
Randomized Quantitative Association Rules

Bart Goethals1,2, Emmanuel Müller1,2, and Thomas Van Brussel1

1 University of Antwerp, Belgium
2 Monash University, Australia

3 Hasso-Plattner-Institute, Germany

Abstract. Traditional association rules are commonly used to find rela-
tionships in binary or categorical data and have been extensively studied
in the literature. Quantitative association rules are a natural extension,
which allow for detection of interpretable relationships in numeric data.
However, quantitative association rule mining suffers from tremendously
large result sets and inefficient computation just like traditional tech-
niques. Here, we propose a randomized technique for quantitative as-
sociation rules. We statistically select unexpected rules, which provide
sufficient new information about the underlying data relationships. Fur-
thermore, we exploit unexpectedness for the efficient steering of our ran-
domized search and as termination criterion of our algorithm. Overall,
our algorithm can quickly generate a small number of high quality rules
that are easily interpretable by the user.

1 Introduction

Association rule mining has been a popular method for discovering interesting
patterns in databases, ever since its introduction [1]. Originally, these methods
were used to find patterns in boolean or categorical data, i.e. rules of the form
Buy[Toothbrush]→ Buy[Toothpaste] or Healthy[Yes]→ Sports[Yes].
These relations are easily interpreted and usually require no further explanation.
Over time, techniques were introduced that found these patterns more optimally,
or that focused on more complex types of patterns [4, 8].

Since more and more data is being collected and large quantities of this
data are of the numerical kind, the previous rules are no longer adequate to
represent all patterns in the data. To this end, quantitative association rule
mining was introduced [2, 17, 21]. In their purest form, quantitative association
rules handle numeric data but can, in theory, easily be combined with regular
association rules in order to handle all kinds of data. Two examples of such rules
are the following: Age[16, 90] ∧ US-citizen[Yes] → Drivers-License[Yes]
and Age[0, 21] ∧US-citizen[Yes]→ Alcohol-Allowed[No].

Unfortunately, current techniques detect these rules together with very many
other rules in a tremendously large result set. This so-called pattern explosion
phenomenon can obfuscate these rules [20]. It is well-explored in traditional asso-
ciation rule mining, but has raised rather little attention for numeric predicates
in association rules. Another severe issue are the parameters of these techniques.

They have to be chosen very carefully, as they affect both result size and the
runtime of current algorithms. Detection of a small set of relevant rules is a very
hard task with the state-of-the-art algorithms. Either they compute few rules in
short time and miss interesting rules, or they run out of time with huge result
sets that obfuscate the interesting rules by many redundant rules [17, 7, 11, 3, 10,
5, 9, 16, 19].

In the present paper, we focus on discovering a compact set of quantitative
association rules while avoiding the pitfall of trying to find all rules. We pro-
pose a randomized technique that is capable of iteratively discovering rules in
a Monte Carlo approach. We statistically select unexpected rules, which pro-
vide sufficient new information about the underlying data relationships. Thus,
we avoid the redundant rules and keep the result set compact. Furthermore, we
exploit unexpectedness for the efficient steering of our randomized search and
as termination criterion of our algorithm. Thus, we even avoid the generation
of redundant rules within the Monte Carlo approach. New rules are generated
in vastly unexplored regions of the numeric attribute space. Using this steered
processing, our algorithm quickly terminates as soon as no further rules can be
expected. Overall, our algorithm can quickly generate a small number of high
quality rules that are easily interpretable by the user.

2 Formal Problem Statement

For a database DB of numeric attributes A, we consider each object o ∈ DB to
be represented by a vector o ∈ Rm. We denote o(Ai) ∈ dom(Ai) as the value of
object o within the attribute domain of Ai. We use the notation n = |DB| for
the size of the database and m = |A| as the dimensionality of the database. Let
A = {A1, . . . , Am} be the set of all attributes in the database. A quantitative
predicate is then defined as follows.

Definition 1. Given one attribute Ai ∈ A and a pair of lower and upper bounds
[l, u] ∈ dom2(Ai), with l ≤ u. We define a Quantitative Predicate as: Ai[l, u]

Please note, that this definition considers numeric attributes only. Although
we are not considering other attribute types in this paper our algorithm is not
restricted to numeric attributes. It can be easily extended to allow for binary
and categorical attribute types as well.

For our basic notions, we consider an object o ∈ DB to be covered by a
quantitative predicate Ai[l, u] iff l ≤ o(Ai) ≤ u. That is, the value of object
o for attribute Ai is contained within the respective interval. Based on Def-
inition 1, a set of predicates is then defined as a conjunction of predicates.
Consequently, an object is covered by a set of predicates iff that object is
covered by each of the predicates in that set. For such a predicate set X , we
denote its attributes by attr(X) ⊆ A. Furthermore, we denote all objects that
are covered by predicate set X as IDB(X), with IDB(·) the function that re-
turns all objects o ∈ DB that are covered by all predicates given in X . That is,
IDB(X) = {o ∈ DB | o is covered by X}. We write IDB(·) as I(·) whenever the
database we are working on is clear from context.

We define the support and frequency of X as suppDB(X) = |IDB(X)|, and
freqDB(X) = |IDB(X)|/|DB|. Again, we omit DB whenever it is clear from con-
text.

Definition 2. A Quantitative Association Rule (QAR) R is defined as R : P →
Q with P,Q 6= ∅, and P ∩Q = ∅.

Following Definition 2, we refer to P as the left hand side (LHS) of the rule
and Q the right hand side (RHS) of rule R. The support of a rule R is defined
as supp(R) = supp(P ∪ Q). That is, the number of objects that satisfy both
the predicates in the left and right hand side of the rule. These objects are also
said to be covered by rule R. The confidence of rule R is defined as conf(R) =
supp(R)/ sup(P). That is, the fraction of objects that are covered by rule R
given that they are covered by predicate set P . Please note, that we decided to
use these two traditional measures while there are many other interestingness
measures possible [18]. Given any of these measures, one can detect all interesting
rules ALL. However, this set is known to be highly redundant.

Given the set of all interesting rules ALL, we select only those rules that are
unexpected and provide sufficient new information about the underlying data
relationships. We define our result set as subset RS ⊆ ALL:

Definition 3. A set of quantitative association rule RS is non-redundant if

∀Ri ∈ RS : unexpected(Ri,RS \Ri)

Each rule Ri has to be unexpected w.r.t. all other given rules RS \Ri. In our
case we define the function unexpected() by a significance test (cf. Section 3.4).
However, in general it could be any function that checks the quality of a rule
Ri w.r.t. all other given rules. With this check we try to prevent users from a
tremendously large result set and exclude redundant rules as in the following
example.

Example 1.

R1 : Age[30, 42] ∧ Income[27000, 32000]→ Children[2, 3].

R2 : Age[30, 40] ∧ Income[27000, 32000]→ Children[2, 3].

R3 : Age[32, 39] ∧ Income[27000, 32000]→ Children[2, 3].

R4 : Age[31, 40] ∧ Income[27000, 32000]→ Children[2, 3].

all of which fulfill support = 10% and confidence = 70%.

These four rules form our hypothetical set of all interesting rules ALL. How-
ever, we observe that all rules have very similar coverage of objects. In theory,
one could now detect all of these rules and perform an optimal selection of a
subset RS. In our case, we do not aim for such an optimal solution due to the
tremendous size of ALL in practice and the computational effort to detect this
set. In contrast to this optimal solution, we aim at an efficient greedy heuristic
that selects iteratively the best possible rule at a time.

In the following we focus on the main challenges for such a greedy selection
of RS: i.e. the Efficient (randomized) generation of Ri candidates, the selection
criterion unexpected(Ri,RS \Ri), and the termination criterion for the iterative
selection of new candidates.

3 Algorithm

We first describe the general outline of the algorithm before zooming in on the
more important aspects of it.

(i) During each step of the algorithm, a weight distribution over all trans-
actions is kept. At first, this distribution is uniform but can, and will, change
after each iteration. The algorithm creates rules by starting from random seed
points. Complete randomness has the disadvantage of potentially recomputing
overlapping rules that provide little to no extra information or that regions are
explored where no useful information can be found. However, selecting seeds in
a Monte Carlo manner has the advantage of being faster than deterministically
computing all rules.

(ii) After such a point has been chosen, the algorithm continues by performing
a transformation of the original database into a transactional database [22]. This
transformation is done using a parameter w, which denotes a window width. For
each point and for each dimension, we check whether a different point is within
distance w of the seed point in that dimension. If it is, we update the transaction
for that point in our new database to list that dimension. In the end, each point
can be resolved to a list of dimensions, an itemset in which it is close to the seed
point.

(iii) Using this transactional database, we mine it for interesting frequent
itemsets, as these tell us something about which dimensions are relevant. Since
we want to avoid pattern explosion, we only need a small subset of frequent
itemsets. This can be done using techniques called random (maximal) itemset
mining. These techniques compute only a small number of good patterns. Each
of the itemsets generated this way can be related back to a hyper-rectangle in
the original data.

(iv) In the final step, we evaluate the significance and quality of the hyper-
rectangles generated in the previous step. Conceptually, this is done by compar-
ing the amount of points within the hyper-rectangle to the amount of points we
would expect to be within it following a certain distribution — usually the uni-
form distribution. A significant region would contain significantly more points
than expected.

(v) Update the weights of the points using a mixture model. That is, points
that are not yet included in a rule or are less frequently included in a rule
than others will gain a higher weight than points that are frequently visited.
This allows the algorithm to go for the patterns that would otherwise not be
discovered.

The algorithm terminates when either no more rules can be discovered or
enough rules have been discovered.

The algorithm is summarized in Algorithm 1. For further clarification of the
steps, we refer to their corresponding subsections.

Algorithm 1 Rule mining(α, support, window width w, max rules)

1: Initialize array of weights W to 1/|DB|
2: while # rules found ≤ max rules do
3: Select random point p ∈ DB according to W
4: T DB = {}
5: for point o ∈ DB, o 6= p do
6: t = {}
7: for attribute Ai ∈ A do
8: if |o(Ai)− p(Ai)| ≤ w then
9: t = t ∪Ai

10: T DB = T DB ∪ t
11: Find random maximal itemset(s) in T DB
12: if points in hyper-rectangle R defined by transaction ≥ θ then
13: Add R to mixture model
14: Recompute weights
15: Optional: Generate rules based on hyper-rectangles in mixture model

3.1 Weighting and Selecting Seed Points

As mentioned above, the main focus of our algorithm is not on finding all quan-
titative association rules in the data. We are, however, still interested in a subset
of them. To this end, we propose the use of a method similar to the one intro-
duced by the DOC algorithm [15]. That is, starting from a random seed point,
determine an interesting region around it and use that region to generate rules.

While this approach shows some promising results, it has one major downside.
That is, each time the algorithm finishes handling one point, the next point is
selected without taking the knowledge accumulated from handling the previous
points into account. Selecting the wrong seeds will then lead to recomputing
(partially) overlapping regions that provide little to no extra information. We
therefore focus on a weighting approach for the transactions.

The algorithm starts by initialising the weights of all transactions to a single
uniform weight. Let oi ∈ DB be the i-th record in the database, then W (oi)
denotes the weight of that record. During the initialisation step, it holds that
∀i, j,W (oi) = W (oj). The choice for a uniform distribution is obvious as it simply
means that no information has been extracted from the data yet and all points
are equally likely to produce results. In the following iterations, these weights
will be recomputed based on how well the current rule set (rules discovered so
far) describe each point. This approach is similar to existing boosting approaches
such as AdaBoost [6]. The re-weighting is done according to a mixture model as
used by the StatPC algorithm [13] and has the following advantages,

– allows us to find rules for areas that might otherwise be ignored by guiding
the selection of seeds;

– enforces the detection of novel rules by steering the algorithm in each itera-
tion to new (not yet discovered) patterns;

– ensures non-redundant rules due to the re-weighting after the detection of
new rules, but it also allows for overlapping rules by overlapping regions;

– high weight points can, after the algorithm has terminated, be seen as out-
liers.

For a given rule set RS = {R1 . . . Rk} we use the respective predicate sets
{X1 . . .Xk} as the basis of our mixture model. The mixture model represents the
expected data distribution for this given predicate set. In the ideal case this set
captures the hidden rules in our data, and thus, the mixture model represents
the true data distribution. However, during our process we start with an empty
set of rules and add rules incrementally to this set. During this incremental
computation we would like to steer our algorithm towards the detection of novel
and non-redundant rules.

Formally, we model the entire rule set as a mixture model of k components:

pRS(x) =

k∑
i=1

wi · fi(x,Ri)

Each component fi(x,Ri) represents the data distribution of one rule Ri and
is weighted by wi for the entire mixture.

Given such a mixture model we can test the significance of a candidate rule
R′ before adding it to the rules set. The support of such a rule has to be signifi-
cantly deviating from the expected support given by the current model pRS(x).
Each candidate rule can be simply checked by a statistical test with some given
significance level α. We will go more into details for this statistical test in Sec-
tion 3.4. However, the mixture model is even more powerful and can be used
for our steered creation of such candidates. We use it as a re-weighting scheme
for the seed points of our Monte Carlo algorithm. Unexpected points lead us to
both novel and non-redundant rules and to outliers that are highly unexpected
after termination of the algorithm.

For both the significance test (cf. Section 3.4) and the re-weighting we need
this mixture model. However, it is hard to learn this mixture model, especially
for complex definitions of fi(x,Ri) components. As such information about the
internal distribution of rules is not given and due to practical computational
reasons we stick to a uniform random distribution of objects for each component.
We model each predicate set Xi as a uniform distribution:

fi(x,Ri) =

{
freqDB(Xi) , if x satisfies predicate Xi
0 , otherwise.

For the coverage area of predicate Xi we model a uniform distribution. Out-
side of this area the probability of seeing an object drops to zero. Overall, the

sum of all components fi represents the expected data distribution w.r.t. the
given set of rules RS.

The new weights are then defined as the inverse of the computed distribution.

3.2 Transformation to Transactional Database using a Window

To find interesting regions (hyper-rectangles), we will use existing itemset min-
ing approaches. This does, however, require us to transform the original data
into transactional data. We opt to view the dimensions as items as this has sev-
eral advantages, most notably the advantage that is easier to determine whether
adding a dimension to the mix adds any value. Using a window width w, we
determine which points are within distance w of our seed point and take note of
for which dimension this occurs. This list of dimensions forms our itemset. After
removing all empty itemsets, we can then mine the resulting data to find dimen-
sions that occur together often. Using a fixed window width has the following
advantages,

– it is easy to compute statistical tests, i.e., we can easily compare to how
many points we expect there to be in an interval;

– it is easy to test whether adding a dimension adds any value compared to
how many points we drop;

– there are less parameter issues due to statistical test and notion of unexpect-
edness compared to uniformly distributed data;

– it is novel notion of confidence in QARM by exploiting directly the expec-
tation of intervals (1D) and hyper-rectangles (mD).

Formally, for a centre point p and for every object o in the original database
DB, we compute the set of dimensions Xo,p for which o is within distance w of
p, i.e., Xo,p = {Ai | |o(Ai)− p(Ai)| ≤ w}. The new transactional database T DB
is then defined as T DB = {Xo,p | o ∈ DB ∧Xo,p 6= ∅}

3.3 Random Maximal Itemset Mining

Once the data has been transformed into transactional data, we still have to
determine which dimensions work well together. To avoid pattern explosion –
and increasing the number of combinations of dimensions we have to consider –
we have decided to use a random maximal itemset mining approach. This has
the advantage of only reporting a few good itemsets from which others can be
derived. Using only those that are unique enough, leaves with only a few hyper-
rectangles we will have to further explore. Out of the possible options, we select
the best one.

Thus, in each run we filter the best rule out of a set of (many) randomly
generated candidates. However, it still leaves the question of how we measure
the quality of these rules.

To further explain how this step works, we refer to the original paper by
Moens et al. [12].

3.4 Evaluation of Discovered Hyper-Rectangles

We will evaluate a hyper-rectangle on its significance. That is, we determine
how many points would be in the hyper-rectangle if the data was uniformly
distributed. This can be done using a binomial distribution.

Let H be a hyper-rectangle in a set of dimensions X. We determine the
probability that H contains T (H) objects under the null hypothesis that the data
is uniformly distributed in X [13]. The distribution of the T (·) is the Binomial
distribution with parameters n and vol(H), T (H) ∼ Binomial(n, vol(H)). The
significance level α is then used to decide whether we reject or accept the null
hypothesis. For our one-sided test, the critical value θα is computed based on
α = Probability(T (H) ≥ θα).

3.5 Termination Conditions

The algorithm has 2 possible termination conditions. The first such condition
is one that is inherent to random mining algorithms: stop when enough results
have been produced. The second condition is reached when the algorithm can
no longer find any significant rules within a certain amount of iterations.

3.6 Parameters

The algorithm has 4 parameters, one of which is optional.

– Minimum Support: the minimum number of objects that have to be con-
tained within a hyper-rectangle;

– α: the minimum significance level for hyper-rectangles; the probability of
observing too few points compared to a uniform distribution is less than α;

– Window width w (relative or absolute): the width used to determine the
hyper-rectangles and start the mining of interesting hyper-rectangles;

– Maximum number of rules (optional): the algorithm stops after this many
rules have been found.

3.7 Complexity

The average run-time complexity of our algorithm is O(nm), with n the number
of data points and m the number of dimensions. This can be demonstrated by
looking at Algorithm 1. In the first step, we select a random point. This can be
done in constant time. After this, we compute, for each other point, for which
dimension it is within distance w of our center point. This requires two loops,
one over all points, and one over all dimensions. This therefore has a complexity
of O(nm). After this step, we perform our random maximal itemset mining.
This has an average run-time complexity of O(n). Lastly, we add our recently
discovered rectangle to our mixture model and recompute the weights. This step
has an average complexity of O(n). Not all points have to be visited for re-
weighting, but on average, we are still dependent on n. Combining of all these,
we find that the largest contributing factor to our algorithm’s complexity of
O(nm).

4 Experiments

The experiments were run on a laptop with a 2.3 Ghz Intel Core i7 and 8 GB
DDR3 running OSX 10.9.2. All experiments were run using Python 2.7.x and
the NumPy library.

4.1 Datasets

For our experiments, we used three datasets of different sizes, namely the well
known Iris dataset (150 tuples, 4 dimensions) and two synthetic datasets, S1500
(1595 tuples, 20 dimensions), and D50 (1596 tuples, 50 dimensions), both of
which have also been used for subspace clustering algorithms [14]. We strip all
datasets of their non-numeric attributes to focus on the numeric aspect of the
algorithm.

4.2 Evaluation Metrics

We use the following evaluation metrics to evaluate our patterns:

– Area Covered: A higher coverage of the data results in better descriptive-
ness, while a smaller coverage results in more specialised patterns.

– Overlap: The higher this number, the more overlap we have and the more
our patterns are clumped together.

– Pattern Size: The amount of data that is covered by our rules. If the
average size of a pattern is small, we have a highly specialized rule (contrary
to regular pattern mining), while larger patterns offer a broader view of the
data.

– Jaccard Similarity: The Jaccard similarity coefficient gives us an intuition
on the overlap between patterns.

– Confidence: as we are generating association rules, we are also interested
in their quality.

The experiments are repeated several times after which the results are averaged.

4.3 Results

We have selected one real-world dataset and two datasets that best illustrate
the results of our algorithm. Results on other datasets were comparable to the
ones listed below.

A few observations can be made here. While the area explored increases as
the number of rules increases, we can see that after a certain point the increase
becomes less and less obvious. This is best demonstrated by looking at the
results for the D50 dataset. Once a saturation point in terms of number of rules
is achieved, we have explored most of what there is to explore in the data and
any further rules will only result in marginal increases. On the other hand, once
we have reached said saturation point, we can see a sharp increase in overlap.

D Samples Total Size Size Pattern Size Overlap Jacard Confidence Runtime(s)

Iris 50 122.34 105.31 50.78 174.12 0.63 87.12 0.41
20 42.16 48.65 115.17 0.485 83 0.26
10 19.09 42.8 31.46 0.296 86 0.196

S1500 50 7.67e62 1.27e39 297.4 1.11e27 0.143 91 3.13
20 1.23e33 298.1 5.81e23 0.131 87 2.51
10 1.22e30 288.3 5.72e22 0.119 86 2.04

D50 50 6.54e152 1.24e36 409.74 1.818e18 0.166 80 3.2
20 5.87e35 374.25 617e9 0.166 83 2.53
10 6.57e26 366.4 223e7 0.165 82 2.09

Table 1. Experimental Results

Naturally, as less and less area is open for novel information, already explored
areas are (partially) revisited.

Comparing the S1500 and D50 datasets, we can see that our algorithm per-
forms better on datasets with higher dimensionality. Since we mine for maximal
frequent itemsets when determining which dimensions can be combined, having
a high dimensional dataset can be an advantage. That is, since the algorithm
leans towards larger combinations of dimensions, we can achieve more spread
out patterns in the data.

We also note that the size of the patterns, i.e., the number of items per
pattern, does not change that much when considering more rules. This is the
result of how we compute the windows and/or what the data looks like. Since
we are using a fairly static approach in the transformation to a transactional
database, we end up with patterns that, when looked at visually, all look the
same. Combined with the distribution in the data, we end up with patterns
of roughly the same size. This can however lead to our algorithm overlooking
interesting smaller

As a final observation, we remark that the runtimes for the S1500 and D50
almost identical. Using a dataset of higher dimensionality does not greatly affect
the runtime of the algorithm due to the sampling approach used.

We should however note that repeating results with this algorithm is not
an easy task. Due to the fact that several steps in this algorithm rely on ran-
domization, it is nearly impossible to achieve the same results and/or patterns
on subsequent runs. While this is not problematic for exploring data, it can be
problematic in terms of repeatability.

4.4 Efficiency

We compare the efficiency of our method to that of other exploratory meth-
ods. We only compare to equi-width discretization in combination with random
maximal itemset sampling. We do not add any extra comparisons as we only
chose discretization methods and the only overhead they cause is in the prepro-
cessing step. All other remaining steps should be similar complexity-wise. We
use synthetic datasets to demonstrate the runtime efficiency when considering

both the number of objects and the number of dimensions. As the amount of
time spent per rule is nearly identical, we only generate 25 rules. The results

Fig. 1. Efficiency Results

of the experiment are shown in Figure 1. As we can clearly see, our method is
slightly slower than the discretization approach but does not fall behind by a
lot as the dimensionality of the dataset increases. The discretization approach
loses a lot of time doing the actual preprocessing of the data. So having to guess
the amount of bins or other, harder to estimate, parameters can lead to a large
increase in runtime and require a larger knowledge of the data being processed.
Our method, while slightly slower, is capable of generating a small amount of
rules quickly without the hassle of having to preprocess the data.

While we allow for several parameters, only two have any real impact on
the efficiency of the algorithm. That is, the window width and the number of
rules to generate. Obviously, the algorithm takes longer as more rules have to
be generated. The window width contributes in that it increases the size of the
transactional database, also increasing the workload of further steps. While this
effect is noticeable, it never has too great of an impact on the total runtime. The
results show that each additional rule adds a near constant amount of time. We
omit a graph due to space restraints.

5 Conclusion

We demonstrated a method that allows to rapidly find a limited set of quantita-
tive association rules. This provides the user with a powerful tool to explore the
data without having to worry about the massive runtimes or number of patterns
that are typically associated with this task. We have shown that our method is
efficient. We also demonstrated that our algorithm is capable of finding a nice
spread of patterns over the data instead of generating a large amount of rules
over the same regions.

References

1. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. In ACM SIGMOD, pages 207–216, 1993.

2. Y. Aumann and Y. Lindell. A statistical theory for quantitative association rules.
In ACM SIGKDD, pages 261–270, 1999.

3. S. D. Bay. Multivariate discretization for set mining. Knowl. Inf. Syst., 3(4):491–
512, 2001.

4. R. Bayardo, Jr., B. Goethals, and M. Zaki, editors. Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations (FIMI 2004), volume 126
of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

5. S. Brin, R. Rastogi, and K. Shim. Mining optimized gain rules for numeric at-
tributes. IEEE Trans. Knowl. Data Eng., 15(2):324–338, 2003.

6. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

7. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining optimized
association rules for numeric attributes. J. Comput. Syst. Sci., 58(1):1–12, 1999.

8. B. Goethals, W. Le Page, and H. Mannila. Mining association rules of simple
conjunctive queries. In Siam Data Mining (SDM). SIAM, 2008.

9. J. W. Grzymala-Busse. Three strategies to rule induction from data with numerical
attributes. Transactions on Rough Sets, 3135:54–62, 2005.

10. J. Mata, J.-L. Alvarez, and J.-C. Riquelme. An evolutionary algorithm to discover
numeric association rules. In ACM SAC, pages 590–594, 2002.

11. R. J. Miller and Y. Yang. Association rules over interval data. In ACM SIGMOD,
pages 452–461, 1997.

12. S. Moens and B. Goethals. Randomly sampling maximal itemsets. In Proceedings
of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics,
IDEA ’13, pages 79–86, New York, NY, USA, 2013. ACM.

13. G. Moise and J. Sander. Finding non-redundant, statistically significant regions in
high dimensional data: a novel approach to projected and subspace clustering. In
ACM SIGKDD, pages 533–541, 2008.

14. E. Müller, S. Günnemann, I. Assent, and T. Seidl. Evaluating clustering in subspace
projections of high dimensional data. PVLDB, 2(1):1270–1281, 2009.

15. C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A monte carlo
algorithm for fast projective clustering. In ACM SIGMOD, pages 418–427, 2002.

16. A. Salleb-Aouissi, C. Vrain, C. Nortet, X. Kong, V. Rathod, and D. Cassard.
Quantminer for mining quantitative association rules. Journal of Machine Learning
Research, 14(1):3153–3157, 2013.

17. R. Srikant and R. Agrawal. Mining quantitative association rules in large relational
tables. In ACM SIGMOD, pages 1–12, 1996.

18. P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure
for association patterns. In ACM SIGKDD, pages 32–41, 2002.

19. N. Tatti. Itemsets for real-valued datasets. In IEEE ICDM, pages 717–726, 2013.
20. G. Webb and J. Vreeken. Efficient discovery of the most interesting associations.

Transactions on Knowledge Discovery from Data, 8(3):15:1–15:31, 2014.
21. G. I. Webb. Discovering associations with numeric variables. In ACM SIGKDD,

pages 383–388, 2001.
22. M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining.

IEEE Trans. Knowl. Data Eng., 17(2):176–189, 2005.

