
Optimization of Nested XQuery Expressions with
Orderby Clauses

Song Wang, Elke A. Rundensteiner and Murali Mani
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609, USA

(songwang|rundenst|mmani)@cs.wpi.edu

Abstract— XQuery, the defacto XML query language, is a
functional language with operational semantics, which precludes
the direct application of classical query optimization techniques.
The features of XQuery, such asnestedexpressions andordered
semantics, further aggravate this situation. The appropriate ex-
tension of existing optimization techniques to XQuery processing
hence represents an important and non-trivial task. We propose
an algebraic rewriting technique of nested XQuery expressions
containing explicit orderby clauses. Unlike prior work, this
technique enables the optimization of nested XQuery expressions
not only with set but also with ordered sequence semantics. Our
technique is based on two steps. First, we perform algebraicquery
unnesting. Second, we apply query minimization techniquesthat
exploit pairwise XPath set containment after pulling up order-
sensitive operations. We illustrate how our proposed technique
is able to not only successfully tackle the XQuery logical
optimization problem solved in the NEXT framework, but in
addition to also to correctly support ordered semantics.

We have implemented the proposed optimization techniques on
top of the XAT algebraic framework in our RainbowCore project.
We show the performance gain achievable by our approach using
an experimental study with the RainbowCore engine.

I. I NTRODUCTION

The XQuery language [23] and the XML path language
[22] have both been widely accepted for querying XML
data. Several optimization techniques have been proposed for
XPath expressions, such as XPath containment [9] , answering
XPath queries using views [2] and XPath satisfiability [13].
The direct applicability of these techniques to the XQuery1

language is precluded by the features of XQuery, such as
nestedXQuery expressions and theorderby clause. How to
extend existing optimization techniques to complex XQuery
processing becomes an important and non-trivial task.

XQuery expressions are typically composed of highly
nested FLWOR (short for thefor, let, where, orderby and
return) blocks to retrieve and reconstruct hierarchical XML
data. An XQuery expression is said to becorrelatedif an inner
FLWOR block refers to a bound variable defined outside this
block.

1In this paper, we use the term XQuery to refer to complex XQuery
expressions that cannot be rewritten as XPath expressions.

Unlike in relational databases, order is an important issue
for XML queries. By default, both the XPath and XQuery
languages are order sensitive. The XPath language has order
sensitive functions such asposition(), first() andlast(). All
the functions used in the XPath language work on the docu-
ment order. Informally, document order is the order defined
by a pre-order, depth-first traversal of the nodes in an XML
document. In addition XQuery expressions may contain the
orderbyclause as part of a FLWOR expression that overwrites
the document order for XML fragments generated by that
XQuery expression based on explicit sorting.

In this paper, we discuss how to optimize query expressions
that containorderbyclauses in the nested XQuery context. We
propose an algebraic rewriting technique of nested XQuery
expressions containing explicit orderby clauses. Our technique
is based on two steps. First, we perform algebraic query
unnesting based on the principles of magic decorrelation [25].
Second, we apply query minimization techniques that exploit
pairwise XPath set containment after pulling up order-sensitive
operations. In the NEXT framework [5], the authors propose
a new nested Xtableaux approach for logical XQuery opti-
mization. We now go beyond this work, while using a more
traditional algebraic rewriting and unnesting approach that
follows well established principle and practice in industrial
query engines. Using our approach, we are able to not only
achieve the optimization specified in the NEXT framework but
also to correctly support ordered semantics.
Example: The following XQuery expression sorts part of the
authors by their last name and groups books together with their
first author, then sorts each author’s book by publishing year.
This query is adapted from W3C XQuery Use Cases XMP
Q4 [21] by adding the position function and orderby clauses.

for $a in distinct-values(doc("bib.xml")/book/author[1])
order by $a/last
return <result>{$a,

for $b in doc("bib.xml")/book
where $b/author[1] = $a
order by $b/year
return $b/title

}
</result>

In this example XQuery expression, the outerfor clause

binds $a to a sequence of authors appearing in the XML
document. The outerorderby clause sorts this sequence by
the authors’ last name. For each instance of $a, the inner
query block can be evaluated. Such an intuitive iterative exe-
cution tends to be less efficient than an equivalent collection-
oriented execution strategy, since for every binding of $a,
many operation steps are repeated in the inner subquery. For
efficient execution of such XQuery expressions, decorrelation
is necessary. After decorrelation, a join will be generatedto
connect the outer and inner query blocks, and a one time
navigation of the XML document for the inner subquery is
sufficient. While we briefly sketch the decorrelation process
in Section IV, details of this process can be found in [24].

Our decorrelation technique is inspired by the magic decor-
relation proposed by Seshadri et al. [20]. The authors proposed
a decorrelation method for complex correlated SQL queries.
Our approach, called theMagic Branch, is a natural extension
and adaption of this technique towards more efficient XQuery
decorrelation.

After decorrelation, a closer inspection of the example
XQuery reveals that we can even do better: the navigations in
the “outer” and “inner” query blocks are similar. The author
nodes in$b/author[1] is contained in the author nodes in$a

under set semantics. These navigations however differ in that
the author nodes in$a are sorted by their last names, whereas
the ones in$b/author[1] are sorted by the books’ year. Even
though these two navigations are not identical, they are similar
enough so that one of the two navigations could be saved. We
thus suggest that a more “optimal” query plan for this example
query will be: 1) get all the books; 2) get the first author
associated with each book; 3) sort by the author’s last name
(major order) and the book publication year (minor order);
and 4) group all the book title by authors. In this paper, we
will show a systematic approach for achieving such optimized
query plan.

Such XQuery expressions are not rare; rather such cases
will always occur when a nested XQuery expression is used
for reconstructing the original XML corresponding to different
schema. If we do not discover that the two navigations are sim-
ilar, the query plan would have included a join between these
two navigations. Instead our approach enables the elimination
of the redundant navigations whenever possible. In this paper,
we will describe how to adapt known XPath containment
algorithms to reduce redundant XPath navigations in XQuery
expressions containingorderbyclauses.

We have implemented the proposed optimization techniques
on top of the XAT algebraic framework in our RainbowCore
[26] project. The XAT algebra extends the relational alge-
bra by allowing collection-valued columns and being order-
preserving. It also introduces new operators to express the
necessary XQuery semantics. However, the main idea of
our approach is generic and can be applied to other similar

algebras like NAL [16] and SAL [3].
Our work brings forth the following novel contributions to

XQuery optimization.

• To the best of our knowledge, we are the first to provide a
practical approach handling XQuery logical minimization
with sequence semantics.

• Our magic branch approach inherits the advantages of
magic decorrelation and opens the opportunities for fur-
ther optimizations using existing techniques.

• We implement the magic branch decorrelation and the
algebraic tree minimization in our XQuery engine.

• We conduct a preliminary experimental study, that shows
the performance improvements achievable by our pro-
posed approaches.

This paper is organized as follows. We first give a descrip-
tion of the related work in Section II and briefly describe the
algebraic framework used in this paper in Section III. The
magic branch decorrelation approach and the minimization
techniques are discussed in Sections IV and V respectively.
We present our experimental results in Section VI, while
Section VII concludes this paper.

II. RELATED WORK

Modern database systems [12], [7], [20] attempt to merge
subquery blocks into the outer query block, thereby eliminat-
ing correlations and avoiding nested iterative evaluation. Such
“decorrelation” is typically done by introducing outer join and
grouping operations.

More recently, methods that focus on the efficiency of
decorrelated subqueries have been proposed. In [20], the
authors proposed a technique called magic decorrelation for
nested SQL queries. By materializing results from subqueries
and postponing the Outer Join, this approach produces a typ-
ically more efficient query plan. Our proposal is conceptually
inspired by this technique.

Decorrelation of XQuery expressions has also been studied
in relationship to native XML query engines. One effort is
by Paparizos et al. [17] in the TIMBER system. There the
authors pointed out the implicit use of grouping constructsin
the XQuery’s result construction. Recognizing and explicitly
adding the grouping operation can lead to unnesting of XQuery
expressions. Their work is based on the tree algebra in
TIMBER. Their grouping operator is defined on sets of trees.
One drawback of this approach is that their transformation
from the XQuery language to the TAX tree is complex and
not complete, as pointed out in [16]. Also they do not consider
ordering.

Fegaras [8] and May et al. [16] have studied XQuery
unnesting based on the unnesting techniques from object-
oriented query languages [4], [7]. However, these works do
not discuss decorrelation of XQuery expressions containing
orderbyclauses, which is the main focus of our work.

The work that is most closely related to ours is the
NEXT [5] framework, where the authors study minimization
of nested XQuery expressions under “mixed set and bag
semantics”. Here the authors introduce new syntactic con-
structs to the XQuery language. Compared to this, we use
a more traditional algebraic approach for decorrelation. In
fact, we demonstrate that our classical algebraic rewriting
achieves the same XQuery minimization as in the NEXT
framework. Further our approach extends this problem and
solves it under sequence semantics, that is, by considering
nested XQuery expressions with explicit orderby clauses. In
addition we show how to reuse existing XPath containment
and matching approaches to achieve query minimization in
the ordered context.

Query containment has been studied in depth for the rela-
tional model [14]. Query containment for XPath expressions
has been discussed for various axes and quantifiers [9], tag
variables and equality testing [1], etc. In [6] the authors
study the containment problem for nested XQuery expressions
with different fanouts. However none of these works consider
the order semantics in XQuery; they do not even consider
document order in XPath expressions. Our work thus provides
a practical approach to fill the gap between the existing works
of query containment and XQuery minimization with order
semantics.

III. PRELIMINARIES

XQuery: In this paper, we consider a subset of the XQuery
language [23] defined by the grammar in Fig. 1. This subset,
plus some extensions of user-defined functions, suffices to
express the XMark benchmark query set [19]. Besides the
basicFLWORclauses, the XQuery fragment we consider also
includes order-related functions (e.g., the position function),
and quantifiers.

We discuss our approach under the assumption that the
query plan can be described as a tree. However XQuery
also allows user-defined functions, and these functions canbe
recursive. Discussion of such recursive user-defined functions
is beyond the scope of this paper.

In this paper, we focus on nested XQuery optimization
with orderby clauses instead of complex XPath processing.
Evaluation algorithms for complex XPath expressions having
arbitrary navigation axes and node tests [10], [11] are orthog-
onal to XQuery decorrelation.

XAT Algebra: Our algebra (XAT) used in the RainbowCore
project [26] expresses the subset of the XQuery language
shown in Fig. 1. XAT is an order-preserving extension of the
relational algebra designed to handle ordered XML data. For
the purpose of decorrelation, this algebra is similar to NAL
[16], SAL [3] and the algebra proposed in [18]. Hence our
approach can be easily extended to these algebras.

Expr ::= c //atomic constants
$var //visible variable
(Expr, Expr) //sequence construction
Expr/a :: n //navigation step (axis a, node test n)
tag(Expr) //element constructor: tagger
FLWOR //query block
QExpr //expression with quantifier
CompExpr //comparison expression for predicate
OrderExpr //order-sensitive function. eg. position()

FLWOR ::= (For | Let)+ [Where] [Orderby] returnExpr
For ::= for $var in Expr
Let ::= let $var := Expr
Where ::= whereExpr
Orderby ::= order byExpr
QExpr ::= (some| every) $var in Expr satisfiesExpr
CompExpr ::= Expr CompOp Expr

//CompOp is any comparison operator. eg. “=”

Fig. 1. Syntax of XQuery Subset

We use theXATTableto represent ordered sequences of tu-
ples. The input(s) and output of each operator are XATTables.
An XATTable may contain nested tuples, that is, the content
of an attribute may be a sequence of zero or more tuples.

Since XAT is not designed for type inference purposes, we
only have two kinds of atomic values in an XATTable: the
ID of an XML node and the string value of an XML node.
We distinguish the ID based operations from the string value
based operations. The XML data storage provides conversion
functions from the node ID to the associated string value. For
simplicity, we will not show such functions explicitly in our
later discussions.

To define the order-preserving semantics of XAT operators,
we will use a sequence abstraction of the XATTable. For an
input XATTableR, h(R) denotes the first tuple (head) of the
XATTable and t(R) denotes the remaining tuples (tail) of
the XATTable. The symbol⊕ is used for the concatenation
(ordered union) of two XATTables. The concatenation of
XATTable columns is denoted by◦. We define the algebraic
operators recursively on their input XATTable(s). For binary
operators, we use left hand side (LHS) and right hand side
(RHS) to distinguish between the two input XATTables. We
useǫ to denote an empty XATTable.

The XAT algebra inherits all operators from the relational
algebra, such asSelect(σp), Project (ΠAttr), Join (1p), Left
Outer Join(LOJ , ⋉), Natural Join(NJ , 1), Cartesian Prod-
uct (CP , ×), etc. Except for the addition of order preserving
semantics, these operators have the similar semantics as in
the relational context. Below we define the Cartesian Product
of two XATTables as an example showing order preserving
semantics. (LetrL = h(RL)).

RL × RR := (rL×RR) ⊕ (t(RL) × RR), where

rL×RR :=

{

ǫ ifRR = ǫ

(rL ◦ h(RR)) ⊕ (rL×t(RR)) otherwise

Other Join operators can be similarly defined by augment-
ing their corresponding relational counterparts with order-
preserving semantics.

For the XQuery functiondistinct-values(), we introduce
a value-based duplicate elimination operatorDistinct. This
operator is not order preserving and has semantics identical
to its relational counterpart. We also define the operators:
OrderbyandPosition. The Orderby operator sorts the tuples in
the input XATTable by the string value of specified column(s).
The Position operator gets the row number (beginning from 1)
of each tuple and puts it as explicit value into a new column.

The XAT algebra also introduces new operators to represent
the XQuery semantics, such asNavigation (φxp), Tagger
(TagPattern), Nest(N), Unnest(U), Cat (C), etc.

Since in this paper we do not focus on complex XPath
processing, we use a “powerful” Navigation operator that can
extract XML nodes and process XPath expressions over XML
documents. We denote the Navigation operator as follows:

φ$colj :xp($coli)(R) := (h(R) × RNav) ⊕ φ$colj :xp(coli)(t(R))

where the schema ofRNav is {colj}, RNav is the sequence
of extracted XML nodes from the XML node incoli of h(R)

by applying XPath processing.

The Tagger operator accepts a pattern indicating where and
which open tags and close tags to add around the content of
certain columns in the input XATTable.

Given a tuple with a sequence-valued attributeAttr, we
define the Unnest operator as:

UAttr(R) := (h(R)⊢Attr
× RAttr(h(R))) ⊕ UAttr(t(R))

where ⊢Attr projects out the Attr column from R and
RAttr(h(R)) retrieves the sequence of attribute values inAttr.
The Nest operator is a inverse of Unnest and can be defined
accordingly.

TheCat operator concatenates multiple columns together to
form a single column. This operator is used to merge pieces
of XML separated by comma in the return clause of XQuery
expressions.

To clarify the translation of FLWOR expressions into the
XAT algebra, we introduce theMap operator. The Map opera-
tor is a binary operator with the LHS input XATTable defining
the for-variable and the RHS defining an algebra expression
e. The Map operator is defined as follow:

Mapa:e(Attr)(R) := (h(R) ◦ a) ⊕ Mapa:e(Attr)(t(R))

where theAttr denotes the for-variable in the FLWOR ex-
pression anda is the new attribute whose value is calculated
from expressione for every instance ofAttr.

The last operator discussed here is theGroupby(GB) oper-
ator, denoted asGBcoli;colj;op(R). This operator is introduced
mainly for the purpose of decorrelation. This GB operator
is an extension of the groupby in the relational context. The
Groupby operator will group the tuples of the input XATTable
by the columncoli, then perform the operatorop on colj

of each group of tuples, finally concatenate all the groups
together as output. The Groupby operator can also group on
multiple columns.

For further detailed discussion of the XAT algebra, please
refer to our technical report [27].

XQuery Normalization: Prior to translating the XQuery
expressions into the XAT algebra expression, we use a source-
level normalization step applied to the original XQuery expres-
sions. Similar normalizations are also discussed in [15]. Our
normalization does not aim to do optimization of the XQuery,
but rather provides a suitable format for easy generation of
the XAT algebra tree.

Normalization Rule 1:The let-variables are treated as tempo-
rary variables. During normalization, they can be eliminated:
the expression binding the let-variable is substituted forall oc-
currences of the let-variable. Note that in the implementation,
the let-variable is calculated only once and is materialized for
sharing among all the occurrences.

Normalization Rule 2:Since theMap operator is binary, the
For clause defining more than one for-variable will be split
into a sequence of nested For clauses. Each clause defines
one for-variable only.

Translating Normalized XQuery Expressions to XAT Al-
gebra: Normalized XQueries are translated into their corre-
sponding XAT algebra representation in two steps: translating
XPath expressions and translating the FWOR (without the Let
clause) query expressions. As mentioned before, we simply
translate each XPath expression into oneNavigationoperator.

The translation pattern of a flat FWOR query block to the
XAT algebraic expression is illustrated in Fig. 2. A nested
XQuery block can be translated recursively using this pattern.
In this translation pattern, theMap operator introduces one
for-variable from the for clause in the LHS expression. This
for-variable can be referred to in the nested query blocks inthe
RHS. TheNestoperator on top of the Map is used to construct
a sequence of all intermediate results. For thosewhereclauses
where no position function is used, the where clause can also
be put in the LHS of the Map operator, just like the orderby
clause.

Nest($ret_col)

Map

for Clause

$for-var

orderby Clause

where Clause

return Clause

Π$for-var Π$ret_col

Fig. 2. Build Algebra Tree for XQuery FWOR Expression.

The algebraic operators are generated during the translation
form an XAT algebra tree. We also allow the sharing of com-
mon subexpressions (e.g., the let-variable expression) among
multiple operators. This turns the XAT tree into a DAG. In
this paper, we do not emphasize the difference between them
and just generally call them XAT tree.

IV. XQUERY DECORRELATION

After XQuery normalization and translation, the correlation
in an XQuery expression is represented in the XAT tree by
the Map operator andlinking operators (operators in the RHS
referring variables defined in the outer FLWOR query block
in the inner query blocks). The Map operator introduces the
for-variable from the LHS For clause and the linking operator
refers to it in the RHS. Intuitively the Map operator forces a
nested loop evaluation strategy. Hence, eliminating the nested
loop iteration, that is, removing the Map operator in the
XAT tree transformation is the main goal of the proposed
decorrelation algorithm. Depending on the different semantics
of the operators that the Map is pushed over, the Map operator
will be pushed down along the RHS accordingly, until the
linking operator is reached and the Map operator is rewritten
as a join. As mentioned before, our techniques are an extension
of magic decorrelation [20]. These extensions are sufficient
to ensure efficient XQuery decorrelation. Please note that in
this paper, we omit the detailed discussion about the empty
collection issue - this is handled in the decorrelation algorithm
by adding left outer joins. Since our example XQuery does
not need left outer joins, we omit this step here. For the
complete magic branch decorrelation algorithm, please refer
to our technical report [27].

Below we will use the XQuery expression shown in the
Sec. I as the running example. The generated XAT tree for the
example query is shown in Fig. 3. TheI1, I2 and I3 blocks
are generated from the outer query block. They represent
the orderby clause,for clause andreturn clause respectively.
Similarly the J1, J2, J3 and J4 blocks are generated for the
inner query.

We now discuss how the different operators affect the
“pushing down” of the Map operator. For this, we first dis-
tinguish betweentuple-orientedand table-orientedoperators.
The propagation of the Map operator down overtuple-oriented
operators is different from that overtable-orientedoperators.

Definition 1: A tuple-oriented operator is one that examines
each tuple in the input XATTable(s) once at a time and
generates a corresponding output tuple(s). A table-oriented
operator, on the other hand, examines multiple and possibly
all tuples in the input XATTable(s) for generating an output
tuple(s).

The table-oriented operators in our algebra include:Nest,
OrderBy, Groupby, Distinct and all relational aggregation
functions. Since the order semantics in XQuery have to be

Nest($res)

Map$a

$res:Tagger(<result>,$abt)

Map

Nest($bt)

σ$bap=1

$bap:Position$ba

$b

$s1:doc(“bib.xml”)

φ$a:$s1b/author

Orderby$al

φ$al:$a/last

φ$ba:$b/author

Π$a

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Π$b

Orderby$by

φ$by:$b/year
σ$ba=$a

φ$bt:$b/title

Π$bt

$abt:Cat($a,$bt)

Π$res

I1

I2

I3

J1

J2

J3

J4

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

Fig. 3. The XAT Tree for the Example XQuery in Sec.1.

defined on a sequence of tuples, all order-sensitive operators
such asPositionare classified as table-oriented operators.

We show thePosition operator below as an example of a
table-oriented operator. The output of thePosition operator
depends on all the tuples in the input XATTable.

col1 col2
a1 b1
a2 b2

col1 col2 position(col2)

a1 b1 1
a2 b2 2

For a tuple-oriented operator we can simply push theMap
operator down over it. For table-oriented operators, we need
to perform an extra rewriting for the operator. That is, we
will generate aGroupby operator, which groups the input
tuples by the for-variable introduced by the Map operator, and
performs the original table-oriented operator for each group.
Intuitively the added grouping operator separates the whole
column used by the table-oriented operator into partitions
according to the context variable. Thus each partition keeps
the group boundary of the column correctly. We will show this
decorrelation process in a step-by-step fashion below.

Step 1: Considering the Map operator of the inner query
block, we simply push the Map operator down the RHS until
we reach a table-oriented position operator. For the position
operator, a Groupby operator is generated and the position
function becomes the embedded operation of the Groupby
operator. We then continue pushing down the Map operator
until the RHS becomes empty and the Map operator can be
removed. This step is shown in Fig. 4.

Map

σ$bap=1

$bap:Position$ba

$b

φ$ba:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

Π$b

Orderby$by

φ$by:$b/year
σ$ba=$a

φ$bt:$b/title

Π$bt

Map

$bap:Position$ba

$b

φ$ba:$b/author

Π$b

σ$bap=1

σ$ba=$a

φ$bt:$b/title

Π$bt

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

σ$ba=$a

φ$bt:$b/title

Π$bt

A

A
A

B

Fig. 4. Propagation of Map Operator for Inner Query Block

Step 2:Next we consider the Map operator of the outer query
block in Fig. 3. We simply push the Map operator down the
RHS until we reach a Nest operator. The Nest operator is
another table-oriented operator. Propagation of the Map over
the Nest operator is shown in Fig. 5.

Nest($res)

Map$a

$res:Tagger(<result>,$abt)

Nest($bt)

Π$a

$abt:Cat($a,$bt)

Π$res

B

C

Π$bt

Nest($res)

Map$a

Π$a

B

Π$bt

C

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

Π$res

D

$s1:doc(“bib.xml”)

φ$a:$s1b/author

Orderby$al

φ$al:$a/last

Distinct($a)

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

Fig. 5. Propagation of Map Operator for the Outer Query Block

Step 3: Continuing to push the Map operator of the outer
query block down, now the linking operatorσ$ba=$a becomes
the right child of the Map operator. The last step of the
propagation is to absorb the Map operator into the linking
operator. A Join is formed to connect both the branches. This
transformation of the XAT tree is shown in Fig. 6.

Finally, the decorrelated XAT tree is shown in Fig. 7. The
LHS of the Join operator retrieves a distinct sequence of
authors ordered by their last names. The RHS of the Join
operator retrieves the sequence of(book, author) ordered by
the books’ year. Here theauthor is the first author of each
book. Note that the Groupby operator preserves the order since
$b → $by (there is one year for each book), and the input of
the Groupby operator is a sequence sorted by the books’ year.

Map$a

Π$a Π$bt

C

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

σ$ba=$a

φ$bt:$b/title

A

D

Join($ba=$a)

Π$a

Π$bt,$a

C
$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

φ$bt:$b/title

A

D

B

Fig. 6. Propagation of Map Operator for the Outer Query Block(Cond.)

The Join operator produces a sequence of tuples with the major
order of $al and minor order of$by. This ordered sequence
will be grouped by$a and all the book titles for each$a

will be nested into a collection. Since$a → $al (there is one
last name for each author), this Groupby operator will also
preserve the order of the sequence.

Join($ba=$a)

Π$a

Π$bt,$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

φ$bt:$b/title

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

Nest($res)

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

Π$res

$s1:doc(“bib.xml”)

φ$a:$s1b/author

Orderby$al

φ$al:$a/last

Distinct($a)

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

Fig. 7. The XAT of Example XQuery after Decorrelation.

V. M INIMIZATION OF XAT T REE

In this section, we study how to remove redundant op-
erations in the XAT tree that has been generated by the
above decorrelation approach. The goal is to rewrite it into
an equivalent but smaller query plan with fewer number of
operators.

In Fig. 7, a close inspection shows that the LHS and the
RHS of the Join operator have similar XPath navigations to

theauthornode. But they use different Orderby operators: the
authors in the LHS are ordered by their last names and the
RHS is ordered by the books’ year. Hence when we consider
ordered semantics, the two sequences do not match. To share
the same navigation among the LHS and RHS of the Join
operator, we first need to rewrite the query plan by pushing
down the navigation and pulling up the orderby operator.

Beyond sharing of the XPath navigation, we find that since
the Join is an equi-join on the shared XPath navigation ($b =

$ba), the Join can even be removed. Below we will discuss
these two types of rewritings in more detail.

A. Order Preserving Property of XAT

As mentioned before, the XAT algebra is an order preserv-
ing algebra. Depending on how the tuple order of the input
XATTable is changed by the operator and reflected in the
output, the XAT operators can be divided into four categories:
order keeping, order generating, order destroying and order
specific operators.

• Order-keeping operators include most of the operators,
such as Select, Project and Tagger. For example, the
tuple order among the input tuples of the Select operator
will be kept in the output XATTable. Project and Tagger
operators will behave similarly. Here the Project operator
in XAT does not include the distinct semantics.

• Order-generating operators include the Orderby, Navi-
gate and the binary operators. The Orderby operator will
sort the input tuples by certain column(s). The Navigate
operator will extract the document order of the elements
of navigation and imposes it into the respective orders
of the tuples it generates. The binary operators like Join
operator will merge the order from its two branches below
into a new order.
For the Navigate operator, the tuple order among the input
tuples will be kept in the output XATTable as shown
below. The extracted document order will be the minor
order. Suppose variable $a has two instances of{a1, a2}.
For Navigate$a/b, a1 has children{b1, b2} while a2 has
the child{b3}. The input and output XATTable are:

$a

a1
a2

$a $ab

a1 b1
a1 b2
a2 b3

Note that different permutations of the same set of Nav-
igates may result in different tuple orders. For example,
considering two Navigates from$a: $a/b and $a/c, if
we perform $a/b first, then the final tuple order will
be determined first by$a, second by$a/b and third by
$a/c. If we perform the two Navigates the other way, the
output tuple order will be different. Such rewriting will
be incorrect for ordered semantics.
The binary operators (like Join and Cartesian Product)
can merge the tuple order from both branches below. The

tuple order of the LHS input XATTable will be used as the
major order while the order of the RHS input XATTable
will be used as the minor order in the output XATTable.

• Order-destroying operators include the Distinct operator.
The value-based Distinct operator will destroy the order
of the input tuples. The output tuple order for Distinct is
undefined.

• Order-specific operators include the Groupby operator -
in some cases, the Groupby operator acts as an order-
keeping operator and in other cases, it acts as an order-
destroying operator. If the input tuples have been sorted
on a column ($b) and the grouping is done on a col-
umn ($a), where$a → $b, then the Groupby operator
preserves this order. Otherwise the order in the input
XATTable is destroyed. In this case here,$a, $b can even
be multiple columns.

B. Finding the Minimal Order Context

The XAT tree may include operators having various order
preserving properties. In order to perform algebraic rewriting
correctly keeping the ordered semantics, we first propose a
systematic way to determine the minimal ordered semantics.

This process includes two steps: a bottom-up tree traversal
recording the order context of the XATTable; and a top-down
tree traversal removing any overwritten order contexts. After
this process, every intermediate XATTable will be associated
with an ordered sequence, denoting the order context by
XATTable columns. We denote the order context sequence as
[$colD[S], ...] for the XATTables. The subscriptD denotes the
document order andS stands for sorted value based order.

We show these two steps using the previous XAT tree in
Fig. 8, that is, with the partial XAT tree that is sufficient for
the purpose of explanation. The left part shows the bottom-up
step and the right part the top-down step. In the first step, the
order context of the XATTable is generated according to the
order-preserving property of each operator. In the second step,
all the order context columns overwritten by upper operators
will be removed. Thus the result order context associated with
the XATTables after the process describes the minimal ordered
semantics in the XAT tree. These order contexts must be kept
during the correct algebraic rewriting.

In the example query plan, there are two implicit functional
dependencies coming from the Orderby clause:$a → $al and
$b → $by. Otherwise the two Orderby clauses in the example
XQuery expressions would be ambiguous. Since$b → $by,
the Groupby operator grouping on$b will preserve the sorted
order from$by.

C. Orderby Pull up

Correct query rewriting under ordered semantics must guar-
antee that the order context of the result XATTable will not

Join($ba=$a)

Π$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

Orderby$al

φ$al:$a/last

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

[]

[$alD]

[$alS]

[]

[$bD]

[$bD, $byD]

[$byS]

[$byS]

[$byS, $baD]

[$byS]

[$alS, $byS]

[$alS]
[$byS]

Join($ba=$a)

Π$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

Orderby$al

φ$al:$a/last

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

[]

[$alS]

[]

[]

[]

[$byS]

[$byS]

[$byS]

[$byS]

[$alS]
[$byS]

[]

[$alS, $byS]

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

[]

[$s1bD]

[$s1bD, ,$aD]

[$s1bD]

[$s1bD]

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

[]

[]

[]

[]

[]

Fig. 8. The Process of Finding the minimal Order Context.

change after rewriting. To achieve this, we first define the
correct rewriting of XAT trees below.

Definition 2: For an XAT tree, suppose the minimal order
contexts of the output XATTable of the root of the tree be
C. If C remain unchanged after a certain rewriting inside the
tree, we call such rewriting an order preserving rewriting.

Intuitively, pulling up the Orderby operator over an order-
keeping operator is always allowed. Pulling over an order-
generating operator is prohibited, since the upper Orderby
operator can overwrite the lower Orderby operators. For the
order-destroying operators, the lower Orderby operator can be
removed. For the order-specific Groupby operator, we need to
check the tuple order and the grouping column in order to
make a correct rewrite.

We have the following four rewriting rules for the pulling
up of the Orderby operator.

Rule 1: An Orderby operator and its associated navigation
operator (if any), which retrieves the column sorted on, can
be pulled up together over a unary order-keeping operator.

Rule 2: Consider pulling up the Orderby operator above a
binary order-generating operator$o.

• If the LHS of $o is ordered by$l and the RHS of$o is
not ordered, then the Orderby operator can be pulled up.

• If the RHS of$o is ordered by$r but the LHS of$o is
not ordered, then the Orderby operator cannot be pulled
up.

• If the LHS of $o is ordered by$l and the RHS is ordered
by $r, then both Orderby operators in the LHS and RHS
can be pulled up and merged into one single Orderby
operator. This new operator sorts the XATTable using$l

as the major order and$r as the minor order.
Rule 3: An Orderby operator can be removed if there is an

order-destroying operator above it.
Rule 4: An Orderby operator that sorts on$b can be pulled

above a Groupby operator that groups on$a if $a → $b.

While Rules 1, 3 and 4 are straightforward, we illustrate the
three cases of Rule 2 using the Join operator in Fig. 9.

Join

[$l]

[$l] []
Orderby$l

Join

[$l]

[] []

Orderby$l

[]Case 1

Join

[]

[] [$r]

Orderby$r

Join

[$r]

[] []

Orderby$r

[]Case 2

×

Join

[$l, $r]

[$l] [$r]
Orderby$l Orderby$r

Join

[$l, $r]

[] []

Orderby$l,$r

[]Case 3

Fig. 9. The Three cases of Rule 2.

Proposition 1: A series of algebraic query rewritings using
Rules 1, 2, 3 and 4 in XAT trees form a rewriting that is
globally order preserving.

In Fig. 10, the Orderby in the LHS of the Join can be pulled
up above the Project, since the Project is a unary order-keeping
operator. The Orderby in the RHS can also be pulled up above
the Project, Groupby and Select. For the Groupby operator,
since the Orderby operator sorts the tuples by$by, which is
functionally dependent on the grouping column$b, the tuple
order before and after the pulling up of the Orderby operator
are identical. The LHS and the RHS Orderby operators can
be pulled up above the Join and be merged into one single
Orderby operator that sorts tuples by$al (major),$by (minor).

Join($ba=$a)

Π$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b

σ$bap=1

Orderby$al

φ$al:$a/last

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

(1)
(2)

Join($ba=$a)

Π$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

Π$b,$ba

σ$bap=1

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$al,$by

φ$al:$a/last

E

(1)

φ$by:$b/year

[$alS, $byS]

[]

[]

[]

[]
[]

[]

[]

[]

[]

[]

[]

[]

[]

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

[]

[]

[]

Fig. 10. Orderby Pull up

After pulling up the Orderby operators, the XQuery min-
imization problem is reduced from the ordered sequence
matching problem to the well studied XPath matching under
set semantics. To “gather” all the XPath expressions, we push
down all the navigations to the bottom of the XAT tree.

During this pushing, the Project operator needs to be changed
accordingly as shown in Fig. 10.

D. XPath Matching and Redundance Removing

In the example XAT tree, after pulling up the Orderby
operators, the order context becomes null for the two branches
below the Join operator. Then the optimization problem re-
duced to the unordered semantics. Various query plans can be
generated and the optimal can be picked.

By utilizing existing XPath matching algorithms [2], we can
easily find that the$a in the LHS of the Join operator and the
$ba in the RHS both come from the same XPath expression
bib.xml/book/author. We can remove such redundant navi-
gation using the following rewriting rule.

Rule 5: Consider an equi-join operator with$a = $b where
$a introduced from the LHS and$b from the RHS. We can
remove the equi-join and the LHS if the following conditions
hold:

• $b ⊆ $a under set semantics, and
• Only the join column$a appears in the LHS’s schema,

and
• $a is a set with no duplicates.

Join($ba=$a)

Π$a

φ$ba:$b/author

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

E

φ$a:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

E

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

Fig. 11. Removing Redundant Join and Navigations.

In Fig. 11, every author in$ba appears in$a; the schema
of the LHS has only one column$a; and$a has no duplicates
after the Distinct operator. Therefore the equi-join operator
and in fact the complete LHS branch can be removed. The
final query plan is shown in Fig. 12.

VI. EXPERIMENTAL STUDY

We have conducted preliminary experiments to illustrate
the performance gains achieved by our approach. We have
implemented the magic branch decorrelation and minimization

$bap:GB$b(Position$a)

Π$b,$a

σ$bap=1

φ$a:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

Π$bt,$a

φ$bt:$b/title

Nest($res)

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

Π$res

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

Fig. 12. The optimized XAT of the example XQuery.

algorithm in the RainbowCore project, a native XQuery engine
based on the XAT algebra developed at WPI [26].

Our preliminary experimental results based on the example
XQuery described in Sec. I are shown in Fig. 13. These exper-
iments were performed on a 1.2GHz PC with 512MB of RAM
running Windows 2000. We compare the query execution
times among three query plans: the original translated query
plan with nested subquery shown in Fig. 3; the decorrelated
query plan shown in Fig.7; and the optimized query plan after
removing redundant navigations and Join depicted in Fig.12.
We have varied the input XML documents to have different
numbers of book elements. The results are shown in Fig. 13.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
.)

Number of Book Elements of Input XML

Before Unnesting
After Unnesting

After Minimization

Fig. 13. Performance Comparison of Different Query Plans.

We can see that the decorrelation step gives significant
performance gains. One of the reasons is that in our experiment
we do not employ any storage manager, so the navigations
will be launched directly to the file for every instance of the
LHS of the Map operators. After decorrelation, this repeated
navigation in the subquery will be saved and the total I/O cost
will decrease dramatically. On the other hand, the XAT mini-
mization also brings significant performance improvementsin

the order of 20%-30%. This is due to the successful removal
of the redundant navigations and the costly Join operation.The
performance gain of the XAT minimization is also shown in
Fig. 14.

 0

 5

 10

 15

 20

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
.)

Number of Book Elements of Input XML

After Unnesting
After Minimization

Fig. 14. Performance Gain of XAT Minimization.

VII. C ONCLUSION

In this paper we propose an algebraic rewriting technique
of nested XQuery expressions containing explicit orderby
clauses. The proposed technique is based on the principles of
magic decorrelation. Unlike prior work, this technique enables
the optimization of nested XQuery expressions not only with
set but also with ordered sequence semantics. We illustrate
how our proposed technique is able not only to successfully
tackle the same XQuery logical optimization problem solved
in the NEXT framework, but to go one step beyond and now
also support ordered semantics.

Our work extends previous work primarily in two aspects.
First, to the best of our knowledge, we are the first to provide
a practical approach handling XQuery logical minimization
with sequence semantics. Second, our magic branch approach
inherits the advantages of magic decorrelation and opens
the opportunities for further optimizations. The preliminary
experimental studies illustrate the effectiveness of the proposed
algorithm. As part of our future work, we plan to study the
order inference of different operators in order sensitive query
plans as well as optimization of the operators using it.

REFERENCES

[1] A. Deutsch and V. Tannen. Containment of Regular Path Expressions
under Integrity Constraints. In8th Int. Workshop on Knowledge
Representation Meets Databases (KRDB), Rome, Italy, pages 1–11, June
2001.

[2] A. Balmin, F. Ozcan, K. S. Beyer, R. Cochrane, and H. Pirahesh.
A Framework for Using Materialized XPath Views in XML Query
Processing. InProc. of the Int. Conf. on Very Large Data Bases (VLDB),
pages 60–71, 2004.

[3] C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured Data
and XML. In ACM SIGMOD Workshop on the Web and Databases
(WebDB), pages 37–42, 1999.

[4] S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. of
the Int. Workshop on Database Programming Languages, pages 226–
242, 1993.

[5] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical
Framework for XQuery. InProc. of the Int. Conf. on Very Large Data
Bases (VLDB), pages 29–41, 2004.

[6] X. Dong, A. Y. Halevy, and I. Tatarinov. Containment of Nested XML
Queries. InProc. of the Int. Conf. on Very Large Data Bases (VLDB),
pages 132–143, 2004.

[7] L. Fegaras. Query unnesting in object-oriented databases. InProc. of
ACM SIGMOD Int. Conf. on Management of Data, pages 49–60, 1998.

[8] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Query processing
of streamed XML data. InProc. of the Int. Conf. on Information and
Knowledge Management (CIKM), pages 126–133, 2002.

[9] G. Miklau and D. Suciu. Containment and Equivalence for an XPath
Fragment. InSymposium on Principles of Database Systems (PODS),
Madison, Wisconsin, pages 65–76, June 2002.

[10] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing
XPath Queries. InProc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 95–106, 2002.

[11] G. Gottlob, C. Koch, and R. Pichler. XPath Query Evaluation: Improving
Time and Space Efficiency. InProc. of the Int. Conf. on Data
Engineering (ICDE), pages 379–390, 2003.

[12] W. Kim. On optimizing an sql-like nested query.TODS, 7(3):443–469,
1982.

[13] L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. J. Zhao. OnTesting
Satisfiability of Tree Pattern Queries. InProc. of the Int. Conf. on Very
Large Data Bases (VLDB), pages 120–131, 2004.

[14] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries
Using Views. InPODS, San Jose, CA, pages 95–104, June 1995.

[15] I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries
on Heterogeneous Data Sources. InProc. of the Int. Conf. on Very Large
Data Bases (VLDB), pages 241–250, 2001.

[16] N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers
in an ordered context. InProc. of the Int. Conf. on Data Engineering
(ICDE), pages 239–250, 2004.

[17] S. Paparizos, S. Al-Khalifa, H. Jagadish, L. Lakshmanan, A. Nierman,
D. Srivastava, and Y. Wu. Grouping in XML. InEDBT Workshops,
pages 128–147, 2002.

[18] C. Sartiani and A. Albano. Yet Another Query Algebra ForXML Data.
In Proc. of Int. Database Engineering and Applications Symposium
(IDEAS), pages 106–115, 2002.

[19] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. XMark: A Benchmark for XML Data Management. InProc.
of the Int. Conf. on Very Large Data Bases (VLDB), pages 974–985,
2002.

[20] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query decorre-
lation. In Proc. of the Int. Conf. on Data Engineering (ICDE), pages
450–458, 1996.

[21] W3C. XML Query Use Cases, W3C Working Draft 02, May, 2003.
http://www.w3.org/TR/xquery-use-cases.

[22] W3C. XML Path Language (XPath)Version 2.0. W3C WorkingDraft.
http://www.w3.org/TR/xpath20, November 2003.

[23] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, May 2003.

[24] S. Wang, X. Zhang, E. A. Rundensteiner, and M. Mani. Algebraic
XQuery Decorrelation with Order Sensitive Operations. Technical
report, Worcester Polytechnic Institute, 2005. to appear.

[25] X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B. Murphy,B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner. Rainbow: Multi-
XQuery Optimization Using Materialized XML Views. InSIGMOD
Demo, page 671, 2003.

[26] X. Zhang, M. Mulchandani, S. Christ, B. Murphy, and E. A.Runden-
steiner. Rainbow: Mapping-driven xquery processing system. In Proc.
of the ACM SIGMOD Conf. on Management of Data, page 614, 2002.

[27] X. Zhang and E. A. Rundensteiner. XAT: XML Algebra for the Rainbow
System. Technical Report WPI-CS-TR-02-24, Worcester Polytechnic
Institute, July 2002.

