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Discovery of Spatially Cohesive Itemsets in
Three-dimensional Protein Structures*

Cheng Zhou, Pieter Meysman, Boris Cule, Kris Laukens and Bart Goethals

Abstract—In this paper we present a cohesive structural itemset miner aiming to discover interesting patterns in a set of data
objects within a multidimensional spatial structure by combining the cohesion and the support of the pattern. We propose two
ways to build the itemset miner, VertexOne and VertexAll, in an attempt to find a balance between accuracy and run-times. The
experiments show that VertexOne performs better, and finds almost the same itemsets as VertexAll in a much shorter time. The
usefulness of the method is demonstrated by applying it to find interesting patterns of amino acids in spatial proximity within a set
of proteins based on their atomic coordinates in the protein molecular structure. Several patterns found by the cohesive structural
itemset miner contain amino acids that frequently co-occur in the spatial structure, even if they are distant in the primary protein
sequence and only brought together by protein folding. Further various indications were found that some of the discovered
patterns seem to represent common underlying support structures within the proteins.

Index Terms—itemset mining, multidimensional data, cohesion, protein structure
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1 INTRODUCTION

PATTERN discovery in sequences is a popular data
mining task. Usually, a pattern is evaluated based

on how close to each other its elements occur (cohe-
sion), and how often the pattern itself occurs (sup-
port). Recently, attempts have been made to mine in-
teresting patterns in sequences by combining cohesion
and support [2]. Here we extend this method into
data objects with a multidimensional structure and
explore its potential to find interesting amino acid
patterns within a set of proteins based on their atomic
coordinates and molecular structure information.

Proteins are linear chains composed of twenty dif-
ferent amino acids (often referred to as ‘residues’).
In living cells these chains fold into specific three-
dimensional structures that perform a great variety
of biological functions. In the structure of a single
protein we distinguish the primary structure, which
corresponds to the sequence of the amino acids as
they occur along the protein chain; the secondary
structure, which is a local shape, such as α-helices or
β-sheets, adopted by small segments of consecutive
amino acids; the tertiary structure, which is the com-
plete three-dimensional structure of the protein; and
the quaternary structure, which corresponds to inter-
molecular interactions that proteins undergo. There is
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a vast amount of molecular structure data publicly
available in biological databases. The RCSB Protein
Data Bank (PDB), which is the single worldwide
repository of molecular structures of large biological
molecules, currently contains the three-dimensional
atomic coordinates of more than 90 000 structures [3].
Although the discovery of conserved structural motifs
in proteins is a widely explored field in bioinformat-
ics, the majority of protein pattern mining algorithms
focus on the sequence dimension and do not consider
other spatial dimensions. The extraction of spatial
patterns can potentially reveal significant biological
insights into the properties of different protein classes.
The discovery of patterns within the tertiary structure
of proteins unavoidably requires advanced computa-
tional algorithms due to its dimensionality.

There are several tools available for analysing pro-
tein structures, either for calculating similarities be-
tween whole or parts of the structures, or finding
features that can assist in the problem of protein
structural annotation and the classification of pro-
tein functions [4], [5], [6]. However, the discovery of
interesting patterns or arrangements of amino acids
within a large structural data set in an unsupervised
and rapid manner remains an important research
objective. Here we explore the concept of cohesion
for high dimensional itemset mining to extract sets
of amino acids that frequently spatially co-occur in a
given set of three-dimensional protein structures.

The characterisation of amino acids that are in close
proximity to each other within a protein structure is
somewhat similar to the purpose of protein contact
maps. These maps are two-dimensional matrices de-
tailing the pairwise inter-residue contacts of a pro-
tein, where a contact between two amino acids is
defined if the distance between them is lower than
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a given threshold. The construction of such a contact
map is a common step in the ab initio prediction
of the full molecular structure of a protein from its
sequence [7]. While itemset mining techniques have
been successfully applied to such protein contact
maps, the primary goal of these studies remained the
improvement of ab initio prediction [8]. Other mining
algorithms for finding common amino acid patterns
involve the conversion of the protein structure to a
graph representation prior to subgraph mining [9],
[10], [11], [12].

The goal of this paper is to explore whether cohe-
sive structural itemset mining can reveal potentially
interesting biological patterns. The type of interac-
tion explored differs greatly from previous methods
based on contact maps or from graph representations.
Firstly, the presented algorithm directly mines the
three-dimensional co-ordinates of the amino acids and
thus suffers no loss of information due to a conversion
to a two-dimensional space or to a graph. Secondly,
the recent development of the cohesion concept allows
the algorithm to mine the data without setting a cut-
off on the maximum distance in which relationships
between amino acids can occur. This potentially al-
lows the discovery of relationships where the amino
acids are not in direct contact, such as, for example,
residues forming a metal-binding site. Thirdly, the
application of itemset mining on the protein structure
itself allows discovery of patterns that concern several
amino acids, instead of the pairwise combinations
of amino acids such as in contact maps or distance
matrices.

The rest of the paper is organised as follows. We
formally describe the problem setting for finding spa-
tially cohesive itemsets in Section 2. In Section 3,
we present our algorithm for generating interesting
itemsets. We end the paper with an experimental eval-
uation in Section 4 and a summary of our conclusions
in Section 5.

2 PROBLEM SETTING

We consider a data object with an n-dimensional
structure as a list of points where a point v is a pair
(a, c) consisting of an item a ∈ I and an n-dimensional
coordinate c ∈ R

n, where I is the set of all possible
items and n ≥ 1. Clearly, two points can never occur
at the same position, i.e. with the same coordinate. On
the other hand, an item ai may occur many times at
different positions in a data object dg . Thus there may
be many points containing ai in dg and we denote
such points as Vgi. Here, we denote a data object by
d = {v1, . . . , vl}, where l is the number of points in
the data object. A database DB is a set of data objects.
The set of all data objects in DB is denoted by D.

The patterns considered in this paper are itemsets,
or sets of items coming from the set I . The support
count of an itemset is defined as the number of

different data objects in which the itemset occurs,
regardless of how many times the itemset occurs in
any single data object. In other words, when looking
for the support count of a single itemset, we can
stop looking at a data object as soon as we have
encountered the first occurrence of the itemset in that
data object.

To determine the interestingness of an itemset, how-
ever, it is not enough to know how many times the
items making up the itemset occur. In this paper, we
are specifically investigating patterns of items occur-
ring spatially in close proximity. To do this, we will
define interesting itemsets in terms of both support
and cohesion.

2.1 Support

For a given itemset X , we denote the set of data
objects that contain all items of X as N(X) = {d ∈
D|∀a ∈ X, ∃(a, c) ∈ d}. The support of X in database
DB can now be defined as

S(X) =
|N(X)|
|D| . (1)

2.2 Cohesion

Given a set of points V = v1, · · · , vq , let MB(V )
denote the ball with the smallest radius that contains
V , namely the smallest enclosing ball. It has been shown
that MB(V ) always exists and is unique [13]. Intu-
itively, we consider the points V in n-dimensional
space cohesive if the radius of MB(V ) is small
enough.

Given an itemset X = {a1, . . . , am}, assume that
each item ai occurs ni times in a given data object
dg ∈ N(X). If we wish to find the exact smallest

enclosing ball of X in dg , there are
m∏

i=1

ni combina-

tions for each of which we need to find the smallest
enclosing ball, and then find the one with the minimal
radius. This process is time consuming. As a result,
we propose two different ways to approximate this
process, VertexOne and VertexAll.

2.2.1 VertexOne
Intuitively, points that occur near each other are more
likely to produce the smallest enclosing ball than
those far apart. Therefore, rather than looking at all
possible combinations of points, we will limit our
search to a selection of points. In our first approach,
we approximate the process of finding the smallest
enclosing ball of an itemset as follows:

1. select an item a1 from X = {a1, . . . , am} (all the
items are sorted by descending support), and for each
point vj ∈ Vg1, j = 1, 2, . . . , n1, we find the nearest
point in each set of points of other items in X , namely
Vg2, . . . , Vgm. We thus obtain the set of nearest points

NVj = {v|v = argmin
w∈Vgi

D(w, vj), i = 2, 3, . . . ,m}, (2)
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where D(w, vj) is the Euclidean distance between
point w and point vj .

2. we denote a nearest combination as Bj = {vj} ∪
NVj and B = {Bj |j = 1, 2, . . . , n1}, so we get n1

nearest combinations.
3. for each set B′

j ∈ B, find MB(B′
j) and get its

radius R′
j(X).

4. denote the smallest radius in a given data object
dg ∈ N(X) as

R′
g(X) = min

j={1,...,n1}
R′

j(X). (3)

There are only n1 smallest enclosing balls to find in
a data object dg, much fewer than if we tried to find
the exact smallest enclosing ball of X in dg , resulting
in a considerable reduction in time complexity. We
sort the items by descending support to get more com-
binations of points, in order to reduce the resulting
approximation error.

In the worst case, the smallest radius we find here
could be nearly twice as large as the exact radius
of the smallest enclosing ball containing items of an
itemset X , as illustrated in Figure 1. In this simple
two-dimensional example, assume we are evaluating
itemset abc, and we picked item a as the starting
point. We look for the nearest b and the nearest c,
and find the only b, and c1, which is closer to a than
c2, resulting in the ball drawn with a dashed line.
However, the smallest possible ball containing a, b and
c is much smaller, and is depicted using a solid line.

Fig. 1: An Example of VertexOne

2.2.2 VertexAll
As can be seen above, VertexOne can, in theory, result
in large approximation errors. We therefore develop
another way to increase the probability of getting the
exact smallest enclosing ball as follows.

1. for each item ai in X = {a1, . . . , am} (all the
items are sorted by ascending support), we perform
steps 1 and 2 of VertexOne, and obtain N nearest
combinations, where N =

∑
i=1,...,m ni.

2. for each combination B′′
j , j = 1, 2, . . . , N , find its

smallest enclosing ball and get its radius R′′
j (X).

3. then denote the smallest radius in a given data
object dg ∈ N(X) as

R′′
g (X) = min

j={1,...,N}
R′′

j (X). (4)

There are now N smallest enclosing balls to find in a
data object dg , which will further limit the approxima-
tion error, but the time complexity is now higher than
that of VertexOne. Note that the output of VertexAll
will be independent of the order in which the items
are sorted. However, we sort the items by ascending
support in order to reduce the search space and run-
time.

The worst case error made by VertexAll is depen-
dent on the size of the itemset. Figure 2 shows the
worst case for an itemset of size three, where the
smallest possible ball containing a, b and c is depicted
using a solid line. However, searching from any given
point, we will find a ball with a radius nearly

√
3 times

as large as the exact radius of the smallest possible
ball. For example, starting off from point a1, we will
find the nearest combination a1, b1, c2, resulting in
the ball drawn with a dashed line at the top left of
Figure 2. Similar results come out for other points.
We can construct similar worst case data objects for
larger itemsets, which lead us to two observations:

1. Given an itemset X = {a1, . . . , am}, the worst
case data object will result in discovered smallest balls
that are centrosymmetric and axisymmetric, and will
contain points that form a regular polygon with m

sides, that would form an exact smallest enclosing ball
(an example is shown in Fig. 2).

2. The smallest radius we find by VertexAll could
be nearly twice as large as the exact radius of the
smallest enclosing ball containing all items of X when
m approaches infinity.

Fig. 2: An Example of VertexAll

2.2.3 Cohesive Radius

To evaluate the cohesion of an itemset X in the whole
dataset, we need to compute the smallest radius
Rg(X) in each data object dg that contains X . We
define the cohesive radius of X in D as

R(X) =

∑
dg∈N(X)Rg(X)

|N(X)| , (5)

where Rg(X) is either R′
g(X) or R′′

g (X), depending
on whether we use VertexOne or VertexAll.
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2.3 Interesting Itemset

Given a minimum support threshold min sup and a
maximum cohesive radius threshold max rad, X is an
interesting itemset if S(X) ≥ min sup (X is frequent)
and R(X) ≤ max rad (X is cohesive). Note that the
smaller the radius R(X) the higher the cohesion of X .

3 GENERATING THE COMPLETE SET OF IN-
TERESTING ITEMSETS

In this section we present an algorithm for mining
interesting itemsets in a database consisting of data
objects, each of which containing a number of multi-
dimensional points.

3.1 Pruning the Search Space

Note that the cohesive radius of an itemset is not a
monotonic measure. In other words, in rare cases, it is
possible for the cohesive radius of a smaller itemset
to be greater than the cohesive radius of one of its
supersets. Consider the following simple example.
Assume that the dataset consists of just three data
objects, d1 and d2, containing items a, b and c, and d3,
containing only items a and b. It is perfectly possible
that the radii of the smallest balls containing itemset
abc in both d1 and d2 are smaller than the radius of the
smallest ball containing itemset ab in d3. In this case,
R(abc) (the cohesive radius of itemset abc, as defined
in Equation 5) will be smaller than R(ab), even though
ab is a subset of abc.

Although the cohesive radius of an itemset is not
monotonic, we can still use its properties for pruning
certain candidates from the search space. Our pruning
method for VertexOne is based on two observations:

1. If itemset X is a subset of itemset Y , and they
both occur in a data object di, then R′

i(X) ≤ R′
i(Y ).

2. Given a minimum support threshold min sup, an
itemset must occur in at least ⌈min sup ×|D|⌉ data
objects to be frequent. Assume that itemset X occurs
in k data objects, with k ≥ ⌈min sup ×|D|⌉, and sort
these data objects such that R′

1(X) ≤ . . . ≤ R′
k(X).

For any frequent itemset Y that is a superset of X , it
holds that

R′(Y ) ≥
∑

i=1,...,⌈min sup×|D|⌉ R
′
i(X)

⌈min sup× |D|⌉ = LBR′(X).

In other words, LBR′(X) as defined above, can serve
as a lower bound for the cohesive radius of all fre-
quent supersets of X . As a result, if X is frequent,
but its cohesive radius is large enough, we can be
sure that none of its supersets can be both frequent
and cohesive.

Similarly, we also find a lower bound for the cohe-
sive radius of a superset using the VertexAll method:

1. Given a data object dg, and itemsets X and Y ,
such that X ⊂ Y , if both X and Y occur in dg , it
does not hold that R′′

i (X) ≤ R′′
i (Y ), as was the case

for VertexOne. The cohesive radius can now actually
get smaller if an item is added to the itemset that
allows us to find a smaller smallest ball. Consider the
example given in Figure 2. If we add a point d inside
the solid circle, R′′

i (abcd) found by VertexAll will be the
radius of the solid circle which is much smaller than
R′′

i (abc) (one of the dashed circles). However, thanks
to the worst case analysis given in Section 2.2.2, we
still know that the cohesive radius of a superset will
satisfy the following inequality: R′′

i (X) ≤ 2R′′
i (Y ).

2. Following the same line of reasoning we used
for VertexOne, we can conclude that for any frequent
itemset Y that is a superset of X , it holds that

R′′(Y ) ≥
∑

i=1,...,⌈min sup×|D|⌉R
′′
i (X)

2⌈min sup× |D|⌉ = LBR′′(X).

As can be seen, the lower bound for VertexAll is not
as strict as that of VertexOne. The denominator is now
twice as large, but the numerator now uses a more
precise R′′(X) radius rather than the R′(X) version
used in VertexOne. Experiments show that R′(X) is
virtually never twice as large as R′′(X), and, as a
result, VertexAll will prune a lot less.

3.2 Main Algorithm

In this section we give a description of our main
algorithm, which is the same regardless of whether we
use VertexOne or VertexAll. In further text we therefore
use R(X) to denote R′(X) and R′′(X), and LBR(X)
to denote LBR′(X) and LBR′′(X), respectively.

Our algorithm generates all interesting itemsets in
two steps. In the first step, we use an Apriori-like
algorithm to find the frequent itemsets. In the second
step, we determine which of the frequent itemsets are
actually spatially cohesive and utilise the observations
above to prune the itemsets that cannot be both
frequent and cohesive.

Let n-itemset denote an itemset of size n. Let Fn

denote the set of frequent n-itemsets. Let Cn be the set
of candidate n-itemsets and Tn be the set of interesting
n-itemsets. The algorithm for generating the complete
set of interesting itemsets in a given set of data objects
D is shown in Algorithm 1. Two optional parameters,
min size and max size, can be used to limit the
output only to interesting itemsets with a size bigger
than or equal to min size and smaller than or equal
to max size.

Lines 1-5 count the supports of all the items to
determine the interesting 1-itemsets. Since the cohe-
sive radius of a singleton is always equal to 0, if
min size ≤ 1, all frequent singletons are stored as
interesting. Lines 6-23 discover all interesting itemsets
of different sizes n (max size ≥ n ≥ 2). First, the
already discovered candidates of size n−1 (Cn−1) are
used to generate the candidate itemsets Cn using the
candidateGen function (line 10). The candidateGen
function is similar to the function Apriori-gen in the
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Algorithm 1 GENERATINGITEMSETS. An algorithm
for generating all interesting itemsets in a dataset D.

Require: dataset D, minimum support threshold
min sup, maximum cohesive radius threshold
max rad, minimum size constraint min size and
maximum size constraint max size.

Ensure: all interesting itemsets T .

1: C1 = {a|a ∈ I}, I is the set of all items occurring
in D

2: F1 = {f |f ∈ C1, S(f) ≥ min sup}
3: if 1 ≥ min size then
4: T1 = F1

5: end if
6: C1 = F1

7: n = 2
8: while Cn−1 6= ∅ and n ≤ max size do
9: Tn = ∅

10: Cn = candidateGen(Cn−1)
11: Fn = {f |f ∈ Cn, S(f) ≥ min sup}
12: Cn = ∅
13: for all frequent itemset f in Fn do
14: if LBR(f) ≤ max rad then
15: Cn = Cn ∪ {f}
16: if n ≥ min size and R(f) ≤ max rad then
17: Tn = Tn ∪ {f}
18: end if
19: end if
20: end for
21: n++
22: end while

23: T =
n−1⋃

i=1

Ti

24: return T

Apriori algorithm [14]. Note that the items are ranked
by descending support for VertexOne while ranked
by ascending support for VertexAll. In line 11, we
store the frequent itemsets from Cn into Fn. In lines
13-15, we prune the candidates that cannot be both
frequent and cohesive, while in lines 16-17, we store
the interesting itemsets (as defined in Section 2) from
Fn into Tn. The final set of all interesting itemsets in
D is stored in T and produced as output.

The two most time consuming steps are the can-
didate generation and the evaluation of the cohesive
radius. For these two steps we use the Apriori al-
gorithm [14] to generate candidates, and an existing
implementation1 of the algorithm for computing the
smallest enclosing ball [13], respectively. The time
complexity of these algorithms has been extensively
analysed in the papers that originally proposed them.
Since the smallest enclosing ball must be computed
only for itemsets that have been found to be frequent,
the runtime will be proportional to the number of
generated candidate itemsets.

1. http://www.inf.ethz.ch/personal/gaertner/miniball.html

Since we are using an average over a large number
of data objects, the effect of the approximation error
will be amortised. For an itemset of size 2, we will
always find the exact smallest ball, and for itemsets
of size 3 or bigger, the chance of the worst-case error
occurring (as described above) decreases as the size
of the itemset grows. On two of the small datasets
(Winged and Lambda) we used in our experiments (see
Section 4 for more details), it was possible to compute
the exact smallest enclosing balls in acceptable run-
time. We set the minimum support threshold to 0.8
and the maximum cohesive radius threshold to 4 and
3 angstrom for Winged and Lambda, respectively. Ta-
ble 1 shows the average error made by our algorithms.
|Out| denotes the number of interesting itemsets we
get. The reported average error was obtained by
dividing the sum of all relative errors with the total
number of the computed smallest balls. As can be seen
in the run-times reported in Table 1, the complexity
of the exact algorithm is prohibitive on large datasets,
while the average error of the approximate algorithms
is kept within reasonable limits. In this small example,
we can see that VertexOne misses out on less than 4%
of the patterns we would discover using the exact
method, which would take more than 5 000 times
longer to complete the search. VertexAll found the
patterns missed by VertexOne, but it also took much
longer than VertexOne.

TABLE 1: The Comparison of Methods

Dataset Method |Out| Run-time Average error

VertexOne 159 1.218s 0.01825
Winged VertexAll 164 400.197s 0.00079

Exact 164 8217.840s 0
VertexOne 142 1.437s 0.01546

Lambda VertexAll 145 500.692s 0.00089
Exact 145 6824.046s 0

4 EXPERIMENTS

The cohesive structural itemset miner was applied to
extract patterns from real biological datasets, namely
protein molecular structures. The structural informa-
tion on these proteins was extracted from the PDB
public archive [3]. PDB contains the atomic coordi-
nates and molecular structure information for various
proteins and other biological macromolecules. The
relative locations of the atoms to each other within
these molecules were determined by a variety of
methods, such as X-ray crystallography, NMR spec-
troscopy and cryo-electron microscopy. These three-
dimensional coordinates of the amino acids of a set
of related proteins will make up the backbone of our
analysis.

For the purposes of applying the methodology
on a wide range of data, four sets of proteins
were collected. Two smaller datasets consisted of
the proteins annotated by SCOP as containing the
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‘winged helix DNA-binding domain’ (Winged) and
the ‘lambda repressor-like DNA-binding domain’, re-
spectively (Lambda) [15]. As an additional constraint
on these smaller datasets, only structures reporting
both the protein and the DNA structure were utilised.
Thus only proteins known to be in their active and
bound state are considered during the mining process
as the free-floating potential inactive state may dis-
play considerable differences in its conformation. This
approach guarantees the uniformity of the structures
to evaluate in these datasets. Two larger sets were
based on the molecular function of the protein. To
this end, using their gene ontology molecular function
annotations, one set of proteins with ‘kinase activity’
(Kinase) and another set with ‘peptidase activity’ (Pep-
tidase) were collected [16]. These datasets therefore
represent a wide diversity of proteins that each share a
common molecular function. In cases where multiple
macromolecules were present in the same PDB entry,
only one protein was presented to the algorithm, i.e.,
the one with a description matching certain keywords
(e.g., trypsin or protease for the peptidase set) or the
protein with a description similar to the title of the
stored structure. In cases of ambiguity (e.g., for k-
mer proteins), the first reported protein matching the
above criteria was selected.

From the reported protein molecular structure only
the position of the α-carbon atom of the amino acid
was considered. This atom is present in every amino
acid and is the carrier of the side chain unique to each
type of amino acid. Each Cα was then labelled with
the three-letter name of the corresponding amino acid.
This label was further extended with the secondary
structure information, which is also included in most
PDB structures. The secondary structure concerns the
local shape of the amino acids, and a collection of
residues within a single protein can form an α-helix
(denoted in the itemsets as XH ), a β-sheet (XB) or a
loop of unstructured amino acids (XU ). The addition
of the secondary structure to the label is not nec-
essary for the operation of the algorithm, but it is
advantageous for the presented experiments. Firstly,
the vast majority of proteins contain at least one copy
of each amino acid in their sequence and thus without
this addition every possible itemset will likely be
frequent. Secondly, including this information in the
label greatly aids in the interpretability of the found
cohesive patterns as many known protein motifs or
common structures are expressed in terms of the
secondary structure. The input data thus consisted
of the (x, y, z) coordinates of the Cα atom labelled
by the corresponding amino acid and the secondary
structure. In this manner, a protein is converted to a
list of points where a point v is a pair (a, c) consisting
of the label a ∈ I and a three-dimensional coordinate
c ∈ R

3, where I is the set of all possible labels (in
our case, amino acids). The algorithms presented in
Section 3 were then used to generate the interesting

itemsets found across these proteins, with each item-
set representing a pattern of spatially co-occurring
amino acids.

Table 2 shows the run-times of our two algorithms
on the four datasets with min sup fixed at 0.8, max rad
fixed at 4 angstrom, min size set to 1 and max size
unlimited. The third column |D| contains the number
of proteins in the datasets, while |C| denotes the
number of generated candidates and |Out| denotes
the number of generated interesting itemsets. All ex-
periments are performed on a laptop computer with
Intel i7 (2 CPUs 2.7GHz), 4GB memory and Windows
7 Professional. From the table, we can see that the
run-time largely depends on the number of proteins
in the dataset and the number of candidate itemsets.
This matches the conclusions of the time complexity
analysis performed in Section 3.

TABLE 2: Run-times of The Algorithms

Method Dataset |D| |C| Runtime |Out|

VertexOne Lambda 47 579 3.655s 430
Winged 62 235 1.218s 159
Kinase 2749 770 378.156s 440
Peptidase 2558 416 184.269s 226

VertexAll Lambda 47 51011 722.456s 455
Winged 62 11790 87.658s 164
Kinase 2749 241399 314285.951s 450
Peptidase 2558 55470 58791.770s 237

A detailed examination of the additional patterns
found by the VertexAll algorithm reveals that the
majority are simply novel combinations of the items
in the patterns that were also found by the VertexOne
algorithm. Thus they mostly do not describe novel
information but another viewpoint on the same. Fur-
thermore, all of the patterns unique to the result of
the VertexAll algorithm could also be found by the
VertexOne algorithm, using a higher cohesive radius
threshold. Fig. 3 shows the patterns found only by
the VertexAll variant for the four datasets using the
setup described in the respective subsections below.
We then ran VertexOne again with a higher cohesive
radius threshold and found the missing patterns. For
each unique pattern the ranking based on its cohesion
score with respect to all other patterns is provided for
both the VertexAll and the VertexOne algorithm. With
only a few exceptions, the ranking of the patterns
resulting from either variant was largely the same, i.e.
they occur on or around the diagonal in the plot. None
of the patterns found only by VertexAll were ranked in
the top 50 most cohesive itemsets. Therefore, the most
frequent and cohesive patterns in all of the datasets
were identical in the results of the VertexAll and the
VertexOne algorithm, with only a small difference in
the actual cohesive radius reported. As we choose not
to provide an exhaustive examination of all the found
patterns but only discuss the most cohesive patterns
in each dataset, which are thus independent from the
used methodology, we will base our findings on the
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Fig. 3: Ranking Comparison between VertexOne and VertexAll for the patterns originally missed by VertexOne.
In order to make the comparison, we ran VertexOne again with a higher cohesive radius threshold.

results of the VertexOne variant.

The maximal cohesion radius parameter has a large
impact on the output of the algorithm. Table 3 shows
a summary of the results of VertexOne on the four
datasets with different max rad thresholds. Here, we
set min sup to 0.8, min size to 3 and max size to
unlimited. |Out−n| denotes the number of interesting
itemsets of size n we get. As can be seen in Table 3,
the algorithm finds more interesting itemsets but has
longer run-times with larger cohesive radius thresh-
olds. There is also a large dependency between the
max rad threshold and the size of the itemsets that
can be found. At the lower cohesion radius values,
most cohesive patterns consist of three amino acids.
As the radius increases, so does the size of the found
patterns. In the Lambda dataset, the algorithm finds
patterns with up to nine amino acids for a maximal
cohesion radius of 8 angstrom. This dependency is
likely due to the trade-off between adding additional
amino acids to the itemset and a resulting decrease in
cohesion and frequency of the pattern. Indeed, due to

the steric constraints of amino acid placement, one can
expect that adding a single amino acid would have
a great effect on the cohesive radius of any pattern.
Only the results for the smaller cohesion radius values
will be discussed in detail in the next sections as these
concern the most cohesive patterns found for each
data set.

4.1 Lambda Repressor-like Proteins

The first small dataset the algorithm was applied
to consists of 47 proteins annotated with a lambda
repressor-like DNA-binding domain. This set there-
fore consists mostly of transcription factors, which
are DNA-binding proteins that regulate the expression
of downstream genes. The archetypical protein for
this type of domain is the bacteriophage lambda C1
repressor, which is a viral regulator [17]. Several pro-
teins containing a lambda repressor-like domain are
of great biological importance and the mechanism by
which such proteins interact with the DNA molecule
are well understood. For example, the lactose repres-
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TABLE 3: Impact of the Maximal Cohesion Radius on the Experimental Results

Dataset max rad Runtime |Out− 3| |Out− 4| |Out− 5| |Out− 6| |Out− 7| |Out− 8| |Out− 9|

4 3.484s 165 17 0 0 0 0 0
5 7.834s 464 226 9 0 0 0 0

Lambda 6 19.492s 1049 871 331 37 0 0 0
7 53.812s 1694 2535 1644 641 128 7 0
8 148.365s 2117 5400 5947 3206 1038 197 15
4 1.192s 21 0 0 0 0 0 0
5 2.404s 131 5 0 0 0 0 0

Winged 6 4.590s 342 151 2 0 0 0 0
7 9.771s 722 542 188 4 0 0 0
8 21.851s 1268 1444 885 288 21 0 0
4 331.833s 68 0 0 0 0 0 0
5 903.904s 477 24 0 0 0 0 0

Kinase 6 3322.579s 1953 484 8 0 0 0 0
7 12478.511s 4509 3962 726 19 0 0 0
8 63734.033s 5880 18161 9747 1775 87 0 0
4 137.232s 27 0 0 0 0 0 0
5 314.354s 333 4 0 0 0 0 0

Peptidase 6 969.114s 822 426 4 0 0 0 0
7 2858.497s 1361 1869 638 8 0 0 0
8 8179.023s 1692 4353 4241 1546 61 0 0

sor (LacI) is commonly used as a model for transcrip-
tional regulation and the interaction between LacI and
its binding sites has been the subject of intensive study
over the past several decades [18]. The typical lambda
repressor-like domain consists of four α-helices in a
closed leaf motif. This protein dataset is therefore an
ideal case study to evaluate if the patterns uncovered
through the presented methodology can be related to
known biological significance.

The cohesive structural itemset miner was applied
to these protein structures to find amino acids that
were consistently grouped in close proximity across
a large fraction of the proteins. The reported patterns
were filtered based on their uniqueness to a specific
dataset at a support cut-off of 80%. The cohesive
radius threshold was set to 4 angstrom, min size to 3,
and max size unlimited. The most cohesive patterns
specific for the lambda repressor-like proteins can be
found in Table 4 with their respective cohesive radius
in angstrom and support. A total of 182 patterns were
found within the set thresholds, of which 165 were
itemsets containing three amino acids, while the other
17 contained four amino acids.

It is apparent from the labels of the extracted item-
sets that most describe amino acids in α-helices. This
can be expected as the annotated domain used to
create this dataset, namely the lambda repressor like-
DNA binding domain, consisted mostly of α-helices.
Additionally, amino acids within a single α-helix can
be expected to be frequently co-occurring due to the
intrinsic shape of protein helices. However, a compar-
ison between the found itemsets and an alignment of
the protein amino acid sequences reveals that not all
patterns are limited to the conserved region between
these proteins. In the next step, the locations of the
itemsets within the protein structure are visualised to
give an overview of their distribution throughout the
structure.

TABLE 4: The 30 Most Cohesive Patterns For The
Lambda Dataset

Itemset Cohesive radius Support
GLUH ARGH ILEH 2.78 0.80
ALAH LEUH METH 2.87 0.93
ALAH GLUH VALH 2.87 0.93
ALAH ARGH PHEH 2.89 0.82
ALAH ARGH LYSH 2.89 0.97
ALAH GLUH LYSH 2.89 0.93
ALAH GLUH ASPH 2.91 0.93
GLUH VALH LYSH 2.92 0.93
ALAH VALH LYSH 2.92 0.93
GLUH ARGH LYSH 2.93 0.93
ALAH GLUH ARGH 2.95 0.93
ALAH GLUH LEUH 2.96 0.93
ALAH LEUH GLYH 2.99 0.93
GLUH ARGH THRH 3.00 0.91
ALAH VALH ARGH 3.01 0.93
ALAH LEUH VALH 3.02 0.93
VALH ARGH ASNH 3.04 0.91
ALAH GLUH ILEH 3.04 0.80
ALAH VALH ILEH 3.11 0.80
VALH ARGH SERH 3.13 0.93
ALAH LEUH PHEH 3.14 0.82
ALAH LEUH ARGH 3.14 0.97
LEUH ARGH ILEH 3.16 0.85
ALAH LYSH ILEH 3.17 0.85
ALAH VALH ASPH 3.17 0.93
ALAH LEUH TYRH 3.19 0.93
GLUH VALH ILEH 3.19 0.80
GLUH LEUH METH 3.21 0.89
ALAH GLUH THRH 3.24 0.91
ALAH VALH SERH 3.24 0.93

Fig. 4 shows the protein structure of the Escherichia
coli PurR repressor (from PDB 1PNR) plotted using
the open source version of Pymol. Note that the
reported structure in the PDB file only contained
one side of the symmetrical protein-DNA complex
and thus only features one protein within the pro-
tein complex and one DNA strand of the DNA-
helix. The atoms of the protein are presented in the
stick representation while those of the DNA molecule
are reduced to a cartoon representation. The amino
acids matching the 171 patterns extracted for the
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Fig. 4: The Molecular Structure of the PurR protein

lambda repressor-like domain proteins are provided
in a colour corresponding to the amino acid content
of the pattern, while amino acids not part of any
pattern are given in grey. This protein is a bacterial
regulator of purine metabolism and is part of the LacI-
GalR protein family. This transcription factor is anno-
tated as containing a similar DNA-binding domain as
the Lambda C1 repressor on the N-terminal domain,
except that it is missing the first α-helix. It also
displays a C-terminal domain with a ligand-binding
and dimerisation motif similar to the ligand binding
sites of periplasmic sugar-binding proteins. The two
domains are connected with a hinge sequence that
also contains several functional residues for DNA-
binding. For example, the leucine present at position
54 in the hinge helix is known to intercalate into
the DNA molecule during complex formation causing
the induction of a DNA bend [19]. As can be seen
in Figure 4, several patterns match amino acids that
form the DNA-binding domain. Additionally there
are other patterns that are present in the C-terminal
domain of the protein or as part of the hinge he-
lix. Inside the hinge helix, most of the amino acids
matched up to one or more of the discovered patterns.
Several of these patterns include the intercalating
leucine residue, such as the pattern ARGH , ALAH ,
LEUH and VALH (i.e. the combination of arginine,
alanine, leucine and valine in a helix conformation).
As not all lambda repressor-like proteins contain the
hinge helix, it is interesting that so many patterns
are still found within this segment. Within the DNA-
binding domain, there is a notable lack of the central
threonine (THR16) residue in any pattern, most likely
because this amino acid is missing in several members

of the LacI-GalR family. The presence or the absence
of threonine at this position in the protein has been
proposed to confer differential specificity between
LacI-GalR proteins to their DNA targets [20]. Similar
findings could be observed for the other proteins
within this dataset. Most patterns do not match the
amino acids specific for a single protein, which, for
example, confer the DNA-binding specificity, but in-
stead match ‘supporting’ amino acids which seem to
be necessary for the overall protein structure and the
presentation of the specific residues to the ligands that
can be bound by the protein.

4.2 Winged Helix Proteins

The second small dataset contains 62 proteins anno-
tated with a winged-helix DNA-binding domain. The
winged-helix domains typically consist of three α-
helices, three β-strands forming a twisted antiparallel
β-sheet and two large loops or ‘wings’ [21]. While
most proteins present in this set are transcription fac-
tors, this set also includes DNA replication initiation
proteins (e.g., the F plasmid RepE: PDB 2Z9O), heli-
cases (e.g., Archaeoglobus fulgidus Hel308: PDB 2P6R)
and endonucleases (e.g., Planomicrobium okeanokoites
FokI: PDB 1FOK). Thus while these proteins share
significant structural similarity, their molecular func-
tion is very divergent. In this experiment, the support
threshold was set to 80%, max rad to 5 angstrom,
min size to 3, and max size unlimited. The applica-
tion of the presented algorithm to this dataset then
resulted in 136 patterns, of which all but five con-
sisted of three amino acids and the remainder of
four amino acids. The most cohesive patterns for this
dataset can be found in Table 5 with their cohesive
radius in angstrom and support. Similar to what was
reported for the lambda repressor-like proteins, many
of the patterns include amino acids contained within
α-helices. Comparison with sequence alignment of
the proteins reveals that while several patterns are
derived from the α-helices present in the winged-helix
domain, the majority of the patterns occur in other
segments of the protein.

Fig. 5 shows the molecular structure of the E. coli
CRP protein (from PDB 1O3T), a transcription factor
with a winged helix domain present in the Winged
dataset. The CRP transcription factor usually binds
DNA as a protein complex with two copies of the
CRP protein and is known to regulate more than
180 genes, mostly those associated with the carbon
metabolism, in E. coli. The CRP protein consists of a C-
terminal DNA-binding domain containing the winged
helix motif and an N-terminal dimerisation domain
consisting of β-sheets and a long α-helix. This α-helix
is critical for the conformational changes resulting in
the activation of CRP induced upon the binding of its
ligand, cAMP [22]. In Fig. 5 the CRP dimer bound
to its operator site plotted using the open source
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TABLE 5: The 30 Most Cohesive Patterns For The
Winged Dataset

Itemset Cohesive radius Support
LEUH ILEH ARGH 3.27 0.88
LEUH ARGH SERH 3.52 0.98
LEUH ARGH ALAH 3.57 0.98
LEUH SERH ALAH 3.63 0.96
LEUH ILEH ALAH 3.72 0.87
LEUH ARGH VALH 3.75 0.93
LEUH GLUH ILEH 3.78 0.88
ILEH ARGH ALAH 3.83 0.87
LEUH ARGH LYSH 3.84 1.00
LEUH SERH VALH 3.86 0.93
LEUH ALAH VALH 3.88 0.91
LEUH ILEH VALH 3.89 0.82
LEUH ARGH TYRH 3.89 0.87
LEUH ARGH ASNH 3.89 0.9
LEUH GLUH GLNH 3.9 0.96
LEUH LYSH PHEH 3.92 0.85
LEUH LYSH VALH 3.93 0.93
ARGH SERH ALAH 3.97 0.96
LEUH LYSH ALAH 3.97 0.98
LEUH ALAH ASNH 3.98 0.88
LEUH LYSH GLYH 3.99 0.85
LEUH ASNH VALH 4.00 0.83
LEUH GLUH PHEH 4.00 0.85
LEUH ILEH THRH 4.02 0.85
LEUH ARGH THRH 4.03 0.91
GLUH LYSH VALH 4.05 0.93
LEUH GLUH VALH 4.06 0.93
LEUH ALAH PHEH 4.07 0.85
LEUH ALAH THRH 4.10 0.90
LEUH GLUH SERH 4.13 0.98

version of Pymol. Only one of the two copies forming
the protein complex was presented to the cohesive
structural itemset miner, namely the one to the left
in this figure. The atoms of the protein are presented
in the stick representation while those of the DNA
molecule and the second CRP copy are reduced to
a cartoon representation. The amino acids matching
the patterns extracted for the winged helix domain
proteins are provided in a colour corresponding to
the amino acid content of the itemset, while amino
acids that do not match any pattern are given in
light grey. The patterns extracted for the entire winged
helix protein set concern the amino acids that make up
the DNA-binding domain and those contained within
the long α-helix directed towards the dimerisation
interaction region.

The results for the winged helix proteins with dif-
ferent molecular functions are very similar to those
reported above for the CRP protein. The RepE protein
involved in the replication initiation of the F plasmid,
is known to contain two winged helix domains: one
at the N-terminal side of the protein and the other
at the C-terminal side. These two domains are sepa-
rated by a linker region, which accepts a conforma-
tional change necessary for dimerisation of RepE [23].
Amino acids present in the winged helix domain and
the linker domains match various patterns found in
the entire dataset. Several of these patterns, such as
ARGH LEUH LYSH (i.e., Arginine, Leucine and Lysine
in α-helix conformation), match the LEU39 residue

Fig. 5: The Molecular Structure of the CRP Protein

of the RepE which is not part of the dimerisation
interface but has been postulated to aid in the correct
placement of an α-helix necessary to stabilise the
protein dimer [23]. As can be seen in Table 5, the
majority of the patterns found for the winged helix
proteins contain a leucine amino acid. Given that sev-
eral leucine residues in RepE act as ‘scaffold’ amino
acids to stabilise the dimer conformation, it seems
likely that at least some of the leucine residues within
these itemsets perform a similar function in a number
of the winged helix domain proteins. Indeed, this
corresponds to the results for the CRP protein where
the occurrences of the pattern seemed to concern the
amino acids responsible for the stabilisation of the
dimer structure.

4.3 Kinase Proteins

The first of the larger datasets consists of 2749 proteins
displaying kinase activity. These are proteins that
catalyse a chemical reaction that transfers a phosphate
group to a substrate, a process termed phosphoryla-
tion. This substrate is most commonly another protein
and phosphorylation may cause conformation change
in the substrate protein, for example, causing it to
switch from an inactive to an active state. Based
on their protein structures and substrates specificity,
kinases are divided into the ‘protein kinase-like su-
perfamily’ and then a set of ‘atypical kinases’ whose
structures greatly differ and can be further subdivided
according to common domains [24]. The typical pro-
tein kinases share a common catalytic segment con-
sisting of an N-terminal subdomain of mostly β-sheets
and a C-terminal subdomain with mostly α-helices.
Using a support threshold of 80%, max rad equal to 4
angstrom, min size equal to 3, and max size unlimited,
the cohesion-based structural miner resulted in a set
of 68 patterns consisting of three amino acids in close
proximity. The most cohesive patterns for this dataset
can be found in Table 6 with their cohesive radius in
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angstrom and support. The majority of the patterns
consist of residues within α-helices. Furthermore, in
several proteins, these patterns could be directly re-
lated to the catalytic regions of the kinase.

TABLE 6: The 30 Most Cohesive Patterns For The
Kinase Dataset

Itemset Cohesive radius Support
LEUH ALAH GLUH 3.23 0.97
ALAH GLUH ILEH 3.28 0.97
LEUH GLUH ILEH 3.28 0.97
LEUH ALAH LYSH 3.36 0.96
LEUH GLUH ARGH 3.39 0.97
LEUH ALAH GLYH 3.40 0.93
LEUH ALAH ILEH 3.41 0.96
LEUH ALAH VALH 3.45 0.97
LEUH ALAH GLNH 3.46 0.95
LEUH GLUH LYSH 3.46 0.96
LEUH GLUH SERH 3.49 0.96
LEUH GLUH VALH 3.50 0.97
ALAH GLUH ARGH 3.5 0.97
LEUH LYSH ILEH 3.51 0.96
LEUH ILEH GLYH 3.53 0.93
LEUH ALAH PHEH 3.54 0.94
LEUH ILEH ARGH 3.55 0.96
LEUH ALAH ASPH 3.56 0.95
LEUH ALAH ARGH 3.59 0.97
ALAH GLUH VALH 3.62 0.98
LEUH ILEH VALH 3.63 0.97
LEUH GLUH ASPH 3.63 0.96
GLUH ILEH ARGH 3.64 0.97
LEUH ILEH GLNH 3.64 0.94
LEUH ARGH GLYH 3.68 0.93
ALAH ILEH ARGH 3.71 0.97
ALAH VALH ASPH 3.73 0.96
LEUH LYSH ASPH 3.73 0.95
ALAH ILEH VALH 3.75 0.97
GLUH ILEH VALH 3.78 0.97

Fig. 6: The Molecular Structure of the Fus3 Protein

An example of a typical protein kinase within our
dataset is the Saccharomyces cerevisiae MAP kinase,
Fus3, which forms an essential part of the mating
signalling pathway in yeast. The protein structure
contains a C-terminal and an N-terminal region con-
nected by a short hinge section. The catalytic loop
containing the functional amino acids for the phos-

phorylation is contained within the N-terminal re-
gion [25]. The molecular structure of Fus3 can be seen
in Fig. 6. Only one Fus3 copy from PDB 2F49 was
mined for patterns, which is shown in the figure by
the stick representation, while the other, shown in
cartoon representation, was excluded. The residues
that match one of the found patterns for the Kinase
dataset are annotated in colour. Several patterns were
found to describe residues within the catalytic loop
of Fus3. These include a pattern describing the amino
acids SER141 and LYS139 within the catalytic loop, and
LEU100, which is part of a neighbouring α-helix. The
SER141 and LEU100 residues occur together in these
patterns as the spatial distance between their Cα only
spanned 5.8 angstroms (according to the structure
contained within PDB 2F49) which is found to be
sufficiently cohesive by our algorithm (note that a
distance of 5.8 angstroms easily fits into a ball with a
radius smaller than 4 angstrom).

4.4 Peptidase Proteins

A set of 2558 proteins with peptidase activity makes
up the final dataset for this analysis. These proteins
catalyse a reaction to break up the covalent bonds be-
tween peptides. Many of these proteins are therefore
involved in the degradation of cellular proteins. There
is a great deal of variety in the molecular structure
of these proteins as many types of enzymes display
peptidase activity. Using a support threshold of 80%,
max rad equal to 4.5 angstrom, min size equal to 3,
and max size unlimited, a total of 146 patterns were
discovered in this dataset and each of these consists
of three amino acids. However, in contrast to the
previous analyses, the patterns mostly concern amino
acids in unstructured regions of the proteins. This
is not unsurprising as α-helices are not as prevalent
in peptidase proteins as they are in DNA-binding
proteins or kinases. Due to the intrinsic diversity of
the peptidase dataset, the same patterns are derived
from amino acids present in very different domains in
different proteins. The most cohesive patterns for this
dataset can be found in Table 7 with their respective
cohesive radius in angstrom and support.

An example of a peptidase from this dataset, the
E. coli PepP aminopeptidase in monomer form (as
reported by PDB 1A16) is shown in Fig. 7 where
the amino acids extracted for the peptidase proteins
are provided in colour. The PepP protein is an ex-
opeptidase that cleaves the N-terminal residue from
polypeptides. The centre of the protein contains two
metal-binding sites, which catalyse the cleavage reac-
tion [26]. Within the PepP protein, five amino acids
are known to function as metal-binding residues and
two histidine residues are known to be essential for
the catalytic activity [27]. Interestingly, several of the
peptidase patterns were found in the neighbourhood
of the catalytic site. Similar to the findings in the
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TABLE 7: The 30 Most Cohesive Patterns From The
Peptidase Dataset

Itemset Cohesive radius Support
GLYU SERU ALAU 3.69 0.91
GLYU SERU VALU 3.72 0.91
GLYU SERU ASPU 3.72 0.91
GLYU LEUU VALU 3.76 0.93
GLYU THRU ALAU 3.78 0.93
LEUU VALU ALAU 3.79 0.93
GLYU VALU THRU 3.79 0.92
GLYU SERU LEUU 3.80 0.92
GLYU LEUU ALAU 3.80 0.94
GLYU VALU ILEU 3.82 0.91
GLYU SERU THRU 3.82 0.91
GLYU SERU ILEU 3.83 0.89
GLYU THRU ILEU 3.83 0.9
GLYU ALAU ILEU 3.84 0.91
LEUU VALU ILEU 3.86 0.91
GLYU VALU PROU 3.87 0.94
GLYU SERU ASNU 3.87 0.9
SERU LEUU VALU 3.88 0.91
SERU LEUU ILEU 3.92 0.89
LEUU ALAU ILEU 3.92 0.91
GLYU THRU PROU 3.92 0.93
SERU LEUU ALAU 3.95 0.91
GLYU SERU TYRU 3.96 0.89
GLYU VALU ALAU 3.97 0.93
GLYU LEUU ILEU 3.98 0.91
SERU LEUU THRU 3.99 0.91
GLYU THRU ASNU 3.99 0.92
VALU THRU ILEU 4.00 0.90
GLYU ASPU LYSU 4.01 0.9
SERU VALU ILEU 4.01 0.89

Fig. 7: The Molecular Structure of the PepP Protein

previous analysis, the patterns do not always contain
the known functional residues themselves but instead
match the amino acids that make up the strand car-
rying the residue. This indicates that the cohesive
patterns do not consist of the amino acids that provide
the target specificity but instead correspond to the
common residues that stabilise their location. Indeed,

several itemsets are found to span different strands
that form the metal-binding region. For example, the
amino acids within the rule SERU ALAU GLYU (i.e.,
Serine, Alanine and Glycine in unstructured regions)
match residues 228, 269 and 270 respectively. This
is a distance of more than 40 residues within the
sequence, but the protein folding has brought the αC
of these residues to within 5 angstroms. Indeed both
these strands form a loop along the centre of the
metal-binding site. Furthermore, the strand containing
ALA269 and GLY270 also contains the metal-binding
residue ASP272.

5 CONCLUSIONS

In this paper, we have presented a novel method
with two variations (VertexOne and VertexAll) to mine
frequent cohesive itemsets in multidimensional data.
Through experimental evaluation, we confirmed that
VertexOne outperforms VertexAll by finding similar
interesting itemsets much faster. The algorithm was
applied to datasets containing the full atomic coordi-
nates of various proteins. We were able to successfully
identify sets of amino acids that frequently occur in
close proximity to each other throughout the given
proteins. Thorough analysis revealed that the patterns
did indeed reflect amino acids that could span dis-
tances in the primary sequence of the protein but
were brought together through the protein folding.
Furthermore, the types of patterns that we found
in the current setting mostly seem to reflect amino
acids with a supporting role to the overall or specific
structure of the protein.
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