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ABSTRACT
During the past decade, many algorithms have been pro-
posed to solve the frequent itemset mining problem, i.e. find
all sets of items that frequently occur together in a given
database of transactions. Although very efficient techniques
have been presented, they still suffer from the same problem.
That is, they are all inherently dependent on the amount of
main memory available. Moreover, if this amount is not
enough, the presented techniques are simply not applicable
anymore, or significantly need to pay in performance. In this
paper, we give a rigorous comparison between current state
of the art techniques and present a new and simple tech-
nique, based on sorting the transaction database, resulting
in a sometimes more efficient algorithm for frequent itemset
mining using less memory.

1. INTRODUCTION
Since its introduction in 1993 by Agrawal et al. [1], the

frequent itemset mining problem has received a great deal
of attention. Within the past decade, hundreds of research
papers have been published presenting new algorithms or
improvements on existing algorithms to solve these mining
problems more efficiently.

The problem can be stated as follows. We are given a set
of items I. An itemset I ⊆ I is some set of items. A transac-
tion is a couple T = (tid , I) where tid is the transaction iden-
tifier and I is an itemset. A transaction T = (tid , I) is said
to support an itemset X, if X ⊆ I. A transaction database
D is a set of transactions such that each transaction has a
unique identifier. The cover of an itemset X in D consists
of the set of transaction identifiers of transactions in D that
support X: cover(X,D) := {tid | (tid , I) ∈ D, X ⊆ I}. The
support of an itemset X in D is the number of transactions
in the cover of X in D: support(X,D) := |cover(X,D)|. An
itemset is called frequent in D if its support in D exceeds
a given minimal support threshold σ. D and σ are omitted
when they are clear from the context. The goal is now to
find all frequent itemsets, given a database and a minimal
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support threshold.
The search space of this problem, all subsets of I, is clearly

huge. Instead of generating and counting the supports of all
these itemsets at once, which is obviously infeasible, several
solutions have been proposed to perform a more directed
search by iteratively generating and counting sets of can-
didate itemsets. These solutions can be divided into two
major classes, those that traverse this search space breadth-
first, and those that do it depth-first. The major challenge
these algorithms face is how to efficiently count the support
of all candidate itemsets visited during the traversal.

The main property that is exploited by all these algo-
rithms is the so-called monotonicity property, i.e. all super-
sets of an infrequent itemset must be infrequent. Hence,
if an itemset is infrequent, then all of its supersets can be
pruned from the search-space. Still, all these algorithms
have their shortcomings, and an overall ’best’ solution has
not yet been identified. Nevertheless, recent studies have
pointed out that from a performance point of view, the
choice of algorithm among those currently available is ir-
relevant for a large range of choices of the minimum sup-
port threshold [11]. Only if databases are very large, most
of these algorithms still suffer from the problem of lack of
main memory.

In this paper, we present a rigorous comparison of two
state of the art algorithms, Eclat [8] and FP-growth [5], both
adopting a depth-first traversal trough the search space.
This comparison has surprisingly never been done before,
and reveals several interesting properties of both algorithms.
The major drawback of both algorithms is that they require
the database to be stored in main memory. If this is not
possible, several techniques have been proposed to reduce
the amount of necessary memory. Unfortunately, they all
significantly reduce the performance of both algorithms. To
solve this problem, we show that by first lexicographically
sorting the transaction database, we are able to present an
adaptation of the Eclat algorithm, called Medic1, which uses
much less memory and performs most of the time even bet-
ter than its predecessor.

Recently, results in frequent itemset mining are mainly
focused on finding only the closed frequent itemsets [7]. Es-
sentially, the currently known most efficient algorithm to
find all closed itemsets, CHARM [10], is based on its com-
plete counterpart, Eclat [8].

In this paper, we will assume familiarity with the Apriori
algorithm and its concepts [2].

1Medic stands for Memory Efficient Discovery of Itemsets,
the ’C’ is gratuitous



2. ECLAT VERSUS FP-GROWTH
The first successful algorithm proposed to generate all fre-

quent itemsets in a depth-first manner is the Eclat algorithm
by Zaki [8]. The next best known depth-first algorithm is
the FP-growth algorithm by Han et al. [5]. In this section,
we explain both these algorithms and show that they are for
large parts essentially the same.

Given a transaction database D and a minimal support
threshold σ, denote the set of all frequent itemsets with
the same prefix I ⊆ I by F [I](D, σ). The main idea used
by both Eclat and FP-growth, is that all frequent itemsets
containing item i ∈ I, but not containing any item before i
(assuming some order on I), can be found in the so called
i-projected database [5], denoted by Di. That is, Di con-
sists of those transactions from D that contain i, and from
which all items before i, and i itself are removed. Indeed,
if we generate all frequent itemsets in Di and add i to all
of them, then we found exactly all frequent itemsets con-
taining item i, but not any item before i, in the original
database, D. Both Eclat and FP-growth recursively gener-
ate for every frequent item i ∈ I the set F [{i}](Di, σ). (Note
that F [{}](D, σ) =

⋃
i∈I F [{i}](Di, σ) contains all frequent

itemsets.)
Both algorithms differ from each other in how they re-

cursively create and represent Di. Their main strength lies
in a very efficient support counting strategy, compared to
the laborious iterative support counting mechanism of most
breadth-first algorithms such as Apriori [2].

For the sake of simplicity and presentation, we assume
that all items that occur in the transaction database are
frequent. In practice, all frequent items can be computed
during an initial scan over the database, after which all in-
frequent items will be ignored.

2.1 Eclat
Eclat transforms the database into its vertical format. I.e.

instead of explicitly listing all transactions, each item is
stored together with its cover (also called tidlist). In this
way, the support of an itemset X can be easily computed by
simply intersecting the covers of any two subsets Y, Z ⊆ X,
such that Y ∪ Z = X.

The Eclat algorithm is given in Algorithm 1.

Algorithm 1 Eclat

Input: D, σ, I ⊆ I (initially called with I = {})
Output: F [I](D, σ)
1: F [I] := {};
2: for all i ∈ I occurring in D do
3: Add I ∪ {i} to F [I];
4: Di := {};
5: for all j ∈ I occurring in D such that j > i do
6: C := cover({i}) ∩ cover({j});
7: if |C| ≥ σ then
8: Add (j, C) to Di;
9: Compute F [I ∪ {i}](Di, σ) recursively;

10: Add F [I ∪ {i}] to F [I];

On line 3, each frequent item is added in the output set.
After that, on lines 4–8, for every such frequent item i, the
i-projected database Di is created. This is done by first
finding every item j that frequently occurs together with i.
The support of this set {i, j} is computed by intersecting

the covers of both items (line 6). If {i, j} is frequent, then
j is inserted into Di together with its cover (line 7,8). On
line 9, the algorithm is called recursively to find all frequent
itemsets in the new database Di.

Note that a candidate itemset is represented by each set
I ∪ {i, j} of which the support is computed at line 7 of the
algorithm. Since the algorithm doesn’t fully exploit the
monotonicity property, but generates a candidate itemset
based on only two of its subsets, the number of candidate
itemsets that are generated is much larger as compared to
a breadth-first approach such as Apriori. As a comparison,
Eclat essentially generates candidate itemsets using only the
join step from Apriori [2], since the itemsets necessary for
the prune step are not available.

A technique that is regularly used, is to reorder the items
in support ascending order to reduce the number of candi-
date itemsets that is generated. In Eclat, such reordering
can be performed at every recursion step before line 13 in
the algorithm. Also note that at a certain depth d, the cov-
ers of at most all k-itemsets with the same k − 1-prefix are
stored in main memory, with k ≤ d. Because of the item
reordering, this number is kept small.

Recently, Zaki proposed a new approach to efficiently com-
pute the support of an itemset using the vertical database
layout [9]. Instead of storing the cover of a k-itemset I,
the difference between the cover of I and the cover of the
k − 1-prefix of I is stored, denoted by the diffset of I. This
technique has experimentally shown to result in significant
performance improvements and requires much less mem-
ory. Nevertheless, the algorithm still requires the original
database to be stored in main memory.

2.2 FP-growth
FP-growth uses a combination of the vertical and horizon-

tal database layout to store the database in main memory.
Instead of storing the cover for every item in the database,
it stores the actual transactions from the database in a trie
structure and every item has a linked list going through all
transactions that contain that item. This new data struc-
ture is denoted by FP-tree (Frequent-Pattern tree) [5]. Es-
sentially, all transactions are stored in a trie data structure.
Every node additionally stores a counter, which keeps track
of the number of transactions that share the branch through
that node. Also a link is stored, pointing to the next occur-
rence of the respective item in the FP-tree, such that all
occurrences of an item in the FP-tree are linked together.
Additionally, a header table is stored containing each sep-
arate item together with its support and a link to the first
occurrence of the item in the FP-tree.

In the FP-tree, all items are ordered in support descending
order, because in this way, it is hoped that this representa-
tion of the database is kept as small as possible since all
more frequently occurring items are arranged closer to the
root of the FP-tree and thus are more likely to be shared.

For example, assume we are given a transaction database
and a minimal support threshold of 2. First, the supports of
all items is computed, all infrequent items are removed from
the database and all transactions are reordered according to
the support descending order resulting in the example trans-
action database in Table 1. The FP-tree for this database
is shown in Figure 1.

Given such an FP-tree, the supports of all frequent items
can be found in the header table. Obviously, the FP-tree is



tid X
100 {a, b, c, e, f}
200 {a, b, c, d, e}
300 {a, d}
400 {b, d, f}
500 {a, b, c, e, f}

Table 1: An example preprocessed transaction
database.
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Figure 1: An example of an FP-tree.

just like the vertical and horizontal database layouts a loss-
less representation of the complete transaction database for
the generation of frequent itemsets. Indeed, every linked list
starting from an item in the header table actually represents
a compressed form of the cover of that item. On the other
hand, every branch starting from the root node represents
a compressed form of a set of transactions.

Apart from this FP-tree, the FP-growth algorithm is very
similar to Eclat, but it uses some additional steps to main-
tain the FP-tree structure during the recursion steps, while
Eclat only needs to maintain the covers of all generated item-
sets. The FP-growth algorithm is given in Algorithm 2.

Algorithm 2 FP-growth

Input: D, σ, I ⊆ I (initially called with I = {})
Output: F [I](D, σ)
1: F [I] := {};
2: for all i ∈ I occurring in D do
3: Add I ∪ {i} to F [I];
4: Di := {}; H := {};
5: for all j ∈ I occurring in D such that j > i do
6: if support(I ∪ {i, j}) ≥ σ then
7: Add j to H;
8: for all transaction X ∈ D with i ∈ X do
9: Add X ∩H to Di;

10: Compute F [I ∪ {i}](Di, σ) recursively;
11: Add F [I ∪ {i}] to F [I];

At lines 5–7, all frequent items are computed and stored in
the header table for the FP-tree representing Di. This can

be efficiently done by simply following the linked list starting
from the entry of i in the header table. Then, at every node
in the FP-tree it follows its path up to the root node and
increments the support of each item it passes by its count.
Then, at lines 8,9, the FP-tree for the i-projected database
is built for those transactions in which i occurs, intersected
with the set of all j > i, such that {i, j} is frequent. These
transactions can be efficiently found by following the node-
links starting from the entry of item i in the header table
and following the path from every such node up to the root
of the FP-tree and ignoring all items that are not in H. If
this node has count n, then the transaction is added n times.
Of course, this is implemented by simply incrementing the
counters on the path of this transaction in the new FP-tree
by n. However, this technique does require that every node
in the FP-tree also stores a link to its parent.

The only main advantage FP-growth has over Eclat is
that each linked list, starting from an item in the header
table representing the cover of that item, is stored in a
compressed form. Unfortunately, to accomplish this gain,
it needs to maintain a complex data structure and perform
a lot of dereferencing, while Eclat only has to perform simple
and fast intersections. Also, the intended gain of this com-
pression might be much less than was hoped for. In Eclat,
the cover of an item can be implemented using an array
of transaction identifiers. On the other hand, in FP-growth,
the cover of an item is compressed using the linked list start-
ing from its node-link in the header table, but, every node in
this linked list needs to store its label, a counter, a pointer
to the next node, a pointer to its branches and a pointer to
its parent. Therefore, the size of an FP-tree should be at
most 20% of the size of all covers in Eclat in order to profit
from this compression.

To support these observations, we performed several ex-
periments on a wide variety of different datasets. Due to
space limitations, we will only consider 2 of them in this pa-
per. For more results, we refer the interested reader to [4].
Here, we present our results on a synthetic data set gener-
ated by the program provided by the Quest research group
at IBM Almaden [3], which is a dense dataset that contains
100 000 transactions over 1 000 items. Also, we report our
results on the BMS-WebView-1 data set which contains sev-
eral months worth of click-stream data from an e-commerce
web site [6]. This is a sparse dataset containing 59 602 trans-
actions over 498 items.

Table 2 shows for these datasets the size of the total length
of all arrays in Eclat (||D||), the total number of nodes in
FP-growth (|FP-tree|) and the corresponding compression
rate of the FP-tree. Additionally, for each entry, we show
the size of the data structures in bytes and the corresponding
compression of the FP-tree.

As was reported in [5], the number of nodes in the FP-
tree is significantly smaller than the size of the database, but
when the actual size of the nodes is taken into account, the
FP-tree representation is often much larger than the plain
array based representation.

Furthermore, the Eclat algorithm performs most of the
time significantly better than the FP-growth algorithm. Due
to space limitations and since the main focus of this paper is
on memory usage, we do not report specifics of these perfor-
mance experiments. For these results, we refer the interested
reader to [4].



Data set ||D|| |FP-tree| |FP-tree|
||D||

T40I10D100K 3 912 459 : 15 283K 3 514 917 : 68 650K 89% : 449%
BMS-Webview-1 148 209 : 578K 55 410 : 1 082K 37% : 187%

Table 2: Memory usage of Eclat versus FP-growth.

3. MEDIC
If the amount of available main memory is not sufficient

to store a complete transaction database, then the efficient
depth-first algorithms are generally not able to start.

The approach proposed to solve this problem for the FP-
growth algorithm is to create an i-projected database on disk
for any item i ∈ I and then mine each projected database
separately [5]. Obviously, this approach can be used for
any frequent itemset mining algorithm, but unfortunately,
it is not feasible for large databases since the cumulated
size of all i-projected databases is much larger by orders of
magnitude. Note that this strategy also inherently sorts the
entire database.

However, when the database is lexicographically sorted,
using the imposed ordering on the items, a very simple op-
timization technique can be used to reduce memory usage
of the Eclat algorithm, resulting in an even more efficient
algorithm, which we call Medic.

Let I = {i1, . . . , in} be all frequent items occurring in D
in ascending order of support. Let T [0] denote the smallest
item in a given transaction T with respect to the imposed
ordering. The Medic algorithm is given in Algorithm 3. For

Algorithm 3 Medic

Input: D, σ
Output: F [{}](D, σ)
1: for all i ∈ I do
2: cover({i}) := {};
3: F [{}] := {};
4: for all (tid , T ) ∈ D do
5: for all i ∈ I such that i < T [0] and {i} /∈ F [{}] do
6: Add {i} to F [{}];
7: Di := {};
8: for all j ∈ I such that j > i do
9: C := cover({i}) ∩ cover({j});

10: if |C| ≥ σ then
11: Di := Di ∪ {(j, C)}
12: Compute F [{i}](Di, σ) using the Eclat algorithm;
13: Add F [{i}] to F [{}];
14: Remove i and cover({i}) from memory;
15: for all i ∈ T do
16: Add tid to cover({i});

correctness of the algorithm, we add a transaction to the end
of the database containing a new item, denoting the end of
the database. In this way, the outer loop is executed one
last time.

Essentially, the algorithm generates all itemsets contain-
ing item i as soon as there can be no transactions anymore
that contain i. More specifically, the algorithm processes
the transactions one at a time in lexicographical order. For
each item i that is ordered before the smallest item in the
current transaction, we know it can no longer occur in the
database, and hence, we can already generate all frequent
itemsets containing i. This is exactly what happens on lines

5–13. Additionally, after generating all these itemsets, the
cover of i can be removed from main memory, since it is no
longer needed by the algorithm (line 14). After that, the
transaction identifier of the current transaction is added to
the covers of all items occurring in that transaction.

Obviously, this algorithm uses much less memory than
Eclat because the database is never entirely loaded into main
memory. Indeed, while Eclat initially stores all covers of all
items in main memory, Medic only stores the covers of all
items up to the currently read transaction and removes them
as soon as the item can no longer occur in any forthcoming
transaction. By initially reordering all items in ascending
order of support, we make sure that this removal of covers
happens soon, but we also make sure that the covers of very
frequent items only get filled while most other covers have
already been deleted.

Note that the algorithm in general also performs much
better, when sorting the database is not taken into account,
since the intersections it needs to perform to count the sup-
port of the itemsets are applied to shorter tidlists (or diff-
sets).

4. EXPERIMENTAL EVALUATION
In this section, we compare the memory usage of Medic

and Eclat on the same datasets used before.
Figure 2 shows the maximal amount of memory used by

the two algorithms for varying minimal support thresholds.
As can be seen, Medic uses around half of the memory that
is used by Eclat for the sparse dataset. Unfortunately, this
effect can not be seen for the dense dataset. Indeed, when
transactions contain a lot of items, and a lot of items have
very high support, the major part of the database will re-
main in main memory until these items have been processed.

Figure 3 shows the memory usage of both algorithms dur-
ing a single run. These figures clearly explain what happens
during the scan of each database. As can be seen, the BMS-
Webview-1 dataset runs perfectly as is intended by Medic.
That is, equal amounts of covers of items are continuously
created and removed. On the other hand, it can be seen
that the dense dataset almost does not benefit at all. As al-
ready explained for the previous experiment, and supported
by this experiment, this dataset mostly contain items with
very high supports.

5. CONCLUSIONS
In this paper we focus on the main problem with which

current state of the art frequent itemset mining algorithms
still have cope with. That is, if databases are too large
to fit into main memory, they are simply not able to run.
First we presented a rigorous comparison of two well known
algorithms that were never compared before, namely Eclat
and FP-growth. We pointed out several interesting aspects
of both algorithms and have shown that Eclat uses much
less memory than FP-growth for most datasets.

If the Eclat algorithm still uses too much memory, a new
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Figure 2: Memory usage for varying minimal sup-
port thresholds.
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Figure 3: Memory usage during a single run.

algorithm, Medic, is proposed, which is based on a very sim-
ple and elegant technique that essentially uses an optimized
version of the Eclat algorithm on a sorted database and al-
ready generates all frequent itemsets that can no longer be
supported by transactions that still have to be processed. In
this way, the algorithm no longer has to maintain the covers
of all past itemsets into main memory.

The experiments show the effectiveness of the technique
for sparse databases. In the case of dense databases, the
problem still remains.
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