oi, oc)

10: if SAFE(oi, orep,i,Ai) then
11: success := true
12: D′ := D′ ∪ orep,i
13: break
14: if not success then D′′ = D′′ ∪ oi
15: return (D′,D′′)

into blocks of a size r, optimizing the trade-off between
the runtime of A-FBIMINER and the number of runs. The
question, of course, is what block size to select. We already
described block size r = 1 and r = |Ddirty|. We next use
Prop. 6 and Prop. 7 to identify ranges for r for which pruning
may still be possible.

Let I and J be itemsets such that I ⊂ J . Proposition 6
is only applicable if |D|×supp(J,D

′)
σmax
I,D′×τ

> r, and Prop. 7 is only

applicable if 1
τ −

σmax
I,D′

|D| > r, where D′ is now any repair
obtained from D by at most r modifications. It is easy to see
that |D|×supp(J,D

′)
σmax
I,D′×τ

> 1
τ −

σmax
I,D′

|D| and hence r = |D|×supp(J,D′)
σmax
I,D′×τ

is the maximal block size for which one can expect pruning.
As before letting supp(J,D′) = 1 and I = ∅, we identify
r = |D|

(σmax
∅,Dclean

+r)×τ as a maximal block size that allows
pruning based on Prop. 6. Additional pruning based on Prop. 7
is possible for lower block sizes, i.e., when 1

τ − 1 > r. Here
we again use that |D|

σmax
I,D′
≥ 1. We hence also identify r = 1

τ −1

as block size that allows substantial pruning.

Of course, there is no universally optimal block size r.
The specifics of the data and even the choice of which objects
to include in a partition of r objects all impact the pruning
power. It is also important to note that the block sizes derived
above guarantee that the associated propositions are appli-
cable, but still offer reduced pruning power in comparison
to smaller block sizes. In the experimental section, we show
that r = 1

2τ provides a sensible default value of r, whereas
r = |D|×supp(J,D′)

σmax
I,D′×τ

improves the runtime on datasets with a
small number of attributes.

C. Repair Algorithm

We are finally ready to describe our algorithm REPAIR,
shown in Alg. 2. It takes as input the dirty and clean objects,
Ddirty and Dclean respectively, a similarity function, and the lift
threshold τ . The dirty objects Ddirty are partitioned in blocks
Ri of size r. Per block, the set of almost forbidden itemsets
Ai is computed. At this point, the repair process depends only
on the two sets Ri and Ai. After each processed block, D is
updated with the found repairs in D′, denoted as D ⊕D′.

For each dirty object in Ri, a candidate repair is generated
by replacing some of its items by items from a similar, but
clean object in Dclean. By using the most similar objects to
produce candidate repairs, we try to minimize the difference
between D′ and D. This approach is in line with the commonly
used hot deck imputation in statistical survey editing [4].

If the candidate repair is safe (as explained before) with
respect to the almost forbidden itemsets in Ai, then it is added
to the set D′ (line 12). Otherwise, the next candidate clean
object is considered (loop line 8–13) until a repair is found
(line 13) or all candidate repairs have been rejected. In this
case, oi is added to the set of unrepaired objects D′′ (line 14),
for further user inspection.

It remains to explain how candidate repairs are generated.
For each dirty object oi, the algorithm consecutively processes
the clean objects oc in order of their similarity to oi. The
algorithm subsequently modifies the dirty object oi by means
of the procedure MODIFY(oi, oc) (line 8). The resulting object
is denoted by orep,i. In our implementation, MODIFY(oi, oc)
replaces items (A, v) in oi by (A, oc[A]) that occur in the τ -
forbidden itemsets covered by oi, i.e., only the items that are
part of inconsistencies are modified.

VII. USER INTERACTION

The cleaning methods outlined in this paper have been
designed such that they can be run fully automatically, without
any user input or interaction. Of course, in practice, optional
user input is often desired. Such a mechanism can readily
be integrated into our method. Indeed, the repairing process
relies only on the sets of forbidden and almost forbidden
itemsets, FBI(D, τ) and A, respectively. A user can validate
the discovered itemsets, answering the simple question “are
these items allowed to co-occur?”. Itemsets that are rejected
by the user can be discarded from the respective sets. The
algorithms will then work as desired, considering the user-
rejected (almost) forbidden itemsets to be semantically correct.
Likewise, a user could be shown the top-k lowest lift forbidden
itemsets and asked to confirm which itemsets to remove. The
efficient discovery of such top-k itemsets and experimental
evaluation of user interactions are left for future work.

VIII. EXPERIMENTS

In this section, we experimentally validate our proposed
techniques, by answering the following questions:

• Does FBIMINER find a manageable set of errors
efficiently? Are the forbidden itemsets actually errors?
What is the impact of pruning?

• Can almost forbidden itemsets be mined efficiently?
How does the block size impact runtime?

• Is the repair algorithm able to find low-cost repairs
efficiently? How often is it impossible to repair an
object?

A. Experimental Settings

The experiments were conducted on real-life datasets from
the UCI repository (http://archive.ics.uci.edu/ml/). We show
results for six datasets, their descriptions are given in Table II.



The Adult database was preprocessed by discretizing ages
and removing other continuous attributes. The algorithms have
been implemented in C++, the source code and used datasets
are available for research purposes 2. The program has been
tested on an Intel Xeon Processor (2.9GHZ) with 32GB of
memory running Linux. Our algorithms run in main memory.
Reported runtimes are an average over five independent runs.

Table II. STATISTICS OF THE UCI DATASETS USED IN THE
EXPERIMENTS. WE REPORT THE NUMBER OF OBJECTS, DISTINCT ITEMS,

AND ATTRIBUTES.

Dataset |D| |I| |A|

Adult 48842 202 11
CensusIncome 199524 235 12
CreditCard 30000 216 12
Ipums 70187 364 32
LetterRecognition 20000 282 17
Mushroom 8124 119 23

B. Forbidden Itemset Mining

We ran the forbidden itemset mining algorithm FBIMINER
with full pruning, reporting the total runtime, the number of
forbidden itemsets, and the number of objects containing a
forbidden itemset, for increasing values of τ . For the larger
datasets, Ipums and CensusIncome, a smaller τ range was
considered. This prevents an explosion in the number of
forbidden itemsets and the associated high runtime. The results
are shown in Fig. 2, Fig. 3 and Fig. 4, respectively.

The results show that the runtime of the algorithm (Fig. 2)
scales linearly with τ . As a result of the depth-first search,
the runtime is strongly influenced by the number of distinct
items. As a consequence, the algorithm runs slowest on the
Ipums dataset. The runtime on the LetterRecognition dataset
is explained by its relatively high number of items, and the
fact that it contains many forbidden itemsets.

The number of forbidden itemsets (Fig. 3) is typically
small, although there is a stronger than linear increase as
the lift threshold increases, illustrating that τ should indeed
be chosen very small. Especially for the LetterRecognition
database, the number of forbidden itemsets increases exponen-
tially. This occurs because the dataset is very noisy, since the
contained letters were randomly distorted. In contrast, the less
noisy Adult and CensusIncome datasets have relatively few
dirty objects. The number of dirty objects (Fig. 4) naturally
follows a similar pattern to the number of forbidden itemsets,
with an occasionally big increase if a forbidden itemset with
a relatively high support is discovered.

To answer the question “Are the forbidden itemsets actually
errors?”, a gold standard for the subjective task of data
cleaning would be needed. Although synthetic error generators
exist [38], [39], they require the constraints to be known
up front. In line with [11], we therefore evaluate forbidden
itemsets manually for usefulness, obtaining a precision score.
The results for the Adult datasets, which is the most readily
interpretable, are shown in Table III. Precision is very high for
small τ -values, and keeps up around 50% in the tau-range,
which is a high score for an uninformed method. Note that we
report the precision of the forbidden itemsets, the number of

2http://adrem.uantwerpen.be/joerirammelaere
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Figure 2. Runtime of FBIMiner in function of maximum lift threshold τ .
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Figure 3. Number of Forbidden Itemsets in function of maximum lift
threshold τ .

erroneous objects is a multiple of this value, as illustrated by
Fig. 4.

In order to evaluate the influence of the pruning strategies,
we report the number of itemsets processed with only one
type of pruning enabled, and contrast these with the number of
itemsets processed when all pruning is enabled. We distinguish
between Min. Supp pruning, using Prop. 1 on line 15 of
Alg. 1; Lift Denominator pruning, using Prop. 3 on line 13;
and Support Diff pruning, using Prop. 2 on line 20.

The results are shown in Fig. 5 for the Adult and Credit-
Card datasets; results CensusIncome and LetterRecognition
were similar .On the Mushroom and Ipums datasets, which
have many attributes, FBIMiner became infeasible for larger
values of τ without Support Diff pruning.. Clearly, Support
Diff pruning is dominant in most cases. Since this strategy
also entails non-generator pruning, it is definitely crucial for
the runtime of FBIMiner. Especially as τ increases, the other
strategies also improve the overall result, indicating that all are
beneficial and complementary to each other. We do not show
the results when all pruning is disabled since all itemsets are
then considered (independently of τ ), leading to a high number
of processed itemsets and running time.

A separate issue is the maximal frequency of a forbidden
itemset, used on line 8 of Alg. 1. Recall that this is not a prun-
ing strategy: using the frequency bound increased the number
of itemsets processed, but may reduce runtime by avoiding
certain unnecessary lift computations. This bound was disabled
for the previous pruning results, to prevent painting a distorted
picture of the influence of each pruning strategy. Table IV
shows the runtime influence of the frequency bound as a
percentage of the runtime without this bound. Results range
from a 20% decrease to a 10% increase, and indicate that
the frequency bound is typically beneficial for the runtime of
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Table III. PRECISION OF DISCOVERED FORBIDDEN ITEMSETS ON
ADULT DATASET.

τ -value

Dataset 0.01 0.026 0.043 0.067 0.084 0.1

Nr. FBI 5 12 24 49 69 92
Precision 100% 67% 71% 61% 55% 45%

FBIMiner, especially for smaller τ -values.

C. Almost Forbidden Itemsets

The discovery of almost forbidden itemsets is the most
computationally expensive part in our methodology. Recall that
the runtime of A-FBIMINER depends both on the lift threshold
τ and the number of dirty objects as discovered by FBIMiner.
Since a larger τ automatically entails a higher number of dirty
objects, clearly scalability in τ is an issue.

For each dataset and each τ , we first run algorithm FBI-
MINER to obtain the forbidden itemsets. Let k denote the
number of dirty objects found. We then run algorithm A-
FBIMINER a number of times with block size r, indicating
the number of dirty objects to be repaired at once, until all k
objects have been repaired. Firstly, we report runtimes for the
extreme cases of the block size, i.e., r = 1 and r = k. These
runtimes are shown in Fig. 6a-6b for the first four datasets.
Results for CensusIncome and Ipums were similar, the plots
are defered to the appendix of the full version [10].

The difference between both block sizes is clear. For r = k,
runtimes start out reasonably low, but quickly explode as the
algorithm loses its pruning power and computation becomes
infeasible. This is the most problematic for Mushroom, which
has a larger number of attributes, and LetterRecognition, which
has a very high number of dirty objects k. On the other hand,
block size r = 1 remains feasible throughout the τ range, but
is slower in general.

Next, we focus on the optimal block size r. As outlined
in Sect. VI-B, we can identify the quantities 1

τ − 1 and
1
τ ×

|D|
σmax
∅,D′

as the maximal block sizes for which Prop. 6 and
Prop. 7, respectively, are still applicable. Fig. 6c-6d displays
the obtained runtimes using these block sizes on the first four
datasets, results for CensusIncome and Ipums are again omitted
but similar. Note that the chosen values for r are τ -dependent.
Consequently, for every τ -value, a different number of dirty
objects is obtained and partitioned into blocks of a different
absolute size. As expected, the runtimes are lower than for
k = 1, while feasibility is better than for r = k, proving that
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Figure 5. Number of itemsets processed with different pruning strategies in
function of maximum lift threshold τ .

Table IV. RUNTIME INFLUENCE OF MAXIMAL FREQUENCY BOUND IN
FUNCTION OF τ . VALUES SHOWN ARE THE RUNTIME WITH FREQUENCY
BOUND AS A PERCENTAGE OF RUNTIME WITHOUT FREQUENCY BOUND.

τ -value

Dataset 0.01 0.026 0.043 0.067 0.084 0.1

Adult 95% 92% 93% 98% 98% 112%
CreditCard 95% 89% 77% 96% 110% 97%

the right block size indeed improves the overall performance
of the algorithm. Runtime on the LetterRecognition dataset
naturally suffers from the exponential increase in the number
of dirty objects on that dataset. However, performance on the
Mushroom dataset is still problematic: the number of attributes
leads to a deep search tree, and pruning power is too limited.
The same holds for Ipums. Plots of the obtained runtimes are
deferred to the appendix of the full version [10].

As an alternative, we consider the block size r = 1
2τ , the

halfway point between r = 1 and r = 1
τ − 1. Figure 6e-6f

shows that this block size provides sufficient pruning power
for the Mushroom dataset, and indeed outperforms all other
considered sizes over the entire τ -range. For higher τ -values,
the algorithm still struggles on the Ipums dataset, its high
number of items proving problematic. On the other datasets,
A-FBIMINER is fast for low values of τ , and feasible across
the considered τ -range.

D. Data Repairing

In Table V we report on the quality of repairs obtained
by algorithm REPAIR for various values of τ . The block size
r = 1

2τ was chosen, as described in the previous paragraph.
We report the minimal and maximal similarity between a dirty
object and its repair (within the τ range as above), with a
similarity value of 1 indicating identical objects. The obtained
repairs consistently have a high similarity in the given τ -range.

We also report the number of objects that could not be
repaired at the highest τ -value, denoted as D′′. For Adult,
CensusIncome, CreditCard and LetterRecognition, only a few
objects are unrepairable and this occurs only for high values of
τ . A higher number of unrepairable objects is encountered for
the Ipums and Mushroom datasets. This seems to suggest that
a higher number of attributes causes problems for repairing.

Finally, Fig. 8 shows the runtime of algorithm REPAIR.
The reported running times exclude the time needed for
A-FBIMINER. Since the repair algorithm computes nearest
neighbours for all dirty objects, the runtime plots are similar
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Figure 6. Runtime of A-FBIMINER in function of maximum lift threshold
τ , for various block sizes r.

Figure 7. Example repairs on Adult dataset.

in shape to the plots in Fig. 4. The required time to repair a
single dirty object depends on the number of clean objects,
which is typically close to |D|. Note that the repair algorithm
itself is independent of τ , which only affects FBIMINER and
A-FBIMINER. Fig. 7 shows example repairs obtained on the
Adult dataset (τ = 0.01), for illustrative purposes.

Table V. AVERAGE QUALITY OF REPAIRS.

Dataset τ -range Min-Max Sim. |D′′|

Adult 0.01-0.1 0.94-0.95 1
CensusIncome 0.001-0.01 0.90-0.95 0
CreditCard 0.01-0.1 0.94-0.96 10
Ipums 0.001-0.01 0.95-0.98 94
LetterRecognition 0.01-0.1 0.96-0.98 33
Mushroom 0.01-0.1 0.94-0.99 238
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Figure 8. Runtime of the Repair algorithm in function of maximum lift
threshold τ .

For our implementation, we make use of the lin-similarity
measure [40] which weights both matches and mismatches
based on the frequency of the actual values:

linsim(o, o′) = ∑
A∈A S(o[A], o

′[A])∑
A∈A log(freq({(A, o[A])},D)) + log(freq({(A, o′[A])},D))

where S(o[A], o′[A]) is given by
2 log(freq({(A, o[A])},D)) if o[A] = o′[A]; and
2 log(freq({(A, o[A])},D))+
log(freq({(A, o′[A])},D)) otherwise.

For example in the context of census data, a match or mismatch
in gender would be more influential than a match or mismatch
in the age category. Of course, any other similarity measure
could be used instead. As part of future work, we intend to
compare the influence of different similarity functions.

IX. CONCLUSION

We have argued that the classical point of view on data
quality is too static, and proposed a general dynamic notion
instead. We believe that this notion is quite interesting on its
own and hope that it will be adopted and explored in various
data quality settings.

In this paper, we have specialised the general setting by
introducing so-called forbidden itemsets, established some of
their properties, and provided an algorithm to mine them.
Our experiments show that the algorithm is efficient, and
illustrate that forbidden itemsets capture inconsistencies with
high precision, while providing a concise representation of
dirtiness in data.

Furthermore, we have developed an efficient repair algo-
rithm, guaranteeing that after repairs, no new inconsistencies
can be found. By first mining almost forbidden itemsets,
we can assure that no itemsets become forbidden during a
repair. This is an essential ingredient in our dynamic notion of



data quality. Experiments show high quality repairs. Crucial
here are our pruning strategies for mining almost forbidden
itemsets. As part of future work, we intend to improve the
performance of A-FBIMINER e.g., by establishing further
properties of the minimal possible lift. Different likeliness
functions for the forbidden itemsets may provide interesting
new capabilities. And the repair algorithm also warrants further
research: can a better repairability be achieved, especially on
higher dimensional data? Finally, we seek to acquire datasets
with ground truth such that an in-depth comparison of error
precision and repair accuracy can be performed for different
likeliness functions and repair strategies.

In conclusion, the dynamic view on data quality opens the
way for revisiting data quality for other kinds of constraints
or patterns. It would be interesting to see how to design
repair algorithms in the setting for say, standard constraints
such as conditional functional dependencies, among others. In
addition, the impact of user interaction on the repairing process
and the quality of repairs needs to be addressed.
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APPENDIX

PROOFS OF SECT. V-B

PROPOSITION 1: For any two itemsets I and J such
that I ⊂ J , if J is a τ -forbidden itemset then
supp(I,D) ≥ |D|×supp(J,D)

σmax
I ×τ .

We show this by contradiction. Let J be a τ -forbidden
itemset for τ < 1 and assume for the sake of contradiction
that there exists a I ( J with supp(I,D) < |D|×supp(J,D)

σmax
I ×τ .

Then observe the following:

τ ≥ lift(J,D) ≥ |D| × supp(J,D)
supp(I,D)× supp(J \ I,D)

>
|D| × supp(J,D)

|D|×supp(J,D)
σmax
I ×τ × supp(J \ I,D)

>
σmaxI × τ × |D| × supp(J,D)

|D| × supp(J,D)× supp(J \ I,D)

>
τ × σmaxI

supp(J \ I,D)
> τ,

where the last inequality follows from the fact that σmaxI ≥
supp(J \ I,D). We thus have that τ > τ which is clearly
impossible. Hence, every subset I of a τ -forbidden itemset J
must satisfy supp(I,D) < |D|×supp(J,D)

σmax
I ×τ .

PROPOSITION 2: For any three itemsets I , J and K such
that I ⊂ J ⊆ K holds, if K is a τ -forbidden itemset then
supp(I,D)− supp(J,D) ≥ 1

τ −
σmax
I

|D| > 0

We show this by contradiction. Let K be a τ -forbidden
itemset for τ < 1 and assume for the sake of contradiction that
there exist subsets I ⊂ J ⊆ K with supp(I,D)−supp(J,D) <
1
τ −

σmax
I

|D| . Let k = supp(I,D) − supp(J,D) and rewrite
supp(K,D) as

supp(K,D) = supp(K,D) + supp(I,D)− supp(J,D)− k.

Let L denote the subset K \ (J \ I), it then holds
that supp(L,D) = supp(K,D) + supp(I,D) − supp(J,D).
Hence, supp(K,D) = supp(L,D) − k. Furthermore, since
lift(K,D) ≤ τ , Prop. 1 requires that supp(L,D) ≥ 1/τ . We
show that this leads to a contradiction. Indeed,

τ ≥ lift(K,D) ≥ |D| × supp(K,D)
supp(K \ L,D)× supp(L,D)

τ ≥ |D|
supp(K \ L,D)

× supp(L,D)− k
supp(L,D)

τ ≥ |D|
σmaxI

×
(
1− k

1/τ

)
.

From this, we can infer that τ × σmaxI ≥ |D|− (τ × k× |D|),
or that τ ×k×|D| ≥ |D|−τ ×σmaxI . Rearranging terms leads
to k ≥ |D|

τ×|D| −
τ×σmax

I

τ×|D| and hence

k = supp(I,D)− supp(J,D) ≥ 1

τ
− σmaxI

|D|
,

contradicting our assumption.

PROPOSITION 3: For any two itemsets I and J such that I ⊂
J , it holds that:

lift(J,D) ≥ supp(J,D)× |D|
min
S⊂I

{
supp(S,D)× supp(I \ S,D)

} .

We show the following: For any two itemsets I and J such
that I ⊂ J , it holds that:

min
S⊂I

{
supp(S,D)× supp(I \ S,D)

}
≥ min
S⊂J

{
supp(S,D)× supp(J \ S,D)

}
.

Clearly, this implies the proposition. We next show that
inequality holds. In fact, this follows from the fact any
expression supp(S,D) × supp(I \ S,D) can be rewritten as
supp(S,D) × supp((J \ S) \X,D) where X = J \ I . Since
supp((J \ S) \ X,D) ≥ supp(J \ S,D), we obtain that the
following holds for any S ⊂ I: supp(S,D)×supp(I \S,D) ≥
supp(S,D)× supp(J \ S,D).

PROPOSITION 4: If I is a τ -forbidden itemset then its
frequency is bounded by freq(I,D) 6 2

τ − 2
√

1
τ2 − 1

τ − 1.
Furthermore, for small values of τ this upper bound converges
(from above) to τ

4 .

We first compute an upper bound on supp(I,D) for an
itemset I which is τ -forbidden for a given threshold τ < 1.
Denote by S a subset of I that minimizes min

∅⊂S⊂I

{
supp(S,D)×

supp(I \S,D)
}

. Observe that supp(S,D) + supp(I \S,D) ≤
|D|+supp(I,D). It can now be easily verified that the maximal
value of the expression supp(S,D)×supp(I\S,D) is obtained
when supp(S,D) = |D|+supp(I,D)

2 .

Since lift(I,D) 6 τ and the denominator in the definition
of lift (Def. 4) is maximized for supp(S,D) = |D|+supp(I,D)

2 ,
we have the following upper bound:

supp(I,D) ≤ τ

4|D|
×
(
|D|2 +

2|D| × supp(I,D) + (supp(I,D))2
)

It is now a routine exercise to find the maximal value of
supp(I,D). Indeed, one simple needs to solve the equation

τ

4|D|
×
(
|D|2 + 2|D| × supp(I,D) +

(supp(I,D))2
)
− supp(I,D) = 0

We obtain the following two solutions:

supp(I,D)± =
2|D|
τ
− |D| ± 2|D|

√
1

τ2
− 1

τ

Since 2|D|
τ − |D| > |D| for any τ < 1, we see that

supp(I,D)+ = 2|D|
τ − |D| + 2|D|

√
1
τ2 − 1

τ > |D|. This
is impossible since no itemset can have a support strictly
greater than |D|. Hence, we are left with the other root
supp(I,D)− = 2|D|

τ − |D| − 2|D|
√

1
τ2 − 1

τ . To obtain the



upper bound on the frequency we divide by |D|. This results
in that the maximal frequency of a τ -forbidden itemset is
2
τ − 2

√
1
τ2 − 1

τ − 1.

To show the second statement in the proposition, we
consider the Taylor expansion of 2

τ − 2
√

1
τ2 − 1

τ − 1 given
by

τ

4
+
τ2

8
+

5τ3

64
+

7τ4

128
+O(τ5).

Hence, for decreasing values of τ , the maximal frequency of
a τ -forbidden itemset converges from above to τ/4.

Proofs of Sect. VI-A

PROPOSITION 5: Let I and J be itemsets. Suppose that
lift(J,D) = |D|×supp(J,D)

supp(I,D)×supp(J\I,D) for some I ⊂ J , with
supp(I,D)
≤ supp(J \ I,D). If J ∈ FBI(D′, τ) for some D′ obtained
from D by at most k modifications, then mpl(J, I, k) ≤ τ .

As a first step, we compute the maximal drop in lift after
performing a single modification. Consider an itemset J and
consider ∅ ⊂ I ⊂ J such that

lift(J,D) = |D| × supp(J,D)
supp(I,D)× supp(J \ I,D)

.

Without loss of generality, we assume that supp(I,D) 6
supp(J \ I,D). In general, when the supports of I, J and
J \I are all greater than 1, we distinguish between 10 possible
changes for lift(J,D) after performing a single modification.
Denote by D′ the dataset obtained from D by this modification.
Then, either

lift(J,D′) = |D| × (supp(J,D)− 1)

(supp(I,D)− 1)× supp(J \ I,D)
(1)

lift(J,D′) = |D| × (supp(J,D)− 1)

supp(I,D)× (supp(J \ I,D)− 1)
(2)

lift(J,D′) = |D| × (supp(J,D)− 1)

(supp(I,D)− 1)× (supp(J \ I,D)− 1)
(3)

lift(J,D′) = |D| × (supp(J,D) + 1)

(supp(I,D) + 1)× supp(J \ I,D)
(4)

lift(J,D′) = |D| × (supp(J,D) + 1)

supp(I,D)× (supp(J \ I,D) + 1)
(5)

lift(J,D′) = |D| × (supp(J,D) + 1)

(supp(I,D) + 1)× (supp(J \ I,D) + 1)
(6)

lift(J,D′) = |D| × supp(J,D)
(supp(I,D) + 1)× supp(J \ I,D)

(7)

lift(J,D′) = |D| × supp(J,D)
supp(I,D)× (supp(J \ I,D) + 1)

(8)

lift(J,D′) = |D| × supp(J,D)
(supp(I,D)− 1)× supp(J \ I,D)

(9)

lift(J,D′) = |D| × supp(J,D)
supp(I,D)× (supp(J \ I,D)− 1)

(10)

Since supp(I,D) ≤ supp(J \ I,D), it is clear that cases (1)
and (3) result in a higher lift than (2). Similarly, case (8) gives

a higher lift than case (7) while case (9) gives a higher lift
than case (10). Case (10) is in turn dominated by case (2).
Cases (4) - (6) create a new co-occurence which effectively
increases the lift value if the original lift was < 1. This leaves
cases (2) and (7) as valid options for minimizing the lift after
an edit, which case is optimal depends on the specific support
values of I and J \ I .

If we denote by σI , σJ and σJ\I the supports of I , J and
J \ I in D, then it is readily verified that
MINPOSSLIFT(σI , σJ\I , σJ , 1) ≤ lift(J,D′).

Since MINPOSSLIFT(σI , σJ\I , σJ , 1) is independent of the
exact modification used to go from D to D′,
MINPOSSLIFT(σI , σJ\I , σJ , 1) ≤ lift(J,D′) holds for any
such D′.

A lower bound on the minimum lift of an itemset J after k
modifications are made is computed iteratively, as there is no
closed formula solution available. We compute the maximal
drop in lift after performing a single edit, and repeat this
procedure k times. Using a similar argument as above, it is
guaranteed that MINPOSSLIFT(σI , σJ\I , σJ , k) ≤ lift(J,D′)
holds for any D′ obtained from D by at most k modifications.

This suffices to show Proposition 5. Indeed, consider
J ∈ FBI(D′, τ) where D′ is obtained from D by at most
k modifications. In other words, lift(J,D′) ≤ τ and since
MINPOSSLIFT(σI , σJ\I , σJ , k) ≤ lift(J,D′), also

MINPOSSLIFT(σI , σJ\I , σJ , k) ≤ τ

holds, as desired.

PROOFS OF SECT. VI-B

PROPOSITION 6: For any two itemsets I and J such that
I ⊂ J , if J is a τ -forbidden itemset in D′ then we have
that supp(I,Dclean) ≥ |D|×supp(J,D

′)
σmax
I,D′×τ

− k.
We show this by contradiction. Let J be a τ -forbidden itemset
in D′ for τ < 1 and assume for the sake of contradiction that
there exists a I ( J with supp(I,Dclean) < |D|×supp(J,D′)

σmax
I,D′×τ

−k.

Recall that for any itemset I and dataset D′ obtained from D
by modifying at most k dirty objects, it holds that:

supp(I,Dclean) ≤ supp(I,D′) ≤ supp(I,Dclean) + k

It follows that:

supp(I,D′) ≤ |D| × supp(J,D′)
σmaxI,D′ × τ

− k + k

And hence supp(I,D′) ≤ |D|×supp(J,D
′)

σmax
I,D′×τ

. According to Prop. 1,
this implies that J cannot be a τ -forbidden itemset in
D′, which contradicts our initial assumption. Hence, every
subset I of a τ -forbidden itemset J in D′ must satisfy
supp(I,Dclean) ≥ |D|×supp(J,D

′)
σmax
I,D′×τ

− k.

PROPOSITION 7: For any three itemsets I , J and K such
that I ⊂ J ⊂ K, if K is a τ -forbidden itemset in D′ then
supp(I,Dclean)− supp(J,Dclean) ≥ 1

τ −
σmax
I,D′

|D| − k.



We show this by contradiction. Let K be a τ -forbidden
itemset in D′ for τ < 1 and assume for the sake of
contradiction that there exist subsets I ⊂ J ⊆ K with
supp(I,Dclean) − supp(J,Dclean) < 1

τ −
σmax
I,D′

|D| − k. Recall
that for any itemset I and dataset D′ obtained from D by
modifying at most k dirty objects, it holds that:

supp(I,Dclean) ≤ supp(I,D′) ≤ supp(I,Dclean) + k

Using these inequalities for I , we obtain that:

supp(I,D′)− supp(J,Dclean) <
1

τ
−
σmaxI,D′

|D|
− k + k

Since supp(J,Dclean) ≤ supp(J,D′), it follows that:

supp(I,D′)− supp(J,D′) < 1

τ
−
σmaxI,D′

|D|
By Prop. 2, this means that the itemset J cannot be τ -forbidden
in D′, contradicting our initial assumption.

PROPOSITION 8: For any two itemsets I and J such that I ⊂
J , it holds that lift(J,D′) ≥

supp(J,D′)× |D|
min
S⊂I

{
(supp(S,Dclean) + k)× (supp(I \ S,Dclean) + k)

} .

This is a straightforward extension of Prop. 3:

lift(J,D′) ≥ supp(J,D′)× |D|
min
S⊂I

{
supp(S,D′)× supp(I \ S,D′)

} .
By applying the inequalities supp(S,D′) ≤ supp(S,Dclean)+
k and supp(I \ S,D′) ≤ supp(I \ S,Dclean) + k, if follows
that:

supp(J,D′)× |D|
min
S⊂I

{
(supp(S,Dclean) + k)× (supp(I \ S,Dclean) + k)

} .

ADDITIONAL PLOTS: ALMOST FORBIDDEN ITEMSETS
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Figure 9. Runtime of A-FBIMINER in function of maximum lift threshold
τ , for various block sizes r.
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