
Collaborative Filtering with Binary,
Positive-only Data

Proefschrift

voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

aan de Universiteit Antwerpen
te verdedigen door

Koen VERSTREPEN

Promotor: prof. dr. Bart Goethals Antwerpen, 2015



Collaborative Filtering with Binary, Positive-only Data
Nederlandse titel: Collaborative Filtering met Binaire, Positieve Data

Copyright © 2015 by Koen Verstrepen



Acknowledgements

Arriving at this point, defending my doctoral thesis, was not obvious. Not for myself,
but even more so for the other people involved.

First of all Kim, my wife. She must have thought that I lost my mind, giving up
my old career to start a PhD in computer science. Nevertheless, she trusted me and
supported me fully. Furthermore, she did not complain once about my multiple
trips to conferences, which always implied that she had to take care of our son on
her own for a week. I am infinitely grateful to her.

Also Bart, my advisor, took a leap of faith when he hired me. I was not one
of his summa cum laude master students destined to become an academic star.
Instead, I was an unknown engineer that had left university already four years before.
Fortunately, I somehow managed to convince him we would arrive at this point
rather soon than late. It was no obvious decision for him, and I am grateful for the
opportunity he gave me.

Starting a PhD was one of the best decisions in my life. I enjoyed every minute
of it. Not the least because of the wonderful colleagues I had throughout the years.
Thank you all. Special mention goes to Boris, who was the perfect office-mate:
almost invisible when I wanted to focus, available when I needed him.

I would also like to thank my parents for their support and encouragement. It
helps a lot to known they have my back, whatever happens.

Also a word of thanks to the members of my doctoral jury: Harald Steck, Ar-
jen P. de Vries, Luc Martens, Floris Geerts, Kris Laukens and Chris Blondia. Their
comments significantly improved this thesis.

Last but not least, thank you Jules. Because of you, I am able to put things in
perspective.

Thanks!

Koen Verstrepen
Antwerpen, 2015

i





Contents

Acknowledgements i

Contents iii

Abbreviations vii

1 Introduction 1
1.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Relation to Other Domains . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Survey of Collaborative Filtering Methods for Binary, Positive-only Data 7
2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Factorization Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Basic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Explicitly Biased Models . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Basic Neighborhood Models . . . . . . . . . . . . . . . . . . . 12
2.2.4 Factored Similarity Neighborhood Models . . . . . . . . . . . 15
2.2.5 Higher Order Neighborhood Models . . . . . . . . . . . . . . 16
2.2.6 Multi-profile Models . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Deviation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Probabilistic Scores-based . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Basic Squared Error-based . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Weighted Squared Error-based . . . . . . . . . . . . . . . . . . 21
2.3.4 Maximum Margin-based . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Overall Ranking Error-based . . . . . . . . . . . . . . . . . . . 23
2.3.6 Top of Ranking Error-based . . . . . . . . . . . . . . . . . . . . 25
2.3.7 k-Order Statistic-based . . . . . . . . . . . . . . . . . . . . . . 26
2.3.8 Rank Link Function-based . . . . . . . . . . . . . . . . . . . . 27
2.3.9 Posterior KL-divergence-based . . . . . . . . . . . . . . . . . . 28
2.3.10 Convex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.11 Analytically Solvable . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Minimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Non-convex Minimization . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Convex Minimization . . . . . . . . . . . . . . . . . . . . . . . 37

iii



iv CONTENTS

2.5 Usability Of Rating Based Methods . . . . . . . . . . . . . . . . . . . . 37
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Unifying Nearest Neighbors Collaborative Filtering 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Unifying Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Item-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 User-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 KUNN Unified Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . 46
3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 User Selected Setup . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Random Selected Setup . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Top-N Recommendation for Shared Accounts 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 The Reference Recommender System . . . . . . . . . . . . . . . . . . 58
4.4 Shared Account Problems of the Reference Recommender System . 59
4.5 Solving the Generality Problem . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Efficient Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Solving the Dominance Problem . . . . . . . . . . . . . . . . . . . . . 63
4.8 Solving the Presentation Problem . . . . . . . . . . . . . . . . . . . . . 64
4.9 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.9.2 Competing Algorithms . . . . . . . . . . . . . . . . . . . . . . 65
4.9.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9.4 Limited Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9.5 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Efficiently Computing the Exact k-NN Graph for High Dimensional Sparse
Data 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Real World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Naïve Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Basic Inverted Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 DynamicIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 PrunedIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7.1 GrowIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS v

5.7.2 ComputeSimilarities . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Runtime Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusions 97
6.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Nederlandse Samenvatting 101

Bibliography 105





Abbreviations

ALS alternating least squares

AMAN all missing are negative

AMAU all missing are unknown

AUC area under the receiver operating characteristic curve

DAMIB disambiguating item-based

DCG discounted cumulative gain

EM expectation maximization

GD gradient descent

HR hit rate

IB item based (nearest neighbors)

LDA latent Dirichlet allocation

LIB length-adjusted item-based

LSA latent semantic analysis

KNN k-nearest neighbors

KUNN KUNN unified nearest neighbors

MAP mean average precision

MAR missing at random

ML maximum likelihood

MNAR missing not at random

MRR mean reciprocial rank

nDCG normalized discounted cumulative gain

vii



viii ABBREVIATIONS

pLSA probabilistic latent semantic analysis

ROC receiver operating characteristic

SGD stochastic gradient descent

SVD singular value decomposition

UB user based (nearest neighbors)

VI variational inference



CHAPTER 1
Introduction

Increasingly, people are overwhelmed by an abundance of choice. Via the World
Wide Web, everybody has access to a wide variety of news, opinions, (encyclope-
dic) information, social contacts, books, music, videos, pictures, products, holiday
accommodations, jobs, houses, and many other items; from all over the world.
However, from the perspective of a particular person, the vast majority of items is
irrelevant; and the few relevant items are difficult to find because they are buried
under a large pile or irrelevant ones. There exist, for example, lots of books that I
would enjoy reading, if only I could identify them. Moreover, not only do people fail
to find relevant existing items, niche items fail to be created because it is anticipated
that the target audience will not be able to find them under the pile of irrelevant
items. Certain books, for example, are never written because writers anticipate they
will not be able to reach a sufficiently large portion of their target audience, although
the audience exists. Recommender systems contribute to overcome these difficulties
by connecting individuals with items relevant to them. A good book recommender
system, for example, would typically recommend me 3 books that I would enjoy read-
ing, that I did not know yet, that are sufficiently different from each other, and that
are suitable to read during my holiday next week. Studying recommender systems
specifically, and the connection between individuals and relevant items in general,
is the subject of recommendation research. But the relevance of recommendation
research goes beyond connecting users with items. Recommender systems can, for
example, also connect genes with diseases, biological targets with drug compounds,
words with documents, tags with photos, etc.

1



2 CHAPTER 1. INTRODUCTION

1.1 Collaborative Filtering

Collaborative filtering is a principal problem in recommendation research. In the
most abstract sense, collaborative filtering is the problem of weighting missing edges
in a bipartite graph.

The concrete version of this problem that got most attention until recently is rat-
ing prediction. In rating prediction, one set of nodes in the bipartite graph represent
users, the other set of nodes represent items, an edge with weight r between user
u and item i expresses that u has given i the rating r , and the task is to predict the
missing ratings. Recently, the attention for rating prediction diminished because
of multiple reasons. First, collecting rating data is relatively expensive in the sense
that it requires a non negligible effort from the users. Second, user ratings do not
correlate as well with user behavior as one would expect. Users tend to give high
ratings to items they think they should consume, for example a famous book by
Dostoyevsky. However, they rather read Superman comic books, which they rated
much lower. Finally, in many applications, predicting ratings is not the final goal,
and the predicted ratings are only used to find the most relevant items for every
user. Consequently, high ratings need to be accurate whereas the exact value of low
ratings is irrelevant. However, in rating prediction high and low ratings are equally
important.

Today, attention is increasingly shifting towards collaborative filtering with bi-
nary, positive-only data. In this version, edges are unweighted, an edge between
user u and item i expresses that user u has given positive feedback about item i , and
the task is to attach to every missing edge between a user u and an item i a score
that indicates the suitability of recommending i to u. Binary, positive-only data is
typically associated with implicit feedback such as items bought, videos watched,
songs listened to, books checked out from a library, adds clicked on, etc. However, it
can also be the result of explicit feedback, such as likes on social networking sites.
Collaborative filtering with binary, positive-only data is the subject of this thesis. To
enhance the readability, we sometimes omit the specification ‘binary, positive-only’
and use the abbreviated term ‘collaborative filtering’.

Besides the bipartite graph, five types of extra information can be available. First,
there can be item content or item metadata. In the case of books, for example, the
content is the full text of the book and the metadata can include the writer, the
publisher, the year it was published etc. Methods that exclusively use this kind of
information are typically classified as content based. Methods that combine this kind
of information with a collaborative filtering method are typically classified as hybrid.
Second, there can be user metadata such as gender, age, location, etc. Third, users
can be connected with each other in an extra, unipartite graph. A typical example
is a social network between the users. An analogous graph can exist for the items.
Finally, there can be contextual information such as location, date, time, intent,
company, device, etc. Exploiting information besides the bipartite graph, is out of
the scope of this thesis.
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1.2 Relation to Other Domains

To emphasize the unique aspects of collaborative filtering, we highlight the com-
monalities and differences with two related data science problems: classification
and association rule mining.

First, collaborative filtering is equivalent to jointly solving many one-class classi-
fication problems, in which every one-class classification problem corresponds to
one of the items. In the classification problem that corresponds to item i , i serves as
the class, all other items serve as the features, the users that have i as a known pref-
erence serve as labeled examples and the other users serve as unlabeled examples.
Amazon.com, for example, has more than 200 million items in its catalog, hence
solving the collaborative filtering problem for Amazon.com is equivalent to jointly
solving more than 200 million one-class classification problems, which obviously
requires a distinct approach. However, collaborative filtering is more than efficiently
solving many one-class classification problems. Because they are tightly linked,
jointly solving all classification problems allows for sharing information between
them. The individual classification problems share most of their features; and while
i serves as the class in one of the classification problems, it serves as a feature in all
other classification problems.

Second, association rule mining also assumes bipartite, unweighted data and
can therefore be applied to datasets used for collaborative filtering. Furthermore,
recommending item i to user u can be considered as the application of the asso-
ciation rule I (u) → i , with I (u) the itemset containing the known preferences of u.
However, the goals of association rule mining and collaborative filtering are different.
If a rule I (u) → i is crucial for recommending i to u, but irrelevant on the rest of the
data, giving the rule a high score is desirable for collaborative filtering, but typically
not for association rule mining.

1.3 Preliminaries

We introduced collaborative filtering as the problem of weighting missing edges
in a bipartite graph. Typically, however, this bipartite graph is represented by its
adjacency matrix, which is called the preference matrix.

Let U be a set of users and I a set of items. We are given a preference matrix with
training data R ∈ {0,1}|U |×|I|. Rui = 1 indicates that there is a known preference of
user u ∈U for item i ∈ I . Rui = 0 indicates that there is no such information. Notice
that the absence of information means that either there exists no preference or there
exists a preference but it is not known.

Collaborative filtering methods compute for every user-item-pair (u, i ) a rec-
ommendation score s(u, i ) that indicates the suitability of recommending i to u.
Typically, the user-item-pairs are (partially) sorted by their recommendation scores.
We define the matrix S ∈R|U |×|I| as Sui = s(u, i ).

Furthermore, c(x) gives the count of x, meaning

c(x) =
{∑

i∈I Rxi if x ∈U∑
u∈U Rux if x ∈ I .
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Figure 1.1: Typical sparsity of training data matrix R for binary, positive-only collab-
orative filtering.

Although we conveniently call the elements of U users and the elements of
I items, these sets can contain any type of object. In the case of online social
networks, for example, both sets contain the people that participate in the social
network, i.e. U = I, and Rui = 1 if there exists a friendship link between person u
and person i . In image tagging/annotation problems, U contains images, I contains
words, and Rui = 1 if image u was tagged with word i . In chemogenomics, an early
stage in the drug discovery process, U contains active drug compounds, I contains
biological targets, and Rui = 1 if there is a strong interaction between compound u
and biological target i .

Typical datasets for collaborative filtering are extremely sparse, which makes it a
challenging problem. The sparsity S , computed as

S = 1−
∑

(u,i )∈U×I Rui

|U | · |I| , (1.1)

typically ranges from 0.98 to 0.999 and is visualized in Figure 1.1. This means that a
score must be computed for approximately 99% of the (u, i )-pairs based on only 1%
of the (u, i )-pairs. This is undeniably a challenging task.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• In Chapter 2, we survey the state of the art concerning collaborative filtering
with binary, positive-only data. The backbone of our survey is an innovative,
unified matrix factorization perspective on collaborative filtering methods,
also those that are typically not associated with matrix factorization mod-
els, such as nearest neighbors methods and association rule mining-based
methods. From this perspective, a collaborative filtering algorithm consists
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of three building blocks: a matrix factorization model, a deviation function
and a numerical minimization algorithm. By comparing methods along these
three dimensions, we were able to highlight surprising commonalities and key
differences.

• In Chapter 3, we introduce a reformulation that unifies user- and item-based
nearest neighbors methods. We use this reformulation to propose a novel
method that incorporates the best of both worlds, and outperforms state-of-
the-art methods. Additionally, we propose a method for naturally explaining
the recommendations made by our algorithm and show that this method is
also applicable to existing user-based nearest neighbors methods, which were
believed to have no natural explanation.

• In Chapter 4, we consider the setting in which multiple users share a single
account. A typical example is a single shopping account for the whole family.
Traditional recommender systems fail in this situation. If contextual informa-
tion is available, context aware recommender systems are the state-of-the-art
solution. Yet, often no contextual information is available. Therefore, we
introduce the challenge of recommending to shared accounts in the absence
of contextual information. We propose a solution to this challenge for all cases
in which the reference recommender system is an item-based collaborative
filtering recommender system. We experimentally show the advantages of our
proposed solution for tackling the problems that arise from the existence of
shared accounts on multiple datasets.

• In Chapter 5, we consider the efficient computation of the neighborhoods
for neighborhood-based collaborative filtering methods. More generally, we
are given a large collection of sparse vector data in a high dimensional space;
and we investigate the problem of efficiently computing the k most similar
vectors to every vector. Two common names for this task are computing the
k-nearest neighbors graph and performing a k-nearest neighbors self-join.
Currently, exact, efficient algorithms exist for low dimensional data. For high
dimensional data, on the other hand, only approximate, efficient algorithms
have been proposed. However, the existing approaches do not discriminate
between dense and sparse data. By focusing on sparse data, we are able to
propose two inverted index-based algorithms that exploit the sparseness in
the data to more efficiently compute the exact k-nearest neighbors graph
for high dimensional data. We first propose a simple algorithm based on
dynamic indexing. Afterwards, we propose a second algorithm that extends
the first one by introducing a virtual threshold that enables the exploitation of
various upper bounds for pruning candidate neighbors. We experimentally
show that our approaches result into significant speedups over state-of-the-art
approaches.

• In Chapter 6, we summarize the main contributions of this thesis and give an
outlook on future work.





CHAPTER 2
A Survey of Collaborative

Filtering Methods for Binary,
Positive-only Data

Existing surveys on collaborative filtering assume the availability of ex-
plicit ratings of users for items. However, in many cases these ratings are
not available and only binary, positive-only data is available. Binary,
positive-only data is typically associated with implicit feedback such as
items bought, videos watched, ads clicked on, etc. However, it can also
be the results of explicit feedback such as likes on social networking sites.
Because binary, positive-only data contains no negative information, it
needs to be treated differently than rating data. As a result of the grow-
ing relevance of this problem setting, the number of publications in this
field increases rapidly. In this chapter1, we provide an overview of the
existing work from an innovative perspective that allows us to emphasize
surprising commonalities and key differences.

1This chapter is based on work under submission as “A Survey of Collaborative Filtering Methods for
Binary, Positive-only Data” by Koen Verstrepen, Kanishka Bhaduri and Bart Goethals [101].

7



8 CHAPTER 2. SURVEY

2.1 Framework

In the most general sense, every method for collaborative filtering is defined as a
function F that computes the recommendation scores S based on the data R:

S =F (R) .

Since different methods F originate from different intuitions about the problem,
they are typically explained from very different perspectives. In the literature on rec-
ommender systems in general and collaborative filtering specifically, two dominant
perspectives have emerged: the model based perspective and the memory-based
perspective. Unfortunately, these two are often described as two fundamentally
separate classes of methods, instead of merely two perspectives on the same class
of methods [77, 41]. As a result, the comparison between methods often remains
superficial.

We, however, will explain many different collaborative filtering methods F from
one and the same perspective. As such we facilitate the comparison and classifi-
cation of these methods. Our perspective is a matrix factorization framework in
which every method F consists of three fundamental building blocks: a factoriza-
tion model of the recommendation scores S, a deviation function that measures the
deviation between the data R and the recommendation scores S, and a minimiza-
tion procedure that tries to find the model parameters that minimize the deviation
function.

First, the factorization model computes the matrix of recommendation scores
S as a link function l of a sum of T terms in which a term t is the product of Ft factor
matrices:

S = l

(
T∑

t=1

Ft∏
f =1

S(t , f )

)
. (2.1)

For many methods l is the identity function, T = 1 and F1 = 2. In this case, the
factorization is given by:

S = S(1,1)S(1,2). (2.2)

Because of their dimensions, S(1,1) ∈ R|U |×D and S(1,2) ∈ RD×|I| are often called the
user-factor matrix and item-factor matrix respectively. Figure 2.1 visualizes Equation
2.2. More complex models are often more realistic, but generally contain more
parameters which increases the risk of overfitting.

Second, the number of terms T , the number of factor matrices Ft and the di-
mensions of the factor matrices are an integral part of the model, independent of
the data R2. Every entry in the factor matrices however, is a parameter that needs
to be computed based on the data R. We collectively denote these parameters as
θ. Whenever we want to emphasize that the matrix of recommendation scores S is
dependent on these parameters, we will write it as S(θ). The model in Figure 2.1,
for example, contains (|U |+ |I|) ·D parameters. Computing all the parameters in a
factorization model is done by minimizing the deviation between the data R and
the parameters θ. This deviation is measured by the deviation function D (θ,R).

2High level statistics of the data might be taken into consideration to choose the model. There is
however no clear, direct dependence on the data.



2.2. FACTORIZATION MODELS 9

D"

D"

="S" S(1,1)"

S(1,2)"
u" u"

i"i"

A Survey of Collaborative Filtering Algorithms for Binary, Positive-only Data 1:23

Also the maximum margin based deviation function in Equation ?? cannot be solved
with ALS because it contains the hinge loss. Rennie and Srebro propose a conjugate
gradients method for minimizing this function [Rennie and Srebro 2005]. However,
this method suffers from similar problems as SGD, related to the high number of
terms in the loss function. Therefore, Pan and Scholz [Pan and Scholz 2009] propose a
bagging approach. The essence of their bagging approach is that they do not explicitly
weight every user-item pair for which Rui = 0, but sample from all these pairs instead.
They create multiple samples, and compute multiple different pairs (S(1,1),S(1,2)) cor-
responding to their samples. These computations are also performed with the conju-
gate gradients method. They are, however, much less intensive since they only con-
sider a small sample of the many user-item pairs for which Rui = 0. The different
corresponding factor matrices are finally merged by simply taking their average.

For solving Equation ??, Kabbur et al. propose to subsequently apply SGD to a num-
ber of reduced datasets that each contain all known preferences and a different random
sample of the missing preferences, although an ALS-like solution seems to be in reach
.

When the deviation function is reconstruction based and S(1) = R, i.e. an item-based
neighborhood model is used, the user factors are fixed by definition, and the problem
resembles a single ALS step. However, when constraints such as non-negativity are
imposed, things get more complicated [Ning and Karypis 2011]. Therefore, Ning and
Karypis adopt cyclic coordinate descent and soft thresholding [Friedman et al. 2010].

When a deviation functions contains a triple summations, it contains even more
terms, and the minimization with SGD becomes even more expensive. Moreover, most
of the terms only have a small influence on the parameters that need to be learned and
are therefore a waste to consider. However, in some cases no other solution has been
proposed yet (Eq.22,26). To mitigate this problem, Rendle and Freudenthaler propose
to sample the terms in deviation function not uniformly but proportional to their im-
pact on the parameters [Rendle and Freudenthaler 2014]. Weston et al. mitigate this
problem by, for every known preference i, sampling non preferred items j until they
encounter one for which Suj + 1 > Sui, i.e. it violates the hinge-loss approximation
of the ground truth ranking. Consequently, their updates will be significant [Weston
et al. 2013b].

Also the deviation function in Equation 24 contains a triple summation. However,
Takács and Tikk [Takács and Tikk 2012] are able to propose an ALS algorithm and
therefore do not suffer from the triple summation like an SGD-based algorithm would.

Finally, In line with his maximum likelihood approach, Hofmann proposes to min-
imize the deviation function in Equation ?? by means of a regularized expectation
maximization (EM) algorithm [Hofmann 2004].

6.2. Convex Minimization
Aiolli [Aiolli 2014] proposed the convex deviation function in Equation 28 and indicates
that it can be solved with any algorithm for convex optimization.

Also the analytically solvable deviation functions are convex. Moreover, minimiz-
ing them is equivalent to computing all the similarities involved in the model. Most
works assume a brute force computation of the similarities. However, Verstrepen and
Goethals [Verstrepen and Goethals 2016], recently proposed two methods that are eas-
ily an order of magnitude faster than the brute force computation.

|U|
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Figure 2.1: Matrix Factorization with 2 factor matrices (Eq. 2.2).

Formally we compute the optimal values θ∗ of the parameters θ as

θ∗ = argmin
θ

D (θ,R) .

Many deviation functions exist, and every deviation function mathematically ex-
presses a different interpretation of the concept deviation.

Third, efficiently computing the parameters that minimize a deviation function
is often non trivial because the majority of deviation functions is non-convex in the
parameters of the factorization model. In that case, minimization algorithms can
only compute parameters that correspond to a local minimum. The initialization of
the parameters in the factorization model and the chosen hyperparameters of the
minimization algorithm determine which local minimum will be found. If the value
of the deviation function in this local minimum is not much higher than that of the
global minimum, it is considered a good minimum. An intuitively appealing devia-
tion function is worthless if there exists no algorithm that can efficiently compute
parameters that correspond to a good local minimum of this deviation function.

Finally, we assume a basic usage scenario in which model parameters are recom-
puted periodically. Typically, a few times every 24 hours. Computing the recommen-
dation scores for a user based on the model, and extracting the items corresponding
to the top-N scores, is assumed to be performed in real time. Specific aspects of
scenarios in which models need to be recomputed in real time, are out of the scope
of this survey.

In this chapter, we first survey existing models in Section 2.2. Next, we com-
pare the existing deviation functions in Section 2.3. Afterwards, we discuss the
minimization algorithms that are used for fitting the model parameters to the devia-
tion functions in Section 2.4. Finally, we discuss the applicability of rating-based
methods in Section 2.5 and conclude in Section 2.6.

2.2 Factorization Models

Equation 2.1 gives a general description of all models for collaborative filtering. In
this section, we discuss how the specific collaborative filtering models map to this
equation.
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2.2.1 Basic Models

A statistically well founded method is probabilistic latent semantic analysis (pLSA)
by Hofmann, which is centered around the so called aspect model [36]. Hofmann
models the probability p(i |u) that a user u will prefer an item i as the mixture of D
probability distributions induced by the hidden variables d :

p(i |u) =
D∑

d=1
p(i ,d |u).

Furthermore, by assuming u and i conditionally independent given d , he obtains:

p(i |u) =
D∑

d=1
p(i |d) ·p(d |u).

This model corresponds to a basic two-factor matrix factorization:

S = S(1,1)S(1,2)

Sui = p(i |u)

S(1,1)
ud = p(d |u)

S(1,2)
di = p(i |d),

(2.3)

in which the |U | ×D parameters in S(1,1)
ud and the D × |I| parameters in S(1,2)

di are
a priori unknown and need to be computed based on the data R. An appealing
property of this model is the probabilistic interpretation of both the parameters
and the recommendation scores. Fully in line with the probabilistic foundation, the
parameters are constrained as:

S(1,1)
ud ≥ 0

S(1,2)
di ≥ 0∑

i∈I
p(i |d) = 1

D∑
d=1

p(d |u) = 1,

(2.4)

expressing that both factor matrices are non-negative and that all row sums of S(1,1)

and S(1,2) must be equal to 1 since they represent probabilities.
Latent dirichlet allocation (LDA) is a more rigorous statistical model, which

puts Dirichlet priors on the parameters p(d |u) [12, 36]. However, for collaborative
filtering these priors are integrated out and the resulting model for computing
recommendation scores is again a simple two factor factorization model.

The aspect model also has a geometric interpretation. In the training data R,
every user is profiled as a binary vector in a |I|-dimensional space in which every
dimension corresponds to an item. Analogously, every item is profiled as a binary
vector in an |U |-dimensional space in which every dimension corresponds to a
user. Now, in the factorized representation, every hidden variable d represents
a dimension of a D-dimensional space. Therefore, the matrix factorization S =
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S(1,1)S(1,2) implies a transformation of both user- and item-vectors to the same D-
dimensional space. A row vector S(1,1)

u· ∈R1×D is the representation of user u in this
D-dimensional space and a column vector S(1,2)

·i ∈RD×1 is the representation of item
i in this D-dimensional space. Figure 2.1 visualizes the user-vector of user u and the
item-vector of item i . Now, as a result of the factorization model, a recommendation
score Sui is computed as the dotproduct of the user-vector of u with the item-vector
of i :

S(1,1)
u· ·S(1,2)

·i =
D∑

d=1
S(1,1)

ud S(1,2)
di

= ||S(1,1)
u· || · ||S(1,2)

·i || ·cos(φui )

= ||S(1,2)
·i || ·cos(φui ),

(2.5)

with φui the angle between both vectors and ||S(1,1)
u· || = 1 a probabilistic constraint

of the model (Eq.2.4). Therefore, an item i will be recommended if its vector norm
||S(1,2)

·i || is large and φui , the angle of its vector with the user vector, is small. From
this geometric interpretation we learn that the recommendation scores computed
with the model in Equation 2.3 contain both a personalized factor cos(φui ) and a
non-personalized, popularity based factor ||S(1,2)

·i ||.
Many other authors adopted this two-factor model, however they abandoned its

probabilistic foundation by removing the constraints on the parameters (Eq.2.4) [38,
64, 65, 85, 114, 75, 83, 93, 29, 21]:

S = S(1,1)S(1,2). (2.6)

Yet another interpretation of this two-factor model is that every hidden variable
d represents a cluster containing both users and items. A large value S(1,1)

ud means
that users u has a large degree of membership in cluster d . Similarly, a large value
S(1,2)

di means that item i has a large degree of membership in clusters d . As such,
pLSA can be interpreted as a soft clustering model. According to the interpretation,
an item i will be recommended to a user u if they have high degrees of membership
in the same clusters.

Although much less common, also hard clustering models for collaborative
filtering exist. Hofmann and Puzicha [37] proposed the model

p(i |u,e(u) = c,d(i ) = d) = p(i )φ(e,d), (2.7)

in which e(u) indicates the cluster user u belongs to and d(i ) indicates the clus-
ter item i belongs to. Furthermore, φ(e,d) is the association value between the
user-cluster e and the item-cluster d . This cluster association factor increases or de-
creases the probability that u likes i relative to the independence model p(i |u) = p(i ).
As opposed to the aspect model, this model assumes E user-clusters only containing
users and D item-clusters only containing items. Furthermore a user or item belongs
to exactly one cluster.
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The factorization model corresponding to this approach is:

S = S(1,1)S(1,2)S(1,3)S(1,4),

Sui = p(i |u),

S(1,1)
ue = I(e(u) = e),

S(1,2)
ed =φ(e,d),

S(1,3)
di = I(d(i ) = d),

S(1,4)
i j = p(i ) · I(i = j ),

in which I(true) = 1, I(false) = 0, and E and D are hyperparameters. The |U | ×E
parameters in S(1,1), E ×D parameters in S(1,2), D ×|I| parameters in S(1,3) and the
|I| parameters S(1,4) need to be computed based on the data. Ungar and Foster [99]
proposed a similar hard clustering method.

2.2.2 Explicitly Biased Models

In the above models, the recommendation score Sui of an item i for a user u is the
product of a personalized factor with an item-bias factor related to item-popularity.
In Equation 2.5 the personalized factor is cos(φui ), and the bias factor is ||S(1,2)

·i ||.
In Equation 2.7 the personalized factor is φ(e,d), and the bias factor is p(i ). Other
authors [47, 68, 42] proposed to model item-, and user-biases, as explicit terms
instead of implicit factors. This results into the following factorization model:

S =σ
(
S(1,1) +S(2,1) +S(3,1)S(3,2))

S(1,1)
ui = bu

S(2,1)
ui = bi ,

(2.8)

with σ the sigmoid link-function, and S(1,1),S(2,1) ∈R|U |×|I| the user- and item-bias
matrices in which all columns of S(1,1) are identical and also all rows of S(2,1) are
identical. The |U | parameters in S(1,1), |I| parameters in S(2,1), |U | ·D parameters
in S(3,1), and |I| ·D parameters in S(3,2) need to be computed based on the data. D
is a hyperparameter of the model. The goal of explicitly modeling the bias terms
is to make the interaction term S(3,1)S(3,2) a pure personalization term. Although
bias terms are commonly used for collaborative filtering with rating data, only a few
works with collaborative filtering with binary, positive-only data use them.

2.2.3 Basic Neighborhood Models

Multiple authors proposed special cases of the basic two-factor factorization in
Equation 2.6.

Item-based

In a first special case, S(1,1) = R [19, 84, 75, 1, 60]. In this case, the factorization model
is given by

S = RS(1,2). (2.9)
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Consequently, a user u is profiled by an |I|-dimensional binary vector Ru· and an
item is profiled by an |U |-dimensional real valued vector S(1,2)

·i . This model is often
interpreted as an item-based neighborhood model because the recommendation
score Sui of item i for user u is computed as

Sui = Ru· ·S(1,2)
·i

= ∑
j∈I

Ru j ·S(1,2)
j i

= ∑
j∈I (u)

S(1,2)
j i ,

with I (u) the known preferences of user u, and a parameter S(1,2)
j i typically inter-

preted as the similarity between items j and i , i.e. S(1,2)
j i = sim( j , i ). Consequently,

S(1,2) is often called the item-similarity matrix. The SLIM method [60] adopts this
model and additionally imposes the constraints

S(1,2)
j i ≥ 0,

S(1,2)
i i = 0.

(2.10)

The non-negativity is imposed to enhance interpretability. The zero-diagonal is
imposed to avoid finding a trivial solution for the parameters in which every item is
maximally similar to itself and has zero similarity with any other item.

This model is rooted in the intuition that good recommendations are similar to
the known preferences of the user. Although they do not present it as such, Gori and
Pucci [31] proposed ItemRank, a method that is based on an interesting extension of
this intuition: good recommendations are similar to other good recommendations,
with a bias towards the known preferences of the user. The factorization model
corresponding to ItemRank is based on PageRank [62] and given by:

S =α ·SS(1,2) + (1−α) ·R. (2.11)

Because of the recursive nature of this model, S needs to be computed iteratively [31,
62].

User-based

Other authors proposed the symmetric counterpart of Equation 2.9 in which S(1,2) =
R [79, 1, 2]. In this case, the factorization model is given by

S = S(1,1)R, (2.12)

which is often interpreted as a user-based neighborhood model because the recom-
mendation score Sui of item i for user u is computed as

Sui = S(1,1)
u· ·R·i

= ∑
v∈U

S(1,1)
uv ·Rvi ,
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in which a parameter S(1,1)
uv is typically interpreted as the similarity between users u

and v , i.e. S(1,1)
uv = sim(u, v). Consequently, S(1,1) is often called the user-similarity

matrix. This model is rooted in the intuition that good recommendations are pre-
ferred by similar users. Furthermore, Aiolli [1, 2] foresees the possibility to rescale the
scores such that popular items get less importance. This changes the factorization
model to

S = S(1,1)RS(1,3)

S(1,3)
j i = I( j = i ) · c(i )−(1−β),

in which S(1,3) is a diagonal rescaling matrix that rescales the item scores according
to the item popularity c(i ), and β ∈ [0,1] a hyperparameter. Additionally, Aiolli [2]
imposes the constraint that S(1,1) needs to be row normalized:

||S(1,1)
u. || = 1.

To the best of our knowledge, there exists no user-based counterpart for the
ItemRank model of Equation 2.11.

Explicitly Biased

Furthermore, it is, obviously, possible to add explicit bias terms to neighborhood
models. Wang et al. [106] proposed an item-based neighborhood model with one
bias term:

S = S(1,1) +RS(2,2),

S(1,1)
ui = bi ,

and an analogous user-based model:

S = S(1,1) +S(2,1)R,

S(1,1)
ui = bi .

Unified

Moreover, Verstrepen and Goethals [102] showed that the item- and user-based
neighborhood models are two incomplete instances of the same general neighbor-
hood model. Consequently they propose KUNN, a complete instance of this general
neighborhood model. The model they propose can be written as a weighted sum of
a user- and an item-based models, in which the weights depend on the user u and
the item i for which a recommendation score is computed:

S = (
S(1,1)R

)
S(1,3) +S(2,1) (RS(2,3))

S(1,3)
i j = I(i = j ) · c(i )−1/2

S(2,1)
uv = I(u = v) · c(u)−1/2.

(2.13)

In Chapter 3, we discuss this work in detail.
Finally, notice that the above matrix factorization based descriptions of nearest

neighbors methods imply that matrix factorization methods and neighborhood
methods are not two separate approaches, but two perspectives on the same ap-
proach.
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2.2.4 Factored Similarity Neighborhood Models

The item-similarity matrix S(1,2) in Equation 2.9 contains |I|2 parameters, which is
in practice often a very large number. Consequently, it can happen that the training
data is not sufficient to accurately compute this many parameters. Furthermore, one
often precomputes the item-similarity matrix S(1,2) and performs the dotproducts
Ru· ·S(1,2)

·i to compute the recommendation scores Sui in real time. In this case, the
dotproduct is between two |I|-dimensional vectors, which is often prohibitive in
real time, high traffic applications. One solution3 is to factorize the similarity matrix,
which leads to the following factorization model:

S = RS(1,2)S(1,2)T
,

in which every row of S(1,2) ∈R|I|×D represents a D-dimensional item-profile vector,
with D a hyperparameter [110, 17]. In this case the item-similarity matrix is equal

to S(1,2)S(1,2)T
, which means that the similarity sim(i , j ) between two items i and

j is defined as the dotproduct of their respective profile vectors S(1,2)
i · ·S(1,2)

j ·
T

. This

model only contains |I| ·D parameters instead of |I|2 which is much less since typi-
cally D ¿|I|. Furthermore, by first precomputing the item vectors S(1,2) and then
precomputing the D-dimensional user-profile vectors given by RS(1,2), the real time
computation of a score Sui encompasses a dotproduct between a D-dimensional
user-profile vector and a D-dimensional item-profile vector. Since D ¿ |I|, this
dotproduct is much less expensive and can be more easily performed in real time.
Furthermore, there is no trivial solution for the parameters of this model, as is the
case for the non factored item-similarity model in Equation 2.9. Consequently, it
is never required to impose the constraints from Equation 2.10. To avoid scaling
problems when fitting parameters, Weston et al. [110] augment this model with a
diagonal normalization factor matrix:

S = S(1,1)RS(1,3)S(1,3)T
(2.14)

S(1,1)
uv = I(u = v) · c(u)−2/2. (2.15)

A limitation of this model is that it implies that the similarity matrix is symmetric.
This might hurt the model’s accuracy in certain applications such as recommending
tags for images. For an image of the Eiffel tower that is already tagged Eiffel tower, for
example, the tag Paris is a reasonable recommendation. However, for an image of the
Louvre already tagged Paris, the tag Eiffel tower is a bad recommendation. Paterek
solved this problem for rating data by representing every item by two separate D-
dimensional vectors [71]. One vector represents the item if it serves as evidence
for computing recommendations, the other vector represents the item if it serves
as a candidate recommendation. In this way, they can model also asymmetric
similarities. This idea is not restricted to rating data, and for binary, positive-only
data, it was adopted by Steck [89]:

S = S(1,1)RS(1,3)S(1,4) (2.16)

S(1,1)
uv = I(u = v) · c(u)−1/2. (2.17)

3Another solution is to enforce sparsity on the similarity matrix by means of the deviation function.
This is discussed in Section 2.3.



16 CHAPTER 2. SURVEY

Also Kabbur et al. adopted this idea. However, similar to Equation 2.8, they also add
bias terms:

S = S(1,1) +S(2,1) +S(3,1)RS(3,3)S(3,4)

S(1,1)
ui = bu

S(2,1)
ui = bi

S(3,1)
uv = I(u = v) · c(u)−β/2,

(2.18)

with S(3,3) ∈R|I|×D the matrix of item profiles when they serve as evidence, S(3,4) ∈
RD×|I| the matrix of item profiles when they serve as candidates , and β ∈ [0,1] and
D hyperparameters.

2.2.5 Higher Order Neighborhood Models

The nearest neighbors methods discussed up till this point only consider pairwise
interactions sim( j , i ) and/or sim(u, v) and aggregate all the relevant ones for comput-
ing recommendations. Several authors [19, 56, 100, 81, 53, 58, 15] have proposed to
incorporate also higher order interactions sim(J , i ) and/or sim(u,V ) with J ⊂ I and
V ⊂U . Also in this case we can distinguish item-based approaches from user-based
approaches.

Item-based

For the item-based approach, most authors [19, 56, 100, 53, 15] propose to replace
the user-item matrix R in the pairwise model of Equation 2.9 by the user-itemset
matrix X:

S = XS(1,2)

Xu J =
∏
j∈J

Ru j , (2.19)

with S(1,2) ∈ RD×|I| the itemset-item similarity matrix and X ∈ {0,1}|U |×D the user-
itemset matrix, in which D ≤ 2|I| is the result of an itemset selection procedure.

The HOSLIM method [15] adopts this model and additionally imposes the con-
straints in Equation 2.10.

The case in which D = 2|I| and S(1,2) is dense, is intractable. Tractable methods
either limit D ¿ 2|I| or impose sparsity on S(1,2) via the deviation function. While we
discuss the latter in Section 2.3.11, there are multiple ways to do the former. Desh-
pande et al. [19] limit the number of itemsets by limiting the size of J . Alternatively,
Christakopoulou and Karypis [15] only consider itemsets J that were preferred by
more than a minimal number of users. van Leeuwen and Puspitaningrum, on the
other hand, limit the number of higher order itemsets by using an itemset selection
algorithm based the minimal description length principle [100]. Finally, Menezes
et al. claim that it is in certain applications possible to compute all higher order
interactions if one computes all higher order interactions on demand instead of in
advance [56]. However, delaying the computation does not reduce its exponential
complexity. Only if a large portion of the users requires recommendations on a very
infrequent basis, computations for these users can be spread over a very long period
of time and their approach might be feasible.
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An alternative model for incorporating higher order interactions between items
consists of finding the best association rule for making recommendations [81, 58].
This corresponds to the matrix factorization model

S = X⊗S(1,2)

Xu J =
∏
j∈J

Ru j ,

with
(A⊗B)x y = max

i=1...m
Axi Bi y ,

in which A ∈Rn×m and B ∈Rm×k .
We did not find a convincing motivation for neither of both aggregation strategies.

Moreover, multiple authors report that their attempt to incorporate higher order
interactions heavily increased computational costs and did not significantly improve
the results [19, 100].

User-based

Incorporating higher order interactions between users can be achieved be replacing
the user-item matrix in Equation 2.12 by the userset-item matrix Y [53, 92]:

S = S(1,1)Y

YV i =
∏

v∈V
Rvi , (2.20)

with Y ∈ {0,1}D×|I| and, S(1,1) ∈ R|U |×D the user-userset similarity matrix, in which
D ≤ 2|U | is the result of a userset selection procedure [53, 92].

2.2.6 Multi-profile Models

When multiple users, e.g. members of the same family, share a single account, or
when a user has multiple distinct tastes, the above matrix factorization models
can be too limited because they aggregate all the distinct tastes of an account into
one vector [104, 109, 45]. Therefore, Weston et al. [109] propose MaxMF, in which
they model every account with multiple vectors instead of just one. Then, for every
candidate recommendation, their model chooses the vector that maximizes the
score of the candidate:

Sui = max
p=1...P

(
S(1,1,p)S(1,2))

ui .

Kabbur and Karypis [45] argue that this approach worsens the performance
for accounts with homogeneous taste or a low number of known preferences and
therefore propose, NLMFi, an adapted version that combines a global account
profile with multiple taste-specific account profiles:

Sui =
(
S(1,1)S(1,2))

ui + max
p=1...P

(
S(2,1,p)S(2,2))

ui .

Alternatively, they also propose NLMFs, a version in which S(2,2) = S(1,2), i.e. the item
profiles are shared between the global and the taste-specific terms:

S = (
S(1,1)S(1,2))

ui + max
p=1...P

(
S(2,1,p)S(1,2))

ui .
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An important downside of the above two models is that P , the number of distinct
account-profiles, is a hyperparameter that is the same for every account and cannot
be too large (typically two or three) to avoid an explosion of the computational cost
and the number of parameters. DAMIB-Cover [104], on the other hand, starts from
the item-based model in Equation 2.9, and efficiently considers P = 2c(u) different
profiles for every account u. Specifically, every profile corresponds to a subset S(p)

of the known preferences of u, I (u). This results in the factorization model

Sui = max
p=1...2c(u)

(
RS(1,2,p)S(1,3))

ui

S(1,2,p)
j k = I( j = k) · |S(p) ∩ { j }|

|S(p)|β ,

with S(1,2,p) a diagonal matrix that selects and rescales the known preferences of u
that correspond to the subset S(p) ⊆ I (u), and β ∈ [0,1] a hyperparameter. In Chapter
4, we discuss this model in detail.

2.3 Deviation Functions

The factorization models described in the previous Section (Sec. 2.2) contain many
parameters, i.e. the entries in the a priori unknown factor matrices, which we collec-
tively denote as θ. These parameters need to be computed based on the training
data R. Computing all the parameters in a factorization model is done by minimizing
the deviation between the training data R and the parameters θ of the factorization
model. This deviation is measured by a deviation function D (θ,R). Many deviation
functions exist, and every deviation function mathematically expresses a different
interpretation of the concept deviation.

The majority of deviation functions is non-convex in the parameters θ. Conse-
quently, minimization algorithms can only compute parameters that correspond to
a local minimum. The initialization of the parameters in the factorization model
and the chosen hyperparameters of the minimization algorithm determine which
local minimum will be found. If the value of the deviation function in this local
minimum is not much higher than that of the global minimum, it is considered a
good minimum.

2.3.1 Probabilistic Scores-based

Hofmann [36] proposes to compute the optimal parameters θ∗ of the model as those
that maximize the loglikelihood of the model, i.e. log p(R|θ), the logprobability of
the known preferences given the model:

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

Rui log p(Rui |θ). (2.21)

Furthermore, he models p(Rui = 1|θ) with Sui , i.e. he interprets the scores S as
probabilities. This gives

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

Rui logSui ,
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which is equivalent to minimizing the deviation function

D (θ,R) =− ∑
u∈U

∑
i∈I

Rui logSui . (2.22)

Recall that the parameters θ are not directly visible in the right hand side of this
equation but that every score Sui is computed based on the factorization model
which contains the parameters θ, i.e. we use the shorthand notation Sui instead of
the full notation Sui (θ).

This deviation function was also adopted by Blei et al. in their approach called
latent dirichlet allocation (LDA) [12].

Furthermore, notice that Hofmann only maximizes the logprobability of the
observed feedback and ignores the missing preferences. This is equivalent to the
assumption that there is no information in the missing preferences, which implicitly
corresponds to the assumption that feedback is missing at random (MAR) [87].
Clearly, this is not a realistic assumption, since negative feedback is missing by
definition, which is obviously non random. Moreover, the number of items in
collaborative filtering problems is typically very large, and only a very small subset
of them will be preferred by a user. Consequently, the probability that a missing
preference is actually not preferred is high. Hence, in reality, the feedback is missing
not at random (MNAR), and a good deviation function needs to account for this [87].

One approach is to assume, for the purposes of defining the deviation function,
that all missing preferences are not preferred. This assumption is called all missing
are negative (AMAN) [65]. Under this assumption, the parameters that maximize the
loglikelihood of the model are computed as

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

log p(Rui |θ).

For binary, positive-only data, one can model p(Rui |θ) as SRui
ui · (1−Sui )(1−Rui ).

In this case, the parameters are computed as

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

(
Rui logSui + (1−Rui ) log(1−Sui )

)
.

While the AMAN assumption is more realistic than the MAR assumption, it adopts
a conceptually flawed missing data model. Specifically, it assumes that all missing
preferences are not preferred, which contradicts the goal of collaborative filtering:
to find the missing preferences that are actually preferred. A better missing data
model still assumes that all missing preferences are not preferred. However, it
attaches a lower confidence to the assumption that a missing preference is not
preferred, and a higher confidence to the assumption that an observed preference is
indeed preferred. One possible way to apply this missing data model was proposed
by Steck [87]. Although his original approach is more general, we give a specific
simplified version that for binary, positive-only data:

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

(
Rui logSui +α · (1−Rui ) log(1−Sui )

)
, (2.23)

in which the hyperparameter α< 1 attaches a lower importance to the contributions
that correspond to Rui = 0. Johnson [42] proposed a very similar computation, but
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does not motivate why he deviates from the theoretically well founded version of
Steck. Furthermore, Steck adds regularization terms to avoid overfitting and finally
propose the deviation function

D (θ,R) =
∑

u∈U

∑
i∈I

(−Rui logSui −α · (1−Rui ) · log(1−Sui )+λ ·α · (||θu ||2F +||θi ||2F )
)

,

with || · ||F the Frobenius norm, λ a regularization hyperparameter, and θu ,θi the
vectors that group the model parameters related to user u and item i respectively.

2.3.2 Basic Squared Error-based

Most deviation functions, however, abandon the interpretation that the scores S
are probabilities. In this case, one can choose to model p(Rui |θ) with a normal
distribution N (Rui |Sui ,σ). By additionally adopting the AMAN assumption, the
optimal parameters are computed as the ones that maximize the loglikelihood
log p(R|θ):

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

logN (Rui |Sui ,σ) ,

which is equivalent to

θ∗ = argmax
θ

∑
u∈U

∑
i∈I

− (Rui −Sui )2

= argmin
θ

∑
u∈U

∑
i∈I

(Rui −Sui )2 .

The Eckart-Young theorem [24] states that the scores matrix S that results from these
parameters θ∗, is the same as that found by singular value decomposition (SVD) with
the same dimensions of the training data matrix R. As such, the theorem relates the
above approach of minimizing the squared error between R and S to latent semantic
analysis (LSA) [18] and the SVD based collaborative filtering methods [17, 80].

Alternatively, it is possible to compute the optimal parameters as those that
maximize the logposterior log p(θ|R), which relates to the loglikelihood log p(R|θ) as

p(θ|R) ∝ p(R|θ) ·p(θ).

When p(θ), the prior distribution of the parameters, is chosen to be a zero-mean,
spherical normal distribution, maximizing the logposterior is equivalent to mini-
mizing the deviation function [57]

D (θ,R) =
∑

u∈U

∑
i∈I

(
(Rui −Sui )2 +λu · ||θu ||2F +λi · ||θi ||2F

)
,

with λu ,λi regularization hyperparameters. Hence, maximizing the logposterior
instead of the loglikelihood is equivalent to adding a regularization term. This
deviation function is adopted by the FISM and NLMF methods [46, 45].

In an alternative interpretation of this deviation function, S is a factorized ap-
proximation of R and the deviation function minimizes the squared error of the
approximation. The regularization with the Frobenius norm is added to avoid over-
fitting. For the SLIM and HOSLIM methods, an alternative regularization term is
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proposed:

D (θ,R) =
∑

u∈U

∑
i∈I

(Rui −Sui )2 +
T∑

t=1

F∑
f =1

λR ||S(t , f )||2F +λ1||S(t , f )||1,

with || · ||1 the l1-norm. Whereas the role of the Frobenius-norm is to avoid over-
fitting, the role of the l1-norm is to introduce sparsity. The combined use of both
norms is called elastic net regularization, which is known to implicitly group cor-
related items [60]. The sparsity induced by the l1-norm regularization lowers the
memory required for storing the model and allows to speed-up the computation
of recommendations by means of the sparse dotproduct. Even more sparsity can
be obtained by fixing a majority of the parameters to 0, based on a simple feature
selection method. Ning and Karypis [60] empirically show that this significantly
reduces runtimes, while only slightly reducing the accuracy.

2.3.3 Weighted Squared Error-based

Also these squared error based deviation functions can be adapted to diverge from
the AMAN assumption to a missing data model that attaches lower confidence to
the missing preferences [38, 65, 87]:

D (θ,R) =
∑

u∈U

∑
i∈I

Wui (Rui −Sui )2 +
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F , (2.24)

in which W ∈R|U |×|I| assigns a weight to every value in R. The higher Wui , the higher
the confidence about Rui . Hu et al. [38] provide two potential definitions of W:

Wui = 1+βRui ,

Wui = 1+α log(1+Rui /ε) ,

with α,β,ε hyperparameters. From the above definitions, it is clear that this method
is not limited to binary data, but works on positive-only data in general. We, however,
only consider its use for binary, positive-only data. Equivalently, Steck [87] proposed:

Wui = Rui + (1−Rui ) ·α,

with α< 1.
Additionally, Steck [88] pointed out that a preference is more likely to show up

in the training data if the item is more popular. To compensate for this bias, Steck
proposes to weight the known preferences non-uniformly:

Wui = Rui · C

c(i )β
+ (1−Rui ) ·α,

with C a constant, R the number of non-zeros in the training data R, and β ∈ [0,1]
a hyperparameter. Analogously, a preference is more likely to be missing in the
training data if the item is less popular. To compensate for this bias, Steck proposes
to weight the missing preferences non-uniformly:

Wui = Rui 1+ (1−Rui ) ·C · c(i )β, (2.25)
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with C a constant. Steck proposed these two weighting strategies as alternatives
to each other. However, we believe that they can be combined since they are the
application of the same idea to the known and missing preferences respectively.

Although they provide less motivation, Pan et al. [65] arrive at similar weighting
schemes. They propose Wui = 1 if Rui = 1 and give three possibilities for the case
when Rui = 0:

Wui = δ, (2.26)

Wui =α · c(u), (2.27)

Wui =α (|U |− c(i )) , (2.28)

with δ ∈ [0,1] a uniform hyperparameter and α a hyperparameter such that Wui ≤ 1
for all pairs (u, i ) for which Rui = 0. In the first case, all missing preferences get the
same weight. In the second case, a missing preference is more negative if the user
already has many preferences. In the third case, a missing preference is less negative
if the item is popular. Interestingly, the third weighting scheme is orthogonal to
the one of Steck in Equation 2.25. Additionally, Pan et al. [65] propose a deviation
function with an alternative regularization:

D (θ,R) =
∑

u∈U

∑
i∈I

Wui
(
(Rui −Sui )2 +λ(||θu ||2F +||θi ||2F

))
. (2.29)

Yao et al. [114] adopt a more complex missing data model that has a hyperparam-
eter p, which indicates the overall likelihood that a missing preference is preferred.
This translates into the deviation function:∑

u∈U

∑
i∈I

Rui Wui (1−Sui )2

+ ∑
u∈U

∑
i∈I

(1−Rui )Wui (p −Sui )2

+
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F

(2.30)

The special case with p = 0 reduces this deviation function to the one in Equation
2.24.

An even more complex missing data model and corresponding deviation func-
tion was proposed by Sindhwani et al. [85]:∑

u∈U

∑
i∈I

Rui Wui (1−Sui )2

+ ∑
u∈U

∑
i∈I

(1−Rui )Wui (Pui −Sui )2

+
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F

−λH
∑

u∈U

∑
i∈I

(1−Rui )H(Pui )

(2.31)

with P and W additional parameters of the model that need to be computed based
on the data R, together with all other parameters. The last term contains the entropy
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function H and serves as a regularizer for P. Furthermore, they define the constraint

1

|U ||I|− |R|
∑

u∈U

∑
i∈I

Pui = p,

which expresses that the average probability that a missing value is actually one
must be equal to the hyperparameter p. To reduce the computational cost, they fix
Pui = 0 for most (u, i )-pairs and randomly choose a few (u, i )-pairs for which Pui is
computed based on the data. It seems that this simplification completely offsets the
modeling flexibility that was obtained by introducing P. Additionally, they simplify
W as the one-dimensional matrix factorization

Wui = Vu Vi .

A conceptual inconsistency of this deviation function is that although the recom-
mendation score is given by Sui , also Pui could be used. Hence, there exist two
parameters for the same concept, which is ambiguous at least.

2.3.4 Maximum Margin-based

A disadvantage of the squared error-based deviation functions is their symmetry. For
example, if Rui = 1 and Sui = 0, (Rui −Sui )2 = 1. This is desirable behavior because
we want to penalize the model for predicting that a preference is not preferred.
However if Sui = 2, we obtain the same penalty: (Rui −Sui )2 = 1. This, on the other
hand, is not desirable because we do not want to penalize the model for predicting
that a preference will definitely be preferred.

A maximum margin-based deviation function does not suffer from this prob-
lem [64]:

D (θ,R) =
∑

u∈U

∑
i∈I

Wui ·h
(
R̃ui ·Sui

)+λ||S||Σ, (2.32)

with ||.||Σ the trace norm, λ a regularization hyperparameter, h
(
R̃ui ·Sui

)
a smooth

hinge loss given by Figure 2.2 [76], W given by one of the Equations 2.26-2.28 and
the matrix R̃ defined as {

R̃ui = 1 if Rui = 1

R̃ui =−1 if Rui = 0.

This deviation function incorporates the confidence about the training data by
means of W and the missing knowledge about the degree of preference by means
of the hinge loss h

(
R̃ui ·Sui

)
. Since the degree of a preference Rui = 1 is considered

unknown, a value Sui > 1 is not penalized if Rui = 1.

2.3.5 Overall Ranking Error-based

The scores S computed by a collaborative filtering method are used to personally
rank all items for every user. Therefore, one can argue that it is more natural to
directly optimize the ranking of the items instead of their individual scores.

Rendle et al. [75], aim to maximize the area under the ROC curve (AUC), which
is given by:

AUC = 1

|U |
∑

u∈U

1

|u| · (|I|− |u|)
∑

Rui=1

∑
Ru j =0

I(Sui > Su j ). (2.33)
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The thresholds θr can be learned from the data. Further-
more, a different set of thresholds can be learned for each
user, allowing users to “use ratings differently” and allevi-
ates the need to normalize the data. The problem can then
be written as:

minimize ∥X∥Σ + C
∑

ij∈S

R−1∑

r=1

h(T r
ij(θir − Xij)) (4)

where the variables optimized over are the matrix X and
the thresholds θ. In other work, we find that such a for-
mulation is highly effective for rating prediction (Rennie &
Srebro, 2005).

Although the problem was formulated here as a single op-
timization problem with a combined objective, ∥X∥Σ +
C · error, it should really be viewed as a dual-objective
problem of balancing between low trace-norm and low er-
ror. Considering the entire set of attainable (∥X∥Σ , error)
pairs, the true object of interest is the exterior “front” of
this set, i.e. the set of matricesX for which it is not possi-
ble to reduce one of the two objectives without increasing
the other. This “front” can be found by varying the value
of C from zero (hard-margin) to infinity (no norm regular-
ization).

All optimization problems discussed in this section can be
written as semi-definite programs (Srebro et al., 2005).

3. Optimization Methods
We describe here a local search heursitic for the problem
(4). Instead of searching over X , we search over pairs of
matrices (U, V ), as well as sets of thresholds θ, and attempt
to minimize the objective:

J(U, V, θ)
.
=

1

2
(∥U∥2

Fro + ∥V ∥2
Fro)

+ C

R−1∑

r=1

∑

ij∈S

h
(
T r

ij(θir − UiV
′
j )

)
. (5)

For any U, V we have ∥UV ∥Σ ≤ 1
2 (∥U∥2

Fro + ∥V ∥2
Fro) and

so J(U, V, θ) upper bounds the minimization objective of
(4), where X = UV ′. Furthermore, for anyX , and in par-
ticular theX minimizing (4), some factorizationX = UV ′

achieves ∥X∥Σ = 1
2 (∥U∥2

Fro + ∥V ∥2
Fro). The minimization

problem (4) is therefore equivalent to:

minimize J(U, V, θ). (6)

The advantage of considering (6) instead of (4) is that
∥X∥Σ is a complicated non-differentiable function for
which it is not easy to find the subdifrential. Finding good
descent directions for (4) is not easy. On the other hand, the
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Figure 1. Shown are the loss function values (left) and gradients
(right) for the Hinge and Smooth Hinge. Note that the gradients
are identical outside the region z ∈ (0, 1).

objective J(U, V, θ) is fairly simple. Ignoring for the mo-
ment the non-differentiability of h(z) = (1 − z)+ at one,
the gradient of J(U, V, θ) is easy to compute. The partial
derivative with respect to each element of U is:

∂J

∂Uia
= Uia − C

R−1∑

r=1

∑

j|ij∈S

Tij(k)h′
(
T r

ij(θir − UiV
′
j )

)
Vja

(7)

The partial derivative with respect to Vja is analogous. The
partial derivative with respect to θik is

∂J

∂θir
= C

∑

j|ij∈S

T r
ijh

′
(
T r

ij(θir − UiV
′
j )

)
. (8)

With the gradient in-hand, we can turn to gradient descent
methods for localy optimizing J(U, V, θ). The disadvan-
tage of considering (6) instead of (4) is that although the
minimization objective in (4) is a convex function of X, θ,
the objective J(U, V, θ) is not a convex function of U, V .
This is potentially bothersome, and might inhibit conver-
gence to the global minimum.

3.1. Smooth Hinge

In the previous discussion, we ignored the non-
differentiability of the Hinge loss function h(z) at z = 1.
In order to give us a smooth optimization surface, we use
an alternative to the Hinge loss, which we refer to as the
Smooth Hinge. Figure 1 shows the Hinge and Smooth
Hinge loss functions. The Smooth Hinge shares many
properties with the Hinge, but is much easier to optimize
directly via gradient descent methods. Like the Hinge, the
Smooth Hinge is not sensitive to outliers, and does not
continuously “reward” the model for increasing the output
value for an example. This contrasts with other smooth loss
functions, such as the truncated quadratic (which is sensi-
tive to outliers) and the Logistic (which “rewards” large
output values). We use the Smooth Hinge and the corre-
sponding objective for our experiments in Section 4.

Figure 2.2: Shown are the loss function values h(z) (left) and the gradients dh(z)/d z
(right) for the Hinge and Smooth Hinge. Note that the gradients are identical outside
the region z ∈ (0,1)) [76].

If the AUC is higher, the pairwise rankings induced by the model S are more in line
with the observed data R. However, because I(Sui > Su j ) is non-differentiable, it is
impossible to actually compute the parameters that (locally) maximize the AUC.
Their solution is a deviation function, called the Bayesian Personalized Ranking(BPR)-
criterium, which is a differentiable approximation of the negative AUC from which
constant factors have been removed and to which a regularization term has been
added:

D (θ,R) =
∑

u∈U

∑
Rui=1

∑
Ru j =0

− logσ(Sui −Su j )+
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F , (2.34)

with σ(·) the sigmoid function and λt f regularization hyperparameters. Since this
approach explicitly accounts for the missing data, it corresponds to the MNAR
assumption.

Pan and Chen claim that it is beneficial to relax the BPR deviation function by
Rendle et al. to account for noise in the data [66, 67]. Specifically, they propose
CoFiSet [66], which allows certain violations Sui < Su j when Rui > Ru j :

D (θ,R) =
∑

u∈U

∑
I⊆I (u)

∑
J⊆I\I (u)

− logσ

(∑
i∈I Sui

|I | −
∑

j∈J Su j

|J |
)
+Γ(θ), (2.35)

with Γ(θ) a regularization term that slightly deviates from the one proposed by
Rendle et al. for no clear reason. Alternatively, they propose GBPR [67], which
relaxes the BPR deviation function in a different way:

D (θ,R) =
∑

u∈U

∑
Rui=1

∑
Ru j =0

− logσ2
(
α ·

∑
g∈Gu,i

Sg i

|Gu,i |
+ (1−α) ·Sui −Su j

)
+Γ(θ), (2.36)

with Gu,i the union of {u} with a random subset of {g ∈ U \ {u}|Rg i = 1}, and α a
hyperparameter.

Furthermore, also Kabbur et al. [46] aim to maximize AUC with their method
FISMauc. However, they propose to use a different differentiable approximation of
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AUC:

D (θ,R) =
∑

u∈U

∑
Rui=1

∑
Ru j =0

(
(Rui −Ru j )− (Sui −Su j )

)2 +
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F . (2.37)

The same model without regularization was proposed by Töscher et al. [96]:

D (θ,R) =
∑

u∈U

∑
Rui=1

∑
Ru j =0

(
(Rui −Ru j )− (Sui −Su j )

)2 . (2.38)

A similar deviation function was proposed by Takács and Tikk [93]:

D (θ,R) =
∑

u∈U

∑
i∈I

Rui
∑
j∈I

w( j )
(
(Sui −Su j )− (Rui −Ru j )

)2 , (2.39)

with w(·) a user-defined item weighting function. The simplest choice is w( j ) = 1
for all j . An alternative proposed by Takács and Tikk is w( j ) = c( j ). Another impor-
tant difference is that this deviation function also minimizes the score-difference
between the known preferences mutually.

Finally, it is remarkable that both Töscher, and Takács and Tikk explicitly do not
add a regularization term, whereas most other authors find that the regularization
term is important for their model’s performance.

2.3.6 Top of Ranking Error-based

Very often, only the N highest ranked items are shown to users. Therefore, Shi et
al. [83] propose to improve the top of the ranking at the cost of worsening the overall
ranking. Specifically, they propose the CLiMF method, which aims to minimize the
mean reciprocal rank (MRR) instead of the AUC. The MRR is defined as

MRR = 1

|U |
∑

u∈U
r>

(
max
Rui=1

Sui | Su·
)−1

,

in which r>(a|b) gives the rank of a among all numbers in b when ordered in de-
scending order. Unfortunately, the non-smoothness of r>() and max makes the
direct optimization of MRR unfeasible. Hence, Shi et al. derive a differentiable
version of MRR. Yet, optimizing it is intractable. Therefore, they propose to optimize
a lower bound instead. After also adding regularization terms, their final deviation
function is given by

D (θ,R) =− ∑
u∈U

∑
i∈I

Rui

(
logσ(Sui )

+ ∑
j∈I

log
(
1−Ru jσ(Su j −Sui )

))

+
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F ,

(2.40)

with λ a regularization constant and σ(·) the sigmoid function. A disadvantage of
this deviation function is that it ignores all missing data, i.e. it corresponds to the
MAR assumption.
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An alternative for MRR is mean average precision (MAP):

MAP = 1

|U |
∑

u∈U

1

c(u)

∑
R)ui=1

1

r>(Sui |Su·)
∑

Ru j =1
I(Su j ≥ Sui ),

which still emphasizes the top of the ranking, but less extremely than MRR. However,
also MAP is non-smooth, preventing its direct optimization. Also for MAP, Shi et al.
derived a differentiable version, called TFMAP [82]:

D (θ,R) =− ∑
u∈U

1

c(u)

∑
R)ui=1

σ (Sui )
∑

Ru j =1
σ

(
Su j −Sui

)+λ ·
T∑

t=1

F∑
f =1

||S(t , f )||2F , (2.41)

with λ a regularization hyperparameter. Besides, the formulation of TFMAP in
Equation 2.41 is a simplified version of the original, concieved for multi-context
data, which is out of the scope of this thesis.

Dhanjal et al. proposed yet another alternative [21]. They start from the defini-
tion of AUC in Equation 2.33, approximate the indicator function I(Sui −Su j ) by the

squared hinge loss
(
max

(
0,1+Su j −Sui

))2 and emphasize the deviation at the top
of the ranking by means of the hyperbolic tangent function tanh(·):

D (θ,R) =
∑

u∈U

∑
Rui=1

tanh

( ∑
Ru j=0

(
max

(
0,1+Su j −Sui

))2

)
. (2.42)

2.3.7 k-Order Statistic-based

On the one hand, the deviation functions in Equations 2.34-2.39 try to minimize the
overall rank of the known preferences. On the other hand, the deviation functions
in Equations 2.40 and 2.42 try to push one or a few known preferences as high as
possible to the top of the item-ranking. Weston et al. [110] propose to minimize a
trade-off between the above two extremes:∑

u∈U

∑
Rui=1

w

(
r>(Sui | {Sui | Rui = 1})

c(u)

) ∑
Ru j =0

I(Su j +1 ≥ Sui )

r>(Su j | {Suk | Ruk = 0})
, (2.43)

with w(·) a function that weights the importance of the known preference as a
function of their predicted rank among all known preferences. This weighting
function is user-defined and determines the trade-off between the two extremes, i.e.
minimizing the mean rank of the known preferences and minimizing the maximal
rank of the known preferences. Because this deviation function is non-differentiable,
Weston et al. propose the differentiable approximation

D (θ,R) =
∑

u∈U

∑
Rui=1

w

(
r>(Sui | {Sui | Rui = 1})

c(u)

) ∑
Ru j =0

max(0,1+Su j −Sui )

N−1 (|I|− c(u))
, (2.44)

in which they replaced the indicator function by the hinge-loss and approximated
the rank with N−1 (|I|− c(u)), in which N the number of items k that were randomly
sampled until Suk +1 > Sui

4. Furthermore, Weston et al. use the simple weighting

4Weston et al. [108] provide a justification for this approximation.
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functionw
(

r>(Sui |{Sui |Rui=1})
|u|

)
= 1 if r>(Sui | S ⊆ {Sui | Rui = 1}, |S| = K ) = k and

w
(

r>(Sui |{Sui |Rui=1})
|u|

)
= 0 otherwise ,

i.e. from the set S that contains K randomly sampled known preferences, ranked by
their predicted score, only the item at rank k is selected to contribute to the training
error. When k is set low, the top of the ranking will be optimized at the cost of a worse
mean rank. When k is set higher, the mean rank will be optimized at the cost of a
worse top of the ranking. The regularization is not done by adding a regularization
term but by forcing the norm of the factor matrices to be below a maximum, which
is a hyperparameter.

Alternatively, Weston et al. also propose a simplified deviation function:

D (θ,R) =
∑

u∈U

∑
Rui=1

w

(
r>(Sui | {Sui | Rui = 1})

c(u)

) ∑
Ru j =0

max(0,1+Su j −Sui ). (2.45)

2.3.8 Rank Link Function-based

The ranking-based deviation functions discussed so far, are all tailor made differ-
entiable approximations with respect to the recommendation scores of a certain
ranking quality measure, like AUC, MRR or the k-th order statistic. Steck [89] pro-
poses a more general approach that is applicable to any ranking quality measure
that is differentiable with respect to the rankings. He demonstrates his method on
two ranking quality measures: AUC and nDCG. For AUCu , the AUC for user u, he
does not use the formulation in Equation 2.33, but uses the equivalent

AUCu = 1

c(u) · (|I|− c(u))

[
(|I|+1)c(u)−

(
c(u)+1

2

)
− ∑

Ru i=1
rui

]
,

with rui the rank of item i in the recommendation list of user u. Second, nDCGu is
defined as

nDCGu = DCG

DCGopt
,

DCG = ∑
Rui=1

1

log(rui +1)
,

with DCGopt the DCG of the optimal ranking. In both cases, Steck proposes to relate
the rank rui with the recommendation score Rui by means of a link function

rui = max
{
1, |I| · (1− cdf (Ŝui )

)}
, (2.46)

with Ŝui = (Sui −µu)/stdu the normalized recommendation score in which µu and
stdu are the mean and standard deviation of the recommendation scores for user u,
and cdf is the cumulative distribution of the normalized scores. However, to know
cdf , he needs to assume a distribution for the normalized recommendation scores.
He motivates that a zero-mean normal distribution of the recommendation scores
is a reasonable assumption. Consequently, cdf (Ŝui ) = probit(Ŝui ). Furthermore,
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he proposes to approximate the probit function with the computationally more
efficient sigmoid function or the even more efficient function

rankSE(Ŝui ) = [1− ([1− Ŝui ]+)2]+,

with [x]+ = max{0, x}. In his pointwise approach, Steck uses Equation 2.46 to com-
pute the ranks based on the recommendation scores. In his listwise approach, on
the other hand, he finds the actual rank of a recommendation score by sorting the
recommendation scores for every user, and uses Equation 2.46 only to compute
the gradient of the rank with respect to the recommendation score during the mini-
mization procedure. After adding regularizaton terms, he proposes the deviation
function

D (θ,R) =
∑

u∈U

( ∑
Rui=1

(
L(Sui )+λ · (||θu ||2F +||θi ||2F

))+ ∑
j∈I

γ · [Su j ]2
+

)
, (2.47)

with θu ,θi the vectors that group all model parameters related to user u and item
i respectively, λ,γ regularization hyperparameters, and L(Sui ) equal to −AUCu

or −nDCGu , which are a function of Sui via rui . The last regularization term is
introduced to enforce an approximately normal distribution on the scores.

2.3.9 Posterior KL-divergence-based

In our framework, the optimal parameters θ∗ are computed as

θ∗ = argmin
θ

D (θ,R) .

However, we can consider this a special case of

θ∗ =ψ

(
argmin

φ
D (

θ(φ),R
))

,

in which ψ is chosen to be the identity function and the parameters θ are identical
to the parameters φ, i.e. θ(φ) =φ. Now, some authors [47, 68, 29] propose to choose
ψ() and φ differently.

Specifically, they model every parameter θ j of the factorization model as a ran-
dom variable with a parameterized posterior probability density function p(θ j |φ j ).
Hence, finding the variables φ corresponds to finding the posterior distributions of
the model parameters θ.

Because it is intractable to find the true posterior distribution p(θ|R) of the
parameters, they settle for a mean-field approximation q(θ|φ), in which all variables
are assumed to be independent.

Then, they define ψ as ψ(φ∗) = Eq(θ|φ∗)[θ], i.e. the point-estimate of the param-
eters θ equals their expected value under the mean-field approximation of their
posterior distributions. Notice that θ∗j = Eq(θ j |φ∗

j )[θ j ] because of the independence

assumption.
If all parameters θ j are assumed to be normally distributed with mean µ j and

variance σ2
j [47, 68], φ j = (µ j ,σ j ) and θ∗j = Eq(θ j |φ∗

j )[θ j ] =µ∗
j . If, on the other hand,

all parameters θ j are assumed to be gamma distributed with shape α j and rate
β j [29], φ j = (α j ,β j ) and θ∗j = Eq(θ j |φ∗

j )[θ j ] =α∗
j /β∗

j .
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Furthermore, prior distributions are defined for all parameters θ. Typically, when
this approach is adopted, the underlying assumptions are represented as a graphical
model [11].

The parameters φ, and therefore the corresponding mean-field approximations
of the posterior distribution of the parameters θ, can be inferred by defining the
deviation function as the KL-divergence of the real (unknown) posterior distribution
of the parameters, p(θ|R), from the modeled posterior distribution of the parameters,
q(θ|φ),:

D (
θ(φ),R

)= DK L
(
q(θ|φ)‖p(θ|R)

)
,

which can be solved despite the fact that p(θ|R) is unknown [44]. This approach
goes by the name variational inference [44].

A nonparametric version of this approach also considers D, the number of
latent dimensions in the simple two factor factorization model of Equation 2.6, as a
parameter that depends on the data R instead of a hyperparameter, as most other
methods do [30].

Notice that certain solutions for latent Dirichlet allocation [12] also use varia-
tional inference techniques. However, in this case, variational inference is a part of
the (variational) expectation-maximization algorithm for computing the parameters
that optimize the negative log-likelihood of the model parameters, which serves as
the deviation function. This is different from the methods discussed in this section,
where the KL-divergence between the real and the approximate posterior is the one
and only deviation function.

2.3.10 Convex

An intuitively appealing but non-convex deviation function is worthless if there
exists no algorithm that can efficiently compute parameters that correspond to a
good local minimum of this deviation function. Convex deviation functions on the
other hand, have only one global minimum that can be computed with one of the
well studied convex optimization algorithms. For this reason, it is worthwhile to
pursue convex deviation functions.

Aiolli [2] proposes a convex deviation function based on the AUC (Eq. 2.33). For
every individual user u ∈U , Aiolli starts from AUCu , the AUC for u:

AUCu = 1

c(u) · (|I|− c(u))

∑
Rui=1

∑
Ru j =0

I(Sui > Su j ).

Next, he proposes a lower bound on AUCu :

AUCu ≥ 1

c(u) · (|I|− c(u))

∑
Rui=1

∑
Ru j =0

Sui −Su j

2
,

and interprets it as a weighted sum of margins
Sui−Su j

2 between any known pref-
erences and any absent feedback, in which every margin gets the same weight

1
c(u)·(|I|−c(u)) . Hence maximizing this lower bound on the AUC corresponds to maxi-
mizing the sum of margins between any known preference and any absent feedback
in which every margin has the same weight. A problem with maximizing this sum is
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that very high margins on pairs that are easily ranked correctly, can hide poor (nega-
tive) margins on pairs that are difficult to rank correctly. Therefore, Aiolli proposes
to replace the uniform weighting scheme with a weighting scheme that emphasizes
the difficult pairs such that the total margin is the worst possible case, i.e. the lowest
possible sum of weighted margins. Specifically, he propose to solve for every user u,
the joint optimization problem

θ∗ = argmax
θ

min
αu∗

∑
Rui=1

∑
Ru j =0

αuiαu j (Sui −Su j ),

where for every user u, it holds that
∑

Rui=1αui = 1 and
∑

Ru j =0αu j = 1. To avoid
overfitting of α, he adds two regularization terms:

θ∗ = argmax
θ

min
αu∗

( ∑
Rui=1

∑
Ru j =0

αuiαu j (Sui −Su j )+λp
∑

Rui=1
α2

ui +λn
∑

Rui=0
α2

ui

)
,

with λp ,λn regularization hyperparameters. The model parameters θ, on the other
hand, are regularized by normalization constraints on the factor matrices. Solving
the above maximization for every user, is equivalent to minimizing the deviation
function

D (θ,R) =
∑

u∈U

(
max
αu∗

( ∑
Rui=1

∑
Ru j =0

αuiαu j (Su j −Sui )−λp
∑

Rui=1
α2

ui −λn
∑

Rui=0
α2

ui

))
.

(2.48)

2.3.11 Analytically Solvable

Some deviation functions are not only convex, but also analytically solvable. This
means that the parameters that minimize these deviation functions can be exactly
computed from a formula and that no numerical optimization algorithm is required.

Traditionally, the methods that adopt these deviation functions have been in-
appropriately called neighborhood or memory-based methods. First, although
these methods adopt neighborhood-based factorization models, there are also
neighborhood-based methods that adopt non-convex deviation functions. Exam-
ples are SLIM [60] and BPR-kNN [75], which were, amongst others, discussed in
Section 2.2. Second, a memory-based implementation of these methods, in which
the necessary parameters of the factorization model are not precomputed, but com-
puted in real time when they are required is conceptually possible, yet practically
intractable in most cases. Instead, a model-based implementation of these methods,
in which the factorization model is precomputed, is the best choice for the majority
of applications.

Basic Neighborhood-based

A first set of analytically solvable deviation functions is tailored to the item-based
neighborhood factorization models of Equation 2.9:

S = RS(1,2).
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As explained in Section 2.2, the factor matrix S(1,2) can be interpreted as an item-
similarity matrix. Consequently, these deviation functions compute every parameter
in S(1,2) as

S(1,2)
j i = sim( j , i ),

with sim( j , i ) the similarity between items j and i according to some analytically
computable similarity function. This is equivalent to

S(1,2)
j i − sim( j , i ) = 0,

which is true for all ( j , i )-pairs if and only if

∑
j∈I

∑
i∈I

(
S(1,2)

j i − sim( j , i )
)2 = 0.

Hence, computing the factor matrix S(1,2)
j i corresponds to minimizing the deviation

function

D (θ,R) =
∑
j∈I

∑
i∈I

(
S(1,2)

j i − sim( j , i )
)2

.

In this case, the deviation function mathematically expresses the interpretation that
sim( j , i ) is a good predictor for preferring i if j is also preferred. The key property
that determines th analytical solvability of this deviation function is the absence of
products of parameters. The non-convex deviation functions in Section 2.4.1, on
the other hand, do contain products of parameters, which are contained in the term
Sui . Consequently, they are harder to solve but allow richer parameter interactions.

A typical choice for sim( j , i ) is the cosine similarity [19]. The cosine similarity
between two items j and i is given by:

cos( j , i ) =
∑

v∈U Rv j Rvi√
c(i ) · c( j )

. (2.49)

Another similarity measure is the conditional probability similarity measure [19],
which is for two items i and j given by:

condProb( j , i ) = ∑
v∈U

Rvi Rv j

c( j )
. (2.50)

Deshpande et al. [19] also proposed an adapted version:

condProb∗( j , i ) = ∑
v∈U

Rvi Rv j

c(i ) · c( j )α · c(v)
, (2.51)

in which α ∈ [0,1] a hyperparameter. They introduced the factor 1/c( j )α to avoid
the recommendation of overly frequent items and the factor 1/c(v) to reduce the
weight of i and j co-occurring in the preferences of v , if v has more preferences.
Other similarity measures were proposed by Aiolli [1]:

sim( j , i ) =
( ∑

v∈U

Rvi Rv j

c( j )α · c(i )(1−α)

)q

,
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with α, q hyperparameters, Gori and Pucci [31]:

sim( j , i ) =
∑

v∈U Rv j Rvi∑
k∈I

∑
v∈U Rv j Rvk

,

and Wang et al. [106]:

sim( j , i ) = log

(
1+α ·

∑
v∈U Rv j Rvi

c( j )c(i )

)
,

with α ∈ R+
0 a hyperparameter. Furthermore, Huang et al. show that sim( j , i ) can

also be chosen from a number of similarity measures that are typically associated
with link prediction [39]. Similarly, Bellogin et al. show that also typical scoring
functions used in information retrieval can be used for sim( j , i ) [8].

It is common practice to introduce sparsity in S(1,2) by defining

sim( j , i ) = sim′( j , i ) · |top-k( j )∩ {i }|, (2.52)

with sim′( j , i ) one of the similarity functions defined by Equations 2.49-2.51, top-k( j )
the set of items l that correspond to the k highest values sim′( j , l ), and k a hyperpa-
rameter.

Motivated by a qualitative examination of their results, Sigurbjörnsson and Van
Zwol [84] proposed additional adaptations:

sim( j , i ) = s( j ) ·d(i ) · r ( j , i ) · sim′( j , i ) · |top-k( j )∩ {i }|,

with

s( j ) = ks

ks +|ks − logc( j )| , (2.53)

d(i ) = kd

kd +|kd − logc(i )| , (2.54)

r ( j , i ) = kr

kr + (r −1)
, (2.55)

in which i is the r -th most similar item to j and ks ,kd and kr are hyperparameters.
Finally, Desphande and Karypis [19] proposes to normalize sim( j , i ) as

sim( j , i ) = sim′′( j , i )∑
l∈I\{ j } sim′′( j , l )

,

with sim′′( j , i ) defined by Equation 2.52. Alternatively, Aiolli [1] proposes the nor-
malization

sim( j , i ) = sim′′( j , i )∑
l∈I\{i } sim′′(l , i )2(1−β)

,

with β a hyperparameter.
A second set of analytically solvable deviation functions is tailored to the user-

based neighborhood factorization model of Equation 2.12:

S = S(1,1)R.
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In this case, the factor matrix S(1,1) can be interpreted as a user-similarity matrix.
Consequently, these deviation functions compute every parameter in S(1,1) as

S(1,1)
uv = sim(u, v),

with sim(u, v) the similarity between users u and v according to some analytically
computable similarity function. In the same way as for the item-based case, com-
puting the factor matrix S(1,1)

uv corresponds to minimizing the deviation function

D (θ,R) =
∑

u∈U

∑
v∈U

(
S(1,1)

uv − sim(u, v)
)2

.

In this case, the deviation function mathematically expresses the interpretation that
users u and v for which sim(u, v) is high, prefer the same items.

Sarwar et al. [79] propose

sim(u, v) = |top-k(u)∩ {v}|,
with top-k(u) the set of users w that have the k highest cosine similarities cos(u, w)
with user u, and k a hyperparameter. In this case, cosine similarity is defined as

cos(u, v) =
∑

j∈I Ru j Rv jp
c(u) · c(v)

. (2.56)

Alternatively, Aiolli [1] proposes

sim(u, v) =
(∑

j∈I

Ru j Rv j

c(u)α · c(v)(1−α)

)q

,

with α, q hyperparameters, and Wang et al. [106] propose

sim(u, v) = log

(
1+α ·

∑
j∈U Ru j Rv j

c(u)c(v)

)
,

with α a hyperparameter.
The deviation function function for the unified neighborhood based factoriza-

tion model in Equation 2.13 is given by

D (θ,R) =
∑

u∈U

∑
v∈U

(
S(1,1)

uv − sim(u, v)
)2 + ∑

j∈I

∑
i∈I

(
S(2,3)

j i − sim( j , i )
)2

.

However, sim( j , i ) and sim(u, v) cannot be chosen arbitrarily. Verstrepen and Goethals [104]
show that they need to satisfy certain constraints in order to render a well founded
unification. Consequently, they propose KUNN, which corresponds to the following
similarity definitions that satisfy the necessary constraints:

sim(u, v) = ∑
j∈I

Ru j Rv j√
c(u) · c(v) · c( j )

sim(i , j ) = ∑
v∈U

Rvi Rv j√
c(i ) · c( j ) · c(v)

.

In Chapter 3, we discuss these similarity definitions in detail.
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Higher Order Neighborhood-based

A fourth set of analytically solvable deviation functions is tailored to the higher order
itemset-based neighborhood factorization model of Equation 2.19:

S = XS(1,2).

In this case, the deviation function is given by

D (θ,R) =
∑
j∈S

∑
i∈I

(
S(1,2)

j i − sim( j , i )
)2

.

with S ⊆ 2I the selected itemsets considered in the factorization model.
Deshpande and Karypis [19] propose to define sim( j , i ) similar as for the pairwise

interactions (Eq. 2.52). Alternatively, others [58, 79] proposed

sim( j , i ) = sim′( j , i ) ·max
(
0,c( j ∪ {i })− f

)
,

with f a hyperparameter.
Lin et al. [53] proposed yet another alternative:

sim( j , i ) = sim′( j , i ) · |top-kc (i )∩ { j }| ·max
(
0,condProb( j , i )− c

)
,

with top-kc (i ) the set of items l that correspond to the k highest values c(i , l ), k
a hyperparameter, condProb the conditional probability similarity according to
Equation 2.50 and c a hyperparameter. Furthermore, they define

sim′( j , i ) =
(∑

v∈U Xvi Xv j
)2

c( j )
. (2.57)

A fifth and final set of analytically solvable deviation functions is tailored to the
higher order userset-based neighborhood factorization model of Equation 2.20:

S = S(1,1)Y.

In this case, the deviation function is given by

D (θ,R) =
∑

v∈S

∑
u∈U

(
S(1,1)

uv − sim(v,u)
)2

.

with S ⊆ 2U the selected usersets considered in the factorization model. Lin et
al. [53] proposed to define

sim′(v,u) =
(∑

j∈I Yu j Yv j
)2

c(v)
. (2.58)

Alternatively, Symeonidis et al. [92] propose

sim(v,u) =
∑

j∈I Yu j Yv j

c(v)
· |v | · |top-k(u)cp ∩ {v}|,

with top-k(u)cp the set of usersets w that correspond to the k highest values
∑

j∈I Yu j Yw j

c(w) .
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2.4 Minimization Algorithms

Efficiently computing the parameters that minimize a deviation function is often
non trivial. Furthermore, there is a big difference between minimizing convex and
non-convex deviation functions.

2.4.1 Non-convex Minimization

The two most popular families of minimization algorithms for non-convex deviation
functions of collaborative filtering algorithms are gradient descent and alternating
least squares. We discuss both in this section. Furthermore, we also briefly discuss a
few other interesting approaches.

Gradient Descent

For deviation functions that assume preferences are missing at random, and conse-
quently consider only the known preferences [83], gradient descent (GD) is generally
the numerical optimization algorithm of choice. In GD, the parameters θ are ran-
domly initialized. Then, they are iteratively updated in the direction that reduces
D (θ,R):

θk+1 = θk −η∇D (θ,R) ,

with η a hyperparameter called the learning rate. The update step is larger if the
absolute value of the gradient ∇D (θ,R) is larger. A version of GD that converges
faster is Stochastic Gradient Descent (SGD). SGD uses the fact that ∇D (θ,R) =∑T

t=1∇Dt (S,R), with T the number of terms in D (S,R). Now, instead of computing
∇D (θ,R) in every iteration, only one term t is randomly sampled (with replacement)
and the parameters θ are updated as

θk+1 = θk −η∇Dt (S,R) .

Typically, a convergence criterium of choice is only reached after every term t is
sampled multiple times on average.

However, when the deviation function assumes the missing feedback is miss-
ing not at random, the summation over the known preferences,

∑
u∈U

∑
i∈I Rui , is

replaced by a summation over all user item pairs,
∑

u∈U
∑

i∈I , and SGD needs to visit
approximately 1000 times more terms. This makes the algorithm less attractive for
deviation functions that assume the missing feedback is missing not at random.

To mitigate the large number of terms in the gradient, several authors propose
to sample the terms in the gradient not uniformly but proportional to their impact
on the parameters [119, 74, 120]. These approaches have not only been proven to
speedup convergence, but also to improve the quality of the resulting parameters.
Weston et al., on the other hand, sample for every known preference i , a number of
non preferred items j until they encounter one for which Su j +1 > Sui , i.e. it violates
the hinge-loss approximation of the ground truth ranking. In this way, they ensure
that every update significantly changes the parameters θ [110].

Alternating Least Squares

If the deviation function allows it, alternating least squares (ALS) becomes an in-
teresting alternative to SGD when preferences are assumed to be missing not at
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random [49, 38]. In this respect, the deviation functions of Equations 2.24, 2.29,
2.30, and 2.47 are, amongst others, appealing because they can be minimized with a
variant of the alternating least squares (ALS) method. Take for example the deviation
function from Equation 2.24:

D (θ,R) =
∑

u∈U

∑
i∈I

Wui (Rui −Sui )2 +
T∑

t=1

F∑
f =1

λt f ||S(t , f )||2F ,

combined with the basic two-factor factorization model from Equation 2.6:

S = S(1,1)S(1,2).

As most deviation functions, this deviation function is non-convex in the parameters
θ and has therefore multiple local optima. However, if one temporarily fixes the
parameters in S(1,1), it becomes convex in S(1,2) and we can analytically find updated
values for S(1,2) that minimize this convex function and are therefore guaranteed to
reduce D (θ,R). Subsequently, one can temporarily fix the parameters in S(1,2) and in
the same way compute updated values for S(1,1) that are also guaranteed to reduce
D (θ,R). One can keep alternating between fixing S(1,1) and S(1,2) until a convergence
criterium of choice is met. Hu et al. [38], Pan et al. [65] and Pan and Scholz [64] give
detailed descriptions of different ALS variations. The version by Hu et al. contains
optimizations for the case in which missing preferences are uniformly weighted.
Pan and Scholz [64] describe optimizations that apply to a wider range of weighting
schemes. Finally, Pilaszy et al. propose to further speed-up the computation by only
approximately solving each convex ALS-step [72].

Additionally, ALS has the advantages that it does not require the tuning of a
learning rate, that it can benefit from linear algebra packages such as Intel MKL,
and that it needs relatively few iterations to converge. Furthermore, when the basic
two-factor factorization of Equation 2.6 is used, every row of S(1,1) and every column
of S(1,2) can be updated independent of all other rows or columns respectively,
which makes it fairly easy to massively parallelize the computation of the factor
matrices [121].

Bagging

The maximum margin based deviation function in Equation 2.32 cannot be solved
with ALS because it contains the hinge loss. Rennie and Srebro propose a conjugate
gradients method for minimizing this function [76]. However, this method suffers
from similar problems as SGD, related to the high number of terms in the loss
function. Therefore, Pan and Scholz [64] propose a bagging approach. The essence
of their bagging approach is that they do not explicitly weight every user-item pair for
which Rui = 0, but sample from all these pairs instead. They create multiple samples,
and compute multiple different solutions S̃ corresponding to their samples. These
computations are also performed with the conjugate gradients method. They are,
however, much less intensive since they only consider a small sample of the many
user-item pairs for which Rui = 0. The different solutions S̃ are finally aggregated by
simply taking their average.
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Coordinate Descent

When an item-based neighborhood model is used in combination with a squared
error-based deviation function, the user factors are fixed by definition, and the
problem resembles a single ALS step. However imposing the constraints in Equation
2.10 complicates the minimization [60]. Therefore, Ning and Karypis adopt cyclic
coordinate descent and soft thresholding [25] for SLIM.

2.4.2 Convex Minimization

Aiolli [2] proposed the convex deviation function in Equation 2.48 and indicates that
it can be solved with any algorithm for convex optimization.

Also the analytically solvable deviation functions are convex. Moreover, mini-
mizing them is equivalent to computing all the similarities involved in the model.
Most works assume a brute force computation of the similarities. However, Ver-
strepen and Goethals [103], recently proposed two methods that are easily an order
of magnitude faster than the brute force computation. In Chapter 5, we discuss
these methods in detail.

2.5 Usability Of Rating Based Methods

Interest in collaborative filtering on binary, positive-only data only recently in-
creased. The majority of the existing collaborative filtering research assumes rating
data. In this case, the feedback of user u about item i , i.e. Rui , is an integer between
Bl and Bh , with Bl and Bh the most negative and positive feedback respectively. The
most typical example of rating data was provided in the context of the Netflix Price
with Bl = 1 and Bh = 5.

Technically, our case of binary, positive-only data is just a special case of rating
data with Bl = Bh = 1. However, collaborative filtering methods for rating data are
in general built on the implicit assumption that Bl < Bh , i.e. that both positive and
negative feedback is available. Since this negative feedback is not available in our
problem setting, it is not surprising that, in general, methods for rating data generate
poor or even nonsensical results [38, 65, 87].

k-NN methods for rating data, for example, often use the Pearson correlation
coefficient as a similarity measure. The Pearson correlation coefficient between
users u and v is given by

pcc(u, v) =

∑
Ru j ,Rv j >0

(Ru j −Ru)(Rv j −Rv )√ ∑
Ru j ,Rv j >0

(Ru j −Ru)2
√ ∑

Ru j ,Rv j >0
(Rv j −Rv )2

,

with Ru and Rv the average rating of u and v respectively. In our setting, with
binary, positive-only data however, Ru j and Rv j are by definition always one or

zero. Consequently, Ru and Rv are always one. Therefore, the Pearson correlation
is always zero or undefined (zero divided by zero), making it a useless similarity
measure for binary, positive-only data. Even if we would hack it by omitting the
terms for mean centering, −Ru and −Rv , it is still useless since it would always be
equal to either one or zero.
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Furthermore, when computing the score of user u for item i , user(item)-based
k-NN methods for rating data typically find the k users (items) that are most similar
to u (i ) and that have rated i (have been rated by u) [20, 41]. On binary, positive-only
data, this approach results in the nonsensical result that Sui = 1 for every (u, i )-pair.

Also the matrix factorization methods for rating data are in general not applicable
to binary, positive-only data. Take for example a basic loss function for matrix
factorization on rating data:

min
S(1),S(2)

∑
Rui>0

(
Rui −S(1)

u· S(2)
·i

)2 +λ
(
||S(1)

u· ||2F +||S(2)
·i ||2F

)
,

which for binary, positive-only data simplifies to

min
S(1),S(2)

∑
Rui=1

(
1−S(1)

u· S(2)
·i

)2 +λ
(
||S(1)

u· ||2F +||S(2)
·i ||2F

)
.

The squared error term of this loss function is minimized when the rows and columns
of S(1) and S(2) respectively are all the same unit vector. This is obviously a nonsensi-
cal solution.

The matrix factorization method for rating data that uses singular value decom-
position to factorize R also considers the entries where Rui = 0 and does not suffer
from the above problem [80, 17]. Although this method does not result in nonsen-
sical results, the performance has been shown inferior to methods specialized for
binary, positive-only data [60, 87, 88].

In summary, although we cannot exclude the possibility that there exists a
method for rating data that does perform well on binary, positive-only data, in
general this is clearly not the case.

2.6 Conclusions

We have presented a comprehensive survey of collaborative filtering methods for
binary, positive-only data. The backbone of our survey is an innovative, unified
matrix factorization perspective on collaborative filtering methods, also those that
are typically not associated with matrix factorization models such as nearest neigh-
bors methods and association rule mining-based methods. From this perspective,
a collaborative filtering algorithm consists of three building blocks: a matrix fac-
torization model, a deviation function and a numerical minimization algorithm.
By comparing methods along these three dimensions, we were able to highlight
surprising commonalities and key differences.

An interesting direction for future work, is to survey certain aspects that were not
included in the scope of this survey. Examples are surveying the different strategies
to deal with cold-start problems that are applicable to binary, positive-only data; and
comparing the applicability of models and deviation functions for recomputation of
models in real time upon receiving novel feedback.



CHAPTER 3
Unifying Nearest Neighbors

Collaborative Filtering

An important class of methods for collaborative filtering with binary,
positive-only data are the nearest neighbors methods, typically divided
into user-based and item-based methods. In this chapter1, we introduce
a reformulation that unifies user- and item-based nearest neighbors
methods; and use this reformulation to propose a novel method that
incorporates the best of both worlds and outperforms state-of-the-art
methods. Additionally, we propose a method for naturally explaining
the recommendations made by our method and show that this method is
also applicable to existing user-based nearest neighbors methods, which
were believed to have no natural explanation.

1This chapter is based on work published in RecSys 2014 as “Unifying Nearest Neighbors Collabora-
tive Filtering” by Koen Verstrepen and Bart Goethals [102].

39
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3.1 Introduction

One group of methods for collaborative filtering with binary, positive-only data, are
the nearest neighbors methods with analytically computable similarities (Sec. 2.3.11).
Sarwar et al. [79] proposed the well known user-based method that uses cosine simi-
larity and Deshpande et al. [19] proposed several widely used item-based methods.

This work builds upon the different item-based methods by Deshpande et al. [19]
and the user-based method by Sarwar et al. [79] that uses cosine similarity. We intro-
duce a reformulation of these methods that unifies their existing formulations. From
this reformulation, it becomes clear that the existing user- and item-based methods
unnecessarily discard important parts of the available information. Therefore, we
propose a novel method that combines both user- and item-based information.
Hence, this method is neither user-based nor item-based, but nearest-neighbors-
based. Our experiments show that our method not only outperforms the individual
nearest neighbors methods but also state-of-the-art matrix factorization methods.

Furthermore, it is well accepted that every recommendation should come with a
short explanation to why it is recommended [38, 35]. Good explanations help users
to put the recommendations in the right perspective [95]. Typically, item-based
nearest neighbors methods are considered to be superior for this task [20, 38].

Thanks to our reformulation however, we are able to challenge this belief and
show that also other nearest neighbors methods have a natural explanation.

The main contributions of this work are:

• We propose a reformulation that unifies user-and item-based nearest neigh-
bors methods (Sec. 3.3) [79, 19].

• We propose KUNN, a novel method for collaborative filtering with binary,
positive-only data that is grounded in our unifying reformulation (Sec. 3.4).

• We extensively evaluate our method on real life data and show that it outper-
forms state-of-the-art methods (Sec. 3.5).

• We propose a method that naturally explains the recommendations by our
novel method and user-based methods (Sec. 3.6)

3.2 Preliminaries

We briefly repeat the relevant notations that were introduced in Section 1.3.
Let U be a set of users and I a set of items. We are given a matrix with training

data R ∈ {0,1}|U |×|I|. Rui = 1 indicates that there is a known preference of user u ∈U
for item i ∈ I . Rui = 0 indicates that there is no such information.

Furthermore, c(x) gives the count of x, meaning

c(x) =
{∑

i∈I Rxi if x ∈U∑
u∈U Rux if x ∈ I .

The goal of binary, postive-only collaborative filtering is to rank all user-item-
pairs (u, i ) for which Rui = 0 according to the likelihood of u preferring i . This
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is done by computing for every user-item-pair (u, i ) a score s(u, i ), by which the
user-item-pairs are then ranked.

Finally, we denote the kU (kI ) nearest neighbors of a user u (an item i ) by
KNN(u) (KNN(i )).

3.3 Unifying Nearest Neighbors

In this section we propose a novel formulation of nearest neighbors collaborative
filtering that unifies the known formulations of the user-based method by Sarwar
et al. [79] and the different item-based methods by Deshpande et al. [19]. This
formulation is given by

s(u, i ) = ∑
v∈U

∑
j∈I

(L ·N ·G ·S)
(
(u, i ) ,

(
v, j

))
. (3.1)

The score s(u, i ), that represents the likelihood that a user u prefers an item i , is
computed as a weighted sum over all possible user-item pairs (v, j ). The weight of
every (v, j )-pair with respect to the pair (u, i ) is a multiplication of four functions:
the local function L(

(u, i ) ,
(
v, j

))
, the neighborhood function N (

(u, i ) ,
(
v, j

))
, the

global function G(
(u, i ) ,

(
v, j

))
and the rescaling function S(

(u, i ) ,
(
v, j

))
.

Before giving a general definition of L,N ,G and S , we first discuss the reformu-
lation of the user-based method by Sarwar et al. [79] and the different item-based
methods by Deshpande et al. [19].

3.3.1 Item-Based

Deshpande et al. [19] proposed the now widely used class of item-based nearest
neighbors methods. We discuss the variation that uses cosine similarity (Eq. 2.49)
without similarity normalization (cosine, SNorm-) because of its clean formulation.
The analysis for the other variations is analogous.

This method first finds the neighborhood KNN( j ) for every preferred item j
(Ru j = 1) by using the cosine similarity cos( j , i ). Next, every preferred item indepen-
dently increases the score for its kI most similar items i ∈ KNN( j ) with the similarity
value cos( j , i ). Thus, the score of a candidate recommendation i for user u is given
by [19]:

s(u, i ) = ∑
j∈I

Ru j =1

cos( j , i ) · |KNN( j )∩ {i }|. (3.2)

We reformulate this method by substituting cos( j , i ) by its definition (Eq. 2.49)
and regrouping the terms. This gives

s(u, i ) = ∑
v∈U

∑
j∈I

Ru j Rv j Rvi · |KNN( j )∩ {i }| · 1√
c( j )c(i )

.

This particular formulation now nicely fits our Equation 3.1: a weighted sum over all
possible user-item pairs (v, j ) in which the weight of every (v, j )-pair with respect to
the pair (u, i ) is determined by the functions L,N ,G and S .
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The local function L selects the pairs (v, j ) based on their direct relation to the
pair (u, i ). For the item-based method, it is given by

L(
(u, i ) ,

(
v, j

))= Ru j Rv j Rvi .

It thus only selects those pairs (v, j ) such that v and u share a preference for j and
both i and j are preferred by v .

Next, the neighborhood function N further selects the pairs (v, j ) based on their
neighborhood relations to the pair (u, i ). For the item-based method, it is given by

N (
(u, i ) ,

(
v, j

))= |KNN( j )∩ {i }|.
Thus, only those pairs (v, j ) for which i is in the neighborhood of j are selected.
Notice that the selection of the pair (v, j ) by N is independent of v . As such, the
item-based method ignores half of the neighborhood information about the pair
(v, j ).

Then, the global function G weighs the selected pairs (v, j ) based on global
statistics of the items i and j . For the item-based method, it is given by

G(
(u, i ) ,

(
v, j

))= 1/
√

c(i )c( j ).

It thus gives lower weights to those pairs (v, j ) for which j has a higher count. In-
tuitively, if j is more popular, the evidence related to the pair (v, j ) is considered
less informative. Similarly, if i is more popular, all evidence with respect to s(u, i )
is considered less informative. Notice that, in this case, also the weight of the pair
(v, j ), as determined by G, is independent of v . As such, the item-based method
ignores c(v) and c(u), the global information about v and u. Notice furthermore
that G is also used in the definition of the cosine similarity measure (Eq. 2.49), used
to determine KNN( j ).

As in this case no rescaling is applied, S is given by

S(
(u, i ) ,

(
v, j

))= 1.

3.3.2 User-Based

For a given user u, the user-based nearest neighbors method by Sarwar et al. [79] first
finds the neighborhood KNN(u) using the cosine similarity (Eq. 2.56). Next, each
neighboring user v ∈ KNN(u) increases the score of a candidate recommendation i ,
if i is preferred by v . Thus, the score of a candidate recommendation i for user u is
given by [79]:

s(u, i ) = 1

|KNN(u)|
∑

v∈KNN(u)
Rvi . (3.3)

Multiplying the above equation with the constant |I| =∑
j∈I 1 does not change

the ordering of the pairs (u, i ) and allows us to rewrite it as

s(u, i ) = ∑
v∈U

∑
j∈I

Rvi · |KNN(u)∩ {v}| · 1

|KNN(u)| .

Hence we have reformulated also the user-based method as a weighted sum over all
possible user-item pairs (v, j ) in which the weight of a (v, j )-pair with respect to the
pair (u, i ) is determined by the functions L,N ,G and S (Eq. 3.1).
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The local function L, which selects the pairs (v, j ) based on their direct relation
to the pair (u, i ), is for the user-based method given by

L(
(u, i ) ,

(
v, j

))= Rvi .

It thus selects those pairs (v, j ) such that v prefers i . Unlike the item-based method,
it does not consider the information Ru j and Rv j to discriminate between different
(v, j )-pairs. Hence, the selection of the pair (v, j ) by L is independent of j . As such,
the user-based method ignores local information related to j when weighing the
pair (v, j ).

Next, the neighborhood function N further selects the pairs (v, j ) based on their
neighborhood relations to the pair (u, i ). For the user-based method, it is given by

N (
(u, i ) ,

(
v, j

))= |KNN(u)∩ {v}|.
Thus, only those pairs (v, j ) for which v is in the neighborhood of u are selected.
Notice that the selection of the pair (v, j ) by N is independent of j . As such, the
user-based method ignores half of the neighborhood information about the pair
(v, j ).

Furthermore, since this method does not weight the pairs (v, j ) with any global
statistic of u, i , v or j , the global function for the user-based method is given by

G(
(u, i ) ,

(
v, j

))= 1.

Finally, for the user-based method, the rescaling function S rescales the weight
of the pairs (v, j ) with the size of the neighborhood of u and is therefore given by

S(
(u, i ) ,

(
v, j

))= |KNN(u)|.

3.3.3 Generalization

Now we generalize the definitions of the four functions L,N ,G and S such that our
formulation covers the most well known user- and item-based methods. Table 3.1
gives an overview of how these functions are defined for both the existing methods
and our novel method, which we will propose in the next section.

First, the local function L selects the pairs (v, j ) depending on the direct rela-
tions Rui , Rv j and Rvi between (v, j ) and (u, i ). The user-based method (Sec. 3.3.2)
considers only Rvi and ignores the other information. The item-based method
(Sec. 3.3.1) on the other hand, combines all three pieces of direct information in the
multiplication Rui Rv j Rvi , and thus selects those pairs (v, j ) such that v and u share
a preference for j and both i and j are preferred by v . Essentially, any combination
of these direct relationships between u,i ,v and j is possible.

Secondly, the neighborhood function N weighs the pairs (v, j ) depending on
the neighborhoods KNN(u), KNN(v), KNN(i ) and KNN( j ). Existing methods for
collaborative filtering consider only one of the four neighborhoods, as shown in Sec-
tions 3.3.2 and 3.3.1. Consequently, the weighing function N reduces to a selection
function for these methods . However, any function of these four neighborhoods
can be used. For example, in our novel method KUNN, which we will propose in
Section 3.4, we use

N (
(u, i ) ,

(
v, j

))= |KNN(u)∩ {v}|+ |KNN(i )∩ { j }|.
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Both the user- and the item-based method discussed in the previous two sections
used the cosine similarity measure to compute KNN(x) of an object x. Our formula-
tion however, covers a broader range of similarity measures. Let pu , pi , pv , p j ∈ R.
For users u, v ∈U , we define the similarity measure to compute KNN(u) as

sim(u, v) = ∑
rI∈I

RurI RvrI · c(u)pu c(v)pv c(rI )p j . (3.4)

Similarly, for items i , j ∈ I , we define the similarity measure to compute KNN(i ) as

sim(i , j ) = ∑
rU∈U

RrU i RrU j · c(i )pi c(rU )pv c( j )p j . (3.5)

Notice that, in our formulation, the similarity between users (Eq. 3.4) and the simi-
larity between items (Eq. 3.5) share the parameters pv and p j . Thus, choosing the
user similarity limits the possibilities for choosing the item similarity and vice versa.

Thirdly, the global function G uses the global statistics c(u), c(i ), c(v) and c( j ) to
weigh the pairs (v, j ) with respect to the pair (u, i ). It is given by

G(
(u, i ) ,

(
v, j

))= (
c(u)pu c(i )pi c(v)pv c( j )p j

)pg
, (3.6)

with pg ∈ {0,1} and pu , pi , pv , p j the same parameters as in Equations 3.4 and 3.5.
Typically, these parameters are negative or zero. In that case, users u, v and items
i , j with higher counts reduce the weight of the (v, j )-pairs with respect to (u, i ).
Intuitively, a more popular item is considered less informative for determining a
taste, since this item is more likely preferred by diverse users. Similarly, a user that
prefers many items is considered less informative for determining a taste, since this
user’s preferences are more likely to cover diverse items.

Notice thatG, sim(u, v) and sim(i , j ) (Eq. 3.6, 3.5 and 3.4) share the factors c(u)pu ,
c(i )pi , c(v)pv and c( j )p j . Therefore we introduce the notation

W
(
(u, i ) ,

(
v, j

))= c(u)pu c(i )pi c(v)pv c( j )p j ,

which allows us to rewrite the global function (Eq. 3.6) as

G(
(u, i ) ,

(
v, j

))= W
(
(u, i ) ,

(
v, j

))pg , (3.7)

and the similarities (Eq. 3.4 and 3.5) as

sim(u, v) = ∑
rI∈I

RurI RvrI ·W
(
(u,∗) ,

(
v,rI

))
,

sim(i , j ) = ∑
rU∈U

RrU i RrU j ·W
(
(∗, i ) ,

(
rU , j

))
,

with c(∗) = 1. This definition of W covers both the user-based method by Sarwar
et al. [79] and the different item-based methods by Deshpande et al. [19]. A more
general definition of W would cover a broader range of nearest neighbors methods.
We choose this definition over a more general one to emphasize the strong similarity
between the latter two methods.

Finally, some methods rescale the weights of the pairs (v, j ) with the density
of KNN(u), KNN(i ), KNN(v) or KNN( j ). A neighborhood KNN(x) of x is denser if
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the total distance of x to its neighbors is smaller. In other words, if the sum of the
similarities of x to its neighbors is higher. Depending on the choice for KNN(u),
KNN(i ), KNN(v) or KNN( j ), the rescaling function is given by one of the four density
functions

Su(u) = 1/
∑

rU∈KNN(u)
sim(u,rU )pg ,

Si (i ) = 1/
∑

rI∈KNN(i )
sim(i ,rI )pg ,

Sv (v) = 1/
∑

rU∈KNN(v)
sim(rU , v)pg ,

S j ( j ) = 1/
∑

rI∈KNN( j )
sim(rI , j )pg ,

with pg the same parameter as for the global function G (Eq. 3.7).
For a method that does not apply rescaling,

S(
(u, i ) ,

(
v, j

))= 1

3.4 KUNN Unified Nearest Neighbors

Looking at Table 3.1, we observe that the user-based method by Sarwar et al. [79]
ignores the information Ru j , Rv j , c(i ), c( j ), KNN(i ) and KNN( j ) for weighing the
pairs (v, j ) with respect to (u, i ). Similarly, all item-based methods by Deshpande
et al. [19] ignore the information c(u), c(v), KNN(u) and KNN(v) for weighing the
pairs (v, j ) with respect to (u, i ). Thus, the existing methods ignore an important
part of the available information. What is more, the information ignored by item-
based methods is disjoint with the information ignored by the user-based method.
However, the fact that both user- and item-based methods generate acceptable
results [79, 19], indicates that most likely both types of information are useful. There-
fore, a novel method that combines both types of information, KUNN2, potentially
leads to improved results. The experiments discussed in Section 3.5 confirm that
this is indeed the case. It is not only possible to outperform the individual user- and
item-based methods, but also to outperform state-of-the-art matrix factorization
methods [75, 38, 65].

The definitions of L, N , G and S corresponding to KUNN are given on the last
row of Table 3.1.

For KUNN, the local function is given by

L(
(u, i ) ,

(
v, j

))= Ru j Rv j Rvi

and thus selects those pairs (v, j ) such that v and u share a preference for j and both
i and j are preferred by v . As such, KUNN does not discard any information about
the direct relation between (v, j ) and (u, i ).

Next, the neighborhood function for KUNN is given by

N (
(u, i ) ,

(
v, j

))= |KNN(u)∩ {v}|+ |KNN(i )∩ { j }|.
2KUNN is a recursive acronym for KUNN Unified Nearest Neighbors
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It thus selects those pairs (v, j ) such that v is in the neighborhood of u or j is in the
neighborhood of i . If both conditions are fulfilled, the weight of the pair (v, j ) with
respect to s(u, i ) is doubled. As such, KUNN uses neighborhood information of both
v and j to weight (v, j ) with respect to (u, i ).

Furthermore, for KUNN, W is given by

W
(
(u, i ) ,

(
v, j

))= 1√
c(u)c(i )c(v)c( j )

.

Consequently, the user-similarity results in

sim(u, v) = ∑
rI∈I

RurI RvrI√
c(u)c(v)c(rI )

,

and the item-similarity:

sim(i , j ) = ∑
rU∈U

RrU i RrU j√
c(i )c(rU )c( j )

.

Intuitively, if u and v share a preference for an item rI , it is only weak evidence of
their similarity if rI is popular and both u and v have many preferences. Similarly, if
i and j are both preferred by rU , it is only weak evidence of their similarity if rU has
many preferences and both i and j are popular items.

In addition, the global function for KUNN is given by

G(
(u, i ) ,

(
v, j

))= W
(
(u, i ) ,

(
v, j

))1 = 1√
c(u)c(i )c(v)c( j )

.

Intuitively, if the counts of u, i , v and j are higher, it is more likely that the direct
relation between (v, j ) and (u, i )(L(

(u, i ) ,
(
v, j

)) = 1), exists by chance. Therefore,
this direct relation is less informative.

Finally, we see no convincing arguments for making KUNN more complex by
introducing a rescaling factor. Therefore we define

S(
(u, i ) ,

(
v, j

))= 1.

To enhance the intuitive understanding of KUNN, we rewrite Equation 3.1 as

s(u, i ) = sU (u, i )+ sI (u, i )p
c(u)c(i )

, (3.8)

with

sU (u, i ) = ∑
v∈KNN(u)

Rvi
1p

c(v)

∑
j∈I

Ru j =1
Rv j =1

1√
c( j )

and

sI (u, i ) = ∑
j∈KNN(i )

Ru j
1√
c( j )

∑
v∈U

Rvi=1
Rv j =1

1p
c(v)

.
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Thus, we can decompose s(u, i ) in a user-based part sU (u, i ) and an item-based
part sI (u, i ). Notice that these two parts cannot be reduced to any existing user- or
item-based method.

The user-based part sU (u, i ) is a weighted sum over the neighbors of u in which
the weight of a neighbor v is proportional to:

• Rvi : v has a known preference for i ,

• 1/
p

c(v): if v prefers many items, her known preference for i becomes less
informative,

•
∑

j∈I,Ru j =1,Rv j =1: every preference that v shares with u increases the weight of
v for recommending items to u,

• 1/
√

c( j ): if v and u share a preference for j , it is less informative if j is a more
popular item.

A similar intuition holds for the item-based part sI (u, i ).
Finally, the denominator of Equation 3.8, reduces the strength of the evidence if

u prefers many items and i is popular.

3.5 Experimental Evaluation

We experimentally evaluate the accuracy of KUNN on three datasets: the Movielens,
the Yahoo!Musicuser and the Yahoo!Musicrandom datasets [113, 32]. These datasets
contain ratings of users for movies and songs respectively. The ratings are on a 1 to 5
scale with 5 expressing the highest preference. We convert these datasets to binary,
positive-only datasets. Following Pradel et al. [73], we convert the ratings 4 and 5 to
preferences and the ratings 1 and 2 to dislikes. Furthermore, we ignore the ratings
3, effectively converting them to unknowns. As such, we obtain a buffer between
preferences and dislikes. Since our setting presumes binary, positive-only data, both
the unknowns and the dislikes are represented by zeros in the training data. For
evaluating the recommendations however, we are allowed to distinguish between
unknowns and dislikes.

In our evaluation we compare KUNN with five other methods. As a baseline,
we select pop, the non-personalized method that ranks all items according to their
popularity, i.e. the number of users in the training set that prefer the item. Next, we
select the user-based nearest neighbors method with cosine similarity by Sarwar
et al. [79] and the widely used item-based nearest neighbors method with cosine
similarity and similarity normalization (SNorm+) by Deshpande et al. [19]. We
choose this item-based method because it performed well in comparison to other
item-based methods [19]. Furthermore, we also compare with UB+IB, a linear
ensemble that computes a recommendation score as

s(u, i ) =λsUB(u, i )+ (1−λ)sIB(u, i ),

with sUB(u, i ) the user-based score from the method by Sarwar et al. and sIB(u, i ) the
item-based score from the method by Deshpande et al. Finally, we compare with two
state-of-the-art matrix factorization methods for collaborative filtering with binary,
positive-only data: the BPRMF method by Rendle et al. and the WRMF method by Hu
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Table 3.2: Dataset characteristics after transformation to binary, positive-only data.

c(u) |Hu | |Mu |
Dataset |U | |Ut | |I| mean std mean std mean std

Movielens 6040 6037 3706 94.3 105.0 1 0 NA NA

Yahoo!Musicuser 15400 13204 1000 7.70 11.57 1 0 NA NA

Yahoo!Musicrandom 15400 2401 1000 8.70 11.57 1.89 1.23 6.17 2.09

et al. [38]. For WRMF and BPRMF we used the MyMediaLite implementation [28].
For all other methods, we used our own implementation, which is available at
https://bitbucket.org/KVs/unncf_submit.

To thoroughly evaluate the performance of KUNN, we use evaluation measures
from multiple previous works [19, 75, 73, 79]. The experimental evaluation consists
of two experimental setups. In the user selected setup (Sec. 3.5.1), the users selected
which items they rated. In the random selected setup (Sec. 3.5.2), users were asked
to rate randomly chosen items.

3.5.1 User Selected Setup

This experimental setup is applicable to the Movielens and the Yahoo!Musicuser

datasets. In both datasets, users chose themselves which items they rated. Following
Deshpande et al. [19] and Rendle et al. [75], one preference of every user is randomly
chosen to be the test preference for that user. If a user has only one preference, no
test preference is chosen. The remaining preferences are represented as a 1 in the
training matrix R. All other entries of R are zero. We define the hit set Hu of a user u
as the set containing all test preferences of that user. For this setup, this is a singleton,
denoted as {hu}, or the empty set if no test preference is chosen. Furthermore, we
define Ut as the set of users with a test preference, i.e. Ut = {u ∈U | |Hu | > 0}. Table
3.2 summarizes some characteristics of the datasets.

For every user u ∈Ut , every method ranks the items {i ∈ I | Rui = 0} based on R.
We denote the rank of the test preference hu in such a ranking as r (hu).

Then, every set of rankings is evaluated using three measures. Following Desh-
pande et al. [19] we use hit rate at 10 and average reciprocal hit rate at 10. In general,
10 can be replaced by any natural number N ≤ |I|. We follow Deshpande et al. [19]
and choose N=10.

Hit rate at 10 is given by

HR@10 = 1

|Ut |
∑

u∈Ut

|Hu ∩ top10(u)|,

with top10(u) the 10 highest ranked items for user u. Hence, HR@10 gives the per-
centage of test users for which the test preference is in the top 10 recommendations.

Average reciprocal hit rate at 10 is given by

ARHR@10 = 1

|Ut |
∑

u∈Ut

|Hu ∩ top10(u)| · 1

r (hu)
.

https://bitbucket.org/KVs/unncf_submit
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Unlike hit rate, average reciprocal hit rate takes into account the rank of the test
preference in the top 10 of a user.

Following Rendle et al. [75], we also use the AMAN version of area under the
curve, which is for this experimental setup given by

AUCAMAN = 1

|Ut |
∑

u∈Ut

|I|− r (hu)

|I|−1
.

AMAN stands for All Missing As Negative, meaning that a missing preference is
evaluated as a dislike. Like average reciprocal hit rate, the area under the curve takes
into account the rank of the test preference in the recommendation list for a user.
However, AUCAMAN decreases slower than ARHR@10 when r (hu) increases.

We repeat all experiments five times, drawing a different random sample of test
preferences every time.

3.5.2 Random Selected Setup

The user selected experimental setup introduces two biases in the evaluation. Firstly,
popular items get more ratings. Secondly, the majority of the ratings is positive.
These two biases can have strong influences on the results and are thoroughly
discussed by Pradel et al. [73]. The random selected test setup avoids these biases.

Following Pradel et al. [73], the training dataset is constructed in the user selected
way: users chose to rate a number of items they selected themselves. The test dataset
however, is the result of a voluntary survey in which random items were presented to
the users and a rating was asked. In this way, both the popularity and the positivity
bias are avoided.

This experimental setup is applicable to the dataset
Yahoo!Musicrandom. The training data, R, of this dataset is identical to the full
Yahoo!Musicuser dataset. Additionally, this dataset includes a test dataset in which
the rated items were randomly selected. For a given user u, the hit set Hu contains
all preferences of this user which are present in the test dataset. The set of dislikes
Mu contains all dislikes of this user which are present in the test dataset. We define
Ut = {u ∈U | |Hu | > 0, |Mu | > 0}, i.e. all users with both preferences and dislikes in
the test dataset. Table 3.2 summarizes some characteristics of the dataset.

For every user u ∈Ut , every method ranks the items in Hu ∪Mu based on the
training data R. The rank of an item i in such a ranking is denoted r (i ).

Then, following Pradel et al. [73], we evaluate every set of rankings with the
AMAU version of area under the curve, which is given by

AUCAMAU = 1

|Ut |
∑

u∈Ut

AUCAMAU (u),

with

AUCAMAU (u) = ∑
h∈Hu

|{m ∈Mu | r (m) > r (h)}|
|Hu ||Mu |

.

AMAU stands for All Missing As Unknown, meaning that a missing preference does
not influence the evaluation. Hence, AUCAMAU (u) measures, for a user u, the frac-
tion of dislikes that is, on average, ranked behind the preferences. A big advantage of
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this measure is that it only relies on known preferences and known dislikes. Unlike
the other measures, it does not make the bold assumption that items not preferred
by u in the past are disliked by u.

Because of the natural split in a test and training dataset, repeating the experi-
ment with different test preferences is not applicable.

3.5.3 Parameter Selection

Every personalization method in the experimental evaluation has at least one pa-
rameter. For every experiment we try to find the best set of parameters using grid
search. An experiment is defined by (1) the outer training dataset R, (2) the outer
hitset

⋃
u∈Ut

Hu , (3) the outer dislikes
⋃

u∈Ut

Mu , (4) the evaluation measure, and (5)

the method. Applying grid search, we first choose a finite number of parameter
sets. Secondly, from the training data R, we create five inner data splits, defined
by Rk ,

⋃
u∈Ut

Hk
u , and

⋃
u∈Ut

Mu for k ∈ {1,2,3,4,5}. Then, for every parameter set, we

rerun the method on all five inner training datasets Rk and evaluate them on the
corresponding inner test datasets with the chosen evaluation measure. Finally, the
parameter set with the best average score over the five inner data splits on a certain
evaluation measure, is chosen to compute recommendations for the outer training
dataset R concerning the evaluation with the same evaluation meaure. Notice that,
given an outer training dataset, the best parameters with respect to one evaluation
measure, can differ from the best parameters with respect to another evaluation
measure.

3.5.4 Results and Discussion

Table 3.3 shows the evaluation of the considered methods on different datasets,
with different measures. The experiments belonging to the user selected setup
were repeated 5 times, drawing a different random sample of test preferences every
time. Therefore, we report both the mean and the standard deviation for these
experiments. The experiments belonging to the random selected setup use a natural
split between the test and training dataset. Therefore, randomizing the test set
choice is not applicable and only one value is reported for every experiment. Scripts
for automatically repeating all experiments are available at https://bitbucket.
org/KVs/unncf_submit. The exact paramter combinations explored by the grid
search procedure (Sec. 3.5.3) and other details can be inspected in these scripts.

From Table 3.3 we can make several observations. First of all, KUNN outperforms
every other method five out of seven times, shares one best performance with WRMF,
and is one time outperformed by WRMF.

Secondly, the user-based method clearly outperforms the item-based method
on the Movielens dataset. On the Yahoo!Musicuser dataset on the other hand, the
item-based method clearly outperforms the user-based method. For UB+IB, the grid
search procedure (Sec. 3.5.3) is successful in choosing λ such that the best of both
methods in the ensemble gets the highest weight. However, UB+IB cannot outper-
form the best of both individual methods. KUNN, on the other hand, successfully
combines the user- and item-based information and consistently outperforms both
individual methods.

https://bitbucket.org/KVs/unncf_submit
https://bitbucket.org/KVs/unncf_submit
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Thirdly, the rather disappointing performance of BPRMF stands out. A possible
explanation lies in the choice of the parameters. Following Rendle et al. [75], we
used grid search (Sec. 3.5.3) to choose the best out of 267 parameter combinations
for BPRMF in every experiment. We can however not rule out that there exist
parameter combinations outside our 267 possibilities, for which BPRMF performs
better. Finding a good set of parameters is harder for BPRMF than for the other
methods because BPRMF uses 7 parameters that can all take an infinite number
of values. The parameters kU and kI of KUNN, on the other hand, are integers
within the bounds [0, |U |] and [0, |I|] respectively. Therefore, we can find a good set
of parameters among only 25 possibilities.

Finally, all personalized methods perform much better than the non personal-
ized baseline pop.

3.6 Explainability

The consideration that explanations of item-based methods are superior comes
from observing the formulas for computing the recommendation scores [20, 38]. For
item-based methods on the one hand, this formula is given by Equation 3.2 in which
every term can be attributed to one of the known preferences of the target user.
Therefore the known preferences related to the biggest terms can naturally serve as
an explanation for the recommendation. For user-based methods on the other hand,
the formula is given by Equation 3.3 in which every term can be attributed to one of
the collaborative users. This is much less useful because the most similar users give
no intuitive explanation for the recommendation as they are probably strangers to
the target user and the same for every recommendation. Furthermore, this kind of
explanation would also be an invasion on the privacy of these collaborative users.

However, this difference is only artificial. Thanks to our reformulation, we can
write both the user-based method by Sarwar et al. [79] (Eq. 3.3) and KUNN as a sum
over the known preferences of the target user.

We start with the user-based method (Eq. 3.3). This method can be rewritten as

s(u, i ) = 1

|KNN(u)|
∑

v∈K N N (u)
Rvi

(∑
l1∈I Rul1 Rvl1∑
l2∈I Rul2 Rvl2

)
.

Notice that the last factor in the summation is simply 1, but allows us to rewrite the
equation as

s(u, i ) = 1

|KNN(u)|
∑

l1∈I
Rul1=1

( ∑
v∈KNN(u)

Rvl1 Rvi∑
l2∈I Rul2 Rvl2

)
,

In the above equation, we have written the user based score s(u, i ) as a weighted
sum over the known preferences of u.

The known preferences l1 with the biggest weights, serve as a natural explana-
tion for recommending i to u. Hence, we have naturally explained the user-based
recommendation of i for u.
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Next, we consider KUNN, which can be rewritten as

s(u, i ) = 1p
c(u)c(i )

∑
j∈I

Ru j =1

 1√
c( j )

∑
v∈U

Rvi=1
Rv j =1

N (
(u, i ) ,

(
v, j

))
p

c(v)

 ,

by regrouping Equation 3.1. Thus, also KUNN computes s(u, i ) as a weighted sum
over the known preferences of u.

Again, the known preferences with the biggest weights serve as a natural explana-
tion for recommending i to u. Hence, we have naturally explained recommendations
made by KUNN.

3.7 Related Work

We surveyed methods for collaborative filtering with binary, positive-only data in
Chapter 2.

Furthermore, Symeonidis et al. [92] recognized that combining user- and item-
based approaches could be beneficial. Additionally, Wang et al. [105] proposed a
unification of user- and item-based methods. However, their work presumes rating
data.

3.8 Conclusions

We proposed KUNN, a novel method for one class collaborative filtering, a setting
that covers many applications.

KUNN originates from a reformulation that unifies user- and item-based nearest
neighbors methods. Thanks to this reformulation, it becomes clear that user- and
item-based nearest neighbors methods discard important parts of the available
information.

KUNN improves upon these existing nearest neighbors methods by actually
using more of the available information. Our experimental evaluation shows that
KUNN not only outperforms existing nearest neighbors methods, but also state-of-
the-art matrix factorization methods.

Finally, we challenged the well accepted belief that item-based methods are
superior for explaining the recommendations they produce. Thanks to our refor-
mulation, we were able to show that also recommendations by KUNN and the
traditional user-based method come with a natural explanation.

We see research on novel definitions of the functions L, N , G and S as the most
important direction for future work.



CHAPTER 4
Top-N Recommendation for

Shared Accounts

The vast majority of collaborative filtering recommender systems assume
that every account in the training data represents a single user. However,
multiple users often share a single account. A typical example is a single
shopping account for the whole family. Traditional recommender sys-
tems fail in this situation. If contextual information is available, context
aware recommender systems are the state-of-the-art solution. Yet, often
no contextual information is available. Therefore, we introduce in this
chapter1 the challenge of recommending to shared accounts in the ab-
sence of contextual information. We propose a solution to this challenge
for all cases in which the reference recommender system is an item-based
top-N collaborative filtering recommender system, generating recommen-
dations based on binary, positive-only data. We experimentally show the
advantages of our proposed solution for tackling the problems that arise
from the existence of shared accounts on multiple datasets.

1This chapter is based on work published in RecSys 2015 as “Top-N Recommendation for Shared
Accounts” by Koen Verstrepen and Bart Goethals [104].
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4.1 Introduction

Typical recommender systems assume that every user- account represents a single
user. However, multiple users often share a single account. An example is a house-
hold in which all people share one video-streaming account, one music-streaming
account, one online-shopping account, one loyalty card for a store they make pur-
chases in, etc.

Three problems arise when multiple users share one account. First, the domi-
nance problem arises when all recommendations are relevant to only some of the
users that share the account and at least one user does not get any relevant rec-
ommendation. We say that these few users dominate the account. Consider, for
example, a family that often purchases household items. Once in a while they also
purchase toys for the children together with the household items. Now, it is likely
that all recommendations will be based on the numerous household items and the
recommender system will be essentially useless for the children.

Second, the generality problem arises when the recommendations are only a
little bit relevant to all users in the shared account, but are not really appealing to
any of them. When the diverse tastes of multiple users are merged into one account,
the recommender system is more likely to recommend overly general items that are
preferred by most people, regardless their individual tastes.

Third, if the recommender system would be able to generate relevant recom-
mendations for every user in the shared account, how does every user know which
recommendation is meant for her? We call this the presentation problem.

If contextual information such as time, location, buying intent, item content,
session logs, etc. is available, context aware recommender systems are the state-of-
the-art solution to split accounts into multiple users and detect the identity of the
active user at recommendation time.

However, often no contextual information is available for splitting the accounts.
A first example concerns the case of the numerous organizations that simply did
not keep records of any contextual information in the past, not even time stamps.
A second example are families that shop together in a hypermarket: they have one
loyalty card account and bundle their purchases when they visit the store. In this
case, the context is exactly the same for every family member and cannot be used to
split the family account into its members. Therefore, we introduce the challenge of
top-N recommendation for shared accounts in the absence of contextual information,
in which the above three shared account problems are tackled without using any
contextual information.

Despite the significance of top-N recommendation for shared accounts in the
absence of contextual information, we know of no prior research on tackling all
aspects of this challenge. We give a start to filling this gap by proposing a solution
for all cases in which the reference recommender system is an item-based top-N
collaborative filtering recommender system, generating recommendations based
on binary, positive-only feedback (Sec. 2.9). In this way, we cover a large number of
applications since item-based top-N collaborative filtering recommender systems
are very popular. Multiple authors attribute this popularity to the combination of
favorable properties such as simplicity, stability, efficiency, reasonable accuracy,
the ability for intuitively explaining their recommendations, and the ability for
immediately taking into account newly entered feedback [20, 48, 41, 54].
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Central to our approach, we show a property of item-based top-N collaborative
filtering recommender systems that allows us to compute a recommendation score
in O (

n logn
)

instead of exponential time.
The main contributions of this work are:

• We formally introduce the challenge of top-N recommendation for shared
accounts in the absence of contextual information (Sec. 4.2).

• We propose a solution to this challenge for all cases in which the reference
recommender system is an item-based top-N collaborative filtering recom-
mender system, generating recommendations based on binary, positive-only
feedback [19] (Sec. 4.5-4.8).

• Most importantly, we show an essential property of item-based top-N collabo-
rative filtering recommender systems that allows us to keep the time complex-
ity of our proposed solution within practically feasible limits (Sec. 4.6).

• We experimentally show on multiple datasets that our proposed solution is
able to detect preferences of individual users in shared accounts and has
therefore significant advantages for tackling the dominance, generality and
presentation problems (Sec. 4.9).

After formalizing the definitions of the challenge (Sec. 4.2) and the reference
recommender system (Sec. 4.3) we first give further insight in how the reference rec-
ommender system suffers from the shared account problems (Sec. 4.4). Afterwards
we sequentially solve the generality problem (Sec. 4.5), the dominance problem
(Sec. 4.7) and the presentation problem (Sec. 4.8). Furthermore, we inserted a sec-
tion on the efficient computation of our solution to the generality problem (Sec. 4.6).
Finally, we discuss the experimental evaluation of our proposed solution (Sec. 4.9).

4.2 Problem Definition

We adhere to the notation in which U is the set of users and I is the set of items.
Furthermore, let A be the set of accounts, let U (a) ⊆U be the set of users that share
account a, i.e. the userset of account a, and let a(u) ∈A be the account that user
u belongs to. Notice that in this problem setting every user belongs to exactly one
account.

First, consider the user-rating-matrix T ∈ {0,1}|U |×|I|. Tui = 1 indicates that there
exists a preference of user u ∈U for item i ∈ I . Tui = 0 indicates that there is no such
preference.

We are given a reference recommender system Rref that produces the desired
recommendations given T. Consequently, we say that an item i is relevant to a
user u if i is in the top-N recommendations for u as computed by the reference
recommender system Rref(T) on the user-rating-matrix T.

Unfortunately, in our problem setting T is unknown. Instead we are given the
account-rating-matrix R ∈ {0,1}|A|×|I|. Rai = 1 indicates that there is a known pref-
erence of account a ∈ A for item i ∈ I. Rai = 0 indicates that there is no such
information.
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Now, the challenge of top-N recommendation for shared accounts in the absence
of contextual information is to devise a shared account recommender system Rsa(R)
that, based on the account-rating-matrix R, computes for every account a the top
Na recommendations such that:

• Ideally, this top-Na contains all top-N items for every user in the userset of
a, with N = Na

|U (a)| . Practically, the goal is to avoid the dominance and the
generality problem by maximizing the number of users with at least one item
from its top-N .

• It is clear for a user in the userset of a which items in the top-Na are meant for
her, i.e. the presentation problem gets solved.

Notice that in the above definition, the shared account recommender system
does not get the number of users sharing every account as an input. Furthermore, no
assumption is made about the shared interests of the users sharing an account. They
can have totally different interests, partially overlapping interests or fully overlapping
interests.

Finally, notice that this problem definition is orthogonal to a typical group rec-
ommendation problem [55]. First, in group recommendation, the individual profiles
of the users in the shared account are typically known. Here, they are unknown. Sec-
ond, in group recommendation, it is typically assumed that the recommendations
will be consumed by all users in the shared account together. Here, it is assumed
that every user in the shared account can identify the recommendations meant for
her and consumes these recommendations individually.

4.3 The Reference Recommender System

Typically, recommender systems find the top-N recommendations for a user u by
first computing the recommendation scores s(u, i ) for every candidate recommen-
dation i and afterwards selecting the N recommendations i for which s(u, i ) is the
highest.

One of the most popular models for collaborative filtering with binary, positive-
only data are the item-based collaborative filtering recommender systems (Eq. 2.9).
These item-based recommender systems are rooted in the intuition that good rec-
ommendations are similar to the items already preferred by the target user. Thus,
for a target user u, this recommender system first finds KNN( j ), the k most similar
items to j , for every preferred item j (Tu j = 1) by using the similarity values sim( j , i ).
Next, every preferred item independently increases the recommendation score for
its k most similar items i ∈ KNN( j ) with the similarity value sim( j , i ). Thus, the
item-based recommendation score of a candidate recommendation i for user u is
given by [19]:

sIB(u, i ) = sIB(I (u), i )

= ∑
j∈I (u)

sim( j , i ) · |KNN( j )∩ {i }|, (4.1)

with I (u) = { j ∈ I | Tu j = 1}, the set of items preferred by u.
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A typical choice for sim( j , i ) is the cosine similarity. Furthermore, Deshpande
et al. report that normalizing the cosine similarity scores improves the perfor-
mance [19]. This comes down to defining sim( j , i ) in Equation 4.1 as:

sim( j , i ) = cos( j , i )∑
l∈KNN( j )

cos( j , l )
.

We will use this recommender system as the reference recommender system
Rref.

4.4 Shared Account Problems of the Reference Recommender
System

Simply applying the reference recommender system (Sec. 4.3) to the account-rating-
matrix R leads to inferior results because the reference recommender system suffers
from all three shared account problems. We illustrate this with two toy examples.
In both examples we consider the two users ua and ub that share the account s.
User ua has a known preference for the items a1 and a2 and user ub has a known
preference for the items b1, b2 and b3. There are five candidate recommendations:
r 1

a ,r 2
a ,r 1

b ,r 2
b and rg . r 1

a and r 2
a are good recommendations for ua . r 1

b and r 2
b are good

recommendations for ub . rg is an overly general recommendation to which both
users feel neutral.

Tables 4.1 and 4.2 summarize some intermediate computations on the first and
second example respectively. The left hand side of both tables lists for every candi-
date recommendation (rows) the similarity to the known preferences of the shared
account s (columns). The right hand side of both tables lists for every candidate
recommendation (rows) three recommendation scores (columns). These scores are
computed using Equation 4.1 and the similarity values on the left hand side of the
respective row. The first two scores are for ua and ub respectively if they would not
share an account. The third score is for s, the account shared by ua and ub .

The first example, corresponding to Table 4.1, illustrates that the item-based
reference recommender system can suffer from the generality problem. From Table
4.1 we learn that if ua would not share an account with ub , the item-based reference
recommender system would correctly assign the highest scores to r 1

a and r 2
a for ua

and to r 1
b and r 2

b for ub . However, if ua and ub share the account s, the overly general
item rg receives the highest score. In this case, the item-based reference recom-
mender system suffers from the generality problem because it does not discriminate
between a recommendation score that is the sum of a few large contributions and a
recommendation score that is the sum of many small contributions.

The second example, corresponding to Table 4.2, illustrates that the item-based
reference recommender system can suffer from the dominance problem. From
Table 4.2 we learn that if ua would not share an account with ub , the item-based
reference recommender system would correctly assign the highest scores to r 1

a
and r 2

a for ua and to r 1
b and r 2

b for ub . However, if ua and ub share the account s,
all recommendations for ub receive a higher score than any recommendation for
ua . Hence, the recommendations for ub dominate the account at the expense of
ua . In this case, the item-based reference recommender system suffers from the
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Table 4.1: Item similarities and resulting scores for Example 1.

sim sIB

(a1,∗) (a2,∗) (b1,∗) (b2,∗) (b3,∗) (ua ,∗) (ub ,∗) (s,∗)

r 1
a 5 5 1 0 0 10 1 11

r 2
a 4 4 1 0 0 8 1 9

r 1
b 1 0 5 5 2 1 12 13

r 2
b 1 0 4 4 2 1 10 11

rg 3 3 3 3 3 6 9 15

Table 4.2: Item similarities and resulting scores for Example 2.

sim sIB

(a1,∗) (a2,∗) (b1,∗) (b2,∗) (b3,∗) (ua ,∗) (ub ,∗) (s,∗)

r 1
a 5 5 0 0 1 10 1 11

r 2
a 4 4 1 0 0 8 1 9

r 1
b 0 1 5 5 5 1 15 16

r 2
b 1 0 4 4 4 1 12 13

rg 2 1 2 1 2 3 5 8

dominance problem because it does not take into account that ub has more known
preferences than ua (3 vs. 2).

Both examples are suitable to illustrate that the reference recommender system
suffers from the presentation problem. As an example, consider the first row of
Table 4.1. The recommendation score s(s,r 1

a ) = 11 is the sum of sim(a1,r 1
a ) = 5,

sim(a2,r 1
a ) = 5 and sim(b1,r 1

a ) = 1. Therefore, it can be explained by a1, a2 and b1.
This is however a bad explanation because due to the presence of b1, ua will have
difficulties to identify with the explanations and ub might wrongly conclude that
the recommendation is meant for her.

In our experimental evaluation (Sec. 4.9), we show that similar problems also
arise for multiple large, real-life datasets.

4.5 Solving the Generality Problem

The previous section showed that the generality problem arises because the item-
based reference recommender system (Eq. 4.1) does not discriminate between a
score that is the sum of a few large similarities and a score that is the sum of many
small similarities. Therefore, our first step is to adapt the item-based recommenda-
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tion score (Eq. 4.1) into the length-adjusted item-based recommendation score:

sLIB(u, i ) = sLIB(I (u), i )

= 1

|I (u)|p · sIB(I (u), i ), (4.2)

with the hyperparameter p ∈ [0,1]. Although this adjustment does not immediately
solve the generality problem, it does provide a way to differentiate between the sum
of a few large similarities and the sum of many small similarities. By choosing p > 0,
we create a bias in favor of the sum of a few large similarities. The larger p, the larger
the bias. Also, notice that |I (u)| = c(u).

Since the factor 1
|I (u)|p is the same for all candidate recommendations i , the

top N items for user u according to sLIB and sIB are the same. However, when we
compare the scores of two different users, sLIB also takes into account the the total
amount of items preferred by the user.

To avoid the generality problem we ideally want to recommend an item i if it is
highly relevant to one of the users in the userset of the shared account a. Hence, we
want to compute the recommendation score of an item i for every individual user
u ∈U (a), and use the highest one. Formally, we want to rank all items i according to
their ideal recommendation score

max
u∈U (a)

sLIB(I (u), i ).

Unfortunately, we cannot compute this ideal recommendation score because U (a)
and consequently I (u) are unknown. Instead, we only know I (a) = { j ∈ I | Ra j = 1},
the set of items preferred by account a.

We can, however, approximate the ideal recommendation score with its upper
bound:

max
S∈2I (a)

sLIB(S, i ) ≥ max
u∈U (a)

sLIB(I (u), i ),

in which 2I (a) is the powerset of I (a), i.e. the set containing all possible subsets of
I (a). The proposed approximation is an upper bound of the ideal score because
every set of items I (u) for which u ∈U (a) is also an element of 2I (a). This approxi-
mation is based on the assumption that of all possible subsets of I (a), the ones that
correspond to users are more likely to result in the highest recommendation scores
than the ones put together at random.

Consequently, we propose to solve the generality problem with the disambiguat-
ing item-based (DAMIB) recommender system, according to which the DAMIB
recommendation score of an account a for an item i is given by:

sDAMIB(a, i ) = max
S∈2I (a)

sLIB(S, i ). (4.3)

Every score sDAMIB(a, i ) corresponds to an optimal subset S∗
i ⊆ I (a):

S∗
i = argmax

S∈2I (a)
sLIB(S, i ). (4.4)

Hence, sDAMIB(a, i ) = sLIB(S∗
i , i ). As such, the DAMIB recommender system not only

computes the recommendation scores, but also finds the subset S∗
i that maximizes
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the length-adjusted item-based recommendation score of a for i . This subset serves
as the sharply defined, intuitive explanation for recommending i to a.

In other words, the DAMIB-recommender system implicitly splits the shared
account a into (possibly overlapping) subsets S∗

i based on the intuitive and task-
specific criterium that every S∗

i maximizes sLIB for one of the candidate recom-
mendations i . When sLIB(S∗

i , i ) is high, we expect that S∗
i corresponds well to an

individual user. When sLIB(S∗
i , i ) is low, there is no user in the shared account for

whom i is a strong recommendation and we expect S∗
i to be a random subset. As

such, we avoid the error prone task of estimating the number of users in the shared
account and explicitly splitting the account a into its alleged users, based on a
general clustering criterium [118].

Furthermore, since subsets can potentially overlap, the DAMIB recommender
system does not care whether the known preferences of the users in a shared account
are strongly, slightly or not at all overlapping.

Finally, notice that for p = 0 it always holds that sDAMIB = sLIB = sIB. Hence, the
item based recommender system is a special case of the DAMIB recommender
system.

4.6 Efficient Computation

Finding the maximum in Equation 4.3 in a direct way requires to compute sLI B an
exponential number of times, namely 2|I (a)|. Consequently, computing sDAMIB in a
direct way is intractable.

Fortunately, we are able to show a property of sLIB that allows us to compute
sDAMIB in O (

n logn
)

time, with n = |I (a)|. This property is given by Theorem 4.6.1.

Theorem 4.6.1 Let a be an account that prefers the set of items I (a). Furthermore, let
i be a candidate recommendation. If we rank all items j , l ∈ I (a) such that rank( j ) <
rank(l ) ⇐⇒ sim( j , i ) > sim(l , i ), then the subset S∗

i ⊆ I (a) that maximizes sLIB(S, i )

over all S ∈ 2I (a) is a prefix of that ranking.

Proof: Given any S ⊆ I (a). Initialize P = S. While P is not a prefix, remove r , the
worst ranked item from P , and add a, the best ranked item that is not in P to P .
As long as P is not yet a prefix, it holds that sim(a, i ) ≥ sim(r, i ). Therefore, every
such item replacement increases (or keeps equal at least) sLIB(P, i ) since the factor
1/|I (a)|p does not change and a smaller term in the sum

∑
j∈I (a) sim( j , i ) · |KNN( j )∩

{i }| is replaced by a larger term. Hence, for every S ⊆ I (a) that is not a prefix of
the ranking, we can always find a prefix P ⊆ I (a) for which sLIB(P, i ) ≥ sLIB(S, i ).
Therefore, the subset S∗

i that maximizes sLIB(S, i ) over all S ∈ 2I (a) must always be a
prefix of the ranking. ä

Since the optimal subset is a prefix, we can find it with one scan over the ranked
items of I (a) in linear time. The logarithmic factor in the time complexity comes
from ranking the |I (a)| items.

This theorem is central to our approach because it allows us to compute sDAMIB

in O (
n logn

)
instead of exponential time.
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4.7 Solving the Dominance Problem

The DAMIB recommender system allows us to detect when the dominance problem
arises. This is because every recommendation i provided by DAMIB comes with a
clear explanation in the form of the optimal subset S∗

i ⊆ I (a). Therefore, if the union⋃
i∈top-Na S∗

i is only a small subset of I (a), we know for sure that this small subset
dominates the generation of the top Na recommendations for account a.

Solving the dominance problem is done by choosing ALG = DAMIB in Algorithm
1, called COVER. As such, our final algorithm for recommending to shared accounts
is DAMIB-COVER, with DAMIB-COVER(a) = COVER(a,DAMIB).

Algorithm 1: COVER(a,ALG)

input : a ∈A, ALG
output : top-Na recommendations for account a

1 Compute sALG(a, i ) for all i ∈ I \ I (a)
2 Rank all i ∈ I \ I (a) according to sALG(a, i ) in descending order with ta[r ] the

item at position r in the tuple of ranked items ta

3 C (a) ← {}
4 r ← 1
5 top−Na ← {}
6 while |top-Na | < Na do
7 c ← ta[r ]
8 compute S∗

c
9 if D(S∗

c ,C (a)) ≥ θD then
10 top-Na ← top-Na ∪ {c}
11 C (a) ←C (a)∪S∗

c
12 remove c from ta

13 if C (a) = I (a) then
14 C (a) ← {}
15 r ← 1

16 else
17 r ← r +1
18 if r > |ta | then
19 C (a) ← {}
20 r ← 1

The DAMIB-COVER algorithm uses the DAMIB scores to find the Na highest
scoring candidate recommendations and removes a candidate recommendation
c from the top Na if its explanation S∗

c is not sufficiently different from the expla-
nations of the higher ranked candidates. The explanation-difference condition
D(S∗

c ,C (a)) ≥ θD measures whether the explanation of a candidate (S∗
c ) and the

union of the explanations of the higher ranked candidates (C (a)) are sufficiently
different.

Possible heuristic definitions of the explanation-difference condition are |S∗
c \

C (a)| ≥ 0.5 · |S∗
c |, and |S∗

c \ C (a)| = |S∗
c |. However, our experiments showed that
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|S∗
c \C (a)| ≥ 1 works better than the other two. We therefore use the latter heuristic

in the remainder of this work.

4.8 Solving the Presentation Problem

Generating the top-Na recommendations for a shared account a with DAMIB-
COVER is insufficient because the users that share the account don’t know which
recommendation belongs to which user. This is the presentation problem.

Our solution to the presentation problem is to present every recommendation
i ∈ top-Na together with its explanation S∗

i as defined by Equation 4.4. We expect
that for a large majority of the items i in the top-Na , the explanation S∗

i is a subset of
the preferences I (u) of u, one of the user that shares the account a. We empirically
validate this hypothesis in the experimental section (Sec. 4.9).

Hence, we can present the recommendations as the item r is recommended to
the person that prefers the items s1, s2 and s3. Then, a user will recognize s1, s2 and s3

as her preferences, and know that r is recommended to her.

4.9 Experimental Evaluation

After introducing the datasets and competing algorithms, we discuss the perfor-
mance of our novel algorithm.

4.9.1 Datasets

Ideally, we would use a dataset that contains real life shared account information.
The CAMRa 2011 dataset, for example, contains household membership informa-
tion for a subset of the users that rated movies [118]. As such we could construct
realistic shared accounts with this dataset. Unfortunately, the owner did not wish
to distribute the dataset anymore and we have no knowledge of other datasets that
contain shared account information. However, from the CAMRa 2011 dataset we
learn that most household accounts consist of two users (272 out of 290 households)
and some consist of three (14 out of 290) or four users (4 out of 290). Therefore,
we will follow the approach of Zhang et al. and create ‘synthetic’ shared accounts
by randomly grouping users in groups of two, three or four [118]. Although this
approach is not perfect, Zhang et al. showed that the properties of the ‘synthetic’
shared accounts were similar to the properties of the real shared accounts from the
CAMRa 2011 dataset [118].

We evaluated our proposed solution on four datasets: the Yahoo!Music [113],
Movielens1M [32], Book-Crossing [122] and the Wiki10+ [123] datasets.

The Yahoo!Music dataset contains ratings of 14382 users on 1000 songs on a 1 to
5 scale [113]. Since we consider the problem setting with binary, positive-only data
we binarize the ratings. We convert the ratings 4 and 5 to preferences and ignore all
other ratings. On average, a user has 8.7 preferences.

The Movielens1M dataset contains ratings of 6038 users on 3533 movies on a 1
to 5 scale [32]. Again, we convert the ratings 4 and 5 to preferences and ignore all
other ratings. On average, a user has 95.3 preferences.
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The Book-Crossing dataset contains two sorts of information [122]. First, there
are ratings of users for books on a 1 to 10 scale. Analogously to the previous two
datasets, we convert the ratings 8,9 and 10 to preferences and ignore all other rat-
ings. Secondly, there are also binary preferences that we simply add to our list of
preferences. In total, there are 87 835 users, 300695 books and every user has on
average 11 preferences.

The Wiki10+ dataset contains 99162 tags assigned to 20 751 Wikipedia arti-
cles [123]. In this case we consider the recommendation of tags to articles, hence
the articles take the role of ‘users’ and the tags take the role of ‘items’. If an article a
was tagged at least once with a tag t , we consider a ‘preference’ of article a for tag t .
In this context, a shared account is a big article on a wider topic containing multiple
smaller ‘articles’ on subtopics. On average, every article has 22.1 tags.

4.9.2 Competing Algorithms

We compare our novel algorithm, DAMIB-COVER, with two competing algorithms.
The first one is IB, simply the item-based reference recommender system applied to
the account-rating-matrix, essentially ignoring the existence of the shared account
problems. This is our baseline. The second competing algorithm is IB-COVER,
which is defined as IB-COVER(a) = COVER(a, IB). IB-COVER is similar to one of the
algorithms already proposed by Yu et al. in a different context [117].

4.9.3 Performance

First, consider the recall of a user that shares an account a with |U (a)| other user.
This is the percentage of its individual top-5 recommendations that is also present in
the top-Na recommendations for its shared account, with Na = 5 · |U (a)|. Formally,
we define the recall of user u as:

rec(u) = |top-5(u)∩ top-Na(a)|
5

.

Ideally, the recall of all users in a shared account is 1, meaning that the top-Na for
the shared account is the union of the individual top-5’s of the |U (a)| users sharing
the account.

Now, to investigate how many users genuinely suffer from sharing an account,
we measure the fraction of users that does not get any relevant recommendation, i.e.
that does not find a single one of its top-5 individual recommendations in the top-
Na recommendations of the shared account it belongs to. We denote this number
as recU0 , the fraction of users for which the recall is zero. Formally, we define

recU0 = |{u ∈U | rec(u) = 0}|
|U | .

An illustrative example of a user that genuinely suffers from sharing an account
is depicted in Table 4.3. This table shows two real users from the Movielens1M
dataset with their respective known preferences I (u) and item-based individual
top-5 recommendations. Their item-based individual top-5 recommendations
look reasonable given their known preferences and it is not unrealistic that these
two users would be part of the same household and therefore share an account.
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Table 4.3: Example of user 562 suffering from sharing an account with user 4385.

user ID 562 4385

I (u)

Wes Craven’s New Nightmare,
The Exorcist III, Serial Mom,
Scream, Scream 2, The Blair
Witch Project, Good Will
Hunting, Misery, Interview
with the Vampire,
Candyman, Freddy’s Dead:
The Final Nightmare

American Beauty, The
Shawshank Redemption,
Being John Malkovich, L.A.
Confidential, Boys Don’t Cry,
Croupier, Dogma, Cider
House Rules, Girl
Interrupted, Saving Grace,
The Talented Mr. Ripley

individual top-5:
IB, k = 25

A Nightmare on Elm Street,
Halloween, Halloween:H20,
The Shining, Seven

Pulp Fiction, Fargo, The Sixth
Sense, The Silence of the
Lambs, Shindler’s List

Rsa = IB
The Silence of the Lambs, Fargo, Pulp Fiction, The Sixth
Sense, Saving Private Ryan, The Usual Suspects, Shindler’s
List, Shakespeare in Love, Star Wars: Episode V, The Matrix

Rsa =
DAMIB-COVER
(p=0.75)

The Silence of the Lambs, Fargo, Schindler’s List, A
Nightmare on Elm Street, Halloween:H20, Pulp Fiction,
Shakespeare in Love, The Shining, The Exorcist, Sleepy
Hollow

Consequently, Table 4.3 also shows the recommendations for the ‘synthetic’ account
shared by both users for two cases: Rsa = IB and Rsa = DAMIB-COVER. In case Rsa =
IB, rec(562) = 0, i.e. user 562 does not get a single recommendation and genuinely
suffers from sharing an account. In case Rsa = DAMIB-COVER, rec(562) = 0.6, i.e.
user 562 gets 3 good recommendation and there is no serious problem. Obviously,
this is just one example and we need to look at all users in the dataset for comparing
the different algorithms.

Figure 4.1 displays recU0 for the Yahoo!Music dataset. The number of nearest
neighbors, k, is a parameter of the item-based reference recommender system (Eq
4.1). There are multiple ways of choosing k. Amongst others, examples are accuracy
in an off-line experiment, subjective quality judgment of the recommendations,
accuracy in an on-line A/B test, computational efficiency, etc. Therefore, we present
our results for a variation of reference recommender systems, i.e. item-based collab-
orative filtering recommender systems that use cosine similarity and differ in their
choice of k. Consequently, every plot in Figure 4.1 shows the results for a different k.

For every choice of k and the individual top-5 recommendations corresponding
to this choice we consider four experiments: an account shared by one, two, three
or four users respectively. Notice that an account shared by one user is actually not
shared. Every horizontal axis indicates the number of users that share the account,
every vertical axis indicates the resulting recU0 . The four different markers show the
results for four different shared account recommender systems Rsa: the baseline
algorithm IB, the competitor IB-COVER and two variations of the proposed DAMIB-
COVER algorithm. These two variations differ in their choice of the hyperparameter
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Figure 4.1: recU0 as a function of the number of merged users, |U (a)|, for different k
and shared account recommender systems Rsa on the Yahoo!Music dataset. Lower
is better. 95% confidence intervals are more narrow than the marker clouds and are
therefore not drawn.

p (Eq. 4.2): p = 0.5 and p = 0.75. Since we repeat every experiment 5 times with
other randomizations, every plot contains 5× 4 = 20 markers of the same kind.
However, because of the low spread, most markers are plotted on top of each other,
forming dense marker clouds. Furthermore, since the 95% confidence intervals for
the mean are more narrow than the marker-clouds of 5 data-points, we do not draw
them. Consequently, two marker clouds that are visually well separated, are also
significantly different at the 5% significance level.

We make four observations from Figure 4.1. First, we observe that the baseline
performance is not good. Up to 19% of the users in this dataset get no relevant
recommendation when they share their account with another user. This confirms
that shared accounts can cause significant problems for recommender systems.

Secondly, our proposed solution, the DAMIB-COVER algorithm, can significantly
improve recU0 . In some cases the improvement is even drastic. One example is for the
case that |U (a)| = 2 and that the individual top-5 is generated with k = 200. In this
case, 12% of the users does not get any relevant recommendation when using the
baseline algorithm IB. By using DAMIB-COVER (p = 0.75), this number is reduced
with a factor four (recU0 = 0.03).

Thirdly, sometimes IB-COVER already improves over IB. There are however mul-
tiple cases in which DAMIB-COVER further improves over IB-COVER. Furthermore,
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the advantages of DAMIB-COVER over IB-COVER will become even more evident in
the evaluation of the presentation problem in Section 4.9.5.

Finally, when |U (a)| = 1, i.e. when the accounts are not shared, recU0 = 0 by
definition for the baseline algorithm IB. However, we observe that also for the IB-
COVER and the variants of the DAMIB algorithms recU0 can be kept sufficiently low.
Hence, the proposed DAMIB algorithm does not fail when accounts are not shared.
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Figure 4.2: recU0 as a function of the number of merged users, |U (a)|, for different
k and shared account recommender systems Rsa on the Wiki10+ dataset. Lower is
better. 95% confidence intervals are more narrow than the marker clouds and are
therefore not drawn.

Similarly, figures 4.2-4.4 display recU0 for the Wiki10+, Book-Crossing and Movie-
lens1M datasets respectively. From these figures we learn that other datasets display
similar trends. Furthermore, we observe a worst case performance as bad as 60%,
i.e. 60% of the users does not get any relevant recommendation when they share
their account with other users (Fig. 4.3). Finally, Figure 4.4 shows that our algorithm
does not always improve recU0 .
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Figure 4.3: recU0 as a function of the number of merged users, |U (a)|, for different k
and shared account recommender systems Rsa on the Book-Crossing dataset. Lower
is better. 95% confidence intervals are more narrow than the marker clouds and are
therefore not drawn.
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Figure 4.4: recU0 as a function of the number of merged users, |U (a)|, for different k
and shared account recommender systems Rsa on the Movielens1M dataset. Lower
is better. 95% confidence intervals are more narrow than the marker clouds and are
therefore not drawn.
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4.9.4 Limited Trade-Off
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Figure 4.5: HR@5 as a function of k for different recommender systems. Higher is
better.

To emphasize the point that the DAMIB-COVER algorithm still performs well
in a traditional setting when no accounts are shared, we also discuss the results of
DAMIB-COVER on a more established experimental setup that was used by Desh-
pande et al. [19], amongst many others. To avoid all confusion: this experimental
setup has nothing to do with shared accounts. In this experimental setup, one
preference of every user is randomly chosen to be the test preference hu for that
user. If a user has only one preference, no test preference is chosen. The remaining
preferences are represented as a 1 in the training matrix R (which is in this case
exactly the same as T because no accounts are shared). All other entries of R are
zero. We define Ut as the set of users with a test preference. For every user u ∈Ut ,
every algorithm ranks the items {i ∈ I | Rui = 0} based on R. Following Deshpande
et al. we evaluate every ranking using hit rate at 5 [19]. Hit rate at 5 is given by

HR@5 = 1

|Ut |
∑

u∈Ut

|{hu}∩ top5(u)|,

with top5(u) the 5 highest ranked items for user u. Hence HR@5 gives the percentage
of test users for which the test preference is in the top 5 recommendations. The
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results of the experiment for all datasets are shown in Figure 4.5. Additionally to the
algorithms discussed earlier, Figure 4.5 also contains the results for the baseline-
algorithm POP, the non-personalized algorithm that ranks all items according to
their popularity, i.e. the number of users in the training set that prefer the item. Also
in this case we repeated every experiment five times with a different randomization.
Again, the five data points are often plotted on top of each other because of the
low spread. Figure 4.5 shows that HR@5 is very similar for DAMIB-COVER and IB.
Hence, there is almost no trade-off in terms of global accuracy measured as HR@5.

4.9.5 Presentation

In Section 4.8 we proposed to solve the presentation problem by presenting every
recommendation together with its explanation. If then, a user in the shared account
recognizes an explanation as a subset of her preferences, this user can identify with
the recommendation and therefore knows the recommendation is meant for her. For
this proposed solution to work, it is crucial that the recommendation is identifiable,
i.e. that its explanation is a subset of the preferences of one of the users in the shared
account. We quantify the identifiability of a recommendation i , with explanation
S∗

i , for a shared account a as:

ident(S∗
i ) = max

u∈U (a)

|S∗
i ∩ I (u)|
|S∗

i |
.

Ideally, ident(S∗
i ) = 1, i.e. every item in the explanation is a preference of one and

the same user. In the worst case, ident(S∗
i ) = 1/|U (a)|, i.e. the explanation contains

an equal amount of preferences from all users in the shared account and therefore
none of the users can identify herself with the recommendation.
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Figure 4.6: Histograms of identifiability of top-10 recommendations for |U (a)| = 2
on the Yahoo!Music dataset. k = 200.

Figure 4.6 shows histograms of the identifiability of the top-10 recommendations
for |U (a)| = 2 on the Yahoo!Music dataset for multiple shared account recommender
systems Rsa. From Figure 4.6a we learn that if one simply applies the item-based
reference algorithm to the shared account data of the Yahoo!Music dataset, the
presentation problem arises: very few recommendations can be identified with one
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of the users in the shared account, i.e. ident(S∗
i ) = 1 for only 10% of the explanations.

Figure 4.6b shows that using IB-COVER instead of IB does not improve the situa-
tion. However, figure 4.6c shows that using DAMIB-COVER drastically increases the
identifiability of the recommendations, i.e. ident(S∗

i ) = 1 for approximately 60% of
the explanations. Hence, the DAMIB explanations are superior to the item-based
explanations.

Figures 4.7-4.9 show that the other datasets display the same trend, although
less pronounced.
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Figure 4.7: Histograms of identifiability of top-10 recommendations for |U (a)| = 2
on the Wiki10+ dataset. k = 100.
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Figure 4.8: Histograms of identifiability of top-10 recommendations for |U (a)| = 2
on the Book-Crossing dataset. k = 100.

4.10 Related Work

Although we did not find prior art tackling the same challenges as we do, there are
some works that have commonalities with ours.
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Figure 4.9: Histograms of identifiability of top-10 recommendations for |U (a)| = 2
on the Movielens1M dataset. k = 25.

First, Palmisano et al. [63] consider a problem setting in which the contextual
information is sometimes missing. However, their proposed solution draws upon
all training data for which they do know the context to devise a ‘context predictor’.
Hence, their solution relies on contextual information.

Second, Anand et al. [3] do not use explicit contextual information. However,
their solution assumes that the preferences of every account are grouped into trans-
actions. Our solution does not assume that this kind of extra data is available.

Third, Zhang et al. [118] study the extent to which it is possible to explicitly split
shared accounts into their individual users without contextual information. They are
able to split certain shared accounts very nicely, but find that in general, explicitly
splitting accounts into their users is very error prone. Fortunately, by means of
sDAMIB, we are able to avoid this explicit split of accounts into users and perform a
softer, implicit split instead.

Fourth, Yu et al. [117] propose to use the explanations of item-based recommen-
dations to generate diversified top-N recommendation lists. Where they focus on
the diversity of the explanations, we focus on covering all items preferred by the
account with the different explanations. Furthermore, in our experimental evalu-
ation (Sec. 4.9) we showed that the explanations provided by our DAMIB-COVER
algorithm are superior to those that can be extracted from an item-based algorithm.

Finally, as mentioned in Section 2.2.6, the maxMF [109] and NLMF [45] methods
might be an alternative to solve the generality problem. However, these methods do
not solve the dominance an presentation problems.

4.11 Conclusions

We showed that the widely used item-based recommender system fails when it
makes recommendations for shared accounts. Therefore, we introduced the chal-
lenge of Top-N recommendation for shared accounts in the absence of contextual
information. Furthermore, we proposed the DAMIB-COVER algorithm, our solution
to this challenge. Central to our approach, we showed a theorem that allowed us to
compute a recommendation score in O (

n logn
)

instead of exponential time. Finally,
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we experimentally validated that our proposed solution has important advantages.
An important direction for future work, is to generalize our proposed solution to a
wider range of reference recommender systems.





CHAPTER 5
Efficiently Computing the Exact

k-NN Graph for High
Dimensional Sparse Data

Neighborhood-based collaborative filtering methods with an analytically
solvable deviation function require the computation the k most similar
users(items) to every user(item) in the dataset. Efficiently computing these
neighborhoods is an application of the more general problem of efficiently
computing the exact k-nearest neighbors graph for high dimensional
sparse data.

In this chapter1, we are given a large collection of sparse vector data in
a high dimensional space; and we investigate the problem of efficiently
computing the k most similar vectors to every vector. Two common names
for this task are computing the k-nearest neighbors graph and perform-
ing a k-nearest neighbors self-join. Currently, exact, efficient algorithms
exist for low dimensional data. For high dimensional data, on the other
hand, only approximate, efficient algorithms have been proposed. How-
ever, the existing approaches do not discriminate between dense and
sparse data. By focusing on sparse data, we are able to propose two in-
verted index-based algorithms that exploit the sparseness in the data to
more efficiently compute the exact k-nearest neighbors graph for high
dimensional data. We first propose a simple algorithm based on dynamic
indexing. Afterwards, we propose a second algorithm that extends the
first one by introducing a virtual threshold that enables the exploitation
of various upper bounds for pruning candidate neighbors. We experi-
mentally show that our approaches result in significant speedups over
state-of-the-art approaches.

1This chapter is based on work under submission as “Efficiently Computing the Exact k-NN Graph
for High Dimensional Sparse Data” by Koen Verstrepen and Bart Goethals [103].

77
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5.1 Introduction

Computing the k most similar vectors to every vector in a large collection of sparse,
high dimensional vectors, is a crucial component of many real world problems. On
the one hand, objects in the real world are often represented as high dimensional
vectors. Documents, paragraphs, tweets and search snippets, for example, are
typically represented by a vector, where each dimension of the vector represents a
word in a large vocabulary, and the value in each dimension indicates the importance
of the word in the document. These document vectors are very sparse, since every
document only contains a small subset of the vocabulary. Other objects that are
typically represented by high dimensional vectors are users that buy products, listen
to songs, watch movies, etc. In this case, each dimension of the vector corresponds
to a product, song, movie, etc. in a large collection, and the value in each dimension
is the number of times that the user interacted with the item corresponding to
the dimension. Also these vectors are very sparse, since even popular objects are
typically only interacted with by a small fraction of all users.

On the other hand, many problems require the computation of the k-nearest
neighbors graph. Examples are:

• When exploring a collection of objects, the k-nearest neighbors graph can be
queried to find the objects most similar to the currently considered object.

• The k-nearest neighbors graph of existing objects can be used to rapidly
search for the nearest neighbors of novel objects [33].

• Many clustering algorithms take the similarity (or distance) matrix of the
objects as input [34].

• The k-nearest neighbors graph can be used for link prediction in (social)
networks [52].

• Item-based (User-based) collaborative filtering algorithms use the k-nearest
neighbors graph of items (users) [20].

A naïve baseline algorithm for computing the k-nearest neighbors graph, which
is another name for performing a k-nearest neighbors self-join, computes all n2

pairwise object similarities, where n is the number of objects in the collection. This is
intractable for many real world problems given the large size of their corresponding
object collections.

For low dimensional data, more efficient solutions have been proposed [69, 16].
For high dimensional data, on the other hand, only approximate algorithms have
been proposed [14, 23, 70]. Although sometimes approximate results are sufficient,
often exact results are required. For example, when a user searches for papers similar
to a target paper, she will not be satisfied if the approximate results do not contain
this one very similar paper she already knows.

Now, these approaches do not discriminate between dense and sparse data,
although sparseness, if present, could be exploited to find an exact instead of an
approximate solution.

Therefore, we propose two novel, inverted index-based algorithms that are able
to exploit the sparseness in the data to efficiently compute the k-nearest neighbors
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graph without relying on approximate techniques. Our first proposal is a simple
algorithm based on the dynamic indexing technique proposed by Sarawagi and
Kirpal [78]. Our second algorithm extends the first one by introducing a virtual
threshold that enables the exploitation of various upperbounds for pruning candi-
date neighbors. These upperbounds were proposed for solving the related problem
called all-pairs similarity search or self-similarity join, i.e. finding all pairs of objects
more similar than a certain minimal similarity [4, 7].

Although there will still exist large datasets for which only an approximate solu-
tion is within reach, our proposed algorithms increase the maximum size of sparse
datasets for which it is possible to compute the exact k-NN graph in a reasonable
amount of time. Finally, we experimentally validate that both algorithms realize
speedups over to the current state-of-the-art.

5.2 Problem Statement

Given a set of high-dimensional, sparse, positive vectors V = {v | v ∈Rm
≥0}, we solve

the problem of finding for every vector v ∈ V the k most similar vectors w ∈ V
according to the similarity function sim(v,w).

To cover the cases in which the k-th most similar vector is equally similar as
the (k + x)-th most similar vector, we more formally define finding the top-k of
every v ∈ V as finding for every v ∈ V all vectors w ∈ V \ {v} for which it holds that
|{u ∈ V \ {v,w} | sim(v,u) > sim(v,w)}| < k, i.e. there are less than k vectors that are
more similar to v than w. In the remainder of this chapter, we will call this result
the top-k, although it can contain more than k vectors in this special case. Also,
we define kNN(v) as the data structure containing the pairs (w,sim(v,w)) for every
vector w that is in the top-k of the vector v.

Furthermore, we focus on cosine similarity, which is often used on high dimen-
sional, sparse vectors. For v,w ∈V , it is defined as

cos(v,w) = v ·w

||v||2 · ||w||2
,

which can be rewritten as a dot product of vectors that are normalized to unit length
in a preprocessing step:

cos(v,w) = v

||v||2
· w

||w||2
.

In the remainder of this chapter, we will assume that all vectors in V are unit length
normalized.

Since we consider sparse, high dimensional vectors, the value of a vector v ∈
V in dimension i , denoted v[i ], is mostly zero. Therefore, we use sparse vector
representations in our implementations. The sparse representation of a vector v is
the set of pairs (i ,v[i ]) for which the integer i = 1. . .m and v[i ] > 0. We define the size
of a vector v, denoted |v|, as the number of pairs in this set. Similarly, we define the
size of a dimension i , denoted c(i ), as the number of pairs in the set containing all
pairs (i ,v[i ]) for which v ∈V and v[i ] > 0. The vector size |v| should not be confused
with the vector norm ||v||2.

Finally, note that v(bold) is a vector and that v is the identifier of this vector.
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Table 5.1: Basic properties of the datasets.

dblp tweets msd

|V | 629 814 1 000 010 1 019 318

m 740 973 630 784 384 546∑
v∈V

|v| 6 507 829 8 491 045 48 373 586

max
i=1...m

(
c(i )
|V |

)
0.32 0.44 0.11

5.3 Real World Datasets

In this chapter, we use three real-world datasets: dblp , tweets and msd . Table 5.1
summarizes some basic properties of the datasets.

The dblp dataset [94] contains 629 814 scientific papers that are represented by
their title and authors. Hence, every paper is a sparse, high dimensional vector in
which every dimension corresponds to a word in the vocabulary of 740 973 words,
including author names. If the word that corresponds to dimension i appears in
the title of paper v or is the name of one of the authors, v[i ] = 1. Otherwise, v[i ] = 0.
Similar datasets were constructed by Arasu et al. [5], Bayardo et al. [7], and Dong et
al. [23].

We constructed the tweets dataset with the Twitter streaming API [98]. To gather
a sample of random English tweets, we selected tweets that contained at least one
out of 70 English stop words with a minimal length of 4 characters, from the Natural
Language Toolkit [61]. From the selected tweets, we removed the stop words and
stemmed the remaining words. As such, we obtained a dataset with 1 000 010 tweets
in which every tweet is represented by a sparse, high dimensional vector in which
every dimension corresponds to a word in the vocabulary of 630 784 words. If
the word that corresponds to dimension i appears in tweet v, v[i ] = 1. Otherwise,
v[i ] = 0.

The msd dataset is derived from the Echo Nest Taste Profile Subset of the Million
Song Data Challenge [10] and contains 1 019 318 people that are represented by the
songs they listened to. Hence, every person is a sparse, high dimensional vector in
which every dimension corresponds to a song in the catalog of 384 546 songs. If
person v listened c times to the song that corresponds to dimension i , v[i ] = c. If v
did not listen to the song, v[i ] = 0.

5.4 Naïve Baseline

The naïve approach to computing the k-nearest neighbors graph is layed out in
Algorithm 2. This algorithm computes for every vector v the similarity with every
other vector w by explicitly computing the dotproduct v · w (Line 4). Since the
dotproduct is between sparse vectors, it can be efficiently computed by means of
the well known method layed out in Algorithm 3. Afterwards, it updates kNN(v)
accordingly (Line 5, Alg. 2). Hence, the naïve baseline algorithm explicitly computes
|V |2 −|V | (sparse) dotproducts, which is intractable for many real world datasets.
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Algorithm 2: Naïve Baseline

input :V , k
output :For every v ∈V : kNN(v)

1 for each v ∈V do
2 s ← 0|V |×1

3 for each w ∈V \ {v} do
4 s[w] ← v ·w

5 kNN(v) ← ExtractNN(s,k)

Algorithm 3: Sparse Dotproduct

input :v, w
output :v ·w

1 dotp ← 0
2 i ← smallest i s.t. v[i ] > 0
3 j ← smallest j s.t. w[ j ] > 0
4 while i < m and j < m do
5 if i < j then
6 i ← next i s.t. v[i ] > 0 or m

7 else if i > j then
8 j ← next j s.t. w[ j ] > 0 or m

9 else
10 dotp ← dotp+v[i ] ·w[ j ]
11 i ← next i s.t. v[i ] > 0 or m
12 j ← next j s.t. w[ j ] > 0 or m

13 v ·w ← dotp

5.5 Basic Inverted Index

Inspired by the top-k document retrieval algorithms [97], we propose to speed-up
the exact computation of the k-nearest neighbors graph by exploiting the sparse-
ness in the data. The sparseness can be exploited by means of an inverted index
representation of the dataset [111]. In our case, the inverted index representation of
V is L, a list of m inverted lists L1,L2, ...,Lm , where each inverted list corresponds to
one of the m dimensions and list Li contains all pairs (v,v[i ]) for which v ∈V , v is
the identifier of v, and v[i ] > 0. Algorithm 4 describes a basic inverted index-based
approach.

This approach is more efficient because it avoids the wasteful explicit compu-
tation of the dotproduct on Line 4 of the naïve baseline algorithm (Alg. 2). Instead,
this algorithm loops over the |v| non-zero dimensions in the sparse representation
of v (Line 5) and for each of these dimensions it loops over the inverted list corre-
sponding to them. As such, this algorithm avoids testing whether a dimension is
non-zero in both v and w, as is done in Algorithm 3. To illustrate this, consider the
two vectors in Table 5.2 that belong to a large collection of vectors V . Computing the
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Algorithm 4: Basic Inverted Index-based algorithm

input :V , k
output :For every v ∈V : kNN(v)

1 Build the inverted index L
2 for each v ∈V do
3 s ← 0|V |×1

4 U ← {}
5 for each i = 1. . .m s.t. v[i ] > 0 do
6 for each (w,w[i ]) ∈ Li do
7 s[w] ← s[w]+v[i ] ·w[i ]
8 U ←U ∪ {w}

9 kNN(v) ← ExtractNN(s,U ,k)

Table 5.2: Sparse representation of two vectors selected from a large dataset V .

x = {(1,0.58), (2000,0.58), (4000,0.58)}

y = {(1000,0.5), (3000,0.5), (5000,0.5), (30000,0.5)}

k-nearest neighbors of x with the naïve baseline algorithm, requires one to compute
the dotproduct between x and y at some point. This is typically done by Algorithm
3, which initializes i to 1 and j to 1000, corresponding to the pairs (1,0.58) and
(1000,0.5) respectively. Then, the dimensions 1 and 1000 are compared and found
to be different. Therefore, i is incremented to point to (2000,0.58), which is the
next non zero entry of x. Then, again, the dimensions 2000 and 100 are compared
and found to be different. Therefore, j is incrmented to now point to (3000,0.5).
This continues until i reaches the end of the sparse representation of x. Hence, a
lot of value comparisons and iterator increments are required to find out that the
dotproduct between x and y is zero. The Basic Inverted Index-based algorithm, on
the other hand, does not even notice that y exists when it computes the k-nearest
neighbors of x because y is not present in L1,L2000 or L4000. Consequently, it does
not waste any computations on it.

Furthermore, this inverted index-based algorithm maintains a list U of all vectors
that have a non-zero similarity with v to speed-up the top-k extraction on Line 9.

5.6 DynamicIndex

Instead of building the inverted index in a preprocessing step, as done by the basic
inverted index-based algorithm (Line 1) and as typically done by top-k document
retrieval algorithms [97], we adopt the idea of Sarawagi and Kyrpal to build it dy-
namically [78]. This allows us to propose the DynamicIndex algorithm (Algorithm
5).

Building the inverted index L dynamically, means that it is initialized with m
empty inverted lists (Line 1) and that a new vector is added only after it has been pro-
cessed (Line 13 and 14). The advantage of building the inverted index dynamically
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Algorithm 5: DynamicIndex

input :V , k
output :For every v ∈V : kNN(v), L

1 ∀Li ∈L : Li ← {}
2 ∀v ∈V : kNN(v) ← empty heap
3 for each v ∈V do
4 s ← 0|V |×1

5 U ← {}
6 for each i = 1. . .m s.t. v[i ] > 0 do
7 for each (w,w[i ]) ∈ Li do
8 s[w] ← s[w]+v[i ] ·w[i ]
9 U ←U ∪ {w}

10 kNN(v) ← ExtractNN(s,U ,k)
11 for each w ∈U do
12 kNN(w) ← UpdateNN(kNN(w), v, s[w],k)

13 for each i = 1. . .m s.t. v[i ] > 0 do
14 Li ← Li ∪ {(v,v[i ])}

is that either sim(v,w) or sim(w,v) is computed, but not both of them as is the case
for the basic inverted index-based algorithm. This is possible because v ·w = w ·v.
As a result, the number of computations is divided by two.

However, dynamic index building cannot be straightforwardly applied to k-NN
graph computation because the top-k extracted on Line 10 can only contain vectors
that are already indexed. Hence, the top-k’s computed on Line 10 are not complete.
Therefore, our version also updates the existing top-k’s (Lines 11-12) when new
corresponding similarities have been computed. Furthermore, we mitigate the
computational cost of performing these updates by storing the temporary top-k’s as
heap structures.

5.7 PrunedIndex

To further improve over DynamicIndex (Alg. 5), we adopt techniques proposed for
solving the related problem called all pairs similarity search or similarity join which
comprises finding all pairs of vectors that are more similar than a certain threshold
[7, 4, 13, 6, 50]. However, these techniques heavily rely upon this threshold, which
is absent in our case. Indeed, the similarity of the k-nearest neighbor can be close
to zero for one vector while it can be close to one for another vector. Consider for
example Figure 5.1, which shows for the dblp dataset the cumulative distribution of
the similarity with the k-nearest neighbor. This Figure shows that the similarity with
the k-nearest neighbor spans the whole domain, i.e. from 0 to 1, and that for 50% of
the vectors, even the 1-nearest neighbor only has a similarity lower than 0.5. A user
can, for example, search for the 3 papers most similar to a target paper, and not care
that their absolute similarity is below a certain threshold.

To solve this problem, we propose PrunedIndex, a solution that consists of four
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Figure 5.1: Cumulative distribution of the similarity with the k-nearest neighbor for
all objects in the dblp dataset.

steps. In the first step, we introduce a virtual threshold τ and for each vector in V we
efficiently search for the k-nearest neighbors that have a similarity larger than τ with
this vector. After this first step, we only found the top-k’s for which all members have
a similarity above τ. Consequently, we did not yet compute all top-k’s. Therefore, in
the next three steps, we identify and compute the remaining top-k’s.

Before discussing PrunedIndex in detail, we define two essential concepts:
max(v) and maxi (V).

Definition Given a vector v ∈Rm , max(v) is the maximum value v[i ] that appears
in v over all dimensions i ∈ [1,m] ⊂N.

Definition Given a set of vectors V ⊆Rm
≥0, maxi (V) is the maximum value v[i ] that

appears in dimension i over all vectors v ∈V .

Algorithm 6 describes PrunedIndex. In the preprocessing step (Lines 1-4), the
vectors v are sorted in descending order of max(v) and the dimensions i are re-
ordered in descending order of c(i ). This is required by the optimization techniques.
The remainder of the algorithm is organized in four steps: the thresholding step
(Lines 5-10), the partitioning step (Lines 11-18), the leftovers step (Lines 19-20), and
the completion step (Lines 21-24).
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Algorithm 6: PrunedIndex

input :V , k, τ
output :For every v ∈V : kNN(v)

1 Reorder the dimensions i = 1. . .m in descending order of c(i ).
2 Sort all v ∈V in descending order of max(v).
3 ∀Li ∈L : Li ← {}.
4 ∀v ∈V : kNN(v) ← empty heap

//Thresholding step
5 for each v ∈V do
6 s,U ← ComputeSimilarities(v,L,τ) / Alg. 8
7 kNN(v) ← ExtractNN(s,U ,k)
8 for each w ∈U do
9 kNN(w) ← UpdateNN(kNN(w), v,s[w],k)

10 L← GrowIndex(L,v,τ) / Alg. 7

//Partitioning step
11 C ← {}
12 I ← {}
13 for each v ∈V do
14 if |kNN(v)| ≥ k and min(kNN(v)) ≥ τ then
15 C ←C ∪ {v}

16 else
17 I ← I ∪ {v}
18 kNN(v) ← empty heap

//Leftovers step
19 ∀Li ∈L : Li ← {}.
20 L, For every v ∈ I : kNN(v) ← DynamicIndex(I ,k)

//Completion step
21 for each v ∈C do
22 s,U ← ComputeSimilarities(v,L,0)
23 for each w ∈U do
24 kNN(w) ← UpdateNN(kNN(w), v,s[w],k)

PrunedIndex achieves its runtime reduction in the thresholding step (Lines 5-
10). For each vector v ∈V we efficiently search for the other vectors w that belong to
the top-k of v and additionally have a similarity with v that is larger than the virtual
threshold τ. Thanks to the virtual threshold τ, we avoid to consider candidates that
will not be in the top-k anyway. Unfortunately, by exploiting τ, we also filter out
some eventual top-k members. Consequently, we do not have an exact solution yet
after the first step. Therefore, we sacrifice a part of the runtime reduction achieved
in this first step to execute the other three steps, which transform the incomplete
solution into a complete one.

In the partitioning step (Lines 11-18), we identify the vectors with a completed
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Figure 5.2: Time consumed by the different blocks of PrunedIndex for computing all
1-nearest neighbors on the dblp dataset for different settings of the virtual threshold
τ.

top-k and put them in C . We retain the other vectors in I and empty their top-k.
In the leftovers step (Lines 19-20), we empty the inverted index L and compute

all similarities among the vectors v ∈ I and the corresponding top-k’s without any
threshold. This is done by executing DynamicIndex (Alg. 5) with the subset I ⊆ V
instead of the complete set of vectors V as input. Additionally, we also retain the
inverted index L built in this step.

The vectors in C , on the other hand, are considered in the completion step. We
compute the similarity of these vectors with all vectors in the inverted index, which is
all vectors in I , to update the top-k’s of these vectors. Since the top-k’s of the vectors
in C are already complete, we do not need to update and index them anymore.

The virtual threshold τ is set as high as possible to maximize pruning, but low
enough to avoid too much incomplete neighborhoods after the thresholding step.
Figure 5.2 shows the time consumed by every step of PrunedIndex for computing all
1-nearest neighbors on the dblp dataset for different settings of the virtual threshold
τ. First, the preprocessing step (Lines 1-4) and the partitioning step (Lines 11-18),
in which the incomplete top-k’s are identified, consume a negligible amount of
time and are therefore not visible on the figure. Second, as the virtual threshold τ is
increased, more candidates are filtered out, and consequently the time consumed
by the thresholding step (Lines 5-10) decreases rapidly. Unfortunately, also the
number of actual top-k members that is filtered out increases. Consequently, more
vectors will end-up in I and the time consumed by the leftovers step (Lines 19-20)
monotonically increases with τ. Third, the time consumed by the completion step
(Lines 21-24) first increases, reaches a maximum around τ= 0.5, and then decreases
again. The reason for the initial increase is that the size of I , and consequently the
inverted index L, which is an input for ComputeSimilarities on Line 22, is larger
when τ is larger. The reason for the final decrease is that the number of items in C is
smaller for a larger τ. The maximum is reached when the decreasing effect becomes
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Figure 5.3: The cumulative distribution function cdf and 10 different approximations
c̃df based on 10 different random samples of size |V |/104 from all |V | neighborhoods
on the dblp dataset for k = 1.

more important than the increasing effect.

A good value for τ can be obtained by inspecting the cumulative distribution of
the similarity with the k-nearest neighbor. Figure 5.1, for example, shows that τ= 0.4
is a good setting on the dblp dataset when k = 1 because 90% of the neighborhoods
is efficiently computed in the thresholding step, while only 10% is incomplete.
Choosing τ smaller would sacrifice too much pruning power, while choosing τ larger
would drastically increase the number of incomplete neighborhoods to 45% because
of the steep gradient in the cumulative distribution. For k = 20, τ = 0.3 is a good
choice on the dblp dataset. However, this cumulative distribution is a result of
PrunedIndex and can therefore not be used to set τ. Fortunately, the bottom part
of the cumulative distribution can be robustly approximated by computing only
0.01% of the neighborhoods with DynamicIndex, which only takes slightly more than
0.01% of the total time. This is illustrated for the dblp dataset and k = 1 in Figure 5.3.
In our experiments (Sec.5.9), we achieved good results by automatically choosing
τ such that ¯cdf (τ) = 0.1 with ¯cdf the empirical approximation of the cumulative
distribution by |V |/104 random neighborhoods.

In the thresholding step, the runtime reduction is achieved through exploiting
the virtual threshold τ in the functions ComputeSimilarities (Line 6) and GrowIndex
(Line 10). We discuss them in the next two subsections.
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5.7.1 GrowIndex

Instead of adding complete vectors to the inverted index, as done in DynamicIndex
(Alg. 5, Lines 13-14), we only index a part of every vector, as proposed by Bayardo et
al. [7]. As such, the size of the inverted index can be drastically reduced. This results
into two advantages. First, the smaller index can be traversed faster. Second, less
candidates for top-k membership will be generated later on, which reduces the time
required to choose the top-k among them.

More specifically, we will avoid indexing a prefix of every vector v, denoted v′p ,
with the highest non-zero dimension in the prefix smaller than or equal to p. Hence,
v′p ∈Rm

≥0 and for all dimensions j > p, v′p [ j ] = 0. Furthermore, the remaining suffix
of v that is added to the index is denoted v′′p . Notice that the equalities v = v′p+v′′p and
v ·w = v′p ·w+v′′p ·w are a trivial consequence of these definitions. Practically, we only
keep the sparse representation of v′p and the inverted index L in memory. Before
the algorithm starts, no vectors are indexed yet and all information is contained in
the non-indexed parts v′p with p = m. As the algorithm gradually indexes vectors,
pairs (i ,v[i ]) are removed from v′p and inserted into Li as (v,v[i ]). Consequently, p
becomes smaller than m.

We can safely index only a part of every vector by exploiting two upper bounds
on sim(v′p ,w), the similarity between the non-indexed v′p and any other vector w
that will be processed and indexed after v. The first upper bound was proposed by
Bayardo et al. [7] and is based on the definition of the dotproduct:

sim(v′p ,w) = v′p ·w =
p∑

i=1
v[i ] ·w[i ], (5.1)

in which w[i ] has two upper bounds. The first one is maxi (V) and is related to the
dimension i . The second one is max(v) and is a result of the ordering of the vectors
according to their maximum value (Line 2 of PrunedIndex). Consequently, the first
upper bound on sim(v′p ,w) is

sim(v′p ,w) ≤
p∑

i=1
v[i ] ·min

(
max

i
(V),max(v)

)
.

≤ b1

(5.2)

The second upper bound was proposed by Anastasiu and Karypis [4] and is
based on the Cauchy-Schwartz inequality:

sim(v′p ,w) = v′p ·w ≤ ||v′p ||2 · ||w||2,

which reduces to the second upper bound on sim(v′p ,w):

sim(v′p ,w) ≤ ||v′p ||2,

≤ b2
(5.3)

since all vectors are unit length normalized.
To maximize the runtime reduction, we maximize the size of the prefix v′p that

we can avoid to index. This maximum is determined by the function ComputeSim-
ilarities, which we will explain in detail in Section 5.7.2. To make sure that Com-
puteSimilarities can identify all top-k members as candidates, it is required that
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for every vector w ∈V that is not yet indexed, and for which sim(v,w) ≥ τ, we index
at least one non-zero value v[i ] for which also w[i ] > 0. Informally, we say that we
need to index at leat one “match” between v and w. Bayardo et al. [7] prove that
this is a sufficient condition for producing correct results. Algorithm 7 describes
how GrowIndex realizes this objective by exploiting the upper bounds b1 and b2.
GrowIndex iterates over the non-zero dimensions of v (Line 5) and updates the
upper bounds b1 and b2 on sim(v′i ,w) every time the dimension i is increased (Lines
6-8). Now, as long as the minimum of both upper bounds is lower than τ, obviously
also sim(v′i ,w) is lower than τ and there are two options: either there exists a di-
mension j > i for which both v[ j ] > 0 and w[ j ] > 0, i.e. there is a match in a higher
dimension, or there isn’t. On the one hand, if there is a match in a dimension j > i ,
then ComputeSimilarities can use this match to identify all top-k members and we
do not need to index v[i ]. On the other hand, if there isn’t, sim(v′i ,w) is equal to
sim(v,w) and since sim(v′i ,w) ≤ min(b1,b2) < τ, also sim(v,w) will be smaller than τ

and we are not interested in finding this similarity. Consequently, also in the second
case we do not need to index v[i ].

GrowIndex requires that all v ∈V are sorted in descending order of max(v) (Line
2 in Alg. 6). In this way, the upper bound on the value w[i ] in Equation 5.1 can be set
to min(maxi (V),max(v)) (Eq. 5.2), instead of the looser bound maxi (V).

Although GrowIndex does not require any specific ordering of the dimensions
i = 1, . . . ,m, we follow Bayardo et al. and order them in descending order of c(i ) to
heuristically minimize the maximum length of all inverted lists (Line 1 in Alg. 6).

Algorithm 7: GrowIndex

input :L, V , v ∈V , τ ∈ [0,1] ⊂R
output :L

1 p ← m
2 v′p ← v

3 v′′p ← 0m×1

4 b1,b2,bt ← 0
5 for each i = 1. . .m s.t. v[i ] > 0 do
6 b1 ← b1 +v[i ] ·min(maxi (V),max(v))
7 bt ← bt +v[i ]2

8 b2 ←
√

bt

9 if min(b1,b2) ≥ τ then
10 p ← min(p, i )
11 Li ← Li ∪ {(v,v[i ], ||v′i ||2)}
12 v′p [i ] ← 0

13 v′′p [i ] ← v[i ]

5.7.2 ComputeSimilarities

Instead of processing every relevant inverted list, as is done in DynamicIndex (Alg. 8,
Lines 4-9), ComputeSimilarities (Alg. 8) reduces the number of inverted lists that
needs to be scanned and does not necessarily scan the remaining relevant inverted
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list completely. In this way, the scanning itself takes less time, but also less candidate
top-k members are generated, i.e. |U | is kept smaller. Furthermore, ComputeSimi-
larities contains additional steps (Alg. 8, Lines 19-23) for correctly dealing with the
partial inverted index created by GrowIndex. We first discuss these additional steps
and afterwards four optimizations.

When computing the k-nearest neighbors of a vector v, ComputeSimilarities
computes a score s[w ] for every partially indexed vector w by comparing v with the
partial inverted index L (Lines 5-18). This score is equal to the dotproduct of v with
the indexed part of w, i.e. s[w] = v ·w′′

p . Hence, by adding the dotproduct v ·w′
p to

this score (Line 23), it becomes equal to v ·w, which is the exact similarity between v
and w. Explicitly computing the dotproduct v ·w′ (Line 23) is an expensive operation.
This partially offsets the runtime reduction achieved by only indexing the minimally
required parts of the vectors in GrowIndex.

The first optimization is to avoid this explicit dotproduct computation v ·w′
p

(Line 23) as much as possible. This is possible by exploiting an upper bound on
v ·w′

p (Line 20) that was proposed by Bayardo et al. [7]. The upper bound is based
on the definition of the dotproduct

v ·w′
p =

p∑
i=1

v[i ] ·w′
p [i ].

In this definition, we can replace every factor by an upper bound to obtain an upper
bound on v ·w′

p

v ·w′
p ≤

p∑
i=1

max(v) ·max(w′
p ),

which can be tightened to

v ·w′
p ≤ min(|v|, |w′

p |) ·max(v) ·max(w′
p ). (5.4)

Hence, if

s[w]+min
(
|v|, |w′

p |
)
·max(v) ·max(w′

p ) < τ,

also
s[w]+v ·w′

p < τ,

which is equivalent to
v ·w < τ,

and we do not need to compute the dotproduct exactly, which is expensive.
The second optimization exploits an upper bound on v ·w, proposed by Bayardo

et al., that is again derived from the definition of the dotproduct:

sim(v,w) =
m∑

i=1
v[i ] ·w[i ],

and again we obtain an upper bound on the dotproduct by replacing every value
with an upper bound:

sim(v,w) ≤
m∑

i=1
max(v) ·max(w),
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which we can tighten to

sim(v,w) ≤ |w| ·max(v) ·max(w),

and simplify to
sim(v,w) ≤ |w| ·max(v) ·1,

since all vectors are normalized to have unit length. Hence, if the upper bound
|w| ·max(v) is smaller than τ, also sim(v,w) is smaller than τ and we do not need to
consider w as a candidate neighbor for v, given the threshold τ. Equivalently, we
only consider vectors w for which |w| > τ/max(v). Since all vectors v ∈V are ranked
in descending order of max(v) (Line 2), the lower bound τ/max(v) on |w| becomes
tighter as the algorithm progresses. Therefore, we can permanently remove from
the index any vector w for which |w| <σ. ComputeSimilarities removes such vectors
only if they are at the beginning of an inverted list Li that needs to be traversed
(Lines 6-9) to avoid that overhead computations will completely offset the achieved
optimization. Consequently, it is possible that there are vectors w further down Li

that could be removed but are not. However, this will only be exceptions because
one typically observes that |w| becomes smaller as one moves towards the beginning
of the inverted lists. This is because the vectors w are added to the inverted index in
decreasing order of max(w), and max(w) is inversely correlated with |w| because of
the normalization to unit norm (Sec. 5.2).

In our implementation, we do not explicitly remove ( f , f[i ]) from memory but
maintain an offset from which to start the list iteration instead. Explicitly removing
( f , f[i ]) from the beginning of Li would be expensive since it would require shifting
all elements in Li because we use a compact data structure, such as an array in C++,
to store Li in main memory. In a compact data structure, consecutive values in the
data structure are stored in memory locations with consecutive addresses. This is
for example not the case for a standard linked list. As a result, we can benefit from
the cpu caching to more rapidly traverse the inverted lists Li . In our experiments,
we noticed that the benefit of this implementation detail, i.e. using compact data
structures for the inverted lists, was dramatic, which is in line with the observations
of Stroustrup [91]. If memory size became an issue, an explicit removal of all ele-
ments before the offset could be periodically organized to reclaim the corresponding
memory.

The third optimization exploits the upper bound in Equation 5.3, derived from
the Cauchy-Schwarz inequality. Now, if w[i ] = 0 for every i > p, ||v′p ||2 is not only an
upperbound on sim(v′p ,w) but also on sim(v,w). Hence, if ||v′p ||2 < τ and w[i ] = 0
for every i > p, also sim(v,w) < τ and we can discard the candidate w. This is
exploited on Line 11 of ComputeSimilarities, taking into account that the condition
s[w] = 0 while iterating from dimension m to dimension 1 (Line 5) is equivalent to
the condition that w[i ] = 0 for every i > p.

The fourth and final optimization, applied on Line 13 of ComputeSimilarities,
was proposed by Anastasiu and Karypis [4] and directly exploits the Cauchy-Schwarz
inequality:

v′i−1 ·w′
i−1 ≤ ||v′i−1||2 · ||w′

i−1||2. (5.5)

Therefore, if s[w ]+||v′i−1||2 · ||w′
i−1||2 is smaller than τ, also s[w ]+v′i−1 ·w′

i−1 will be
smaller than τ. Furthermore, since s[w] = v′′i−1 ·w′′

i−1, also sim(v,w) will be smaller
than τ and we can discard w as a candidate (Lines 14-15).
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For the all pairs similarity search problem, various other optimizations where
proposed[7, 4, 13, 6, 50]. The effectiveness of an optimization depends on the tight-
ness of the involved bounds, the cost of computing the bounds, their dependence
on τ and their complementarity with the other optimizations that are used. Overall,
we found that the particular combination of optimization proposed above, works
best in our problem setting.

Algorithm 8: ComputeSimilarities

input :L, v ∈V , τ ∈ [0,1] ⊂R
output :s ∈R|V | : s[w] = sim(v,w) for all w ∈V and,

U = {u ∈V | s[u] > 0}
1 s ← 0|V |×1

2 U ← {}

3 ρ← 1
4 σ← τ/max(v)

5 for each i = m . . .1 s.t. v[i ] > 0 do
6 ( f , f[i ]) ← first pair in Li

7 while |f| <σ do
8 remove ( f , f[i ]) from Li

9 ( f , f[i ]) ← new first pair in Li

10 for each (w,w[i ]) ∈ Li do
11 if s[w] > 0 or ρ ≥ τ then
12 s[w] ← s[w]+v[i ] ·w[i ]
13 if s[w]+||v′i−1||2 +||w′

i−1||2 < τ then
14 s[w] ← 0
15 U ←U \ {w}

16 else
17 U ←U ∪ {w}

18 ρ←||v′i−1||2
19 for each w ∈U do

20 if s[w]+min
(
|v|, |w′

p |
)
·max(v) ·max(w′

p ) < τ then

21 U ←U \ {w}

22 else
23 s[w] ← s[w]+v ·w′

p

5.8 Related work

A first line of related research is concerned with answering k-NN queries as fast
as possible. To this end, most of the methods in this category rely on pre-built
data structures. The time for building these structures is often neglected since it is
assumed that the amount of queries will be so high that the total time to answer all
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queries will exceed the time for building the data structure by far. Furthermore, it is
also assumed that the data structure can be built “off-line”, i.e. with no strict speed
requirements, whereas the queries need to be answered “on-line”, i.e. an immediate
answer is expected. Some well known algorithms in this domain are kd-tree [9, 26],
k-means-tree [27], PCA-tree [86], vp-tree [115] and ball-tree [51]. Unfortunately, the
performance of these methods rapidly decreases for high dimensional data [59, 107].

Consequently, this line of research also contains approximate algorithms that
sacrifice accuracy to achieve runtime reduction. Muja and Lowe [59] provide an
up-to-date overview of the work in this domain. They classify the approximate algo-
rithms in three categories: partitioning trees, hashing techniques and neighboring
graph techniques. Although approximate algorithms are required for datasets above
a certain size in order to finish in a reasonable amount of time, exact solutions are
obviously preferred if their runtime is not too large.

Therefore, this line of research also contains algorithms that speedup the exact
computation of the k-nearest neighbors for medium dimensional data such that
exact solutions can be computed efficiently for bigger datasets [107, 40]. However,
all these methods build a data structure (e.g. a tree or an inverted index) completely
in advance because they need to be able to answer every possible query. Thus,
when used for finding all exact k-nearest neighbors, they compute every similarity
sim(v, w) = sim(w, v) twice, which heavily hinders performance. For constructing
the k-nearest neighbors graph however, it is not required that every possible query
can be answered.

The second line of research, on the other hand, is specifically concerned with ef-
ficiently constructing the k-nearest neighbors graph (or performing a k-nearest
neighbors self-join). Therefore, it explicitly takes advantage of the fact that in
this case not all possible queries need to be answered. Furthermore, it contains
both exact [69, 16, 116] and approximate [14, 23, 70] algorithms. The approxi-
mate algorithms, on the one hand, have been shown to work for high-dimensional
data [14, 23, 70]. The exact algorithms, on the other hand, have only been demon-
strated on low-dimensional data [69, 16]. The limitation of exact algorithms to
low-dimensional data does not come as a surprise. However, this limitation could
be (partially) removed for sparse data by exploiting their sparseness. Our algorithms
do exactly that.

There does already exists a collection of algorithms that takes advantage of
sparseness in the data. These are the Top-k document retrieval algorithms, since
every document only contains a small portion of the total vocabulary. Searching
all exact k-nearest neighbors is technically possible with top-k document retrieval
algorithms, which forms a third line of related research. In order to do so, one first
needs to build an index with all vectors v ∈V , which serve as “documents”. Secondly,
one needs to use the same vectors v ∈V as “queries” and retrieve for every “query”
the top-k “documents” from the index. For this problem, optimizations exist already
for two decades [97] and studying even better optimizations has been the subject of
more recent research [43, 90, 22]. However, as we show in our experimental evalua-
tion (Sec. 5.9), these algorithms cannot efficiently find all exact k-nearest neighbors.
There are two reasons for this. First, also document retrieval algorithms compute
both sim(v, w) and sim(w, v), which obviously hinders performance. Second, doc-
ument retrieval algorithms achieve runtime reductions through skipping inverted
lists that easily contain more than 10 000 elements. By skipping large parts of the
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enormous inverted lists used in typical document retrieval applications they avoid
many disk access operations and/or decoding operations. However, a typical in-
verted list considered in this chapter easily contains less than 100 elements, which is
100 times less. Furthermore, typical keyword queries in document retrieval contain
approximately 2 words. Our “queries”, on the other hand, are easily 10 times longer.
As a result, the number of candidate top-k members is often larger than the inverted
lists on our datasets. Consequently, it is not possible to skip large parts of an inverted
list.

Datasets more similar to ours are considered by the fourth line of related research:
the all-pairs similarity search problem, also called the similarity-join problem or
ε-nearest neighbors problem[7, 4, 13, 6, 50]. However, in this case, the goal is to
find all pairs of vectors for which the similarity is higher than a certain threshold.
Obviously, all efficient solutions to this problem exploit this threshold. Exactly due
to the absence of this threshold in our problem setting, it is much less obvious
to efficiently solve it. One of our solutions is PrunedIndex, introduces a virtual
threshold that allows us to adopt the optimization techniques from the all-pairs
similarity search problem.

A final related problem setting that is very similar to the similarity-join is the
top-k similarity-join [112]. In this case, the goal is to find the k most similar pairs of
vectors in a collection. This problem is very similar to the ordinary similarity-join
because in both cases there is a global threshold. For ordinary similarity-join, this
global threshold is fixed. For top-k similarity-join this global threshold increases
as the global top-k is updated. Despite the phrase “top-k” in the name, this is very
different from our problem setting in which there exists no global threshold as we
want to find the local top-k for every individual vector.

5.9 Runtime Comparison

We compared our proposed algorithms, DynamicIndex and PrunedIndex with the
Naïve Baseline outlined in Algorithm 2, the Basic Inverted Index-based algorithm
(Alg. 4), and two often used top-k document retrieval algorithms. Top-k docu-
ment retrieval algorithms are the only state-of-the-art algorithms that were already
demonstrated to produce exact results in a reasonable amount of time on high
dimensional data. Since other exact algorithms assume dense data, therefore do not
exploit any sparseness, and were only demonstrated on maximally, 3 [16], 16 [116],
and 24 [69] dimensions, which is much less than the more than 700 000 dimensions
in the dblp dataset, they were not considered in our comparison.

The first document retrieval algorithm is often referred to as max-score and
is a well known document-at-a-time approach. It was first described by Turtle
and Flood [97], but we use the more recent version described by Jonassen and
Bratsberg [43]. The second one, denoted SC , originates from the work of Strohman
and Croft [90] and is a well known term-at-a-time approach that uses a layered
inverted index. We use the version described by Ding and Suel [22].

Table 5.3 summarizes the runtimes, in seconds, of the selected algorithms on
the three datasets for two values of k, i.e. 1 and 20. From this table we make several
observations. First, the Naïve Baseline is indeed very naïve. Second, our novel
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algorithms, PrunedIndex and DynamicIndex, are the fastest on all three real world
datasets and up to 8 times better than the Basic Inverted Index-based approach.

Third, the PrunedIndex algorithm performs better for k = 1 than it does for
k = 20. This is not surprising given Figure 5.1: with τ= 0.4, it is possible to finish 90%
of the 1-nearest neighbors in the thresholding step, but only 50% of the 20-nearest
neighbors can be completed in thresholding step. Consequently, the consecutive
steps (partitioning, leftovers, and completion) take more time for k = 20.

Fourth, on the dblp and tweets datasets PrunedIndex outperforms DynamicIndex.
On the msd dataset, it is the other way around. The key dataset property that deter-

mines this difference is max
i=1...m

(
c(i )
|V |

)
, the maximum relative length of a dimension,

summarized in Table 5.1. If it is higher, the pruning strategies of PrunedIndex work
better. To support this argument, we create two artificial datasets. The first artificial
dataset, tweets−, is constructed by removing the longest dimension from the tweets
dataset. From Table 5.4, we see that the advantage of PrunedIndex over Dynam-
icIndex on tweets almost completely vanishes on tweets−as the maximum relative
length of a dimension reduces from 0.44 to 0.13. The second artificial dataset, msd+,
is constructed by adding two new dimensions, mmsd +1 and mmsd +2, to msd . If
user v is male, v[mmsd+1] = 1 and v[mmsd+2] = 0. If a user is female, v[mmsd+1] = 0
and v[mmsd +2] = 1. We randomly assigned a gender to every user with uniform
probability. From Table 5.4, we see that by simply adding gender features, and corre-

spondingly increasing max
i=1...m

(
c(i )
|V |

)
from 0.11 to 0.5, we created a dataset on which

PrunedIndex is much faster than DynamicIndex, although it was slower before the
gender features were added. As a rule of thumb, we can say that PrunedIndex is to

be preferred over DynamicIndex if max
i=1...m

(
l (i )
|V |

)
≥ 0.3.

Finally, we mention that the top-k document retrieval algorithms, SC and max-
score , did not perform significantly better than the Naïve Baseline. This is because
there are key differences between k-nearst neighbors graph construction and top-k
document retrieval, as explained in Section 5.8.

Table 5.4: Basic properties of the datasets.

runtime[s], k = 1

PrunedIndex DynamicIndex max
i=1...m

(
c(i )
|V |

)
tweets− 1 049 1 288 0.13

msd+ 5 212 8 175 0.5

5.10 Conclusions

We proposed two novel algorithms to efficiently compute the exact k-nearest neigh-
bors graph on high dimensional, sparse vector data. They are more than two times
as fast as the current state-of-the-art.

Specializing the PrunedIndex algorithm for binary data, to further increase the
speedup, is an interesting direction for future work.



CHAPTER 6
Conclusions

In this thesis we discussed collaborative filtering with binary, positive-only data.
This problem is defined as scoring missing edges in an unweighted, bipartite graph
according to their probability of existing in the future. Binary, positive-only data is
typically associated with implicit feedback such as items bought, videos watched,
songs listened to, books checked out from a library, ads clicked on, etc. However, it
can also be the result of explicit feedback such as likes on social networking sites.
While the obvious applications of collaborative filtering involve users and items, its
relevance goes well beyond. It can, for example, connect photos with tags, or active
drug compounds with biological targets.

6.1 Main Contributions

The main contributions of this thesis can be summarized as follows.

• We have presented a comprehensive survey of collaborative filtering methods
for binary, positive-only data. The backbone of our survey is an innovative,
unified matrix factorization perspective on collaborative filtering methods,
also those that were typically not associated with matrix factorization mod-
els such as nearest neighbors methods and association rule mining-based
methods. From this perspective, a collaborative filtering algorithm consists
of three building blocks: a matrix factorization model, a deviation function
and a numerical minimization algorithm. By comparing methods along these
three dimensions, we were able to highlight surprising commonalities and key
differences.

97
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• We proposed KUNN, a novel method for collaborative filtering. KUNN origi-
nates from a reformulation that unifies user- and item-based nearest neigh-
bors methods with analytically solvable deviation functions. Thanks to this
reformulation, it becomes clear that user- and item-based nearest neighbors
methods discard important parts of the available information. KUNN im-
proves upon the existing nearest neighbors methods by actually using more of
the available information. Our experimental evaluation shows that KUNN not
only outperforms existing nearest neighbors methods, but also state-of-the-
art matrix factorization methods.

• We challenged the well accepted belief that item-based neighborhood meth-
ods are superior for explaining the recommendations they produce. Thanks
to our reformulation, we were able to show that also recommendations by
KUNN and the traditional user-based neighborhood methods come with a
natural explanation.

• We showed that the widely used item-based neighborhood methods fail when
they make recommendations for shared accounts. Specifically, we identified
the generality, dominance and presentation problems. As a first step towards
solutions, we formally introduced the challenge of top-N recommendation
for shared accounts in the absence of contextual information. Furthermore,
we proposed the DAMIB-COVER algorithm, our solution to this challenge.
Central to our approach, we showed a theorem that allowed us to compute
a recommendation score in O (

n logn
)

instead of exponential time. Finally,
we experimentally validated that our proposed solution has important advan-
tages.

• We proposed two novel inverted index-based algorithms to efficiently com-
pute the exact k-nearest neighbors graph on high dimensional, sparse vector
data. They are up to eight times as fast as the current state-of-the-art. The key
ideas behind our approach are to exploit the sparseness of the data and to re-
late the problem to the all-pairs similarity search problem via the introduction
of a virtual threshold.

6.2 Outlook

The Conclusions sections of Chapters 2-5 outline very specific opportunities for
future work related to those chapters. In this section, we provide a more high level,
personal opinion on the opportunities in recommendation research.

First, the rating prediction problem is well researched, and its relevance will
probably decline further in the future. Therefore, it does not seem a very exciting
topic for future work. Binary, positive-only data, on the other hand, seems to be a
good default assumption for future work. Although also relevant, less work exists on
positive-only data that is not binary. Examples of such data are minutes watched,
times played, time spent, etc. It would be interesting to study the implications of
using such non-binary data and devise novel approaches that take these implications
into account. An even more interesting, more relevant and less explored problem
setting also takes into account the impression history of recommendations. In
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this way, one also needs to deal with negative and temporal data, which drastically
complicates the problem and its solutions.

Second, in this thesis, we applied the best practices concerning the experimental
evaluation of our own and competitive methods on historical data. However, these
evaluations are necessarily biased towards the known preferences of the users. The
best way to evaluate collaborative filtering methods, is by means of A/B testing in
real life environments. Although there already exist preliminary work, more work
on the correlation between A/B testing results and evaluations on historical data is
required to allow the field to advance in the right direction.

Third, to drastically improve the performance of collaborative filtering meth-
ods, models need to become richer, which implies that drastically more data (than
typically used in academic experiments) is required to train these models without
overfitting. Matrix factorization models have one set of latent dimensions in which
both users and items are profiled. In other domains, models with one set of latent
dimensions have been successfully enriched by adding more layers of latent dimen-
sions. As such, not only users and items are profiled as vectors in latent dimensions,
but these latent dimensions are in turn profiled as vectors in a second layer of latent
dimensions etc. Whether such a strategy will proof useful for collaborative filtering
is an exciting research question.

Finally, collaborative filtering research is mainly concerned with maximally
exploiting the available information in order to provide the best possible recom-
mendations, immediately. However, it is probably beneficial to also present recom-
mendations that provoke maximally informative user feedback. As such, the best
possible recommendations can be provided in the long run. Obviously, recommen-
dations presented to maximally learn from the feedback cannot be totally irrelevant,
and a balance between explore and exploit needs to be found. Most work in this
area is related to the cold-start problem, when there is little or none information to
exploit. The principle, however, is also applicable to mature users and items. Also on
this aspect little work has been done, and exciting work still needs to be performed.





Nederlandse Samenvatting

Steeds meer mensen worden overweldigd door een overvloed aan keuzes. Via
het World Wide Web heeft iedereen toegang tot een grote verscheidenheid aan
nieuws, opinies, (encyclopedische) informatie, sociale contacten, boeken, muziek,
films, foto’s, producten, vakantiebestemmingen, jobs, huizen en vele andere items,
en dit van over de hele wereld. Vanuit het oogpunt van één bepaalde persoon is
de grote meerderheid van deze items echter niet interessant, en zijn de weinige
interessante items begraven onder een gigantische berg oninteressante items. Er
bestaan bijvoorbeeld veel boeken die ik met plezier zou lezen, tenminste als ik ze
zou kennen. Daarnaast zijn er zelfs veel niche items die niet worden gemaakt omdat
men anticipeert dat het doelpubliek ze niet zal vinden tussen de overvloed aan
andere items. Bepaalde boeken bijvoorbeeld, worden nooit geschreven omdat hun
schrijvers verwachten dat ze niet in staat zullen zijn een voldoende groot deel van
hun doelpubliek te bereiken, hoewel dat doelpubliek wel degelijk bestaat.

Aanbevelingssystemen dragen bij aan de oplossing voor deze problemen, door
individuen te verbinden met items die relevant zijn voor hen. Een goed aanbevel-
ingssysteem voor boeken bijvoorbeeld, beveelt me typisch drie boeken aan die ik
met veel plezier zou lezen, die ik nog niet kende, die voldoende van elkaar ver-
schillen en die geschikt zijn om tijdens mijn vakantie van volgende week te lezen.
Het bestuderen van aanbevelingssystemen in het bijzonder, en de verbindingen
tussen individuen en items in het algemeen, is het onderwerp van recommendation
onderzoek. Bovendien reikt de relevantie van recommendation onderzoek verder
dan het verbinden van individuen met items. Aanbevelingssystemen kunnen bi-
jvoorbeeld, ook genen verbinden met ziektes, biologische doelen met actieve stoffen
uit geneesmiddelen, woorden met documenten, onderschriften met foto’s, etc.

Collaborative Filtering

Collaborative filtering is één van de belangrijkste problemen in recommendation
onderzoek. In de meest abstracte zin is collaborative filtering het probleem waarin
de onbestaande zijden in een bipartiete graaf moeten gewogen worden op basis van
de bestaande zijden.

Het voorspellen van beoordelingen is de concrete versie van dit probleem die
tot voor kort het meeste aandacht kreeg. In deze versie vertegenwoordigt één verza-
meling van punten in de bipartiete graaf de individuen, en de andere verzameling
van punten de items. Verder duidt een zijde met gewicht r tussen individu u en
item i aan dat u een beoordeling r gaf aan i . Het doel is de ontbrekende beoordelin-
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gen te voorspellen. Om wille van verschillende redenen echter, is de laatste tijd
de aandacht voor het voorspellen van beoordelingen gedaald. Ten eerste is het
redelijk duur om beoordelingen te verzamelen, in die zin dat het een niet verwaar-
loosbare inspanning van gebruikers vergt. Ten tweede correleren beoordelingen
niet zo goed met het gedrag van gebruikers als men zou verwachten. Gebruikers
zijn geneigd hoge beoordelingen te geven aan items waarvan ze denken dat ze die
zouden moeten consumeren, zoals bijvoorbeeld een beroemd boek van Dostojewski.
In de realiteit lezen dezelfde gebruikers eerder Suske en Wiske strips, hoewel ze die
een lagere beoordeling geven. Ten slotte is voor vele toepassingen het voorspellen
van beoordelingen geen einddoel, maar slechts een manier om de meest relevante
aanbevelingen voor een gebruiker te vinden. Bijgevolg dienen hoge beoordelingen
zo accuraat mogelijk te zijn, terwijl lage beoordelingen niet exact hoeven te zijn.
Echter, bij het voorspellen van beoordelingen zijn hoge en lage beoordelingen even
belangrijk.

Vandaag de dag verschuift de aandacht meer en meer in de richting van collabo-
rative filtering met binaire, positieve data Dit is het onderwerp van dit proefschrift.
In deze versie zijn de zijden van de bipartiete graaf ongewogen, en duidt een zijde
tussen individu u en item i aan dat u positieve feedback gaf over i . Het doel is in dit
geval elke ontbrekende zijde een score toe te kennen die aangeeft in welke mate i
een goede aanbeveling is voor u. Binaire, positieve data wordt typisch geassocieerd
met impliciete feedback zoals aangekochte producten, bekeken films, geluisterde
liedjes, ontleende boeken, geklikte advertenties, etc. Maar het kan ook perfect het
resultaat zijn van expliciete feedback, zoals likes op sociale netwerk sites.

Naast de bipartiete graaf kunnen er nog vijf soorten van extra informatie beschik-
baar zijn. Ten eerste kan er inhoud of meta data van de items beschikbaar zijn. In
het geval van boeken bijvoorbeeld, is de inhoud gelijk aan de volledige tekst van
het boek en kan de meta data informatie bevatten zoals schrijver, uitgever, jaar van
uitgifte etc. Methodes die uitsluitend dit soort informatie gebruiken worden typisch
geklasseerd als inhoud gebaseerd. Methodes die dit soort informatie combineren
met collaborative filtering methodes worden typisch geklasseerd als hybride. Ten
tweede kan er meta data beschikbaar zijn over de gebruikers, zoals geslacht, leeftijd,
woonplaats, etc. Ten derde kunnen gebruikers met elkaar verbonden zijn in een
extra unipartiete graaf. Een typisch voorbeeld is een sociaal netwerk tussen ge-
bruikers. Ten vierde, kan een analoog netwerk bestaan tussen items. Ten slotte kan
er contextuele informatie beschikbaar zijn zoals locatie, tijd, intentie, gezelschap,
toestel, etc. Het aanwenden van deze extra informatie valt buiten het bereik van dit
proefschrift.

Verband met andere domeinen

Om het unieke karakter van collaborative filtering te benadrukken, bespreken we de
gemeenschappelijkheden en verschillen met twee gerelateerde problemen uit data
wetenschappen: classificatie en het ontdekken van associatie-regels.

Ten eerste is collaborative filtering equivalent aan het gezamenlijk oplossen van
vele één-klasse classificatie problemen, waarbij elk één-klasse classificatie probleem
overeenkomt met één van de items. In het classificatie probleem dat overeenkomt
met item i , doet i dienst als klasse en doen alle andere items dienst als features. De
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gebruikers die i als gekende voorkeur hebben fungeren als gelabelde voorbeelden,
terwijl de andere gebruikers dienst doen als niet gelabelde voorbeelden. Ama-
zon.com heeft bijvoorbeeld meer dan 200 miljoen items in zijn catalogus. Bijgevolg
is het oplossen van het collaborative filtering probleem voor Amazon.com equiva-
lent aan het oplossen van 200 miljoen één-klasse classificatie problemen, hetgeen
duidelijk een specifieke aanpak vergt. Collaborative filtering is echter meer dan
het efficiënt oplossen van vele één-klasse classificatie problemen. Omdat ze sterk
verbonden zijn, laat het gezamenlijk oplossen van de vele één-klasse classificatie
problemen toe dat er informatie gedeeld wordt tussen de verschillende problemen.
De verschillende één-klasse classificatie problemen delen het grootste deel van hun
features. Terwijl i dienst doet als klasse in één van de vele classificatie problemen,
doet het eveneens dienst als feature in alle andere classificatie problemen.

Ten tweede veronderstelt ook het ontdekken van associatie-regels bipartiete,
ongewogen data. Daardoor kan het toegepast worden op dezelfde data als diegene
die gebruikt wordt voor collaborative filtering. Bovendien kan het aanbevelen van
item i aan gebruiker u beschouwd worden als het toepassen van de associatie
regel I (u) → i , waarin I (u) de verzameling is van alle gekende voorkeuren van u.
Het doel van associatie-regels ontdekken verschilt echter van dat van collaborative
filtering. Als een regel I (u) → i cruciaal is om i correct aan u aan te bevelen, maar
irrelevant voor de overige data, dan is een hoge score voor de regel gewenst in het
geval van collaborative filtering, maar is ze typisch ongewenst voor het ontdekken
van associatie-regels.

Bijdragen

Dit proefschrift bevat volgende bijdragen:

• In Hoofdstuk 2 geven we een overzicht van de state of the art op het vlak van
collaborative filtering met binaire, positieve data. De kapstok waaraan dit
overzicht is opgehangen, is een innovatief, eengemaakt matrix factorizatie
perspectief op collaborative filtering methodes, ook diegene die typisch niet
met matrix factorizatie geassocieerd worden, zoals methodes gebaseerd op
nearest neighbors of associatie-regels. Vanuit dit perspectief bestaat een
collaborative filtering methode uit drie bouwblokken: een matrix factorizatie
model, een afwijkingsfunctie en een algoritme voor numerieke minimalisatie.
Door de verschillende methodes te vergelijken volgens deze drie dimensies,
kunnen we verassende gelijkenissen en cruciale verschillen blootleggen.

• In Hoofdstuk 3 introduceren we een herformulering die user- en item-based
nearest neighbors methodes unificeert. We gebruiken deze herformulering
om een nieuwe methode voor te stellen die het beste van beide werelden
combineert en beter presteert dan state-of-the-art methodes. Bijkomend
stellen we een methode voor om de aanbevelingen gemaakt door onze nieuwe
methode op een natuurlijke wijze te verklaren. Verder tonen we aan dat
deze methode ook toepasbaar is op user-based nearest neighbors methodes,
waarvan gedacht werd dat ze geen natuurlijke verklaring hebben.

• In Hoofdstuk 4 gaan we dieper in op de situatie waarin meerdere gebruikers
dezelfde gebruikersnaam hanteren. Een typische voorbeeld is een gebruik-
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ersnaam voor een online winkel die door alle leden van een gezin gedeeld
wordt. Traditionele aanbevelingssystemen maken fouten in deze situatie. In-
dien informatie beschikbaar is over de context waarin transacties gebeuren,
zijn context bewuste aanbevelingssystemen de voor de hand liggende oploss-
ing. Vaak is er echter geen informatie beschikbaar over de context waarin
transacties plaatsvinden. Daarom introduceren we de uitdaging waarin aan-
bevelingen moeten gegeven worden aan gedeelde gebruikersnamen zonder
te beschikken over contextuele informatie. We stellen ook een oplossing voor,
voor alle gevallen waarin het referentie aanbevelingssysteem een item-based
collaborative filtering systeem is. Ten slotte illustreren we met experimenten
op meerdere datasets de voordelen van onze methode voor het oplossen van
de problemen die ontstaan wanneer gebruikersnamen gedeeld worden.

• Hoofdstuk 5 gaat over het efficiënt berekenen van de neighborhoods voor
neighborhood-gebaseerde collaborative filtering methodes. Meer algemeen
beschouwen we een grote verzameling van spaarse vectoren in een hoog
dimensionale ruimte en onderzoeken we de efficiënte berekening van de k
meest gelijkaardige vectoren voor elke vector. Op dit moment bestaan er ex-
acte, efficiënte methodes voor laag dimensionale data. Voor hoog dimension-
ale data daarentegen, zijn tot hiertoe enkel benaderende, efficiënte methodes
voorgesteld. De bestaande aanpakken maken echter geen onderscheid tussen
dense en spaarse data. Door te focussen op spaarse data, zijn we in staat om
twee methodes voor te stellen, gebaseerd op inverted indexes, die in staat
zijn de spaarsheid van de data uit te buiten om efficiënter de exacte k-nearest
neighbors graaf te berekenen voor hoog dimensionale, spaarse data.

• Hoofdstuk 6 sluit af met onze visie op toekomstig onderzoek naar collabora-
tive filtering.
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