Optimization of Nested

XQuery Expressions with

Orderby Clauses

Song Wang, Elke A. Rundensteiner and Murali Mani
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609, USA
(songwangundensimmani)@cs.wpi.edu

Abstract— XQuery, the defacto XML query language, is a
functional language with operational semantics, which preludes
the direct application of classical query optimization te@iniques.
The features of XQuery, such asnestedexpressions andordered
semantics, further aggravate this situation. The approprate ex-
tension of existing optimization techniques to XQuery proessing
hence represents an important and non-trivial task. We prompse
an algebraic rewriting technique of nested XQuery expressins
containing explicit orderby clauses. Unlike prior work, this
technique enables the optimization of nested XQuery expremns
not only with set but also with ordered sequence semantics. @
technique is based on two steps. First, we perform algebraiguery
unnesting. Second, we apply query minimization techniquethat
exploit pairwise XPath set containment after pulling up order-
sensitive operations. We illustrate how our proposed techique
is able to not only successfully tackle the XQuery logical
optimization problem solved in the NEXT framework, but in
addition to also to correctly support ordered semantics.

We have implemented the proposed optimization techniqueso
top of the XAT algebraic framework in our RainbowCore project.
We show the performance gain achievable by our approach usin
an experimental study with the RainbowCore engine.

I. INTRODUCTION

Unlike in relational databases, order is an important issue
for XML queries. By default, both the XPath and XQuery
languages are order sensitive. The XPath language has order
sensitive functions such a@sition(), first() andlast(). All
the functions used in the XPath language work on the docu-
ment order. Informally, document order is the order defined
by a pre-order, depth-first traversal of the nodes in an XML
document. In addition XQuery expressions may contain the
orderbyclause as part of a FLWOR expression that overwrites
the document order for XML fragments generated by that
XQuery expression based on explicit sorting.

In this paper, we discuss how to optimize query expressions
that contairorderbyclauses in the nested XQuery context. We
propose an algebraic rewriting technique of nested XQuery
expressions containing explicit orderby clauses. Ourrtigle
is based on two steps. First, we perform algebraic query
unnesting based on the principles of magic decorrelatiéh [2
Second, we apply query minimization techniques that ekploi
pairwise XPath set containment after pulling up order-iges
operations. In the NEXT framework [5], the authors propose
a new nested Xtableaux approach for logical XQuery opti-

The XQuery language [23] and the XML path Ianguag@ization' We now go beyond this work, while using a more

[22] have both been widely accepted for querying XML
data. Several optimization techniques have been propased
XPath expressions, such as XPath containment [9] , ansgver
XPath queries using views [2] and XPath satisfiability [13
The direct applicability of these techniques to the XQuéry
language is precluded by the features of XQuery, such

nestedXQuery expressions and th@derby clause. How to

extend existing optimization techniques to complex XQuelf

processing becomes an important and non-trivial task.

XQuery expressions are typically composed of highl

nested FLWOR (short for théor, let, where orderby and

traditional algebraic rewriting and unnesting approacét th
fpllows well established principle and practice in indigdtr
fpery engines. Using our approach, we are able to not only
]qchieve the optimization specified in the NEXT framework but
also to correctly support ordered semantics.

I;§ample: The following XQuery expression sorts part of the
authors by their last name and groups books together with the
st author, then sorts each author’'s book by publishing.yea
his query is adapted from W3C XQuery Use Cases XMP
94 [21] by adding the position function and orderby clauses.

for $a in distinct-val ues(doc("bib.xnm ")/book/author[1])
order by $a/l ast

return) blocks to retrieve and reconstruct hierarchical XMleeturn <resul t >{$a,

data. An XQuery expression is said todmrelatedif an inner

FLWOR block refers to a bound variable defined outside this

block.

for $b in doc("bib.xm")/book
where $b/author[1] = $a

order by $b/year

return $b/title

</resul t>

lin this paper, we use the term XQuery to refer to complex XQuer

expressions that cannot be rewritten as XPath expressions.

In this example XQuery expression, the oufer clause

binds $a to a sequence of authors appearing in the XMilgebras like NAL [16] and SAL [3].

document. The outeorderby clause sorts this sequence by Our work brings forth the following novel contributions to

the authors’ last name. For each instance of $a, the inf&Query optimization.

query block can be evaluated. Such an intuitive iterativeex o To the best of our knowledge, we are the first to provide a

cution tends to be less efficient than an equivalent cobiaeti practical approach handling XQuery logical minimization

oriented execution strategy, since for every binding of $a, with sequence semantics.

many operation steps are repeated in the inner subquery. Foy Our magic branch approach inherits the advantages of

efficient execution of such XQuery expressions, decoiitglat magic decorrelation and opens the opportunities for fur-

is necessary. After decorrelation, a join will be generdted ther optimizations using existing techniques.

connect the outer and inner query blocks, and a one time, We implement the magic branch decorrelation and the

navigation of the XML document for the inner subquery is algebraic tree minimization in our XQuery engine.

sufficient. While we briefly sketch the decorrelation praces o, We conduct a preliminary experimental study, that shows

in Section 1V, details of this process can be found in [24]. the performance improvements achievable by our pro-
Our decorrelation technique is inspired by the magic decor- posed approaches.

relation proposed by Seshadri et al. [20]. The authors g0 Thjs paper is organized as follows. We first give a descrip-

a decorrelation method for complex correlated SQL queriggyn of the related work in Section Il and briefly describe the

Our approach, called thidagic Branch is a natural extension gigepraic framework used in this paper in Section Ill. The

and adaption of this technique towards more efficient XQUeR{agic branch decorrelation approach and the minimization

decorrelation. techniques are discussed in Sections IV and V respectively.

After decorrelation, a closer inspection of the examplge present our experimental results in Section VI, while
XQuery reveals that we can even do better: the navigationsd@tion VIl concludes this paper.

the “outer” and “inner” query blocks are similar. The author

nodes in$b/author[1] is contained in the author nodes $n Il. RELATED WORK

under set semantics. These navigations however differah th Modern database systems [12], [7], [20] attempt to merge
the author nodes ifia are sorted by their last names, whereasubquery blocks into the outer query block, thereby elitaina
the ones ibb/author[1] are sorted by the books’ year. Evering correlations and avoiding nested iterative evaluat®uch
though these two navigations are not identical, they ardaim “decorrelation” is typically done by introducing outer fjioand
enough so that one of the two navigations could be saved. Wm®uping operations.

thus suggest that a more “optimal” query plan for this exampl More recently, methods that focus on the efficiency of
query will be: 1) get all the books; 2) get the first authodecorrelated subqueries have been proposed. In [20], the
associated with each book; 3) sort by the author’s last namethors proposed a technique called magic decorrelation fo
(major order) and the book publication year (minor orderjiested SQL queries. By materializing results from subgseri
and 4) group all the book title by authors. In this paper, wand postponing the Outer Join, this approach produces a typ-
will show a systematic approach for achieving such optichizécally more efficient query plan. Our proposal is concepiual
query plan. inspired by this technique.

Such XQuery expressions are not rare; rather such caseBecorrelation of XQuery expressions has also been studied
will always occur when a nested XQuery expression is uséd relationship to native XML query engines. One effort is
for reconstructing the original XML corresponding to diféat by Paparizos et al. [17] in the TIMBER system. There the
schema. If we do not discover that the two navigations are siauthors pointed out the implicit use of grouping constriicts
ilar, the query plan would have included a join between thetlee XQuery’s result construction. Recognizing and exici
two navigations. Instead our approach enables the elimmatadding the grouping operation can lead to unnesting of XQuer
of the redundant navigations whenever possible. In thigpapexpressions. Their work is based on the tree algebra in
we will describe how to adapt known XPath containmerIMBER. Their grouping operator is defined on sets of trees.
algorithms to reduce redundant XPath navigations in XQueBne drawback of this approach is that their transformation
expressions containingrderby clauses. from the XQuery language to the TAX tree is complex and

We have implemented the proposed optimization techniquest complete, as pointed out in [16]. Also they do not conside
on top of the XAT algebraic framework in our RainbowCor@rdering.

[26] project. The XAT algebra extends the relational alge- Fegaras [8] and May et al. [16] have studied XQuery
bra by allowing collection-valued columns and being ordetnnesting based on the unnesting techniques from object-
preserving. It also introduces new operators to express tmiented query languages [4], [7]. However, these works do
necessary XQuery semantics. However, the main idea raft discuss decorrelation of XQuery expressions contginin
our approach is generic and can be applied to other simiaderby clauses, which is the main focus of our work.

. . E = /latomic constants
The work that is most closely related to ours is the e ;mr INisible variable

NEXT [5] framework, where the authors study minimization (Ezxpr, Expr) /Isequence construction

. . Ezpr/a ::n /Inavigation step (axis a, node test n)
of nested XQuery expressions under “mixed set and bag tag(Expr) Jlelement constructor: tagger

CO f . FLWOR /lquery block

semantics”. Here the authors introduce new syntactic con- QExpr Jlexpression with quantifier
structs to the XQuery language. Compared to this, we use CompExpr llcomparison expression for predicate

OrderExpr /lorder-sensitive function. eg. position()
(For | Let)™ [Where] [Orderby] return Expr

for $var in Expr

let $var ;= Expr

where Expr

order by Expr

(some| every) S$var in Expr satisfiesExpr

Expr CompOp Expr

/ICompOp is any comparison operator. eg. “="

a more traditional algebraic approach for decorrelation. | rrwor
fact, we demonstrate that our classical algebraic rewgitin f;’:
achieves the same XQuery minimization as in the NEXT where
framework. Further our approach extends this problem andg)jn”
solves it under sequence semantics, that is, by consideringompEzpr
nested XQuery expressions with explicit orderby clauses. |

addition we show how to reuse existing XPath containment Fig. 1. Syntax of XQuery Subset
and matching approaches to achieve query minimization in

the ordered context. Wi theX AT Tablet t ordered ft
Query containment has been studied in depth for the rela}- € use ableto represent ordered sequences of tu-

tional model [14]. Query containment for XPath expressiorPses' The input(s) and output of each operator are XATTables

has been discussed for various axes and quantifiers [9], ﬁ%% XATTable may contain nested tuples, that is, the content

variables and equality testing [1], etc. In [6] the authorS a-n attrlbutg may be ? sequence of.zero or more tuples.

study the containment problem for nested XQuery expression Since XAT is not designed for type inference purposes, we
.only have two kinds of atomic values in an XATTable: the

the order semantics in XQuery; they do not even consic\?vreof an XML node and the string value of an XML node.

document order in XPath expressions. Our work thus provides distinguish the 1D based operations from the string value

) . L ased operations. The XML data storage provides conversion
a practical approach to fill the gap between the existing wor) . .
unctions from the node ID to the associated string value. Fo

of query containment and XQuery minimization with order. ~ " . . Lo
semantics. S|mpI|c_|ty, We_ will not show such functions explicitly in ou
later discussions.
[1l. PRELIMINARIES To define the order-preserving semantics of XAT operators,
we will use a sequence abstraction of the XATTable. For an
XQuery: In this paper, we consider a subset of the XQuenyput XATTable R, h(R) denotes the first tuple (head) of the
language [23] defined by the grammar in Fig. 1. This subs&tATTable and¢(R) denotes the remaining tuples (tail) of
plus some extensions of user-defined functions, sufficestf@ XATTable. The symbols is used for the concatenation
express the XMark benchmark query set [19]. Besides ti§dered union) of two XATTables. The concatenation of
basicFLWORclauses, the XQuery fragment we consider alsgATTable columns is denoted by. We define the algebraic
includes order-related functions (e.g., the position fiom), operators recursively on their input XATTable(s). For bina
and quantifiers. operators, we use left hand side (LHS) and right hand side

We discuss our approach under the assumption that {mHS) to distinguish between the two input XATTables. We
query plan can be described as a tree. However XQueec to denote an empty XATTable.
also allows user-defined functions, and these functionsbean The XAT a|gebra inherits all operators from the relational
recursive. Discussion of such recursive user-defined fomet algebra, such aSelect(o,), Project (ITas.,.), Join (), Left
is beyond the scope of this paper. Outer Join(LO.J,), Natural Join(N J, X, Cartesian Prod-

In this paper, we focus on nested XQuery optimizatiofict (C P, x), etc. Except for the addition of order preserving
with orderby clauses instead of complex XPath processingsmantics, these operators have the similar semantics as in
Evaluation algorithms for complex XPath expressions hgvifihe relational context. Below we define the Cartesian Produc
arbitrary navigation axes and node tests [10], [11] areoith of two XATTables as an example showing order preserving
onal to XQuery decorrelation. semantics. (Let; = h(Rp)).

XAT Algebra: Our algebra XAT) used in the RainbowCore Rr X Rp = (rpXRRr) @ (t(RL) X RR), where
project [26] expresses the subset of the XQuery language)

shown in Fig. 1. XAT is an order-preserving extension of the;; X Ry, := { € _ ifRp=e¢
relational algebra designed to handle ordered XML data. For (rr o h(RR)) ® (ruXxt(Rg)) otherwise

the purpose of decorrelation, this algebra is similar to NADther Join operators can be similarly defined by augment-
[16], SAL [3] and the algebra proposed in [18]. Hence oung their corresponding relational counterparts with orde
approach can be easily extended to these algebras. preserving semantics.

For the XQuery functiondistinct-values() we introduce of each group of tuples, finally concatenate all the groups
a value-based duplicate elimination operaldistinct. This together as output. The Groupby operator can also group on
operator is not order preserving and has semantics idénticaultiple columns.
to its relational counterpart. We also define the operators:For further detailed discussion of the XAT algebra, please
OrderbyandPosition The Orderby operator sorts the tuples imefer to our technical report [27].
the input XATTable by the string value of specified column(s)

The Position operator gets the row number (beginning from XRuery Normalization: Prior to translating the XQuery

of each tuple and puts it as explicit value into a new columfXPressions into the XAT algebra expression, we use a source

The XAT algebra also introduces new operators to repres&pt€! normalization step applied to the original XQuery @

the XQuery semantics, such asavigation (¢.,), Tagger sions. Similar normalizations are also discussed in [1&]t O
(Tagpatiern), Nest(N) L’Jnnest(U) Cat (C) etg.p ' normalization does not aim to do optimization of the XQuery,

Since in this paper we do not focus on complex XPatkﬁUt rather provides a suitable format for easy generation of

processing, we use a “powerful” Navigation operator that céhe XAT algebra tree.)
extract XML nodes and process XPath expressions over wxMyormalization Rule 1The let-variables are treated as tempo-

documents. We denote the Navigation operator as follows: "aY variables. During normalization, they can be eliméuat
the expression binding the let-variable is substitutecafboc-

P$col;:ap($cot) () := (R(R) X RNav) D Pscol, ap(cots) (L(R)) currences of the let-variable. Note that in the implemérat
the let-variable is calculated only once and is materidliioe

where the schema AR yq, is {col;}, Rnav iS the sequence)
\ sharing among all the occurrences.

of extracted XML nodes from the XML node iwl; of h(R) o] o
Normalization Rule 2Since theMap operator is binary, the

by applying XPath processing. . X . :
s Fo(s clause defining more than one for-variable will be split
The Tagger operator accepts a pattern indicating where an .
) £ntP a sequence of nested For clauses. Each clause defines
which open tags and close tags to add around the content 0

certain columns in the input XATTable. one for-variable only.

Given a tuple with a sequence-valued attributéfr, we Translating Normalized XQuery Expressions to XAT Al-

define the Unnest operator as: gebra: Normalized XQueries are translated into their corre-
o sponding XAT algebra representation in two steps: traimgjat

Uater(R) = (B ausy X Raser (h(R))) & Uaser (H(R)) XPath expressions and translating the FWOR (without the Let
where 44, projects out the At¢tr column from R and clause) query expressions. As mentioned before, we simply
R4 (h(R)) retrieves the sequence of attribute valuedin-. translate each XPath expression into dfevigationoperator.
The Nest operator is a inverse of Unnest and can be definedhe translation pattern of a flat FWOR query block to the
accordingly. XAT algebraic expression is illustrated in Fig. 2. A nested

The Cat operator concatenates multiple columns together ¥Query block can be translated recursively using this paite
form a single column. This operator is used to merge piecks this translation pattern, th®¥ap operator introduces one
of XML separated by comma in the return clause of XQueffpr-variable from the for clause in the LHS expression. This
expressions. for-variable can be referred to in the nested query blockisen

To clarify the translation of FLWOR expressions into th&HS. TheNestoperator on top of the Map is used to construct
XAT algebra, we introduce thilap operator. The Map opera- a sequence of all intermediate results. For thebereclauses
tor is a binary operator with the LHS input XATTable definingvhere no position function is used, the where clause can also
the for-variable and the RHS defining an algebra expressibé put in the LHS of the Map operator, just like the orderby

e. The Map operator is defined as follow: clause.
Mapa:e(AttT) (R) = (h(R) 0 a) D Mapa:e(Attr) (t(R)) 1

where theAttr denotes the for-variable in the FLWOR ex- Nes‘@;e‘-co')
pression and: is the new attribute whose value is calculated $for-var Map O\
from expressiore for every instance ofdttr. /O

The last operator discussed here is @reupby(G B) oper- Hgtor-var Hgret_col
ator, denoted a&'B..o,;co1,:0p (). This operator is introduced ?I
mainly for the purpose of decorrelation. This GB operator Orderbyf‘:'ause retum:aus'
is an extension of the groupby in the relational context. The for Clause where Claus:

Groupby operator will group the tuples of the input XATTable
by the columncol;, then perform the operatafp on col; Fig. 2. Build Algebra Tree for XQuery FWOR Expression.

The algebraic operators are generated during the tramslati Nest(Sres)

form an XAT algebra tree. We also allow the sharing of com- $a Mgp
mon subexpressions (e.g., the let-variable expressiomngm / \
multiple operators. This turns the XAT tree into a DAG. In Mg, Hfres
this paper, we do not emphasize the difference between then 4 $reS‘Taggerl(<resuIt> sab) |
and just generally call them XAT tree. I; Orderby, B ' 3
t $abt:Cat($a,$bt)
IV. XQUERY DECORRELATION @sar-sallast 4

After XQuery normalization and translation, the corredati ? Nes;@bt)
in an XQuery expression is represented in the XAT tree by 2 Dis‘i’rt(&") y Map Q__
the Map operator andinking operators (operators in the RHS Ogapet . Mgy
referring variables defined in the outer FLWOR query block 3 fb 4
in the inner query blocks). The Map operator introduces the $ap:GB,Position,) 3 Orde:rbx | Bspuswrite B
for-variable from the LHS For clause and the linking operato t ! 3 ” — e
refers to it in the RHS. Intuitively the Map operator forces a @sa:$s1b/author @sby:sbiyear Ogpa=sa J,
nested loop evaluation strategy. Hence, eliminating trg¢ede = T = 4 t
loop iteration, that is, removing the Map operator in the %slb:sl/book L op:552/b00k 0$b?p=l
()j(AT tree .transforrpanon is the.maln goal pf the prqposed $s1:doc('bibxml) so2.0000 b $bap:Positiog,

ecorrelation algorithm. Depending on the different setian
of the operators that the Map is pushed over, the Map operato @sbacsbiauthor

will be pushed down along the RHS accordingly, until the
linking operator is reached and the Map operator is rewritte
as a join. As mentioned before, our techniques are an egiensi
of magic decorrelation [20]. These extensions are sufficien

to ensure efficient XQuery decorrelation. Please note hat jefined on a sequence of tuples, all order-sensitive opsrato
this paper, we omit the detailed discussion about the emply., aspositionare classified as table-oriented operators.

collection issue - this is handled in the decorrelation atgm We show thePosition operator below as an example of a

by adding left outer joins. Since our example XQuery dOqglble-oriented operator. The output of tResition operator

not need left outer joins, we omit this step here. For th(?epends on all the tuples in the input XATTable

complete magic branch decorrelation algorithm, pleaser ref

Fig. 3. The XAT Tree for the Example XQuery in Sec.1.

to our technical report [27]. coly | coly coly | coly | position(cols)
: . . al | bl al | bl 1
Below we will use the XQuery expression shown in the 2 b2 v b2 5

Sec. | as the running example. The generated XAT tree for the
example query is shown in Fig. 3. The, I, and I3 blocks For a tuple-oriented operator we can simply push e
are generated from the outer query block. They repres@merator down over it. For table-oriented operators, wednee
the orderby clause,for clause andeturn clause respectively. to perform an extra rewriting for the operator. That is, we
Similarly the Ji, J2, J3 and J,; blocks are generated for thewill generate aGroupby operator, which groups the input
inner query. tuples by the for-variable introduced by the Map operatod, a
We now discuss how the different operators affect thgerforms the original table-oriented operator for eachugro
“pushing down” of the Map operator. For this, we first disintuitively the added grouping operator separates the gvhol
tinguish betweeruple-orientedand table-orientedoperators. column used by the table-oriented operator into partitions
The propagation of the Map operator down otwgale-oriented according to the context variable. Thus each partition keep
operators is different from that ovéable-orientedoperators. the group boundary of the column correctly. We will show this
Definition 1: A tuple-oriented operator is one that examinedecorrelation process in a step-by-step fashion below.
each tuple in the input XATTable(s) once at a time an8tep 1: Considering the Map operator of the inner query
generates a corresponding output tuple(s). A table-aientlock, we simply push the Map operator down the RHS until
operator, on the other hand, examines multiple and possilhg reach a table-oriented position operator. For the positi
all tuples in the input XATTable(s) for generating an outputperator, a Groupby operator is generated and the position
tuple(s). function becomes the embedded operation of the Groupby
The table-oriented operators in our algebra includest operator. We then continue pushing down the Map operator
OrderBy, Groupby Distinct and all relational aggregationuntil the RHS becomes empty and the Map operator can be
functions. Since the order semantics in XQuery have to bemoved. This step is shown in Fig. 4.

4

gy i !
+ * B ? l--f--l
$b Map & Mgy Bsprsotitie $a Map
H%/'o gyt Psprspitiie o t /P c\
< f 4 l-? tit $ha=$a H$a Hfbt
O’difb)éw %b‘fb/‘"'e Osba=sa Osbap=1 r.?__.‘ ' Pspt-goritle
Osasa f - .. iC 1B Gupsbrie 4
Psby sbiyear Ogpap=1 $bap:GB,(Position,) L Join($ba:$a)c\
t o % I\ = f
Pop:s52/b00k $h?p=l *® / Mapi\ %baﬁ}b/author 0$ba:$a 11 $a G$bap:1
i o | SDAPIPOSItiog, Ig, $bap:Positiog, 4
$s2:doc(*bib.xml’) oy h g, Ogpap=1 g $bap:GR(Position,)
@sba:sb/author IA L @spasprathor AT ;_____i +
_______ $bap:GR(Position,) Psa:sbrauthor
f t
Fig. 4. Propagation of Map Operator for Inner Query Block (p$ba:$+b/author gy
A
s A
Step 2:Next we consider the Map operator of the outer query Af """"
block in Fig. 3. We simply push the Map operator down the
RHS until we reach a Nest operator. The Nest operator is _
Fig. 6. Propagation of Map Operator for the Outer Query BI¢Cknd.)

another table-oriented operator. Propagation of the Mag ov
the Nest operator is shown in Fig. 5.

The Join operator produces a sequence of tuples with tha majo

Nest($. .
esires) order of$al and minor order ofby. This ordered sequence
},o Mapov\ D Nestres) will be grouped by$a and all the book titles for eacha
Mg, 0 . will be nested into a collection. Sin& — $al (there is one
$. .
d4b ?res gres last name for each author), this Groupby operator will also
o] .
C Or (ir Yal $res:Tagger(<result>$abt) | gros-Tagger(<result>,$ab preserve the order of the sequence.
?
%alfa/last $abt:Cit($a,$bt) $abt:Cat($a,$bt) —
=)
Distinct($a) Nest($ht Join($ba=
4 es?() GBg,(Nest(sb) Vi oin(Sba=salay
4 Ogpap=
Ogap=1 I ! g, $bap=1
T$bt $a /o Map 0\ Nest($res)
$ap:GB, (Position) — Orderby, $bap:GR(Position,) 4
4 :B ; Mg, gy 4 1 Mgyee
Psa:$s1b/author ,t ; wj* Bsal:sa/last Pspa-sb/author 4
4 | C | 1 B \ . _* f $res:Tagger(<result>,$al
Pss1b:$s1/book e - Dlstlrlct(ﬂsa) g, A
4 o 4 $abt:Cat($a,$bt)
$s1:doc(“bib.xml” =
stdoc(CbibxmP) $a11 Orderby,, t
$ap:GR,, Position,) GBg{Nest(sbt))
Fig. 5. Propagation of Map Operator for the Outer Query Block 4 Bspy: t
by:$b/year I
%a:$slb/author f $?t,$a
Step 3: Continuing to push the Map operator of the outer @ @sb:gs2/b00k Bopcso
. . s1b:$s1/book ~bbititle
query block down, now the linking operateg;,—s, becomes $s2:docCbibxm)

the right child of the Map operator. The last step of the $stdocCbibxm)

propagation is to absorb the Map operator into the linking
operator. A Join is formed to connect both the branches. This
transformation of the XAT tree is shown in Fig. 6.

Finally, the decorrelated XAT tree is shown in Fig. 7. The
LHS of the Join operator retrieves a distinct sequence ofln this section, we study how to remove redundant op-
authors ordered by their last names. The RHS of the Jarations in the XAT tree that has been generated by the
operator retrieves the sequence(tok, author) ordered by above decorrelation approach. The goal is to rewrite it into
the books’ year. Here theuthor is the first author of each an equivalent but smaller query plan with fewer number of
book. Note that the Groupby operator preserves the order simmeerators.
$b — $by (there is one year for each book), and the input of In Fig. 7, a close inspection shows that the LHS and the
the Groupby operator is a sequence sorted by the books’ y&dlS of the Join operator have similar XPath navigations to

Fig. 7. The XAT of Example XQuery after Decorrelation.

V. MINIMIZATION OF XAT TREE

theauthornode. But they use different Orderby operators: the
authors in the LHS are ordered by their last names and the
RHS is ordered by the books’ year. Hence when we consider

tuple order of the LHS input XATTable will be used as the
major order while the order of the RHS input XATTable
will be used as the minor order in the output XATTable.

ordered semantics, the two sequences do not match. To shake Order-destroying operators include the Distinct operator.

the same navigation among the LHS and RHS of the Join

operator, we first need to rewrite the query plan by pushing

down the navigation and pulling up the orderby operator.
Beyond sharing of the XPath navigation, we find that since «

the Join is an equi-join on the shared XPath navigatfn=

$ba), the Join can even be removed. Below we will discuss

these two types of rewritings in more detail.

A. Order Preserving Property of XAT

As mentioned before, the XAT algebra is an order preserv-
ing algebra. Depending on how the tuple order of the input
XATTable is changed by the operator and reflected in the
output, the XAT operators can be divided into four categorie

The value-based Distinct operator will destroy the order
of the input tuples. The output tuple order for Distinct is
undefined.

Order-specific operators include the Groupby operator -
in some cases, the Groupby operator acts as an order-
keeping operator and in other cases, it acts as an order-
destroying operator. If the input tuples have been sorted
on a column $b) and the grouping is done on a col-
umn §a), where$a — $b, then the Groupby operator
preserves this order. Otherwise the order in the input
XATTable is destroyed. In this case hege, $b can even

be multiple columns.

order keeping, order generating, order destroying andror¢g Finding the Minimal Order Context

specific operators.

« Order-keeping operators include most of the operator
such as Select, Project and Tagger. For example,
tuple order among the input tuples of the Select operator
will be kept in the output XATTable. Project and Tagger
operators will behave similarly. Here the Project operator
in XAT does not include the distinct semantics.

« Order-generating operators include the Orderby, Navi-
gate and the binary operators. The Orderby operator wi

operator will extract the document order of the elemen
of navigation and imposes it into the respective orde
of the tuples it generates. The binary operators like Join
operator will merge the order from its two branches below.
into a new order.
For the Navigate operator, the tuple order among the inpu

sort the input tuples by certain column(s). The Navigaf

tuples will be kept in the output XATTable as shown
below. The extracted document order will be the minor

Fig.
thF purpose of explanation. The left part shows the bottpm-u

The XAT tree may include operators having various order
?;?]reeserving properties. In order to perform algebraic remgi
correctly keeping the ordered semantics, we first propose a
Systematic way to determine the minimal ordered semantics.
This process includes two steps: a bottom-up tree traversal
recording the order context of the XATTable; and a top-down
. tree traversal removing any overwritten order contextseiAf
ﬂﬂis process, every intermediate XATTable will be asseciat
with an ordered sequence, denoting the order context by
ATTable columns. We denote the order context sequence as
gcolD[S], ...] for the XATTables. The subscrig? denotes the
dsocument order and stands for sorted value based order.

We show these two steps using the previous XAT tree in

8, that is, with the partial XAT tree that is sufficientrfo

step and the right part the top-down step. In the first step, th
order context of the XATTable is generated according to the

order. Suppose variable $a has two instance&iofas). order-preserving property of each operator. In the secteq s

For Navigate$a/b, a; has children(b:, by} while a5 has all the order context columns overwritten by upper opegator
the child {bs} Th’e ilnput and outpu}[’XQATTable a2re' will be removed. Thus the result order context associatél wi
3S- .

S0 T 500 the XATTables after the process describes the minimal edler
al | bl semantics in the XAT tree. These order contexts must be kept
al | b2 during the correct algebraic rewriting.

a2 b3
Note that different permutations of the same set of Nav- In the example query plan, there are two implicit functional

igates may result in different tuple orders. For exampI(E,JGpendenCles coming from the Orderby Cla&?%’ $al and
considering two Navigates frorfia: $a/b and Sa/c, if $b — $by. Othervy|se the two Orderby cIauseslln the example
we perform$a/b first, then the final tuple order will XQuery expressions would _be amb|guous. Sifibe— by,

be determined first b§a, second bySa/b and third by the Groupby operator grouping &b will preserve the sorted

$a/c. If we perform the two Navigates the other way, thé)mIer from$by.
output tuple order will be different. Such rewriting will
be incorrect for ordered semantics.

The binary operators (like Join and Cartesian Product) Correct query rewriting under ordered semantics must guar-
can merge the tuple order from both branches below. Thatee that the order context of the result XATTable will not

$a
al
a2

C. Orderby Pull up

_t [9als Sbyd 1 [$als Sby While Rules 1, 3 and 4 are straightforward, we illustrate the
/f;;rsl]n@baz%)o\ [$bygl /f;;;:]n@ba:wo\ sbyg three cases of Rule 2 using the Join operator in Fig. 9.
I Osbap=1 g, Ogbap=1
: t [sbyd * t [$byd e
Ordlrbgiald $bap:G§b(?Positior;ba) Ordgrbislalg $bap:G§b(?Positi0r¥ba) 1 [$1] c Orderlggl]
Iy [$bys $bay] tp [$byg] Join ase 1 NI
‘p$a|-$a/[:sa1ID] Psvagpiauthor %arssa/E\st Poasprauthor /CE$I] O\ 0 - Join
o t Isbyd £ t [sbyd Orderby, /O[] \ 0
Distinct($a) f$b Distinct($a) :b
+ [$slhy] [$byd] + [$byd
°$ap+:1 Orde;bléby 0‘$ar;:1l:| Orde{bgw 4 I Ordirgir]
[$s1hy] 0 Join Case 2 '
$ap:G%51§PosltloQQ byﬁ,jff;?v $byol $ap:G%51§Positi0r;a) Psty:sbryear /'O 0 D'\[$r] J;n[l
Bsa:s lb[l$stlil- .Sl t [$bo] @sa; . Orderby, /O 1} O\ 0
a:$s. [asL; ;rkb] %h:fﬁ;Zlbook a.$s+1b/author %b:$52/b00k
s
Psstbgsiibook $52:dOC(“biL]-xml") Bstossibook gs2:docbib.xm) 4 [$1, $1] or defrbfl’&]
$sl:doc(“bi£|.xml") $51:doc("bn[a.xm|”) /0 Join D.\[$1 C.isf 3 4 DW
[$I] Join
Fig. 8. The Process of Finding the minimal Order Context. Orderby, Orderby, /O[] O\ !

Fig. 9. The Three cases of Rule 2.
change after rewriting. To achieve this, we first define the
correct rewriting of XAT trees below. Proposition 1: A series of algebraic query rewritings using
Definition 2: For an XAT tree, suppose the minimal ordeRules 1, 2, 3 and 4 in XAT trees form a rewriting that is
contexts of the output XATTable of the root of the tree bglobally order preserving. _
C. If C remain unchanged after a certain rewriting inside the I Fig. 10, the Orderby in the LHS of the Join can be pulled
tree, we call such rewriting an order preserving rewriting. UP @bove the Project, since the Project is a unary orderikgep
Intuitively, pulling up the Orderby operator over an order?P€rator. The Orderby in the RHS can also be pulled up above

keeping operator is always allowed. Pulling over an ordef?€ Project, Groupby and Select. For the Groupby operator,
generating operator is prohibited, since the upper OrderBice the Orderby operator sorts the tuplessby, which is
operator can overwrite the lower Orderby operators. For tfignctionally dependent on the grouping colur$im the tuple
order-destroying operators, the lower Orderby operatortea order before and after the pulling up of the Orderby operator
removed. For the order-specific Groupby operator, we need®§ identical. The LHS and the RHS Orderby operators can

check the tuple order and the grouping column in order R Pulled up above the Join and be merged into one single
make a correct rewrite. Orderby operator that sorts tuples &yl (major)$by (minor).

We have the following four rewriting rules for the pulling

t [$als, $by]
up of the Orderby operator. 4 Order:xw
Rule 1: An Orderby operator and its associated navigatic N Borsea
. - . ¢ ap= !
operator (if any), which retrieves the column sorted on, cz Mlsa st “
. . . al:$a/last
be pulled up together over a unary order-keeping operator. Orderby,, $bap-6%b<:°s“'°’lba) 1
. . Join($ha=$a
Rule 2: Consider pulling up the Orderby operator above (1) { @ .-;M 1 Bassasor }(2) /‘E e %O'\Jl oy
binary order-generating operatdo. t t Msa .
)) Distinct($a) I—lflsb = . T 1 $bap:Gl§b(Positior;ba)|
« If the LHS of $o is ordered by$l and the RHS ofo is pisinc2) t |
not ordered, then the Orderby operator can be pulled t =~ %= O } W %p:l[] Hsﬁ;,_s[ba |
o If the RHS of$o is ordered by$r but the LHS of$o is ~ $ap:GRsyPosition) oo $ap:GRL(POSIton) Pspasp/autnor
not ordered, then the Orderby operator cannot be pull ¢, 5o _ + 0 0
up 4 Poo:sz2tbook P Sslbisutor [N
: 3 . %slb:$sl/book $s2:doc(“bib.xml") [l []
« Ifthe LHS of $o is ordered bysl and the RHS is ordered (., &, Pstbgstibook $s2doc('bibxmi)

$51:doc(“bibg<ml”)

by $r, then both Orderby operators in the LHS and RHo
can be pulled up and merged into one single Orderby
operator. This new operator sorts the XATTable usfhg
as the major order angl- as the minor order. After pulling up the Orderby operators, the XQuery min-
Rule 3: An Orderby operator can be removed if there is aimization problem is reduced from the ordered sequence
order-destroying operator above it. matching problem to the well studied XPath matching under
Rule 4: An Orderby operator that sorts @&a can be pulled set semantics. To “gather” all the XPath expressions, wé pus
above a Groupby operator that groups$enif $a — $b. down all the navigations to the bottom of the XAT tree.

Fig. 10. Orderby Pull up

During this pushing, the Project operator needs to be clthnge
accordingly as shown in Fig. 10. Orderby, g,
e
D. XPath Matching and Redundance Removing Nest(Sres)
(p$by:$b/year f
In the example XAT tree, after pulling up the Orderby t Tgres
operators, the order context becomes null for the two bresich Psala/iast 4
below the Join operator. Then the optimization problem re- t $res:Tagger(<result>,$al
duced to the unordered semantics. Various query plans can be Ospap=1 t
. . $abt:Cat($a,$bt)
generated and the optimal can be picked. . iy
. - : . $bap:GB,(Position,) t
By utilizing existing XPath matching algorithms [2], we can 4 GBg(Nest(sbt)
easily find that thea in the LHS of the Join operator and the Mgy 6 3
$ba in the RHS both come from the same XPath expression ' g ga
bib.xml /book [author. We can remove such redundant navi- Gsasb/author)
gation using the following rewriting rule. 4 Pspr sbititle
Rule 5: Consider an equi-join operator wiftu = $0 where Qs 552/book

$a introduced from the LHS andb from the RHS. We can
remove the equi-join and the LHS if the following conditions
hold:

e $b C $a under set semantics, and

« Only the join column$a appears in the LHS’s schema,
and

o $a is a set with no duplicates.

$s2:doc(“bib.xml")

Fig. 12. The optimized XAT of the example XQuery.

algorithm in the RainbowCore project, a native XQuery ergin
based on the XAT algebra developed at WPI [26].
Our preliminary experimental results based on the example
4 XQuery described in Sec. | are shown in Fig. 13. These exper-

Orderby, g, . .
4 Orderby, g, iments were performed on a 1.2GHz PC with 512MB of RAM
@sy:sbiyear running Windows 2000. We compare the query execution
t %byfb’year times among three query plans: the original translatedyquer
‘pﬂ*a'fa/'ast Osatsarast plan with nested subquery shown in Fig. 3; the decorrelated
P Join(sba=sa)oy query plan shown in Fig.7; and the optimized query plan after
I, e — removing redundant navigations and Join depicted in Fig.12
We have varied the input XML documents to have different
Dis“T‘“’ @ @sas/author numbers of book elements. The results are shown in Fig. 13.
ba:$b/author
Osap-t1 Psb:$52/b00k 100 : _ :
. @sb:$s2/book Before Unnesting —&—
$ap:G%§1iposmow $s2:doc(*bib.xml) 80 Afer Mimmizaios —x— 1

$s2:doc(“bib.xml”)

(p$a:$s:b/author 60

Pss1b:351/book
Iy

$s1:doc(“bib.xml”)

XQuery Processing Time (Sec.)

Fig. 11. Removing Redundant Join and Navigations.

400 600 800 1000

Number of Book Elements of Input XML

In Fig. 11, every author ir$ba appears irfa; the schema Performance Comparison of Different Query Plans.
of the LHS has only one columiu; and$a has no duplicates
after the Distinct operator. Therefore the equi-join opmra We can see that the decorrelation step gives significant
and in fact the complete LHS branch can be removed. Therformance gains. One of the reasons is that in our expetime
final query plan is shown in Fig. 12. we do not employ any storage manager, so the navigations
will be launched directly to the file for every instance of the
LHS of the Map operators. After decorrelation, this repeate

We have conducted preliminary experiments to illustrateavigation in the subquery will be saved and the total I/Ct cos
the performance gains achieved by our approach. We havill decrease dramatically. On the other hand, the XAT mini-

implemented the magic branch decorrelation and miningmati mization also brings significant performance improvemants

Fig. 13.

VI. EXPERIMENTAL STUDY

the order of 20%-30%. This is due to the successful removad]
of the redundant navigations and the costly Join operafiba.
performance gain of the XAT minimization is also shown inm

Fig. 14.
[8]

20

After Ljnnesting e
After Minimization —*—

15 B

El

[10]

(11]

XQuery Processing Time (Sec.)

400

600 800

Number of Book Elements of Input XML [12]
Fig. 14. Performance Gain of XAT Minimization. [13]
VIlI. CONCLUSION [14]

In this paper we propose an algebraic rewriting technique
of nested XQuery expressions containing explicit order6§/5]
clauses. The proposed technique is based on the principles o
magic decorrelation. Unlike prior work, this technique lelea [16]
the optimization of nested XQuery expressions not only with
set but also with ordered sequence semantics. We illustratg
how our proposed technique is able not only to successfully
tackle the same XQuery logical optimization problem solv 98]
in the NEXT framework, but to go one step beyond and now
also support ordered semantics.

Our work extends previous work primarily in two aspectsi.lg]
First, to the best of our knowledge, we are the first to provide
a practical approach handling XQuery logical minimization

with sequence semantics. Second, our magic branch appro@%

inherits the advantages of magic decorrelation and opens
the opportunities for further optimizations. The prelieuin [21]
experimental studies illustrate the effectiveness of tioppsed (22]
algorithm. As part of our future work, we plan to study the

order inference of different operators in order sensitiveryy [23]

plans as well as optimization of the operators using it. [24]

REFERENCES

[1] A. Deutsch and V. Tannen. Containment of Regular Pathr&gions
under Integrity Constraints. Ir8th Int. Workshop on Knowledge
Representation Meets Databases (KRDB), Rome, talges 1-11, June
2001.

[2] A. Balmin, F. Ozcan, K. S. Beyer, R. Cochrane, and H. Rigkh

A Framework for Using Materialized XPath Views in XML Query

Processing. IfProc. of the Int. Conf. on Very Large Data Bases (VLDB)

pages 60—71, 2004.

C. Beeri and Y. Tzaban. SAL: An Algebra for SemistructurBata

and XML. In ACM SIGMOD Workshop on the Web and Databases

(WebDB) pages 37-42, 1999.

S. Cluet and G. Moerkotte. Nested queries in object basefroc. of

the Int. Workshop on Database Programming Languagesies 226—

242, 1993.

[5] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT laagi
Framework for XQuery. IrProc. of the Int. Conf. on Very Large Data
Bases (VLDB)pages 29-41, 2004.

[25]

[26]

[27]
(31

(4

X. Dong, A. Y. Halevy, and I. Tatarinov. Containment of §led XML
Queries. InProc. of the Int. Conf. on Very Large Data Bases (VLDB)
pages 132-143, 2004.

L. Fegaras. Query unnesting in object-oriented datedadn Proc. of
ACM SIGMOD Int. Conf. on Management of Datmges 49-60, 1998.

L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Quemrycessing

of streamed XML data. IfProc. of the Int. Conf. on Information and
Knowledge Management (CIKMpages 126-133, 2002.

G. Miklau and D. Suciu. Containment and Equivalence forXPath
Fragment. InSymposium on Principles of Database Systems (PODS),
Madison, Wisconsinpages 6576, June 2002.

G. Gottlob, C. Koch, and R. Pichler. Efficient Algoritisnfior Processing
XPath Queries. IrProc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 95-106, 2002.

G. Gottlob, C. Koch, and R. Pichler. XPath Query Evalatimproving
Time and Space Efficiency. IfProc. of the Int. Conf. on Data
Engineering (ICDE) pages 379-390, 2003.

W. Kim. On optimizing an sql-like nested queryODS 7(3):443—-469,
1982.

L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. J. ZhaoT&3ting
Satisfiability of Tree Pattern Queries. Rroc. of the Int. Conf. on Very
Large Data Bases (VLDBpages 120-131, 2004.

A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Amsimg Queries
Using Views. InPODS, San Jose, CAages 95-104, June 1995.

I. Manolescu, D. Florescu, and D. Kossmann. AnsweriddDQueries

on Heterogeneous Data SourcesPhoc. of the Int. Conf. on Very Large
Data Bases (VLDB)pages 241-250, 2001.

N. May, S. Helmer, and G. Moerkotte. Nested queries amantifiers

in an ordered context. IRroc. of the Int. Conf. on Data Engineering
(ICDE), pages 239-250, 2004.

S. Paparizos, S. Al-Khalifa, H. Jagadish, L. Lakshnmana. Nierman,

D. Srivastava, and Y. Wu. Grouping in XML. |IEDBT Workshops
pages 128-147, 2002.

C. Sartiani and A. Albano. Yet Another Query Algebra BaviL Data.

In Proc. of Int. Database Engineering and Applications Syrmyos
(IDEAS) pages 106-115, 2002.

A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, |. Marsuie, and

R. Busse. XMark: A Benchmark for XML Data Management.Aroc.

of the Int. Conf. on Very Large Data Bases (VLDBages 974-985,
2002.

P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complexyqdecorre-
lation. In Proc. of the Int. Conf. on Data Engineering (ICDE)ages
450-458, 1996.

W3C. XML Query Use Cases, W3C Working Draft 02, May, 2003
http://www.w3.0rg/TR/xquery-use-cases.

W3C. XML Path Language (XPath)Version 2.0. W3C WorkiDgaft.
http://mwww.w3.0rg/TR/xpath20, November 2003.
Wa3C. XQuery 1.0: An XML
http://www.w3.0rg/TR/xquery/, May 2003.

S. Wang, X. Zhang, E. A. Rundensteiner, and M. Mani.
XQuery Decorrelation with Order Sensitive Operations.
report, Worcester Polytechnic Institute, 2005. to appear.
X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B. Murph®, Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner. RainbowulfiA
XQuery Optimization Using Materialized XML Views. 1SIGMOD
Demq page 671, 2003.

X. Zhang, M. Mulchandani, S. Christ, B. Murphy, and E. Runden-
steiner. Rainbow: Mapping-driven xquery processing sgstén Proc.
of the ACM SIGMOD Conf. on Management of Datage 614, 2002.
X. Zhang and E. A. Rundensteiner. XAT: XML Algebra foetRRainbow
System. Technical Report WPI-CS-TR-02-24, Worcester tBohnic
Institute, July 2002.

Query Language.

Algéc
Hrecal

