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A B S T R A C T
Keywords:
 To understand physiological processes, insight into protein complexes is very important.
Through a combination of blue native gel electrophoresis and LC–MS/MS, we were able to
isolate protein complexes and identify their potential subunits from Nicotiana tabacum cv.
Bright Yellow-2. For this purpose, a bioanalytical approach was used that works without a
priori knowledge of the interacting proteins. Different clustering methods (e.g., k-means and
hierarchical clustering) and a biclustering approachwere evaluated according to their ability
to group proteins by their migration profile and to correlate the proteins to a specific
complex. The biclustering approach was identified as a very powerful tool for the
exploration of protein complexes of whole cell lysates since it allows for the promiscuous
nature of proteins. Furthermore, it searches for associations between proteins that co-occur
frequently throughout the BN gel, which increases the confidence of the putative
associations between co-migrating proteins. The statistical significance and biological
relevance of the profile clusters were verified using functional gene ontology annotation.
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The proof of concept for identifying protein complexes by our BN PAGE/LC–MS/MS approach
is provided through the analysis of known protein complexes. Both well characterized long-
lived protein complexes as well as potential temporary sequential multi-enzyme complexes
were characterized.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Protein complexes play a critical role in many biological
processes. Most proteins are, at some time point in the
lifespan of the cell, involved in complex formation with
multiple protein interaction partners [1]. Identifying the
component proteins in a protein complex is an important
step towards the understanding of the complex and in
elucidating the related biological activities. Complex forma-
tion is of utmost importance in plants, as illustrated for their
most typical physiological processes such as photosynthesis
[2], cell wall growth [3], and phytohormone sensing [4]. To date
protein–protein interactions are widely studied by techniques
such as tandem affinity purification [5,6], yeast two hybrid
studies [7], co-immunoprecipitation [8], BiFC [9], and through
in silico prediction [10]. An alternate way to study protein–
protein interactions, is to define all protein complexes within
the cell. To this end, protein complexes within plant models
have been studied through biochemical approaches, including
zone gradient centrifugal sedimentation [11], and native
chromatography, or combinations thereof [12]. In this study,
blue native gel electrophoresis (BN PAGE) was used, since it
allows for medium to high throughput screening of protein
complexes within whole plant cell lysates [13]. The technique
is well established for the separation of both soluble and
membrane-bound protein complexes [14–16], and both direct
and indirect protein–protein interactions can be elucidated in
one single experiment. It thus continues to gain interest from
the proteomics community [17,18]. The general workflow
comprises native separation by BN PAGE followed by a
denaturing second dimension SDS PAGE—in which each
complex is dissected in its individual components. An
alternative for the denaturing SDS PAGE step is LC–MS/MS,
which allows for a rapid identification of all proteins within
each gel slice and for protein profiling across the BN gel [19].
Wessels et al. [20] suggested that potentially interacting
proteins can be identified by searching for similar protein
profiles after BN PAGE separation, which has also been shown
by Helbig et al. [21]. Protein correlation profiling permits the
analysis of multiprotein complexes that can be enriched by
fractionation but not purified to homogeneity [22]. A pro-
mising group of methods to find correlations between co-
migration proteins is cluster analysis. These are statistical
methods, which have been successfully applied on gene
expression data [23–25], and reports of their implementation
to reveal putative protein complexes are rapidly emerging [26–
30]. Several clusteringmethods (e.g., hierarchical clustering, k-
means) can be used to analyze protein interaction data. To
detect co-migrating unrelated proteins, a functional gene
ontology (GO) annotation is often performed [31]. Since pro-
teins within the same protein complex are generally aggre-
gated to take part within a similar biological process, the
, et al, Unraveling toba
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functional coherence of a cluster can be used to indicate its
tendency to be a genuine complex.

Previously two-dimensional BN/SDS PAGE has been used
by the authors to unravel protein complexes from whole cell
lysates of Nicotiana tabacum cv. Bright Yellow-2 cell cultures
(BY-2). While not a model plant for genome study purposes,
yet it is an important model system to study cell physiology,
hormone signaling, cell cycle, cell growth and stress situations
[32]. Here, BN PAGE gave indications about the oligomerization
state of several tobacco proteins and revealed potentially
novel protein–protein interactions [13]. In this follow-up study
a combination between 1D BN PAGE and LC–MS/MS was used
as a semi-high throughput strategy to create a ‘complexome’
of BY-2 cells. First, the mass spectrometric identification
method was optimized. Since tobacco BY-2 is still a mostly
unsequenced and badly annotated plant system, identifica-
tion of the proteins and their interactions relies on cross-
species identification based on homology and orthology [33].
To enhance peptide identification, multiple search engines
were employed [34]. Secondly, to reveal candidate interacting
proteins, proteins were clustered according to their migration
profile and functional annotation. In this study, popular
clustering methods like hierarchical clustering and k-means
were compared to a modern biclustering technique based on
itemset mining. In what follows, we denote the k-means and
hierarchical clustering methods as the classical approaches.
To evaluate and compare the outcome of these clustering
methods, known protein complexes such as the 20S protea-
some and 26S proteasome were used as benchmarks.
2. Materials and methods

2.1. Chemicals and material

Unless otherwise indicated, all biochemicals and kits were
from Sigma (St Louis, MO, USA)) or GE Healthcare (Uppsala,
Sweden).

2.2. Isolation of protein complexes from BY-2 cell suspension

BY-2 cell suspensions were cultivated as published [32]. The
stationary culture was sampled 7 days after subcultivation.
The exponential culture was sampled 3 days after a 50 fold
dilution of a stationary culture in fresh media. Throughout,
approximately 340 mg cells were collected by vacuum paper
filtration (Whatman nr.1) and ground in liquid nitrogen. To
these samples, 1 mL ice cold extraction buffer containing
50 mM HEPES (pH 7.4), 30 mM potassium acetate, 5 mM EGTA,
2% (w/v) digitonin (high purity; Calbiochem, San Diego, CA,
USA), 1% (v/v) plant protein protease inhibitor cocktail (P-9599),
10 μL Nuclease Mix, 1% (w/v) polyvinylpolypyrrolidone was
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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added during grinding in liquid nitrogen. To remove debris,
lysates were centrifuged at 20,000 g at 4 °C for 45 min and
supernatant was passed through a 0.22 μm filter. Protein
concentration was determined using the Bradford Protein
Assay (Bio-Rad Laboratories, Hercules, CA, USA).

2.3. BN PAGE

Precast NativePAGETM NOVEX® BIS TRIS gels were used
(Invitrogen Life Technologies, Carlsbad, CA, USA) (4%–16%,
8 cm×8 cm×0.1 mm) and after addition of 0.2% Coomassie
and 1% digitonin to the samples, 15 μg/well of each sample
was loaded into the gel. Gels were run at 4 °C (60 min at 150 V
constant; 35 min at 250 V). Contrary to the anode buffer
(2.5 mM BisTris, 2.5 mM Tricine, pH 6.8), the cathode buffer
(2.5 mMBisTris, 2.5 mMTricine, pH 6.8) contained 0.002% (w/v)
Coomassie G-250. The molecular size of the complexes was
estimated using a HMW native marker kit (Invitrogen Life
Technologies, Carlsbad, CA, USA). BN gels were stained with
colloidal CBB (SERVA Electrophoresis GmbH, Heidelberg,
Germany) [35].

2.4. LC–MS/MS analysis

Above 70 kDa, the whole gel lane was cut in several (on
average 47) equally sized slices of 1 mm and in-gel protein
digestion was performed according to Shevchenko et al. [36].
To remove the Coomassie stain, gel slices were first washed in
a fixing solution (50% methanol, 10% acetic acid) [37].
Subsequently, gel slices were extensively washed with water
and shrunk with acetonitrile until gel plugs were completely
white. Each gel slice was subjected to reduction/alkylation and
the proteins digested with trypsin (Promega MS Gold, Madi-
son, WI, USA). Trypsin was added to each gel slice (1:50
trypsin/proteins) and proteins were digested overnight at
37 °C. Supernatant was collected, vacuum-dried and resolubi-
lized in water containing 0.5% formic acid. Nanoflow LC–MS/
MS was performed on a NanoLC Ultra 2D system (Eksigent,
Dublin, California, USA) connected to a LTQ Orbitrap Velos
mass spectrometer (Thermo Electron, Bremen, Germany),
equipped with a Triversa chip based electrospray source
(Advion Biosystems, Ithaca, NY, USA) operating at 1.8 kV. A
volume of 25 μL of each samplewas loaded on a C18 precolumn
(PepMap 100, 5 μm particles, 20 mm×200 μm ID; Dionex,
Sunnyvale, California, USA) at a flow rate of 6 μL/min in
solvent A (2% acetonitrile and 0.1% formic acid in water). This
trapping column was connected to an analytical C18 column
(Acclaim Pepmap 100, 3 μm particles, 150 mm×75 μm ID)
(Dionex, Sunnyvale, California, USA) via a column switching
setup. Swift elution of peptides was accomplished using an
isocratic flow of solvent B (30% acetonitrile and 0.04% formic
acid in water) at a flow rate of 500 nL/min for 30 min. MS
spectra were recorded in the Orbitrap with a resolution of
60,000 (at m/z 400) to an AGC target setting of 500,000. The
maximum injection timewas set to 500 ms and lockmass was
enabled (polysiloxane ion at m/z 445.12024). Collision induced
dissociationMS/MS spectrawere acquired in the LTQVelos ion
trap in data dependent mode selecting the 20 most abundant
multiply charged precursor ions from the MS spectrum. The
maximum injection time was set to 50 ms and AGC was set to
Please cite this article as: Remmerie N, et al, Unraveling toba
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7500. Fragmentation was accomplished by CID wideband
activation at a normalized collision energy of 35 and with an
activation time of 30 ms. After MS/MS the precursor m/z's
were excluded for 60 s. A permanent exclusion list containing
m/z values for abundant trypsin and keratin peptides was
used.

2.5. Protein identification

For protein identification, database searches were performed
with Mascot (Version 2.2; Matrix science, London, England),
Sequest (version 1.0.43. embedded in Proteome Discoverer 1.0;
Thermo Fisher Scientific, San Jose, CA, USA) and Phenyx
(Version 2.6; (GeneBio SA, Geneva, Switzerland) against the
NCBInr database (version 7 July 2009; taxonomy: Viridiplantae;
number of sequences: 700843). The following settings were
used: the enzyme was trypsin and one miscleavage was
allowed, cystein-carbamidomethylation was chosen as a fixed
modification and methionine-oxidation as a variable one. The
peptide tolerance was set at 3 ppm and the MS/MS tolerance at
0.8 Da. The Phenyx database has the ability of finding post-
translational modifications (phosphorylation, biotinylation, …)
in an extended search of the spectra. The results of all searches
were combined by Scaffold (version Scaffold 3.00.03; Proteome
Software Inc., Portland, OR, USA) with the following settings: a
peptide confidence level of 95% as specified by the Peptide
Prophet algorithm [38], a protein confidence level of 95%and the
thresholds of each search engines separately. Mascot identifi-
cations required at least ion scores greater than 31. Phenyx
identifications required at least z-scores greater than 5.0.
Sequest identifications required at least deltaCn scores greater
than 0.10 andXCorr scores greater than2.8 for doubly, triply and
quadruply charged peptides. Protein identifications were ac-
cepted if they were established at greater than 95% probability
and contained at least 1 identified peptide. Protein probabilities
were assigned by the Protein Prophet algorithm [39]. Proteins
that contained similar peptides and could not be differentiated
based on MS/MS analysis alone were grouped according to the
principles of parsimony.

2.6. Data analysis

The HMW native marker (Invitrogen Life Technologies,
Carlsbad, CA, USA), used during BN PAGE, was used as a
benchmark to determine the molecular weight (MW) bound-
aries of each BN gel slice. Based on the knownmolecular mass
of these protein standards, the migration distance of the
marker proteins and the number of slices between two
sequential protein standards, the migration distance of each
gel slice was estimated. Protein candidates were excluded
from the final list if the MW boundaries of their corresponding
gel slice did not exceed the theoretical mass of the protein by
more than a 1.5 fold granted ‘mobility mismatch’. These
proteins were considered to be monomeric.

2.7. BLAST search

Since identification was based upon cross-species identifica-
tion, all identified proteins were blasted in batch against the
Arabidopsis thaliana TAIR9 protein sequence database by using
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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command-line BLAST version blastall 2.2.17 [40] with the
following arguments: –p blastp –m 8 –P 1 –A 0. To collapse
redundant matches into a single entry, only the A. thaliana hit
with the largest bitscore was retained for each identified
protein (see supplemental data).

2.8. Protein complex clustering

To identify putative protein complexes, a comparison of
protein profiles was performed by classical clustering
methods throughout the whole BN lane with the statistical
program MATLAB (version 7, Mathworks, Inc., USA). The
premise is that proteins belonging to a particular complex
occur in the same BN slice. The spectral count and the
migration distance for each protein within the BN gel were
used as input parameters for the profile clustering. In order to
account for possible uncertainty in the data, cluster analysis
was performed on normalized and non-normalized spectrum
counts. This uncertainty is due to the cross-species setting
that hampers protein identification. Poorly annotated pep-
tides in the non-model organism influence the spectrum
count of each protein and consequently affect the clustering
that is based on this spectrum count. Normalization was done
throughout the whole BN gel for each protein identification.
Only protein groups that clustered together through all
clustering methods or in multiple clusters in the biclustering
approach were maintained. Two different classical clustering
approaches were applied. We employed hierarchical cluster-
ing using Spearman rank correlation [41] to calculate the
dissimilarity matrix. The unweighted average distance was
used to calculate the linkage between two clusters in the
agglomerative hierarchical cluster tree. The cut-off was
empirically determined through visual inspection of the
dendrogram, making a biologically relevant compromise
between size and specificity of the clusters, which yielded 16
clusters. In addition, we employed a single-run of k-means
clustering, using the same settings as for hierarchical cluster-
ing. In order to facilitate comparison with the results obtained
through hierarchical clustering, k was chosen to partition the
data into 16 clusters.

2.9. Protein tiling

In addition to classical clustering methods, we also applied a
biclustering or “tiling” approach. Tiling is a data-mining
Fig. 1 – Representation of the workflow. A. From BN gel to protei
indicated with STAT and exponential BY-2 with EXP. Above 70 k
in-gel digestion, LC–MS/MS was performed on each of these gel
(Mascot, Sequest, and Phenyx) were combined within Scaffold 3
protein–protein interactions based upon orthology in Arabidopsis
cross-species approach was limited by protein grouping (Scaffol
Arabidopsis thaliana. Proteins were grouped according to their m
clustering methods (hierarchical clustering and k-means cluster
profiles of the classical clustering approaches are shown. The da
group of proteins that have a similarmigration profile over the wh
values of each protein throughout thewhole BN gel lane. Themol
gel is used as a criterion of its possible involvement in a protein co
tested by functional GO-annotation (biological process) and data
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technique that discovers that smallest group of itemsets, or
clusters, which together optimally describe the data. To this
end, we regard the data as a binarymatrix, where a 1 indicates
an interaction between the row and the column. In our setting,
each row in the dataset represents a protein, whereas the
columns correspond to the BN slices. The process of finding
the best biclustering can be easily explained as trying to ‘color’
all the cells of the matrix containing a 1 as efficiently as
possible. Starting off with the situation where none of the 1s
have a color assigned, we iteratively find that itemset
(combination of rows and columns) with which we can
‘color’ the largest ‘uncolored’ area of the data set, with the
restriction that we may only color the selected 1s in a row if it
contains 1s for all the selected columns (e.g., if we have
selected proteins A, B and C, we may only color the cor-
responding 1s for lane X if proteins A, B, and C all occur in
lane X). As such, the data set is being ‘colored’with as large as
possible patches of the same color and as few as possible
colors in total. The area that such a tile colors (or, better,
covers) is calculated bymultiplying the number of elements in
the itemset or cluster, by the number of rows in which all the
elements of the itemset co-occur.

To apply the tilingmethod, the datamatrix was discretized
to binary values, where a value of 1 represents the presence of
a protein, and a value of 0 corresponds to its absence. Due to
this binary dataset, biclustering does not take quantitative
information into account. The algorithm of Geerts et al. [42]
was used in an implementation publically available for
research purposes (http://www.adrem.ua.ac.be/tiling). We
mined tilings in which the individual tiles were allowed to
overlap. Besides the input (a binary data matrix, in sparse
format), and the choice of allowing overlap or not, there are no
further parameters.

2.10. Functional annotation of clustered proteins

To evaluate the enrichment of functional annotations in the
set of proteins within each cluster we used the BINGO plugin
[43] within Cytoscape (version 2.7.0) [44]. A hypergeometric
test and the Benjamini–Hochberg correction was used to test
the statistical significance of the enrichment of each given GO
term in a list of proteins with respect to a reference list. As a
reference list, the full gene ontology annotation of A. thaliana
was downloaded from the gene ontology website (www.
geneontology.org). The “biological process” category of the
n identification within one gel lane. Stationary samples are
Da, the BN gel was cut into equal parts of 1 mm. After tryptic
slices. Identification data of 3 different search algorithms
.00.03. B. Computational approaches to reveal putative
thaliana. The redundancy of protein identifications due to the
d 3.00.03) and by peptide homology searching against
igration profiles within the BN gel by two different classical
ing) and a biclustering approach. Here, protein migration
shed box corresponds to a single cluster that represents a
ole BN lane (X-axis). The Y-axis represents the spectral count
ecular weight of a protein and itsmigration position on the BN
mplex. The significance of the outcome of these clusters was

base-searching.
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GO ontology was used to assign a biological meaning to each
cluster. Categories with a p-value less than 0.01 were con-
sidered statistically significantly overrepresented in a cluster
compared to the whole Arabidopsis annotation.

To find putative interacting proteins, a hierarchical clus-
tering with Pearson correlation was done for each protein
within a complex, according to GO annotations. For this
purpose, only annotations that were shared between at least
two proteins were taken into account for a given cluster. For
the evaluation of known protein complexes, interaction data
was retrieved from theSTRING (http://string-db.org) [45], AtPIN
release 10 (http://bioinfo.esalq.usp.br/atpin/atpin.pl) [46] or the
IntActdatabase (http://www.ebi.ac.uk/intact/main.xhtml) [47].
3. Results and discussion

3.1. Workflow selection and protein selection boundaries

BN PAGE was applied to separate protein complexes from
whole plant cell lysates. Fig. 1 gives an overview of the entire
workflow presented here and further explained in the next
paragraphs. First a list of co-migrating proteins was obtained
after BN PAGE/LC–MS/MS (Fig. 1A). The BN gel lanes were cut
into an average 47 equally sized pieces between 70 kDa and
1300 kDa. After proteolysis, the extracted peptides were se-
parated by reversed-phase nano-LC and analyzed by tandem
MS. The resulting spectra were used for peptide based ho-
mology protein identification and subsequently putative
interaction partners between the identified proteins were
searched by three clustering methods (the classical clustering
approaches and biclustering) (Fig. 1B). In order to reduce the
complexity of the protein–protein interaction analysis, the
low MW complexes (<70 kDa) co-migrating with the bulk of
monomeric proteins were omitted from the analysis. This
thresholdwas selected since theMWdistribution ofA. thaliana
proteins showed that 81% of all proteins fall beneath this MW
boundary (see Supplementary data Fig. 1).

3.2. Cross species identification of proteins by multiple
search engines

Since the tobacco genome is still not fully sequenced, protein
identification had to rely on cross-species identification based
on a peptide homology search against the NCBInr database
(taxonomy Viridiplantae). In order to improve the reliability
and sensitivity of the protein identification [34], the database
was searched by three different search algorithms (Mascot,
Phenyx and Sequest). By combining data from the multiple
search engines using integrating software (Scaffold version
3.00.03, Proteome Software Inc., Portland, OR), the peptide
false discovery rate decreased from 1.2% (for the best
performing single search engine) to 0.6% (for the 3 search
engines combined) and the number of identified unique
peptides increased by 20%, which together lead to an
increased confidence of the protein identification, as well as
an increased number of identified proteins. This analysis
produced an initial list of 191 and 185 protein identifications,
respectively for the stationary and exponential samples. For
both datasets, 81% of these identifications were corroborated
Please cite this article as: Remmerie N, et al, Unraveling toba
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by two or more peptides (0.1% Protein FDR, 0.6% Peptide FDR).
All mass spectrometry data are available in the supplemental
data section. Redundancy in the protein identification, caused
by scattering across various orthologues due to the cross-
species approach, was reduced at two levels: first, all data
were combined within the Scaffold software to allow proteins
that share the same pool of peptides to bemerged into a single
protein group. Secondly, redundancy was further reduced by
performing a sequence similarity search against theA. thaliana
protein sequences, which led to the collapse of several similar
protein hits into a single entry and resulted in a final list of 165
(reduction of 11%) and 180 (reduction of 3%) non-redundant
proteins for respectively the stationary and the exponential
sample. The BLAST results (see supplemental data) show that
all proteins obtained within this N. tabacum dataset are well
conserved inA. thaliana. More than 50% of the BLASThits had a
perfect match (E-value=0). The other hits had an E-value
between 1.00 ⁎E−185 and 1.00 ⁎E−45 (see Supplemental Fig. 2).
GO categorization of the orthologues of the BY-2 dataset
showed that the largest part of the proteins were involved in
metabolic processes, protein metabolism and stress response
(see supplemental data). These proteins are indeed known to
be highly conserved across species [48].

3.3. Detecting protein complexes by protein migration
profiling and clustering

Besides the classical clusteringmethods to cluster the proteins
upon their migration profile in the BN gel, a “biclustering” or
“tiling” approach used in data mining [42,49] was evaluated.

3.3.1. Evaluation of clustering methods
First, we compared the commonly used hierarchical clustering
and k-means clustering methods. Both clustering methods
were applied on normalized and non-normalized data.
Normalization of the data did produce an artifact by amplify-
ing the noise, i.e., the proteins with low spectral counts (data
not shown). As a result, the low-abundance proteins were
grouped as additional clusters. Since these clusters are not
biologically relevant, non-normalized spectral count data
were used instead (Fig. 2) to allow comparison between the
classical clustering approaches and the biclustering tech-
nique. For both classical clustering techniques the number of
clusters discovered is essentially a user-defined choice.
Furthermore, interpretation of k-means clustering results
should take into account the stochastic nature of this method,
yielding possibly non-coherent clusters between different
clustering rounds on the same data set. This particularly
hampers the comparison between cluster analyses of different
samples or different technical replicates (data not shown).

It should be noted that hierarchical and k-means clustering
both allow each protein to be assigned to only one cluster. In
contrast, the biclustering method allows for overlap between
clusters, and may thus reveal (a likely) participation of certain
individual proteins in more than one different protein
complex. As a result, the clusters obtained with the latter
method are smaller than the clusters of the classical approach.

In order to compare the results of the classical clustering
approaches to the results of the biclustering method, a
similarity metric (SM) was calculated (Fig. 3). The similarity
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Fig. 2 – Reconstruction of protein complexes from Nicotiana tabacum by BN PAGE and clustering strategies. A. Non-normalized
spectral count data from all proteins versus theirmigrationwithin the BN gel (heatmap) (X-axis) were used.Within the heatmap
representation, the spectral count values are given as a log10 and ranges from 0 (black) to 1.3 (yellow). Each column represents a
BN gel slice and each individual rowpresents an individual protein (Y-axis). B. Three different clusteringmethodswere applied.
The premise is that proteins belonging to a particular complex occur in the same BN slice. Two classical approaches
(hierarchical clustering and k-means clustering) only look at the migration of proteins (X-as) to cluster them while the
biclustering approach groups proteins that co-occur frequently together throughout the whole BN lane. For the classical
clustering approaches, the spectral count values of each protein are needed to obtain the clustering of proteins while for
biclustering, the data matrix was discretized to binary values (present or not present in a gel slice). The Arabic numbers
represent BN gel slices and Roman numbers represent biclusters.
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metric calculates the number of protein identifications in the
intersection of both clusters, divided by the number of protein
identifications in both clusters minus the intersection. Fig. 3A
graphically illustrates the calculation of this metric. In theory,
the metric presents the odds of the Jaccard index and is
defined in the range, [0, ∞].

First, both classical approaches were compared (Fig. 3B)
and thereafter, the classical approaches were, in turn,
individually compared to the biclustering method (Fig. 4A).
The larger SM, the more protein identifications both clusters
have in common. When SM equals 1 (or log10(SM)=0), the
number of protein identifications in the intersection equals
the number of protein identifications not in common. When
Please cite this article as: Remmerie N, et al, Unraveling toba
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SM is smaller than 1 (or log10(SM)<0), there is an overlap
between the identifications, but both clusters contain more
protein identifications not in common.

Fig. 4B shows that for the dataset of exponentially growing
BY-2 cells, there exists an overlap of 16% between both
classical clustering methods and that 79% of the compared
clusters only share very few protein identifications. Within
21% of the matched clusters, both clusters contained more
protein identifications in common than uncommon. No
completely identical clusters among the results of hierarchical
clustering and the results of k-means clustering were found.
Rather, each cluster can be mapped to an average of two other
clusters within the matrix. To test our similarity score, we
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Fig. 3 –Definition of a similaritymetric to compare clusteringmethods. A. Protein clusters are compared by dividing the number
of the shared protein identifications (3) by the sum of all distinct protein identifications within both clusters (1+2).
B. Comparison both classical clustering approaches (hierarchical clustering and k-means clustering) of the exponential dataset.
Within the heatmap representation, the similarity values are given as a log10. The color scale bar ranges from −1.7 (blue) to 0.45
(yellow). When log10 (SM)<0, overlap exist between the identifications of the compared clusters but they contain more protein
identifications not in common. If log10(SM)≥0, both clusters havemore than half of their protein identifications in common. The
column and row headers represent the cluster numbers of each clusteringmethod, given in the supplemental data. The cluster
profiles of subunits of the 20S proteasome illustrate that compared clusters with a high similarity score show a high overlap in
their protein migration profile.
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evaluated the most similar match for each cluster (note that
the other matches can present links to subcomplexes thereof).
For example themost similarmatch for cluster 14HRC (SM=6.5)
was cluster 11KMC (Fig. 3), both of which represent the 20S
proteasome (Fig. 3B).

A larger number of matches were observed between the
respective classical clustering methods and the tiling ap-
proach, 21% for hierarchical clustering and 23% for k-means
clustering (Fig. 4A and B). However, in 99% of the cases the
observed similarity between a classical cluster and a bicluster
are relative small or medium (log10(SM)<0) (Fig. 4B). This is
explained by the relative small size of the biclusters compared
to the size of the classical clusters. For example, the afore-
mentioned clusters 14HRC and 11KMC showed a high similarity
against protein bicluster 18, respectively SM=5 and SM=2.6.
Each of these three clusters corresponds to the same bio-
logically important entity that we previously isolated from BY-
2 cells by 2-dimensional BN/SDS PAGE [13]: the 20S protea-
some. As a valid benchmark complex, it demonstrates that
Please cite this article as: Remmerie N, et al, Unraveling toba
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each of the clustering methods used here correctly assigns all
members to the complex. For a distinct protein complex, such
as the 20S proteasome, all clustering methods performed very
well. For less distinct protein complexes however, like for
example multi-enzyme complexes that are known to be
involved in several metabolic pathways through a variety of
interactions, the biclustering method is more appropriate to
correctly reveal their promiscuous nature, as it searches
and retrieves several possible combinations of interacting
proteins.

Fig. 5A shows the comparison between two highly similar
clusters (SM=26) obtained by hierarchical clustering (cluster
16HRC) and k-means (cluster 12KMC) with all biclusters of a
dataset of exponentially growing BY-2 cells. Each of the
classical clusters can be matched against multiple biclusters.
Reconstruction of protein complexes through their shared and
distinct components shows that the biclustering method
separates co-migrating protein complexes more efficiently
than the classical clustering approaches (Fig. 5B). Complexes
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Fig. 4 – Comparison of both classical clustering methods to the biclustering method by a calculated similarity metric.
A. Heatmap representation of the similarity between both classical clusteringmethod (X) and the biclustering approach (Y). The
classical clustering approach was set to partition the data in 16 clusters while biclustering yielded 62 biclusters. The similarity
values are given as log10. The color scale bar ranges from −1.7 (blue) to 0.45 (yellow). B. Comparison of all clusteringmethods by
a similarity metric. About 20% of the classical approaches matched against 1 or more biclusters but the majority of these
overlaps are small. This means that the compared clusters share only a few proteins but they both contain more distinct
proteins.
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that were grouped in a single classical cluster are returned as
multiple biclusters. This tiling method searches across the
whole gel lane for reiterating protein sets. As a consequence,
the more frequently a set of proteins co-occurs throughout
multiple gel slices, the stronger their association will be.
Therefore the biclustering method is less vulnerable to
grouping (unrelated) co-migrating protein complexes together,
Please cite this article as: Remmerie N, et al, Unraveling toba
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compared to themore classical approaches. This is the case for
the dimeric tubulin complex (TUA6 and TUB8), the oligomeric
chaperonin 60, the oligomeric TPPII and pyruvate dehydroge-
nase (LTA2 andMAB1). Furthermore, the biclustering results in
Fig. 5B show an association between the 40S ribosome (light
green) and 19S proteasome (red) by e.g., the RTP5A subunit,
between the 40S (light green) and the 60S ribosome (dark green)
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Fig. 5 – Reconstruction of protein complexes by linking protein tiles through shared components. A. Comparison between two
matched (SM=26) classical clusters (cluster16HRC and cluster12KMC) to all biclusters of an exponential BY-2 sample. A single
classic cluster shares multiple small overlaps with several biclusters. B. Biclustering allows for the participation of a protein in
multiple biclusters. The numbers represent each bicluster that has a similarity with the classic clusters (boxes in A). By linking
biclusters through their shared components (proteins in overlapping dashed boxes in B), protein complexes can be
reconstructed and this reveals an interesting link between protein complexes. The 40S ribosome is colored light green, the 60S
ribosome dark green and subunits of the 19S are colored red. Evidence of the interaction between the LOS1, EF-1a, EIF4A1 and
gamma-2 COP proteins and the 60S ribosome was found within the STRING database (see Fig. 7B).
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through their RPP0B subunit. The co-occurrence of certain sets
of proteinswithin several biclustersmay be interpreted as core
complexes, whereas unique members of a certain bicluster
could be seen as attachments [50,51].

3.3.2. Gene ontology analysis of the purified protein complexes
Proteinmigration profiling is possible in the presence of many
background proteins but co-localization of unrelated proteins
cannot be excluded. To further distinguish between related
and unrelated co-migrating proteins, a functional character-
ization was performed under the assumption that proteins
within a given protein complex are likely to be involved in a
similar biological process. For this functional annotation, the
Please cite this article as: Remmerie N, et al, Unraveling toba
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gene ontology (GO) is the de facto standard and can be used for
functional association analysis of proteomic data [31]. The
statistical overrepresentation of GO categories within each
cluster was analyzed. A typical result of such BiNGO analysis
for bicluster 9 (from exponential BY-2 cells) is shown in Fig. 6.
It contains multiple large protein complexes (60S ribosome,
40S ribosome, 26S proteasome, and pyruvate dehydrogenase).
The analysis shows that the majority of the proteins are
functionally related due to their involvement inmetabolic and
cellular processes, and herein a further distinction can be
made between complex members involved in translation,
proteolysis, and pyruvate metabolism. A small group was
labeled as responsive to stimuli. For 3 proteins (RPL7D, RPL4D
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Fig. 6 – Functional annotation analysis of clustered proteins. Red colored dots represent significantly overrepresented (p=0.01)
functional groupswithin bicluster 9 (exponential dataset). The size of the spots depends on the number of proteins within each
GO category. GO categories with a single entry are not taken into account for further complex analysis. Twomain groups can be
discriminated: A. Proteins involved within metabolic and cellular processes. Here, proteins are grouped within 3 functional
biological processes: translation (1), ubiquitin-dependent protein catabolic process (2) and pyruvate metabolic process (3) B. A
distinct group of all proteins are also annotated as responsive to stimuli.
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and EF-1alpha), although known to be involved in translation,
no GO annotation was found.

The gene ontology annotations can possibly be used to
reveal groups of functionally associated proteins within a
cluster, as well as potentially unrelated co-migrating groups of
proteins. To this end, GO annotations were used to hierarchi-
cally partition clusters according to the functions of their
members. Fig. 7A illustrates that this method allows to
discriminate between functionally (un)related protein com-
plexes that co-migrate, such as the 26S proteasome and the
ribosome. Due to the incompleteness and varying depth of
available GO annotations for Arabidopsis, this clustering
should nevertheless be carefully interpreted.

Theapproachwas further evaluatedby retrieving interaction
data of these proteins from the STRING database. Fig. 7B shows
that the proteins indeed assemble into protein complexes, and
that some of these protein complexes are even related. Some of
these relationships were also found by the GO-driven cluster
partitioning approach described above, e.g., between the
ribosomal subunit RPPOB and the translation elongation factor
LOS1, or between the60S ribosomeand the translation initiation
factor EIFA4. Although functional relationships between mem-
bers of a cluster can readily explain the fact that itsmembers co-
migrate, functional differences within a cluster can also be
biologically interesting, if they represent putative links between
different functions within a cell.

3.3.3. Finding protein complexes throughout multiple samples
The biclustering method can both be used to analyze patterns
over the whole BN gel dataset, as well as within each one of
Please cite this article as: Remmerie N, et al, Unraveling toba
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the two (stationary and exponential) cell culture stages.
Within an experiment for comparative analysis, proteins
that cluster persistently throughout multiple samples can be
considered stable protein complexes and those proteins that
cluster intermittently with this stable core can be regarded as
sample-dependent associations, as shown for the EIFA4
interaction with the ribosome in proliferating cells as de-
scribed below. The protein biclustering method allows finding
patterns over multiple samples simultaneously and then
returns both protein sets that co-occur frequently throughout
all samples but, as well, those that are condition dependent.
Within both samples (stationary and exponential BY-2 cells) a
protein set of 5 proteins (ATGSR2, RHM1, GDH1, GAD4 and
SUS4) was found at ~556 kDa for the exponential cells and at
~660 kDa in the stationary cells. Since ATGSR2 (glutamate-
ammonia ligase; glutamine synthase), GDH1 (glutamate
dehydrogenase) and GAD4 (glutamate decarboxylase) all
share glutamate as a substrate these enzymes are possibly
associated. Within the stationary cell samples, themultimeric
RSR4 (REDUCED SUGAR RESPONSE 4) was biclustered with
these proteins. This protein is part of the glutamine amido-
transferase complex and its presence in higher MW protein
complex was reported [52] and explains the MW shift within
the stationary cells.

In plants, sucrose synthase occurs as a tetramer of ~92 kDa
subunits (368 kDa) [53] and so it interacts with other proteins
within our BN gel. Matic et al. [54] showed that sucrose
synthase has a high affinity for UDP-glucose in BY-2 cells.
RHM-1 (RHAMNOSE BIOSYNTHESIS 1, UDP-glucose 4,6-dehy-
dratase/catalytic) uses UDP-glucose as a substrate in the UDP-
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Fig. 7 – Hierarchical clustering of the GO annotation (biological process) within a bicluster of exponential BY-2 cells. Functional
annotation can be used to sort out co-migrating (un)related protein complexes. A. Hierarchical clustering of a BiNGO analysis of
a single bicluster (bicluster 9) from exponential BY-2 cells. This bicluster (bicluster 9) corresponds to box 3 in Fig. 5B.
B. Interactions within the cluster were retrieved from the STRING database and visualized within a protein network. The
different colors used represent (un-)related protein–protein interactions/protein complexes that were grouped together in
bicluster 9 but sorted out by functional annotation.
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rhamnose biosynthesis pathway [55] and was frequently
clustered with the sucrose synthase in our dataset, both for
stationary and exponentially growing BY-2 cells (see supple-
mental data, bicluster 10STAT+EXP).

Subunits of the 60S ribosome were biclustered in both
samples. An interaction between the 60S ribosome and eIF4A,
Please cite this article as: Remmerie N, et al, Unraveling toba
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a DEAD-box RNA helicase was found. This eIF4A is a highly
dynamic subunit of the translation initiation complex eIF4F
that unwinds the mRNA prior to translation in proliferating
plant cells [56]. In our dataset, this interaction between the
ribosome and this DEAD BOX helicase was only found in BY-2
cells that are actively proliferating in the exponential phase.
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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The consequences of this interaction for protein translation
are not understood yet.

3.3.4. Analysis of BY-2 protein complexes by clusteringmethods
Within this section some examples of protein complexes are
described. Multiprotein complexes of the proteasome path-
way were found by the BN PAGE/LC–MS/MS approach (see
Table 1). The most prominent protein complexes that were
found are the subcomplexes of the 26S proteasome. These
large protein complexes function in controlled proteolysis
and were previously identified by 2-dimensional BN/SDS
PAGE [13,57]. The 20S proteasome is an ATP and ubiquitin-
independent protease, consisting of 14 different subunit in an
α1–7/β1–7/α1–7/β1–7 configuration. This complex was clustered
together with the tetradecameric protein chaperonin 60 by
two clustering methods (HRC and biclustering). Although
they cluster together both in their migration profiles as in
their functional annotations, these protein complexes are
non-interacting co-migrating protein complexes since they
are both identified in the BN gel around 850 kDa, a molecular
weight too small to harbor both complexes. An association
between the 20S proteasome and lumazine synthase, COS1,
was reported previously after BN SDS PAGE [13]. Within this
dataset, this protein clustered with the 20S proteasome and
chaperonin 60 by both classical clustering methods. The
biclustering method only linked the COS1 protein to chaper-
onin 60. When searching for similar protein migration
profiles across the BN gel, the classical clustering approaches
are not sensitive to the exact place in the BN gel and can
cluster over several BN slices. Since the COS1 was found
within a gel slice of slightly different molecular weight
(~957 kDa) and was not present in the slice of the 20S
proteasome (~850 kDa), they were not grouped by bicluster-
ing, which primarily retrieves proteins that co-occur within
multiple gel slices. In A. thaliana and spinach, this oligomeric
lumazine synthasewas also foundat 738 kDa [58] and 991 kDa
[59], corresponding quite well to the data presented here
(~957 kDa). Since these co-migrating protein complexes all
play a role within plant defense [59,60], an association
between them is not rejected but both protein complexes
are known to form large oligomers (up to 60-mer) [60]. The
existence of their large oligomeric states and their migration
within the BN gel (~850–950 kDa) rules out a direct interaction
between both large protein complexes (>1600 kDa), unless
smaller subcomplexes of both proteins exist that can
associate at this molecular weight. The presence of such
subcomplexes is not reported yet. At ~1100 kDa, the 19S
regulatory particle of the 26S proteasome was found through
clustering. A large number of subunits were found (see
Table 1). Previously, the RPN1a subunit of this protein
complex was used as a bait in an A. thaliana affinity
purification experiment [6]. This protein interacted with
several of the proteins that co-migrated in our experiment.

The serine protease protein complex, tripeptidyl peptidase
II (TPPII), is often seen as contaminant of the 26S proteasome
because of its similar size and function [61]. Both classical
clusterings grouped this oligomeric protein complex together
with the 26S proteasome and 40S ribosomewhile protein tiling
dedicated this TPPII protein to a single separate bicluster. The
similarity of this bicluster to the classic clusters was close to
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zero. This means that there is a small overlap but that the
classic clusters contain multiple distinct protein identifica-
tions. Biclustering showed that no link is present with the 26S
proteasome (Fig. 5B). Within the BN gel, the TPPII complex
migrated at ~1000 kDa as an oligomer of 140–150 kDa sub-
units. Normally it forms a large protein complex of more than
5 MDa but the existence of active TPPII subcomplexes was
already reported within A. thaliana [61]. The large E3 ubiquitin
protein ligase 2 (upl2) (405 kDa) is clustered with TPPII and
with an ubiquitin extension protein, a constituent of the
ribosome. Mass spectrometry data showed that E3 protein
ligase contained anN-terminal biotin (see supplemental data).
Biotin acts as a covalently-bound cofactor on a family of
enzymes that catalyze reactions in a variety of crucial
metabolic processes and aremainly found on (de)carboxylases
[62]. Here, a first lead is present of a possible biotin-containing
ubiquitin ligase but further validation is required. In general,
little is known of this HECT (Homologous to E6AP C-Terminus)
domain-containing ligase protein in plants and it is thought to
act as a single component within the ubiquitin-mediated
protein degradation pathway [63]. Since they are all clustered
as active within the proteolytic pathway, a direct or in-direct
link between these proteins cannot be ruled out. Within the
gel slice (~1000 kDa), other subunits of the 40S ribosome were
found (see Table 1) together with these proteolytic proteins.

Another protease complex (DegP7) was found around
750 kDa. These protein complexes are known to form large
homo-oligomers with a trimer as their functional unit [64]. In
our approach the hexameric form of this protein complex
clustered with the membrane peripheral part of the vacuolar
ATP synthase complex but functional annotation and their
place of migration ruled out that these protein complexes
interact with each other. V-ATPase in plants are large
heteromeric protein complexes from >700 kDa but free sub-
complexes of the vacuolar ATPase were reported previously
[65]. Furthermore, the V-ATPase amount, its subunit compo-
sition and their stoichiometry seem to vary in different types
of tissue, in response to environmental factors and due to the
developmental state of the plant. Between 690 kDa and
810 kDa only two subunits (A and B subunits) of themembrane
peripheral V-ATPase were found and no potential interactors
could be retrieved. The tobacco V-ATPase was extensively
studied by Drobny et al. [66] and they showed that 8 subunits
of the tobacco V-ATPase could be identified after enrichment
by immunoprecipitation but that the assignment of the
polypeptides to specific V-ATPase subunits was not straight-
forward. This difficult identification of all subunits could
explain the lack of other subunits within our dataset. De novo
sequencing could be necessary to reveal other subunits. The
subunits found here are the two ubiquitous major subunits, A
and B, present in three copies per functioning enzyme forming
the catalytic hexameric (A3B3) cylinder of the V-ATPase and
carries the catalytic nucleotide-binding site [67].

Microtubuli subunits are found at multiple places across
the whole BN lane. It is known that microtubuli are assembled
from dimers from α-tubulin and β-tubulin [68]. These dimers
are stable protein complexes that interact with a large amount
of proteins within the plant cell [69]. With the BN PAGE/LC–
MS/MS approach, interactions were found with the 40S
ribosome and some elongation factors (e.g., EF1α and EIF4A).
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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Table 1 – Examples of protein complexes identified by clustering approaches after BN PAGE/LC–MS/MS.

Protein complex TAIR ID NCBI ID Protein description References

20S proteasome (~850 kDa)
Core components AT3G22110 gi|12229904 PAC1 [13,57]

AT2G05840 gi|12229948 PAA2
AT2G27020 gi|14594925 PAG1
AT1G21720 gi|14594927 PBC1
AT3G22630 gi|14594929 PBD1
AT3G26340 gi|14594931 20S proteasome beta subunit E
AT3G60820 gi|14594933 PBF1
AT1G56450 gi|14594935 PBG1
AT1G47250 gi|147856362 PAF2
AT5G40580 gi|15237451 PBB2
AT1G53850 gi|159478278 PAE1
AT5G66140 gi|162458131 PAD2
AT3G60820 gi|14594933 PBF1
AT3G14290 gi|217071540 PAE2
AT1G16470 gi|255634578 PAB1
AT4G31300 gi|3024440 PBA1

Potential interactors AT5G60160 gi|223550330 Aspartyl aminopeptidase, putative
AT3G07110 gi|76573371 60S ribosomal protein L13A
AT4G16260 gi|119004 Catalytic/cation binding/hydrolase

19S proteasome (~1100 kDa)
Core components AT5G19990 gi|18420092 RPT6A [57]

AT1G53750 gi|115449095 RPT1A
AT4G29040 gi|6652880 RPT2a
AT4G24820 gi|117607065 RPN7
AT1G09100 gi|15217431 RPT5B
AT5G58290 gi|1709798 RPT3
AT2G32730 gi|171854677 Rpn2
AT5G09900 gi|225438483 EMB2107/RPN5
AT2G20580 gi|225446449 RPN1A
AT1G20200 gi|12230970 26S proteasome regulatory subunit S3
AT5G05780 gi|77745499 RPN8A
AT4G19006 gi|78059502 26S proteasome regulatory subunit
AT2G20140 gi|168002980 26S protease regulatory complex subunit 4
AT1G45000 gi|224062085 EMB2719/26S proteasome regulatory complex subunit p42D
AT3G05530 gi|225432252 RPT5A

Potential interactors Multiple partners of the 40S ribosome

TPP2 (tripeptidyl peptidase II) (~1000 kDa)
Core component AT4G20850 gi|225470769 TPP2 [61]
Potential interactors AT1G70320 gi|223533281 UPL2

AT2G47110 gi|126038342 UBQ6
AT4G30920 gi|27463709 Cytosol aminopeptidase family protein

UPL2 (ubiquitin-protein ligase 2) (~450 kDa)
Core component AT1G70320 gi|223533281 UPL2 [63]
Potential interactor AT2G09990 gi|159138763 RPS16A

AT4G20850 gi|225470769 TPP2

40S ribosome (>850 kDa)
Core components AT2G09990 gi|159138763 RPS16A

AT5G62300 gi|224134518 RPS20C
AT5G02960 gi|115440881 RPS23B
AT3G57490 gi|223547389 RPS2D
AT1G22780 gi|76573321 PFL
AT5G28060 gi|223542604 RPS24B
AT2G37270 gi|115433960 ATRPS5B
AT1G18080 gi|1346110 ATARCA
AT5G35530 gi|118488288 RPS3C
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These interactionswere previously described [70]. Throughout
the whole BN gel, the chaperonins HSC70 and cytosolic Hsp80-
1 (member of HSP90 family) co-migrated frequently. These
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two heat shock proteins function together with Hsp70, they
may be considered as parts of a larger multi-chaperone sys-
tem. The Hsc70 also clusters with multiple subunits of the
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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ribosome (Fig. 5B), which is in agreement with its role as a
regulator of the folding of nascent polypeptides [71].

3.3.5. Detection of temporary sequential multi-enzyme
complexes
In this study, not only long-lived protein complexes were
detected. Indications of temporary associations between
sequential enzymes of a metabolic pathway (referred to as
metabolons) [72] were found as well. Several of such enzyme
complexes were found throughout the BN lane but further
experimentation is needed to determine the biological signif-
icance of these suggested multi-enzyme complexes. Within
the BN gel, subunits of the large hetero-oligomeric pyruvate
dehydrogenase complex (PDC) clustered together. This oligo-
meric protein complex is composed of three enzymes that act
sequentially: pyruvate dehydrogenase (named E1), dihydroli-
poamide S-acetyltransferase (E2), and dihydrolipoamide de-
hydrogenase (E3). It catalyzes the overall conversion of
pyruvate to acetyl-CoA and CO2. PDCs are known to form
large complexes composed of a core complex of eight trimers
(cube) or 20 trimers (pentagonal dodecahedron) of E2 with E1
and with E3, that promotes substrate channeling across the
three enzyme components [73]. In our study an association
between the core-subunit dihydrolipoamide S-acetyltransfer-
ase (E2) and pyruvate dehydrogenase (E1) was found at
~1100 kDa. The existence of such association was previously
reported by Olinares et al. [30].

Two metabolic enzymes, glutamate synthase and carba-
moyl phosphate transferase, were clustered together by all
methods and functional annotation reveals they both are
involved in the glutamate metabolism, more specific gluta-
mine family amino acid biosynthetic process. Evidence of a
link between these metabolic enzymes was also found within
the STRING database. Other enzymes involved within the
samemetabolism are also foundwithin the same clusters and
are suggested to be putative interaction partners of this multi-
enzyme complex, e.g., two dehydrogenases (ADL5F1 and
ALD12A1).

Sequential enzymes of the Calvin cycle also clustered
together. Glyceraldehyde-3-phosphate dehydrogenase
(GADPH) and fructose-bisphosphate aldolase are co-migrating
at 310 kDa and are functionally associated together within the
glucose metabolic process.

At 290 kDa, the p-protein of the glycine decarboxylase
complex (GDC) was clustered with serine hydromethyltrans-
ferase. In plants, the GDC cooperates with serine hydroxy-
methyltransferase (SHMT) to mediate photorespiratory
glycine–serine interconversion [74].

Two isoforms of malate dehydrogenase (cytosolic NADP-
malic enzyme 3 and plastidic NADP-malic enzyme 4) were
grouped several times by the biclustering approach. They co-
migrated together at different places between 623 and 587 kDa
within the BN gel of the exponential BY-2 sample. These
proteins have the highest catalytic efficiency for NADP and
malate and can be co-expressed within the same subcellular
compartment. They are involved in a variety of metabolic
pathways. NADP-ME4 (~75 kDa) exists as an active dimer
(~150 kDa) or tetramer (~300 kDa) while NADP-ME3 (65 kDa) is
present as a hexamer (~390 kDa) or octamer (520 kDa) [75]. In
the stationary BY-2 cells, both proteins were only found
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together between 500 and 605 kDa. Here, different associa-
tions are possible but the most likely is between a NADP-ME4
dimer and NADP-ME3 hexamer (540 kDa). An association
between both isoforms is confirmed in the AtPIN database.
Protein identification of NADP-ME3 by the Phenyx engine
showed that this protein, while identified in several com-
plexes in this study, only contained a phosphopeptide (serine
phosphorylation) in a protein complex at 587 kDa (see
supplemental data). This serine phosphorylation was also
predicted with a high score (0.924) by NetPhos (http://www.
cbs.dtu.dk/services/NetPhos/). The phosphorylated state of
the mitochondrial isoform of malic enzyme (NAD-ME) in
plants was previously reported [76].
4. Conclusion

This study employs a combination of bio-analytical and
computational methods to screen for protein complexes of
whole plant cell lysates in a discovery driven approach. By
coupling LC–MS/MS to one-dimensional BN PAGE, multiple
protein complexes were simultaneously detected in relatively
complex samples, even within part of the BN gel slices that
had no clear CBB bands. With the classical 2D BN/SDS PAGE
approach these proteins would not have been selected for
further analysis. Contrary to 2D BN/SDS PAGE, 1D BN PAGE/
LC–MS/MS does not suffer from incomplete spot detection due
to the limited dynamic range of the stainingmethods. Another
advantage of the 1D BN PAGE/LC–MS/MS approach is that
connectivity between compound protein interactions in a
single complex is kept as long as possible and less manual
intervention (and thereby technical variance) is needed prior
to their identification.

In this report, we propose a workflow for the analysis of
protein complexes by a data-mining technique (biclustering)
that groups proteins by searching subsets of proteins that co-
migrate frequently over different fractions of the native
separation, even across multiple biological samples. As far
as we are aware, this approach has never been applied before
to protein complexes separated by BN PAGE/LC–MS/MS. The
biclustering approach is a very powerful tool for the explora-
tion of protein complexes in this data flood, since it allows for
the participation of a protein within multiple biclusters, con-
sistent with the promiscuous nature of proteins. The proteins
shared between biclusters represent interesting links between
larger protein complexes and occasional, e.g., condition-
dependent, protein associations. In this context, biclustering
complements the classical approaches. The complementarity
of the different clustering approaches reveals interesting
perspectives into the modularity of protein complexes.
While cluster analysis based on the protein migration profiles
is a powerful discovery method, co-clustering of unrelated
proteins is hard to exclude. Therefore, this study employs a
GO-driven association analysis of proteins within a bicluster
to elucidate the biological relevance of the putative protein
complexes herein, even if at present this may create false
negatives due to incomplete annotation. We believe that the
extension of combining BN PAGE/LC–MS/MS with a bicluster-
ing approach to whole plant cell lysates increases its ap-
plication as an analytical semi-high throughput discovery tool
cco BY-2 protein complexes with BN PAGE/LC–MS/MS and
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for functional proteomics and can be useful in large-scale
mapping of protein–protein interactions within a cellular
context. Its successful application to an unsequenced and
recalcitrant heteropolyploid plant model like N. tabacum is
illustrative for its discovery potential and the ability to study a
wide variety of non-genomic biological models.

Supplementary materials related to this article can be
found online at doi:10.1016/j.jprot.2011.03.023.
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