Mining Cohesive Itemsets in Graphs

Tayena Hendrickx, Boris Cule, and Bart Goethals

University of Antwerp, Belguim,
firstname.lastnameQuantwerp.be

Abstract. Discovering patterns in graphs is a well-studied field of data
mining. While a lot of work has already gone into finding structural pat-
terns in graph datasets, we focus on relaxing the structural requirements
in order to find items that often occur near each other in the input graph.
By doing this, we significantly reduce the search space and simplify the
output. We look for itemsets that are both frequent and cohesive, which
enables us to use the anti-monotonicity property of the frequency mea-
sure to speed up our algorithm. We experimentally demonstrate that our
method can handle larger and more complex datasets than the existing
methods that either run out of memory or take too long.

1 Introduction

Graph mining is a popular field in data mining, with wide applications in bioin-
formatics, social network analysis, etc. Traditional approaches have been largely
limited to searching for frequent subgraphs, i.e., reoccurring structures consisting
of labelled nodes frequently interconnected in exactly the same way. However,
the concept of frequent subgraphs is not flexible enough to capture all patterns.
First of all, subgraphs are too strict. If we consider the graph given in Figure 1,
we see that items a, b and ¢ make up a pattern that visibly stands out. How-
ever, this pattern will not be found by subgraph mining since the three items are
never connected in the same way. Subgraph mining approaches are also typically
computationally complex. To begin with, they are forced to deal with the graph
isomorphism problem. For small graphs, isomorphism checking is not really that
hard. However, when we want to mine large graphs, like social networks, the iso-
morphism checks become computationally very expensive. On top of this, due
to the fact that both edges and nodes must be added to the pattern, a large
number of candidate subgraphs is generated along the way.

In order to avoid these problems, Cule et al. [5] proposed a Cohesive Itemset
Approach for mining interesting itemsets in graphs. An interesting itemset is
defined as a set of node labels that occur often in the graph and are, on aver-
age, tightly connected to each other, but are not necessarily always connected in
exactly the same way. Although this method could find previously undetected
patterns, there are still a number of drawbacks. The proposed method consid-
ers an itemset frequent if a large enough proportion of the graph is covered
by items making up the itemset. As a result, large itemsets, sometimes partially
consisting of very infrequent items, can be found in the output. This undermines

Fig. 1: A graph containing a pattern not discovered by subgraph mining.

the attempts to prune the search space and results in prohibitive run-times and
memory usage. To overcome this problem, we propose to look for Frequent Co-
hesive Itemsets, where we only consider itemsets consisting of labels that are
all, as individual items, frequent, and look for those that on average occur near
each other. In this way, we greatly reduce the search space, resulting in a smaller
output and a significant reduction in the time and space complexity of our algo-
rithm. We further explore the possibility of pruning candidate itemsets based on
the cohesion measure as well. Cohesion is not anti-monotonic, but we develop
an upper bound that allows us to prune whole branches of the search tree if
certain conditions are satisfied. We experimentally confirm that our algorithm
successfully handles datasets on which the existing method fails. In further ex-
periments on an artificial dataset, with a limited alphabet size, we demonstrate
exactly where our algorithm outperforms the existing method.

The rest of the paper is organised as follows. In section 2 we discuss the main
related work. Section 3 formally describes our problem setting, and Section 4
presents our algorithm. In Section 5 we present the results of our experiments,
before ending the paper with our conclusions in Section 6.

2 Related Work

The problem of discovering patterns in graphs is an active data mining topic. A
good survey of the early graph based data mining methods is given by Washio
and Motoda [19]. Traditionally, pattern discovery in graphs has been mostly
limited to searching for frequent subgraphs, reoccurring patterns within which
nodes with certain labels are frequently interconnected in exactly the same way.

The first attempts to find subgraph patterns were made by Cook and Holder [4]
for a single graph, and by Motoda and Indurkhya [23] for multiple graphs. Both
use a greedy scheme that avoids the graph isomorphism problem, but may miss
some significant subgraphs. Dehaspe and Toivonen [6] perform a complete search
for frequent subgraphs by applying an ILP-based algorithm.

Inokuchi et al. [9] and Kuramochi and Karypis [13] proposed the AaM and
Fsa algorithms for mining all frequent subgraphs, respectively, using a breadth-

Fig.2: A graph on which the GRIT algorithm gives counterintuitive results.

first search. These algorithms suffer from two drawbacks: costly subgraph iso-
morphism testing and an enormous number of generated candidates (due to the
fact that both edges and nodes must be added to the pattern). Yan and Han [20]
proposed GSPAN, an algorithm that uses a depth-first search. A more efficient
tool, called GASTON, was proposed by Nijssen and Kok [15]. Further attempts
at subgraph mining have been made by Inokuchi et al. [10], Yan et al. [21,22],
Huan et al. [8], Kuramochi and Karypis [14] and Bringmann and Nijssen [2].

At first glance, it may seem that itemsets, as patterns, are not as expressive
as subgraphs. Nevertheless, Karunaratne and Bostrém [11] showed that itemset
mining algorithms are computationally simpler than their graph mining counter-
parts and are competitive in terms of results. Recently, Cule et al. [5] proposed
the GRIT algorithm for mining interesting itemsets in graphs. An itemset is de-
fined as a set of node labels which often occur in the graph and are, on average,
tightly connected to each other. Although the method is more flexible than the
traditional approaches, it has some drawbacks. The interestingness of an itemset
is defined as the product of its coverage and its cohesion, where the coverage mea-
sures what percentage of the graph is covered by items making up the itemset,
while the cohesion measures average distances between these items. Due to the
small world phenomenon, this approach can result in an item that occurs very
infrequently in the dataset being discovered as part of an interesting itemset.
Consider the graph given in Figure 2. The GRIT algorithm will discover pattern
ab as interesting, because, per definition, the coverage of ab will be larger than
the coverage of the individual items a and b. Since each «a is connected to a b and
vice versa, ab will also score well on cohesion. Although item « is not frequent
at all, it has made its way into the output thanks to having many neighbours
labelled b. However, itemset ab does not represent a reoccurring pattern and
should not be considered more interesting than item b on its own.

In this paper, we build on this work, and focus on mining frequent cohesive
itemsets, insisting that each item in a discovered itemset must itself be frequent.
A separate cohesion threshold ensures that itemsets we discover are also cohesive.
By using a two-step approach of first filtering out the infrequent items, and
then using the frequent items to generate candidate itemsets, which are then
evaluated on cohesion, we greatly reduce the search space and run-time of our
algorithm and produce more meaningful results. By searching for itemsets rather
than subgraphs, we also avoid the costly isomorphism testing, and by using a
depth-first search algorithm, we avoid the pitfalls of breadth-first search.

Another itemset mining approach has been proposed by Khan et al. [12],
where nodes propagate their labels to neighbouring nodes according to given

probabilities. Labels are thus aggregated, and can be mined as itemsets in the
resulting graph. Silva et al. [16,17] and Guan et al. [7] introduced methods
to identify correlation between node labels and graph structure, whereby the
subgraph constraint has been loosened, but not entirely dropped.

3 Frequent Cohesive Itemsets

In this section, we introduce our approach for mining Frequent Cohesive Itemsets
in a dataset consisting of a single graph. We assume that the graph consists of
labelled nodes and unlabelled edges, and we focus on connected graphs with at
most one label per node. However, we can also handle input graphs where each
node carries a set of labels, as will be shown in Section 5.

To start with, we introduce some notations and definitions. In a graph G,
the set of nodes is denoted V(G). Each node v € V(G) carries a label I(v) € S,
where S is the set of all labels. For a label i € S, we denote the set of nodes
in the graph carrying this label as L(i) = {v € V(G)|l(v) = i}. We define the
frequency of a label i € S as the probability of encountering that label in G, or

_ L)

frea) = 7@y

From now on, we will refer to labels as items, and sets of labels as itemsets.

In order to compute the cohesion of an itemset X we first denote the set of
nodes labelled by an item in X as N(X) = {v € V(G)|l(v) € X}. In the next
step, for each occurrence of an item of X, we must now look for the nearest
occurrence of all other items in X. For a node v, we define the sum of all these
smallest distances as

W(U7X) = Z minwEN({z})d(vaw)a
zeX

where d(v,w) is the length of the shortest path from node v to node w. Subse-
quently, we compute the average of such sums for all occurrences of items making

up itemset X:
ZUGN(X) W(v, X)
[N (X)|

Finally, we define the cohesion of an itemset X, where |X|> 2, as

W(X) =

_ X1

C) = =5

If | X|< 2, we define C(X) to be equal to 1.

Cohesion measures how close to each other the items making up itemset X
are on average. If the items are always directly connected by an edge, the sum
of these distances for each occurrence of an item in X will be equal to | X|—1,
as will the average of such sums, and the cohesion of X will be equal to 1.

Given user defined thresholds for frequency (min_freq) and cohesion (min_coh),
our goal is to discover each itemset X if Vo € X : freq(xz) > min_freq and
C(X) > min_coh. To allow the user more flexibility, we use two optional size
parameters, minsize and mazxsize, to limit the size of the discovered itemsets.

We will now illustrate the above definitions on the graph given in Figure 1.
Assume we are evaluating itemsets abc and ef, with thresholds min_freq and
min_coh set to 0.1 and 0.6, respectively. According to our definitions, we first
note that N(abc) = {va,v4,vs, V13, V14, V15, V16, V17, V18, V19, V21 } and N(ef) =
{vs, v7,v11,v12}. It follows that |N(abc)|= 11 and |N(ef)|= 4. To compute
the cohesion of itemset abc, we now search the neighbourhood of each node
in N(abc) and obtain the following: W (v4, abc) = W (vg, abc) = W (vig,abc) =
W (v17,abc) = W(vig,abe) = W(vig,abe) = 3, W(vys,abc) = W(vay, abc) = 4
and W (vg, abc) = W (v13, abe) = W (v14,abc) = 2. The average of the above sums
is W (abc) = % Doing the same for itemset ef we get W (vs,ef) = W(vr,ef) =
W(vi1,ef) = W(via,ef) = 1. Therefore, W(ef) = 1. We can now compute the
cohesion of the two itemsets abc and ef as

abel-1 3-1 22 efl-1 _2—1

~ _ |
C(abe) = Wb~ 2 32 069 and C(ef) = W = 1 1.

We see that both abc and ef are cohesive enough, but, for an itemset to be
considered a frequent cohesive pattern, each item in the itemset must be frequent.
In our dataset, items a, b, ¢ and e are frequent, but f is not. Therefore, although
ef is more cohesive than abc, it will not be discovered as a frequent cohesive
itemset. Note that we computed the cohesion of ef above only to illustrate the
example. Our algorithm, presented in Section 4, first finds frequent items and
then considers only itemsets that consist of these items, so itemset e f would not
even be considered, and the above computations would not take place.

4 Algorithm

Our algorithm for mining frequent cohesive itemsets in a given graph consists of
two main steps. The first step is to filter out the infrequent items. This can be
done while loading the dataset into the memory for the first time, counting the
frequency of each item as they occur, and then outputting only the frequent ones.
In the second step, given in Algorithm 1, candidates are generated by applying
depth-first search, using recursive enumeration. During this enumeration process,
a candidate consists of two sets of items, X and Y. X contains those items
which make up the candidate, while Y contains the items that still have to
be enumerated. The first call to the algorithm is made with X empty and Y
containing all frequent items appearing in the graph.

At the heart of the algorithm is the UBC pruning function (discussed in
detail below), which is used to decide whether to prune the complete branch
of the search tree, or to proceed deeper. If the branch is not pruned, the next
test evaluates if there are still items with which we can expand the candidate.
If not, we have reached a leaf node in the search tree, and discovered a frequent

Algorithm 1 FCI((X,Y)) finds frequent cohesive itemsets
if UBC({(X,Y)) > min_coh then

if Y =0 then
if | X|> minsize then output X
else

Choose a in Y
if | X U{a}|< mazsize then FCI(X U {a},Y \ {a}))
if | X U (Y \ {a})|> minsize then FCI((X,Y \ {a}))
end if
end if

cohesive itemset which is sent to the output. Otherwise, the first item in Y, for
example a, is selected and the FCI algorithm is recursively called twice: once
with item a added to X and once without. In both calls, a is removed from Y.

An important property of the cohesion measure is that it is neither monotonic
nor anti-monotonic. For example, consider the graph shown in Figure 3, and
assume the min_coh threshold is set to 0.6. We can see that C'(ac) < min_coh
< C(abc) < C(a), even though a C ac C abe. Therefore, we will sometimes need
to go deeper in the search tree, even when we encounter a non-cohesive itemset,
since one of its supersets could still prove cohesive. However, traversing the
complete search space is clearly unfeasible. In this work, we deploy an additional
pruning technique using an upper bound for the cohesion measure, similar to the
upper bound for the interestingness measure used by Cule et al. [5]. In a nutshell,
we can prune a complete branch of the search tree if we are certain that no
itemset generated within this branch can still prove cohesive. To ascertain this,
we compute an upper bound for the cohesion measure of all the itemsets in that
branch, and if this upper bound is smaller than the cohesion threshold, the whole
branch can be pruned.

More formally, recall that a frequent cohesive itemset X, of size 2 or larger,
must satisfy the following requirement:

(IX|-1D)IN (X))
ZUEN(X) W(v, X)

Assume now that we find ourselves in node (X,Y) in the search tree, i.e., at
the root of the subtree within which we will generate each candidate itemset Z
such that X € Z C X UY. We know that cohesion is neither monotonic nor
anti-monotonic, so we cannot in advance know which such itemset will have the
highest cohesion, and we need to develop an upper bound that holds for all of
them. What we do know, however, is the cohesion of itemset X, C(X), as shown

> min_coh.

C(X) =

Fig. 3: A small input graph.

above. We can now analyse the extent to which this cohesion can maximally
grow as items from Y are added to X. Note that if an item is added to X, both
the nominator and the denominator in the above expression will grow. In order
for the total value to grow maximally, we therefore need to find the case in which
the nominator will grow maximally, and the denominator minimally. Let us first
examine the case of adding just a single item y to X . Recall that the denominator
contains the total sum, for all occurrences of items in X in the graph, of the
sums of all minimal distances from such an occurrence to all other items in X.
Each such sum of minimal distances will now have to be expanded to include
the minimal distance to the new item y. In the worst case, y will be discovered
at a distance of 1 from all these occurrences. These sums will therefore grow by
exactly 1. Additionally, the total sum will now also include the sums of minimal
distances from each occurrence of y to all items in X. In the worst case, from
each y we will be able to find each item in X at a distance of 1. Therefore, these
sums will be equal to | X|. For the case of adding an item y to X, we thus obtain

Yo WeXu{yh=(Y (We,X)+1)+ IN{yhlX].

veEN(XU{y}) vEN(X)

By induction, for adding the whole of Y to X, we obtain

STW,XuY)>(Y (W, X)+[Y])+ [INY)(XUY]-1).
vEN(XUY) vEN(X)

What the above worst-case actually describes is a case of adding maximally
cohesive occurrences of X UY to already known occurrences of X. For the overall
cohesion to grow as much as possible, we should add as many such occurrences
as possible. Clearly, we will obtain this maximal number of occurrences if we
add the whole of Y to X. Therefore, we can update the nominator accordingly,
and conclude that for any Z, such that X C Z C X UY, it holds that

(X UY|-DINX UY)
) = 15 e W X) + V) + INO)[IX UY]=1)

We also need to consider the user-chosen mazsize parameter. If X UY is
larger than mazsize, the worst case will not be obtained by adding the whole of
Y to X, but only by adding items from Y to X until mazxsize is reached. Before
proceeding with our analysis, we first abbreviate the new upper bounds for |Y’|
and |N(Y”")|, where Y’ C Y and |X UY’|< maxsize, with

UBY' = min(maazsize — | X|,|Y])

and
! . g
UBNY' =min(N(V), max N,
|Yi|=mazsize—|X|
Finally, we develop the upper bound for the cohesion of all candidate itemsets
generated in the branch of the search tree rooted at (X,Y) as

(IX|-1+ UBY")(|N(X)|+UBNY")
(XCvenx) W(v,X) + UBY")) + (|X|-1+ UBY')UBNY'"

UBC((X,Y)) =

This upper bound is only defined when | X |> 2. If X is either empty or a single-
ton, we define UBC((X,Y)) = 1.

At first glance, it seems that in order to compute UBNY’, we would need
to evaluate all possible sets Y;, such that ¥; C Y and | X U Y;|= mazsize, which
would be computationally expensive. We avoid this problem by enumerating
the items in Y sorted on frequency in descending order. For example, if Y =
{y1,92,---,Yn}, given X = {a, b, ¢} and mazxsize set to 5, it is obvious that

max |[N(X UY))|=[N({a,b,c,y1,92})]-

Y;CY,
| X UY; |=mazsize

Similarly, it may seem that to compute ZUGN(X) W (v, X) at each node in
our search tree, we would need to traverse the whole graph searching for the
minimal distances between all items in X for all relevant nodes, which would be
unfeasible. In order to avoid these costly database scans, we adopt the approach
that was used in the GRIT algorithm [5] and express the sum of the minimal
distances between items making up an itemset and the remaining items in X as a
sum of separate sums of such distances for each pair of items individually. Each of
these sums between individual items are stored in a matrix which is generated
only once at the beginning of the algorithm. Since we are only interested in
itemsets consisting of frequent items, it is sufficient to compute the minimal
distances only for those frequent items. Consequently, the matrix we generate is
of size |F|x|F|, where F is the set of frequent items, which is, depending on the
min_freq threshold, considerably smaller than the matrix of size |S|x|S|, where
S is the complete alphabet, generated by GRIT.

Thanks to the above two optimisations, given a candidate (X,Y), we can
compute UBC((X,Y)) in constant time.

5 Experiments

In this section, we experimentally compare the FCI and GRIT algorithms. For
our experiments, we used two different datasets — a real-life graph dataset,
and a synthetic dataset. The first dataset we used in our experiments is a com-
bination of the yeast protein interaction network available in Saccharomyces
Genome Database (SGD) [3] and the yeast regulatory network available in
YEASTRACT [1]. In the combined network each node represents a yeast protein
and each edge represents an interaction between two proteins. The given inter-
action network consists of 5811 protein-nodes and 62 454 edges. The node labels
are derived from gene ontology assignments [18], i.e., terms that are assigned
to proteins that describe their biological process. The mapping of each of these
labels to the list of yeast proteins was obtained from the annotation file pro-
vided by the SGD database [3]. In total there are 30 distinct labels. Since each
protein-node has multiple labels, we first had to transform the given network.
More formally, we expanded the graph by replacing each protein-node with a
unique dummy node, surrounded by a set of nodes, each carrying one of the
original labels. Our resulting graph consisted of 18 108 nodes and 74 751 edges.

min_freq |F| C-Time (s) mazsize min_coh #itemsets #candidates M-Time (ms)

0.001 23 8974 5 0.40 12 24774 88
0.35 154 75091 224
0.30 7989 122752 586
0.005 15 7966 5 0.40 9 5720 37
0.35 127 9976 55
0.30 3196 13923 205
0.010 10 6453 5 0.40 9 1127 10
0.35 91 1290 19
0.30 612 1473 70
0.005 15 7966 [eS) 0.40 9 23774 113
0.35 169 48916 250
0.30 25559 65518 984

Table 1: Results of the FCI algorithm on the protein interaction network of yeast.

Table 1 reports the number of frequent items | F'|, the time needed to generate
the |F|x|F| distance matrix (C-Time), the number of discovered itemsets, the
number of candidates that were considered, and the time needed for the mining
stage (M-Time), for varying values of min_freq and min_coh. In the first three
sets of experiments, minsize was set to 2 and mazxsize to 5, while we set maxsize
to infinity in the fourth set of experiments. C-Time and M-Time are reported
separately because the frequent items are fixed for a given frequency threshold,
so the distance matrix needs to be computed just once and can then be reused
at various cohesion thresholds. The considerable reduction in mining times as
the cohesion threshold grows shows that our pruning function has the desired
effect. In Section 4, we presented two crucial elements in our pruning function,
using the properties of the cohesion measure, and the mazsize parameter. In the
fourth set of experiments, we set the mazsize parameter to infinity, to entirely
eliminate its effect on pruning. The results show that we still manage to produce
output quickly, while pruning large numbers of candidates.

The GRIT algorithm failed to produce output in all of these settings, as the
required matrix and the resulting search space proved far too large. Therefore,
we can conclude that filtering out the infrequent items is a crucial step if we
wish to handle large real-life datasets.

Finally, let us have a closer look at the discovered itemsets. Having shown the
output to biologists, they confirmed that the most cohesive patterns were those
that could be expected for this type of network. For example, with min_freq set
to 0.005 and min_coh to 0.2, the highest scoring itemset consists of two terms
that are highly related, namely {cellular metabolic process, organic substance
metabolic process}. Indeed, many of the proteins in the studied network are
labelled with both terms as they describe overlapping biological processes in
yeast. However, besides the expected patterns, biologists discovered some other
patterns, such as {cellular metabolic process, organic substance metabolic pro-
cess, biosynthetic process, catabolic process, regulation of biological quality}, an
itemset of size 5 with a cohesion of 0.36. This itemset contains three terms that
never occur together on a node, namely biosynthetic process, catabolic process
and regulation of biological quality. Each of these three terms refers to very dif-

Result Size Runtime mining

10 10° errmrmee
T L +- - s S
g g TS
R i .
£ w el £ N
§ < £ .
s S 3 .
£ 10° It ~ E . i
5 Taol i " - e
- ‘\ =
1%‘000 DOIDZ DdDd DGIDG DOIDB 0010 lDOBOOO DOIDZ OdO4 0606 OC:DS 0.010
min_int (GRIT} min_int (GRIT)
[++ Grrr +4 FI [~ Garr * I
Fig. 4: Comparison of the output size of Fig. 5: Comparison of the mining times
the GRIT and FCI algorithms. for the GRIT and FCI algorithms.

ferent, almost opposite, biological processes and thus no proteins exist in yeast
that are active in all three categories. However, from a biological point of view,
one can expect the nodes with these different terms to be close together in the
network due to the regulatory mechanisms that exist in yeast, which propagate
through the interactions described in the studied network.

For our second experimental setting, we generated a random graph with
100 000 nodes and 399495 edges. The labels were randomly allocated and range
from 0 to 19. The probability of encountering a label differed for each label, as fol-
lows: we defined pg = 1,p; =2andfort=2...19, p; = ijlmij. The probabil-
ity of encountering label i was proportional to p;. Given that >~,_, 4 p; = 1332,
the probability of encountering label 0 was ﬁ and the probability of encoun-
tering label 19 was %. We built the graph by, at each step, adding either a new
node and connecting it to a random existing node, or adding a new edge between
two existing nodes. For this experiment, we set the probability of adding a new
node to 25%, and the probability of adding a new edge to 75%, resulting in an
average of approximately 8 edges per node

The main goal of this experiment was to be able to compare GRIT and FCI
in terms of ouput size and run-time, since GRIT failed to generate output for the
yeast protein interaction network. We applied the FCI algorithm with min_coh
fixed at 0.1, minsize set to 2, mazsize to 5 and a varying min_freq threshold. The
interestingness threshold, min_int, for GRIT was set to the product of min_coh
and min_freq, to guarantee that all itemsets found by FCI were also found by
GRIT (since GRIT defines interestingness as the product of coverage and cohe-
sion, and coverage is equal to the frequency in case of singletons). Figure 4 shows
the number of discovered itemsets for the two approaches. The mining times are
reported in Figure 5. The preprocessing stage of GRIT took 2.5 days, while FCI
needed between 1 and 50 minutes, depending on the chosen frequency threshold
(as reported in Table 2). As we can see in the figures, the output size and the
run-time of FCI decrease considerably as we increase the frequency threshold,
since more items are filtered out to start with, which results in fewer candidate

min_coh mazxsize min_freq |F| C-Time (s) #itemsets #candidates M-Time (ms)

0.1 5 0.10 4 62 11 25 2
0.05 9 643 372 836 58
0.02 13 2853 2 366 6460 175
0.1 0o 0.10 4 62 11 25 2
0.05 9 643 502 1012 64
0.02 13 2853 8178 16 368 427

Table 2: Experimental results of the FCI algorithm on the artificial dataset.

itemsets. On the other hand, as the interestingness threshold, used by GRIT,
increases, we see no change in the output size and run-times, since GRIT still
generates a huge number of candidates. Finally, Table 2 shows a comparison of
using the FCI algorithm with the maxsize parameter set to 5 and to infinity,
respectively. Once again, we can see that our pruning shows good results, even
if we cannot rely on the mazsize parameter as a pruning tool.

6 Conclusions

In this paper, we present a novel method for mining frequent cohesive itemsets
in graphs. By first filtering out the infrequent items, and only then evaluating
the remaining candidate itemsets on cohesion, we achieve much better results
than existing algorithms, both in terms of run-times, and the quality of output.
Furthermore, by limiting ourselves to itemsets, we avoid the costly isomorphism
testing needed in subgraph mining. Using a depth-first search allows us to use
an upper bound for the cohesion measure to prune unnecessary candidates, thus
further speeding up our algorithm. Experiments demonstrate that the presented
method greatly outperforms the existing ones on a variety of datasets.

7 Acknowledgments

We wish to thank Pieter Meysman, bioinformatician at the University of Antwerp,
for helping us interpret the results of the experiments on the biological dataset.

References

[1] Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., Mira, N.P., Lourengo, A.B., dos
Santos, S.C., Cabrito, T.R., Francisco, A.P., Madeira, S.C.; Aires, R.S., Oliveira,
A.L., S4-Correia, 1., Freitas, A.T.: YEASTRACT: providing a programmatic ac-
cess to curated transcriptional regulatory associations in Saccharomyces cerevisiae
through a web services interface. Nucleic acids research 39 (2011)

[2] Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: Proc. 12th
Pacific-Asia Conf. on Knowledge Discovery and Data Mining. pp. 858-863 (2008)

[3] Cherry, J.: SGD: Saccharomyces Genome Database. Nucleic Acids Research 26(1),
73-79 (1998)

[4]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

17)
18]
19]
[20]

[21]

[22]

[23]

Cook, D.J., Holder, L.B.: Substructure discovery using minimum description
length and background knowledge. Journal of Artificial Intelligence Research 1,
231-255 (1994)

Cule, B., Goethals, B., Hendrickx, T.: Mining interesting itemsets in graph
datasets. In: Proc. of the 17th Pacific-Asia Conf. on Knowledge Discovery and
Data Mining. pp. 237-248 (2013)

Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery 3, 7-36 (1999)

Guan, Z., Wu, J., Zhang, Q., Singh, A., Yan, X.: Assessing and ranking struc-
tural correlations in graphs. In: Proc. of the 2011 ACM SIGMOD Int. Conf. on
Management of Data. pp. 937-948 (2011)

Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent sub-
graphs from graph databases. In: Proc. of the 10th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining. pp. 581-586 (2004)

Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining fre-
quent substructures from graph data. In: Principles of Data Mining and Knowl-
edge Discovery. pp. 13-23 (2000)

Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from
graphs: Mining graph data. Machine Learning 50, 321-354 (2003)

Karunaratne, T., Bostrém, H.: Can frequent itemset mining be efficiently and
effectively used for learning from graph data? In: Proc. of the 11th Int. Conf. on
Machine Learning and Applications (ICMLA). pp. 409414 (2012)

Khan, A., Yan, X., Wu, K.L.: Towards proximity pattern mining in large graphs.
In: Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of Data. pp.
867-878 (2010)

Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. of the 2001
IEEE Int. Conf. on Data Mining. pp. 313-320 (2001)

Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph.
Data Mining and Knowledge Discovery 11, 243271 (2005)

Nijssen, S., Kok, J.: The gaston tool for frequent subgraph mining. Electronic
Notes in Theoretical Computer Science 127, 77-87 (2005)

Silva, A., Meira, J.W., Zaki, M.J.: Structural correlation pattern mining for large
graphs. In: Proc. of the 8th Workshop on Mining and Learning with Graphs. pp.
119-126 (2010)

Silva, A., Meira, J.W., Zaki, M.J.: Mining attribute-structure correlated patterns
in large attributed graphs. Proc. of the VLDB Endowment 5(5), 466-477 (2012)
The Gene Ontology Consortium: Gene Ontology annotations and resources. Nu-
cleic acids research 41(Database issue), D530-5 (2013)

Washio, T., Motoda, H.: State of the art of graph-based data mining. ACM
SIGKDD Explorations Newsletter 5, 59-68 (2003)

Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of
the 2002 IEEE Int. Conf. on Data Mining. pp. 721-724 (2002)

Yan, X., Han, J.: Closegraph: Mining closed frequent graph patterns. In: Proc. of
the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining. pp.
286295 (2003)

Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity con-
straints. In: Proc. of the 11th ACM SIGKDD Int. Conf. on Knowledge Discovery
in Data Mining. pp. 324-333 (2005)

Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learn-
ing framework. Journal of Applied Intelligence 4, 297-316 (1994)

