
On the Relationship between Workflow

Models and Document Types

Kees van Hee a Jan Hidders b,∗ Geert-Jan Houben c

Jan Paredaens b Philippe Thiran d

aDepartment of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, the Netherlands

bDepartment of Mathematics and Computer Science, University of Antwerp,
Antwerp, Belgium

cDepartment of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
dLouvain School of Management and University of Namur, Namur, Belgium

Abstract

The best practice in information system development is to model the business pro-
cesses that have to be supported and the database of the information system sep-
arately. This is inefficient because they are closely related. Therefore we present
a framework in which it is possible to derive one from the other. To this end we
introduce a special class of Petri nets, called Jackson nets, to model the business
processes, and a document type, called Jackson types, to model the database. We
show that there is a one-to-one correspondence between Jackson nets and Jackson
types. We illustrate the use of the framework by an example.

Key words: workflow management system, Petri net, document management
system, data type, information system design methodology

∗ Contact author: University of Antwerp, Department of Mathematics and Com-
puter Science, Middelheimlaan 1, BE-2020 Antwerp, BELGIUM, tel. +32 3 2653873,
fax. +32 3 2653777

Email addresses: k.m.v.hee@tue.nl (Kees van Hee), jan.hidders@ua.ac.be
(Jan Hidders), geert-jan.houben@vub.ac.be (Geert-Jan Houben),
jan.paredaens@ua.ac.be (Jan Paredaens), philippe.thiran@fundp.ac.be
(Philippe Thiran).

Preprint submitted to Elsevier Science 28 May 2008

1 Introduction

Data modeling and process modeling are two essential activities in require-
ments analysis and design of information systems. They are using different
techniques and normally they are performed independently. Since both tech-
niques are defining essential aspects of an information system they have to
be integrated at some point in the development process, but normally this
is at the level of programming. In this paper we show that data modeling
and process modeling can go hand in hand from the beginning of the develop-
ment process of so-called case-based information systems. The characteristic of
these information systems is that they are developed to support the handling
of cases, such as the treatment of a patient, the handling of an order or the
delivery of a service. For each case type there is a workflow defining the tasks
to be performed for the case. A workflow is a process with a clearly defined
start and end state. In this paper we use a special class of Petri nets to model
workflows, the so-called workflow nets [40]. Since in each task of the work-
flow something happens to the case, it is to be expected that the data type
to record the case data is related to the structure of the workflow. The case
data is recorded in the case document, the structure of which is a document
type. We show that if we restrict ourselves to a special class of workflow nets,
the so-called Jackson nets, then there is a tree shaped document type for the
case data, called the Jackson type, that contains the same information as the
workflow net. One of the main results in this paper is that there is a one-to-
one correspondence between the document type and the workflow description,
so from one we can derive the other. This is similar to the classical program
design method of Jackson [16] which is the reason we called the workflow nets
and the document types after this author.

The organization of the rest of this paper is as follows. In Section 2 we give the
system development context for our work and we give a motivating example. In
Section 3 we introduce Jackson types. In Section 4 we introduce the Jackson
nets and in Section 5 we study the relationships between Jackson nets and
Jackson types. In particular we prove that if two Jackson nets are derived
from the same Jackson type they are isomorphic and that if it is possible to
derive the same Jackson net from two different Jackson types, these types are
algebraical equivalent. In Section 6 we continue with the motivating example.
Here we show how we can derive an XML document type from a Jackson net
and demonstrate how it provides a logical structure that helps the user to
formulate queries over the cases of the workflow. In Section 7 we discuss the
usefulness of Jackson types. Finally, we discuss related work in Section 8. The
conclusion of the paper is given in Section 9.

2

2 Context and motivation

2.1 Historical perspective

In the requirements analysis and design phases of an information system we
describe the desired functionality of a system from different perspectives. In
the early stages of systems design, say until 1970, the systems designers started
to describe the processes the system had to fulfil in terms of flowcharts. Since
flowcharts describe only sequential processes (one thread of control) the inter-
actions between processes was left out.

In the eighties the data modeling techniques became popular. Versions of the
entity relationship model or the relational model were used for this. The big
advantage of using this so-called database-oriented approach was that after the
types of the data stores where established by a data model, several designers
could model concurrently the processes that would act on the data stores . The
modeling of the operations, i.e. of transformations on data objects, was done
again at the low level of flowcharts or directly in a programming language.

In the nineties the object-oriented approach became popular. In this approach
one tries to model the data aspect and the operations on the data in an inte-
grated way. However the processes of a system were still second class citizens.
Therefore process-aware information systems were identified as special class
of systems [8]. This went so far that special software components were de-
signed for the coordination of many interacting processes. Terms as “workflow
management”, “orchestration” and “choreography” are used to refer to this
functionality. Special coordination engines were developed, for instance work-
flow management systems.

Modeling languages for the process appeared. They are also used to configure
the coordination engines, like the database schema is a configuration param-
eter of a database management system. There are two families of formal lan-
guages for modeling processes: process algebra’s and Petri-nets. Besides these
there are several industry standards for modeling processes, such as BPEL
(Business Process Execution Language) [29], UML activity diagrams [31] and
BPMN (Business Process Modeling Notation) [32]. These languages allow us
to design the process aspect of a system in isolation. These process modeling
languages allow concurrency and so the problems of the days of the flowcharts
were overcome.

The problem that we address is the integration of the different views: the data
view and the process view. Already in the seventies there was a successful
attempt to design the data and process aspect in an integrated way, JSP,
Jackson’s programming method [16] and later the method was lifted to the

3

level of system design, JSD, Jackson’s development method [17]. (In Software
requirements and specifications [18] an overview is presented.) In this approach
hierarchical program structures where derived from the hierarchical input and
output data structures, but they became out of fashion when the relational
data model appeared. More recently UML also allows the specification of links
between the process models and data models, but these models are here only
loosely coupled and they remain essentially independent.

The programming method JSP was based on the idea that programs transform
data streams into data streams. A data stream was a sequence of data elements
and these data streams had a hierarchical data type. In fact, the data types
of the input and output streams had to be describable by regular expressions
composed of three kinds of operators: sequential composition, selection and
iteration. The input and output data types were represented as so called tree
diagrams and they were combined into one tree that represented the program
structure. In fact, the program structure was also a tree diagram and the input
tree and the output tree could be derived from the program tree by projections.
The central idea of JSP was that the data structures determine the program
structure. So JSP started with designing the input and output data structures.
This idea is in line with the database oriented approach although in JSP
hierarchical data structures are essential instead of the relational structure.

The similarity between the Jackson data structures and regular expressions
was a reason to compare JSD, the development method based on JSP, with
the language for communicating sequential processes, CSP, which can describe
regular expressions as well. Therefore Sridhar and Hoare expressed JSD in
CSP [39]. To our knowledge this was the first attempt to relate Jackson data
structures and process structures in a fundamental way, but there was not
much follow up from this attempt.

Another approach to formally integrate processes and data are colored Petri
nets where tokens have values that may be changed by transitions [20]. The
values are represented as colors and these colors can be linked to edges to indi-
cate that only tokens with a certain color are consumed or produced through
them. However, this approach does not offer a way to integrate the types of
these colors into a global data model for the process as a whole.

The best practice today in information system development is to model the
business processes that have to be supported and the database of the infor-
mation system separately. This seems to be inefficient because they are often
closely related. Like the observations of Jackson, we should try to exploit this
relationship as much as possible.

4

2.2 The relationship between workflow and document management

Today there is a revival of hierarchical data structures as illustrated by the
popularity of the many XML-based standards. There are several reasons for
this. One is that hierarchical structures occur frequently in practice. For in-
stance the bill of material of a physical artefact like bicycle or an airplane is
a hierarchical structure. In the service industry we encounter also many hier-
archical data structures, consider for instance the electronic patient record in
health care, a bill of lading for a complex transport or the insurance portfolio
of a company. In fact they all are described by a document and documents
have hierarchical structures, composed with the operators: sequence, selection
and iteration. In relational databases these documents are refined into their
constituting elements and these are distributed over many tables. As soon as a
document is needed the elements are retrieved from the tables and presented
as a whole to the user who can update this view and restore it. From an
implementation point of view this might be efficient, but from a conceptual
point of view it is more natural to consider a document as one, structured,
entity. The relational view is only interesting if management information is
considered where a survey over different documents is needed.

Because documents are a natural concept for modeling data in business pro-
cesses that produce physical artifacts or services, generic software components
were developed to take care of documents, the document management systems.
There is a natural relationship with workflow management systems, since both
type of components are supporting (primary) business processes. In business
process management [43] the processes and the data are equally important.
The linking pin is what is called the case. A case is an instance of a case type
and it is the “thing” that is moving through the business process. For instance
in a bicycle factory the case is the construction of the bicycle from the order
form till the final product. In a service organization like a hospital the case
is the treatment of a patient, starting with its first visit till his final one (see
Section 6).

There is often a case document that records everything that happened to the
case, so the state of the process can be reconstructed from the case document
and vice versa. This is not always necessarily the situation at the level of
processes and document types, i.e., the document type does not contain a
complete process description. There is however often a close relationship, e.g.,
the bill of material of a bicycle has a structure that reflects the construction
process of the bicycle [36]. In this paper we define and study a class of models
for which there is such a one-to-one relationship between document types and
processes, namely the Jackson types and Jackson nets which are introduced
in Section 3 and Section 4.

5

2.3 Example: Patient Care System

There are many Electronic Patient Record (EPR) systems that are used to
record and plan the medical events in the treatment of a patient [15]. The
focus of these systems is in registration of observations and decisions. Today
medical protocols play an important role in the patient care processes. The
protocols describe a care process that can be seen as the best practice. Medical
experts have protocols for deriving a diagnosis as well as for a treatment. The
traditional EPR systems are database-oriented and have little support for
process control. In the Patient Care systems of the future the process control
aspect will become more important and therefore the process knowledge should
be integrated with the patient data. In fact a Patient Care system is a very
good example of a case handling system, where we may consider the treatment
of each medical problem as a different case. An alternative, that we do consider
here is to view the whole life of a patient as one case.

As an illustration we consider a simplified care process of patient care in a
hospital. The process is expressed as a Petri net in Figure 1. A formal definition
of a (labeled) Petri net is given in Section 4.1. A Petri net is a bipartite graph
with nodes of type place and nodes of type transition. A place indicates a
possible stage or phase in the care process. A place may be marked with a
token, which is in our situation a reference to the patient. A transition models
an event, activity or task in the care process, and the label of the transition
indicates the type of event. The case is here the patient. The set of all tokens
belonging to one patient indicates the state of the patient. Note that a patient
can be in different stages at the same time. So the stages a patient is in at
some moment form its state.

Some transitions are only needed to describe the control flow and have no real
task associated to it. This is the case with task 11: “Double test” and task 14:
“End double test”. Next we describe the meaning of the process model.

A patient who enters the hospital first goes to the reception desk (task 1: Pa-
tient identification). If the patient comes to the hospital for the first time, the
patient’s personal data is registered (task 3: New patient). This data consists
of the patient’s name and address (street, zip code and city) and a reference
to its general physician. In case the patient is known to the hospital only an
identity card is requested and the relevant personal data is fetched from the
database (task 2: Known patient). Then the patient’s problem is registered
(task 4: Problem registration), a doctor is selected for a first examination and
the patient receives an admission ticket that contains a number, the date and
time of the admission.

After the patient has explained its problem, a preliminary diagnosis is made

6

(task 5: Preliminary diagnosis).

Depending on the outcome of this diagnosis, either Test 1, or Test 2, or both
Test 1 and Test 2 in parallel, or both Test 1 and Test 2 in any order, or some
treatment protocol is chosen from Protocols 1, 2 and 3. It may occur that no
treatment is possible or needed, in which case the patient leaves the hospital
and some administration is performed (task 16: Exit). Examples of tests are
laboratory tests like urine or blood tests and image generation like X-ray or a
MRI-scan. Today there are many protocols for medical treatment. Protocols
may consist of tests as well as therapies and may be refined to sub-processes.

All tests result in data of the same type: the type of result (chosen from the
official list of activity types from the hospital), the date, and the resulting
values (outcomes) of the analysis.

After the tests or protocols have been executed they are evaluated in a new
diagnosis (task 15: Diagnosis). Depending on the outcome of this diagnosis,
a selection of further activities is made. This is repeated until the decision is
made that further treatment is not useful anymore.

pip
i

a 1: Patient
identification

b

2: Known
patient

3: New
Patient

c 4: Problem
registration

d

5: Preliminary
diagnosis e

15: Diagnosis

16: Exit

po
k

12: Test 2

11: Double
test

9: Test 1

8: Protocol 36: Protocol 1

7: Protocol 2

10: Test 1 13: Test 2

14: End
double test

f g

h i

j

Fig. 1. A workflow for handling a medical problem

There is for each patient (case) a dossier which is the EPR. Two typical
instances are displayed in Figure 2. The dots represent data entered by the
medical experts, and may include observations, decisions or any data involved
in the event. The first dossier starts with the information for identifying the
patient, the registration of the new patient, the registration of the problem and

7

the result of the preliminary diagnosis. Then there is a list of treatments and
finally the registration of the exit of the patient. The list of treatments consists
here of three treatments all ending with a diagnosis. In the final treatment we
see that the double test is applied and so the information involved in preparing
the two tests, the two tests themselves and the combination of the test results
is stored. In the second dossier we see largely the same type of information
except that here the patient is registered as a known patient and the list of
treatments consists of the double test followed by the protocol3 test. It is not
hard to see how the data structure of such dossiers can often be described by
a type consisting of recursively nested records and lists.

Observe that the relative vertical and horizontal orientation of the steps in the
dossiers has meaning here: a step that is just below another step describes an
event that followed the event of the step just above it, and steps that are next
to each other describe events that were executed in parallel. This relationship
between the parts of the dossier may determine how the dossier is allowed
to grow. For example, the information for “preliminary diagnosis” may not
be entered before the information for “problem registration” is entered, but
for the double test the information for “test2” may be entered before that
of “test1”. Therefore we extend the notion of type such that it also captures
these relationships and we investigate the precise relationship between such
types as a workflow description formalism and certain workflow nets.

patient identification: ...

new patient: ...

problem registration: ...

preliminary diagnosis: ...

treatments:

test1: ...

diagnosis: ...

protocol2: ...

diagnosis: ...

double test: ...

test pair:

test1: ... test2: ...

end double test: ...

diagnosis: ...

exit: ...

patient identification: ...

known patient: ...

problem registration: ...

preliminary diagnosis: ...

treatments:

double test: ...

test pair:

test1: ... test2: ...

end double test: ...

diagnosis: ...

protocol3: ...

diagnosis: ...

exit: ...

Fig. 2. Examples of two patient dossiers

In the presented example the different pieces of information are associated
with the firing of transitions, i.e., each firing of a transition generates some
information that is to be stored in the patient dossier. It can however in

8

some cases be more natural to think of the information as being associated
with the tokens, for example if the token represents a document containing a
diagnosis or a form that contains the result of a test. Therefore we assume in
the following of the paper that information can be associated both with the
firing of a transition and with the tokens that are consumed and produced.

3 Jackson Types

In this section we introduce types that we use to represent workflow document
types, i.e., data structures that can contain all the information that is involved
in a single case of the workflow that is described by a workflow net. We show
that these types (1) can indeed contain all the involved information and (2)
have a natural correspondence to the hierarchical structure of the workflow
net.

We postulate a set of atomic types A = {a, b, c, . . .} that describe data struc-
tures that contain all the information involved in a certain transition or place
of a workflow net. Note that these atomic types are only atomic for the pur-
pose of describing the workflow document type and may in a later phase of the
modeling process be broken down into smaller components. From these atomic
types we construct types by using constructors for sequencing (;), parallelism
(‖), choice (+), and loop (#).

Definition 1 (Type) The set of types J is defined by the following syntax:

J ::=A | (J ; J) | (J ‖ J) | (J + J) | (J # J).

The types can be thought of as a combination of a data type and a process
specification. The type (τ1; τ2) denotes the type of ordered records. This type
describes records with fields of type τ1 and τ2 and indicates that in the process
the event associated with the field of type τ1 precedes the event associated with
the field of type τ2. The type (τ1 ‖ τ2) denotes the type of unordered records
with fields of type τ1 and τ2 that describes records with fields of type τ1 and τ2

and indicates that in the proces there is no particular order. The type (τ1 +τ2)
denotes the type of variant records that contain either a value of type τ1 or τ2.
Finally the type (τ1#τ2) denotes nonempty lists of values of type τ1 separated
by values of type τ2.

The notion of trace set is introduced to formalize the concept of all information
that is involved in a single run of a workflow. Here a single trace is a string
of atomic types and a trace set is a set of such strings. If α and β are such
strings then we will denote the concatenation of α and β as α · β.

9

The trace set that is associated with a certain type is defined as follows.

Definition 2 (Trace-set of Types) The trace-set of a type τ , Tr(τ) is de-
fined by induction upon the structure of τ as follows:

• Tr(τ) = {τ} if τ ∈ A
• Tr((τ1; τ2)) = {α · β | α ∈ Tr(τ1), β ∈ Tr(τ2)}
• Tr((τ1 ‖ τ2)) = {α1 ·β1 · . . . ·αk ·βk | k ≥ 0, α1 · . . . ·αk ∈ Tr(τ1), β1 · . . . ·βk ∈
Tr(τ2)}
• Tr((τ1 + τ2)) = Tr(τ1) ∪ Tr(τ2)
• Tr((τ1#τ2)) = {α1 · β1 · α2 · . . . · βn−1 · αn | n > 0, αi ∈ Tr(τ1), βi ∈ Tr(τ2)}

We have for example

• Tr(((a; b) + c)) = {ab, c}
• Tr((a; (b#c))) = {ab(cb)n | n ≥ 0}
• Tr((b + d)) = {b, d}
• {abdcbcb, abcbb, abb} ⊂ Tr((a; (b#c)) ‖ (b + d)))

Remark that a#b stands for (a; b)∗; a, using the Kleene-star.

Definition 3 (Trace Equivalence of Types) Two types τ and τ ′ are called
trace equivalent, denoted as τ ≡tr τ ′, iff Tr(τ) = Tr(τ ′).

Theorem 4 There is no finite set of equivalence rules that defines the trace
equivalence of types.

Proof. Let us assume that there is such a finite set of equivalence rules.
Then this set of rules will also define trace equivalence if there is only one
letter in the alphabet. Under this assumption e1 ‖ e2 ≡tr e1 + e2, so there is
also such a set of rules for expressions that do not contain ‖. We can express
the # operator with the Kleene-plus (denoted e+) and vice versa, because
e+ ≡tr (e#e) + (e; (e#e)) and e1#e2 ≡tr e1 + (e1; (e2; e1)+). It follows that
there is also such a set of rules for the language with the Kleene-plus but
without #. There is also such a set of rules if we add the empty string (denoted
as ε) since we can rewrite every expression to either a ε-free e or ε + e with
e ε-free by using only a finite set of equivalence rules. There will then also
be such a set of rules for the language with the Kleene-plus replaced with
the Kleene-star (denoted e∗) since one can be expressed with the other, and
vice versa: e∗ ≡tr ε + e+ and e+ ≡tr e; e∗. Note that the resulting language is
exactly the language of regular expressions. However, for that language it has
been shown by Aceto, Fokkink and Ingólfsdóttir [1] that such a finite set of
rules does not exist, even under the assumption that there is only one symbol
in the alphabet. 2

Conjecture 5 Deciding trace inequivalence of types is EXPSPACE complete.

10

The problem is very similar to the problem of deciding trace inequivalence of
regular expressions extended with interleaving operations, which was shown
to be EXPSPACE complete by Mayer and Stockmeyer [25].

Next to trace equivalence we also define another coarser notion of equivalence
that can be informally thought of as defining when two types represent the
same data type. For example the types (a; (b; c)) and ((a; b); c) can be seen as
representations of the type (a; b; c), i.e., the type of ordered tuples with the
fields a, b and c in that order. Another example are (a ‖ b) and (b ‖ a) which
both represent the type of unordered tuples with the fields a and b. This leads
to the following definition.

Definition 6 (Algebraic Equivalence of Types) The algebraic equivalence
≡alg is the smallest equivalence relation on the set of types that fulfils the iden-
tities of Figure 3.

(τ0 ; τ1) ; τ2 ≡alg τ0 ; (τ1 ; τ2)

(τ0 ‖ τ1) ‖ τ2 ≡alg τ0 ‖ (τ1 ‖ τ2)

τ0 ‖ τ1 ≡alg τ1 ‖ τ0

(τ0 + τ1) + τ2 ≡alg τ0 + (τ1 + τ2)

τ0 + τ1 ≡alg τ1 + τ0

(τ0 # τ1) # τ2 ≡alg τ0 # (τ1 + τ2)

Fig. 3. Defining identities for algebraic equivalence

Note that the identity between τ0 # (τ1 # τ2) and (τ0 # τ1) # τ2 is not included
since these two types might not even be trace equivalent. For example, the
trace aca is in Tr(((a#b)#c)) but not int Tr((a#(b#c))), and the trace abcba
is in Tr((a#(b#c))) but not in Tr(((a#b)#c)). The definition of the notion of
algebraic equivalence of types will be further motivated later on in the paper
where it is shown that for a certain non-deterministic procedure that derives
types for a certain class of workflow nets it captures exactly the ambiguity of
this procedure, i.e., there may be more than one possible result type but they
are all algebraically equivalent.

That algebraic equivalence is indeed coarser then trace equivalence is estab-
lished by the following theorem.

Theorem 7 For two types τ and τ ′ it holds that τ ≡tr τ ′ if τ ≡alg τ ′ but not
conversely.

Proof. In order to prove the if-part we have to prove that τ ≡alg τ ′ implies
τ ≡ τ ′ for each of the seven rules of Figure 3. For the first five rules this is
trivial. For the sixth rule we have Tr((τ0 # τ1) # τ2) = {α1

1 ·β1
1 . . . β

1
n1−1 ·α1

n1
·

γ1 . . . γk−1 · α1
k · β1

k . . . βknk−1 · αknk
| ni, k > 0, αji ∈ Tr(τ0), βji ∈ Tr(τ1), γi ∈

11

Tr(τ2)} = {α1 · δ1 . . . δm−1 · αm| m > 0, αi ∈ Tr(τ0), δi ∈ Tr(τ1) ∪ Tr(τ2)} =
Tr(τ0 # (τ1 + τ2)).

That the converse does not hold follows from Theorem 4 but for illustration
we will also give a counterexample. Let a ∈ A then clearly Tr((a#a)#a) =
Tr(a#a) = {a2n+1 | n ≥ 0}. Hence a#a ≡tr (a#a)#a. On the other hand
a#a 6≡alg (a#a)#a since no identity of Figure 3 can be applied to a#a. 2

In this paper we will mostly consider a specific subset of types that correspond
with a certain class of Petri nets that describe workflows. This causes certain
restrictions on the types because the atomic types associated with the places
and transitions need to alternate properly in the type since places are followed
by transitions and vice versa. Moreover, it also restricts the operators allowed
in certain places of the type. For example, after a basic type associated which a
transition we can have the ‖ operator but not the + operator since a transition
can define an AND-split but not an OR-split. Likewise, after a basic type
associated with a place there can be a + operator but not a ‖ operator, since
a place can define an OR-split but not an AND split. The restricted set of
types is called the set of Jacskon types and defined given two sets, At and Ap,
which are defined such that A = At ∪Ap and represent the atomic types that
can be associated with transitions and with places, respectively.

Definition 8 (Jackson Type) The set of Jackson types is described by the
following syntax of J0:

J0 ::=Ap | (Ap; (J t;Ap)).
J t ::=At | (J t; (Jp; J t)) | (J t + J t).

Jp ::=Ap | (Jp; (J t; Jp)) | (Jp ‖ Jp) | (Jp#J t).

Note that the Jackson types are indeed a subset of the set of types. Clearly
(a; (b + c); b) and (a; ((a; b; a) + a); a) are Jackson types, while ((a; (b#c)) ‖
(b + d)), (a; (a ‖ b); a) and ((a; b) + c) are not.

4 Jackson Nets

4.1 Petri nets and workflow nets

We start with the basic terminology for Petri nets and workflow nets in par-
ticular. Next we will define the subtype of Jackson nets.

Definition 9 (Labeled Petri Net) A labeled Petri net is a tuple (P, T, F, λ)

12

with P a set of places, T a set of transitions (P ∩ T = ∅) and F ⊆ (T × P)∪
(P × T) the flow relation. The function λ associates a label to each place and
transition.

Note that λ is not required to be injective and can therefore map different
places and transitions to the same label. Given a labeled Petri net (P, T, F, λ)
and a transition t ∈ T we let •t and t• denote input places and output places
of t, i.e., •t = {p | (p, t) ∈ F} and t• = {p | (t, p) ∈ F}. Similarly, for a place p
we let •p and p• denote the producing transitions and consuming places, i.e.,
•p = {t | (t, p) ∈ F} and p• = {t | (p, t) ∈ F}.

Definition 10 (Graph of a labeled Petri Net) The graph of a labeled Petri
net (P, T, F, λ) is its underlying directed graph G = (P ∪ T, F).

Definition 11 (Workflow Net) A workflow net or net is defined as a tuple
Ω = (P, T, F, pi, po, λ) such that

• (P, T, F, λ) is a labeled Petri net;
• pi ∈ P is the input place such that •pi = ∅;
• po ∈ P is the output place such that po• = ∅; and
• in the graph of Ω there is for each node n a directed path from pi to n and

a directed path from n to po.

Workflow nets are represented in the straightforward way. In Figure 4 four
workflow nets are shown.

pip0pipi

h

pip0pipi

a gf

e

d

c

b

pip0pipi

a g

f

e

d

c

b
pip0pipi

a e

dc

b

pip0pipi

a g

f

d

c

pip0pipi

e

b

(a) (b)

(c) (d)

i

Fig. 4. Four workflow nets

13

Definition 12 (Marking) Given a net Ω = (P, T, F, pi, po, λ) a marking is
a function m : P → N.

If P ′ is a set of places in Ω then we let P ′ denote the marking m : P → N
that is defined such that m(p) = 1 if p ∈ P ′ and m(p) = 0 if p 6∈ P ′. Markings
for a certain net can be added and subtracted: m1 + m2 (m1 − m2) is the
marking m′ such that m′(p) = m1(p) +m2(p) (m′(p) = m1(p)−m2(p)). Note
that m1 +m2 is always defined, but m1 −m2 is defined iff m1(p) ≥ m2(p) for
all p ∈ P . The product of a natural number k and a marking m, denoted as
k ·m, is defined such that for all p ∈ P it holds that (k ·m)(p) = k ·m(p). We
say that a transition t ∈ T is enabled in a marking m if it holds that m − •t
is defined.

Definition 13 (Reachability Graph) Given a net Ω = (P, T, F, pi, po, λ),
we define its reachability graph as an edge-labeled graph (V,E) such that

(1) V is the set of all markings for Ω, and
(2) E ⊆ V × T × V such that (m1, t,m2) ∈ E iff

(a) t is enabled in m1 and
(b) m2 = m1 − •t+ t•.

In addition, we define two special markings: mi, called the initial marking, that
places one token in place pi and nowhere else, and mo, called the final marking,
which puts one token in po and nowhere else. A path in the reachability graph
is called a transition path. A run is defined as a nonempty transition path
that starts from mi. Such a run is said to be a full run if the last edge ends
in mo. A firing sequence of the net Ω is the sequence of transition labels of
transitions as they are encountered in a full run. (Note that normally the term
firing sequence is used for the sequences of transitions.) For example, b and cf
are the firing sequences of the workflow net in Figure 4 (a).

The notion of workflow net is often accompanied by a notion of soundness
that excludes certain types of anomalies. Consider for example workflow net
(b) in Figure 4. If we start with one token in the place labeled a then the
transition labeled b and the transition labeled c are enabled. If either one of
these transitions fires then there is either a token in the place labeled d or in
the place labeled e, but not both, so the transition labeled f is not enabled and
the workflow cannot finish properly, i.e., reach a state with only one token in
po. A similar problem is demonstrated in workflow net (c) which, when starting
with one token in pi, always ends with two tokens in po. To prevent this we
require that sound workflow nets can always terminate properly, i.e., for every
marking reachable from mi we can reach the final marking mo. Another type
of anomaly is demonstrated in workflow net (d) which always finishes properly,
but it contains a transition labeled f which will never be enabled because there
is in every reachable marking either a token in place d or place e but never

14

in both. The transition labeled f is therefore superfluous and could have been
omitted from the workflow net. Therefore we also require for sound workflow
nets that every transition is enabled in at least one reachable marking. This
leads to the following definition.

Definition 14 (Sound Net) A net Ω = (P, T, F, pi, po, λ) is said to be sound
if it holds in the reachability graph of Ω that

(1) from every marking reachable from mi, we can reach mo and
(2) for every transition t ∈ T there is a run with an edge (mi, t,mj).

Remark that in a sound net mo is the only marking that (a) is reachable from
mi and (b) has a token in place po. In Figure 4 the workflow net (a) is indeed
sound, and the nets in (b) and in (c) are not, since mo is not reachable, and
(d) is also not sound because the transition labeled f will never be enabled.

4.2 Jackson nets and soundness

From now on we suppose that the places and the transitions of nets are labeled
by a Jackson type. The intuition behind this association of Jackson types and
nets is that thus we can integrate process and data aspects. If all the labels of
the net are atomic types and hence belong to A we call it an atomic net.

We introduce the semantics of a net by defining its trace-set. A trace of a
net can be informally described as a sequence of the Jackson types of the
places and transitions in the order that they are visited or fired. The formal
definition of the traces of a net is based on the notion of firing sequence which,
we recall, is defined as the sequence of transition labels of transitions as they
are encountered in a full run. For an illustration consider the first workflow net
in Figure 5 for which the set of firing sequences can be described by the regular
expression (bg + c(jl)∗h). Clearly this is not the desired notion of trace since
it ignores the labels of the places. To remedy this we introduce the notion of
place-expanded net which informally can be defined as the net that is obtained
by splitting every place into two places and an intermediate transition.

Definition 15 (Place-expanded Net) Given a net Ω we define its associ-
ated place-expanded net Ω̂ as the net that is obtained by replacing each place p
by two new places p1 and p2 that are connected by one new transition t1. The
places p1 and p2 and the new transition t get the label of p and the incoming
edges of p are copied to p1 and the outgoing edges of p are copied to p2.

In Figure 5 the bottom net is the associated place-expanded net of the top net.
It’s set of firing sequences is described by the regular expression (a((b(de +
ed)g) + (cfh(jklf)∗))i). It is this set that seems to correctly model the traces of

15

the top net in the sense that it takes both the labels of the places an transitions
into account. This leads to the following formal definition.

pip0pipi
a b g

i

d

c h

f
e

l k j

b g

d

c h

f

e

l

k

j

p0pi

a a a i i i

d d

e e

f f

k k

Fig. 5. A net with its place-expanded net

Definition 16 (Trace-set of Nets) Given a net Ω, with its place-expanded
net Ω̂. A trace of Ω is a firing sequence of Ω̂. The set of traces of Ω is denoted
as Tr(Ω).

Observe that the trace-set of the top net of Figure 5 is equal to the trace-set
of the type (a; ((b; (d‖e); g) + (c; (f#(j; k; l)); h)); i). This type arguably corre-
sponds more closely to the structure of this net than the previously presented
regular expression describing the same set. It is this correspondance that is
one of the fundamental properties of Jackson types that we investigate more
closely in the remainder of this paper.

Next, we give five rules R1,..., R5, displayed Figure 6 to generate nets starting
with only one place. We say that Ω generates Ω̃ iff Ω̃ can be obtained from Ω
by applying zero or more times a rule of Figure 6 1 , without applying rules R3
and R4 to the input place or the output place. Moreover, if rule R1 is applied to
the input (output) place then p2 (p3) becomes the new input (output) place.
We also say that Ω̃ can be reduced to Ω. To apply the rules note that the
label of the place or transition to be refined has to satisfy a structure that is
reflected in the equation of the rule. So for example, rule R1, which is denoted

1 In Rule R1, p1 is the input place iff p2 is the input place; p1 is the output place
iff p3 is the output place.

16

by λ(p1) = (λ(p2);λ(t1);λ(p3)), means that the label of place p1 has at the
top-level the structure of a sequence and therefore it may be expanded into a
sequence of a place (p2) a transition (t1) and again a place (p3), each with its
own label λ(p2), λ(t1) and λ(p3) respectively.

R1: Sequential place split:

p
1 t1p

2
p3⇒

R2: Sequential transition split:

⇒t
1

p
1t

2
t
3

R4: AND split:

p
1

p
3

p
2⇒

R5: OR split:

⇒t
1

t
2

t
3

R3: Loop addition:

p1 p2⇒
t
1

λ(p
1
) = (λ(p

2
) # λ(t

1
))

λ(t
1
) = (λ(t

2
) + λ(t

3
))

λ(t
1
) = (λ(t

2
) ; (λ(p

1
) ; λ(t

3
))) λ(p

1
) = (λ(p

2
) || λ(p

3
))

λ(p
1
) = (λ(p

2
) ; (λ(t

1
) ; λ(p

3
)))

Fig. 6. The generation rules for Jackson nets

Definition 17 (Jackson Net) We call a net without transitions and only
one place labeled by a Jackson type an singleton net. A Jackson net Ω is a
net that can be generated, from a singleton net, by applying the rules R1, .., R5
recursively, starting with type τ in the singleton net. We say that the Jackson
net Ω is generated by τ .

Remark that the net of Figure 4 (a) is a Jackson net. Its generation is given in
Figure 7. The other nets (b), (c) and (d) in the same Figure are not Jackson
nets. The (a) net is also the only sound net in this figure. As is shown by
Theorem 18 it holds that every Jackson net is a sound net, but the converse
does not hold as is demonstrated in Theorem 19 where we show that the sound
net in Figure 8 is not a Jackson net.

The is-generated-by relationship between Jackson types and Jackson nets is
defined by a non-deterministic rewriting process, i.e., at one point in the pro-
cess it can be that multiple rewrite rules apply and we have to make an
arbitrary choice. This relationship is therefore not necessarily a function and
may associate several Jackson nets with the same Jackson type. The same

17

pip0pip
i pip0pipi

a g

f
e

d

c

b

pip0pip
i pip0pipi

a g

f(d || e)c

b
pip0pip

i pip0pipi

a g

c ; (d || e) ; f

b

pip0pip
i pip0pipi

a gb + (c ; (d || e) ; f)a ; (b + (c ; (d || e) ; f)) ; g

R1

R5

R2

R4

Fig. 7. Generation of a net

holds for the reverse is-generated-from relationship, which can be assumed to
be defined by the same rewriting process in reverse. So with a certain Jackson
net there may be more than one Jackson type that generates it. However, as
is discussed in Section 5, the relationship is in fact very close to a one-to-one
relationship.

Rules such as those in Figure 6 were studied by Berthelot in [3] and Murata
in [27] as reduction rules that preserve liveness and boundedness properties
of Petri nets. The rules are often called the “Murata rules”. In fact Murata
considers one rule more, a loop addition with a (marked) place, similar to R3.
We do not use this rule since it would destroy the soundness property. The
rules that we present here are also used by Reijers in [35] and Chrzastowski-
Wachtel et al. in [6] to generate workflow nets. Finally, note that the rule
R1 can be used to describe the earlier defined notion of place-expanded net
by saying that if we ignore the labeling this is the net that is obtained by

18

applying this rule once to all places.

Theorem 18 Every Jackson net is a sound net.

It is well-known that the Murata rules preserve liveness and boundedness of
Petri nets (see [27]) with respect to a given marking. The marking of the
generated net should be derived from the marking of the original net in the
following way: for R1 the tokens of p1 should be distributed over p2 and p3

(arbitrarily), for R2 the place p1 should be empty, for R3 the number of tokens
in p1 and p2 are the equal, for R4 the tokens of p1 are duplicated to p2 and
p3 and for R5 nothing has to be done. In [42] it is shown that soundness is
equivalent with liveness and boundedness of the closure of a workflow net,
i.e. the Petri net obtained from a workflow net by adding one transition t?

that connects the output place p0 to the input place pi, in the initial marking
m0. Since we could not find a complete and formal proof for the preservation
properties of the Murata rules, we give a direct soundness proof in Appendix A.
In fact, we give a proof of a stronger property called generalized soundness
[45] which requires that for every natural number k it holds that from every
marking reachable from k ·mi, i.e., k tokens in pi, we can reach k ·mo, i.e., k
tokens in po.

Theorem 19 Not every sound net is a Jackson net.

Proof. That not every sound net is a Jackson net is shown by the sound net in
Figure 8. That it is not a Jackson net can be shown in two ways. The first is by
enumerating all Jackson nets with at most 4 places and 4 transitions. This can
be done by exhaustively applying the generation rules until we find nets with
more than 4 places or more than 4 transitions since all rules either increase the
number of places or the number of transitions. It can then be observed that
the net in Figure 8 is not in this finite list of nets. Another proof can be given
by observing that none of the right-hand sides of the generation rules can be
matched in the net, i.e., there is no part of the net that might be the result
of the application of one of the generation rules, so it cannot be generated by
any of the rules from a smaller net. 2

pip0pipi
a b

c

d

e f g h

Fig. 8. Not a Jackson net

19

5 The Jackson Types of Jackson Nets

In the preceding section we introduced the relationship between Jackson types
and Jackson nets that defines when a Jackson type generates a Jackson net.
Recall that the definition did not make it clear wether this is a many-to-many,
one-to-many or one-to-one relationship, which is what is investigated in more
detail in this section. The variety in the nets that are generated by a certain
Jackson type indicates how well the structure of the net is represented by
the type. It is shown in this section (Theorem 20) that this is perfect, i.e.,
up to isomorphism the Jackson net is completely determined by the type.
The relationship can also be used in reverse to determine the data type for
the dossiers of the cases of a certain workflow. In that case the variety in
Jackson types that all generate the same Jackson net indicates the variety
of dossier data types that are generated for a certain workflow, which should
ideally be as small as possible. It is shown in this section that although there
is some variety this is small and can be characterized by a few simple algebraic
identities (Theorem 27). The final part of this section discusses to which extent
Jackson nets, the set of which are a proper subset of the set of workflow nets,
restrict the ability or make it harder to express certain workflows.

5.1 The variety in Jackson nets generated by a certain Jackson types

In the following theorem we establish to which extent multiple Jackson nets
can be generated by the same Jackson type.

Theorem 20 Two atomic Jackson nets Ω and Ω′ are generated by the same
Jackson type iff Ω and Ω′ are isomorphic.

Proof. It is easy to see that if Ω and Ω′ are isomorphic Jackson nets then
they are generated by a common Jackson type since for both nets we can use
the same generation up to the choice of the new nodes.

That two Jackson nets are isomorphic if they are generated by the same Jack-
son type is shown as follows. Consider the syntax tree of the Jackson type τ
as defined by the syntax in Definition 1. From this tree we derive the abstract
syntax tree, denoted as Tτ , as follows: (1) the leaves for brackets are omitted,
(2) the J-nodes with an A-child with an atomic-type child is replaced with
just the atomic-type node and (3) the J-nodes that have a child labeled with
one of “;”, “‖”, “+” or “#” are now themselves labeled with this operator
and the child in question is removed. Note that the result is a rooted ordered
node-labeled binary tree where leaves are labeled with elements of A and in-
ternal nodes are labeled with one of the operators. It can then be shown wit
induction upon the number of steps for the generation of the Jackson net Ω

20

from the Jackson type τ that there is a one-to-one mapping h between the
nodes of Ω and the leaves of Tτ such that (A) it maps leaves to nodes with the
same atomic-type label and (B) for two distinct nodes n1 and n2 in Ω it holds
that there is an edge from n1 to n2 iff the simple path in Tτ from h(n1) to
h(n2) satisfies a certain condition C. For this purpose we define a path in Tτ
as a non-empty list of pairs ((n1, n

′
1), . . . , (nk, n

′
k)) such that for all 1 ≤ i < k

the unordered pair {ni, n′i} is an edge in Tτ and n′i = ni+1. Moreover, with
each pair (n, n′) in such a path we associate a string λ(n, n′) such that:

• if n is a ;-node and n′ is its first (second) child then ”α” (”β”)
• if n is a ‖-node and n′ is its first (second) child then ”γ” (”δ”)
• if n is a +-node and n′ is its first (second) child then ”µ” (”ν”)
• if n is a #-nodes and n′ is its first (second) child then ”ϕ” (”ψ”)
• if λ(n′, n) = ”x” then λ(n, n′) = ”x−1”

The string of a path ((n1, n
′
1), . . . , (nk, n

′
k)) is then defined as λ(n1, n

′
1) · . . . ·

λ(nk, n
′
k). The condition C then can be defined as saying that the string of

the path must be in the language of the regular expression (β−1 +γ−1 + δ−1 +
µ−1 + ν−1 + ϕ−1)∗(α−1β + ϕ−1ψ + ψϕ−1)(α + γ + δ + µ+ ν + ϕ)∗.

That there exists a one-to-one mapping between the leaves of Tt and the nodes
of Ω such (A) and (B) hold can be shown with induction upon the size of Tτ .
If this size is 1 then (A) and (B) clearly hold. If the size is larger than one then
Ω must be generated in more than one step. Let Ω′ ⇒ Ω be the last step in
the generation of Ω and let n be the nodes that were replaced in this step. We
can take the nodes in the subtree of Tτ that represent the subexpression of τ
that n was labeled with in Ω′. It is clear that if we replace these nodes with a
single node v labeled with a special atomic type a then (1) this is the abstract
syntax tree of a Jackson type τa, (2) this type τa generates a Jackson net Ωa

that is equal to Ω′ except that the label of n is replaced with a and (3) by the
induction hypothesis there is a one-to-one mapping between the nodes in Ωa

and the leaves of Tτa such that C holds. We can then verify for each generation
rule that we can extend this mapping to a one-to-one mapping between the
nodes of Ω and the leaves of Tτ such that (A) and (B) hold. Note that for this
we need to show that C holds for the paths between new leaves, between new
leaves and old leaves, but not between old leaves because in Tτ and Tτa these
are the same and also are the edges between the associated nodes in Ωa and
Ω.

From the above it follows that all the Jackson nets that are generated by
τ are isomorphic up to the classification of nodes as places and transitions.
However, since this classification is uniquely determined by the graph and the
choice of the input and output place it follows that all these Jackson nets are
completely isomorphic. 2

21

5.2 The variety in Jackson types from which a certain Jackson net is gener-
ated

If the relationship between Jackson types and Jackson nets is used to generate
a dossier data type then it is important that the generated type can indeed
accommodate all the information that is involved in a run of the workflow,
i.e., its trace set should contain exactly the traces of the Jackson net. This is
established by the following theorem.

Theorem 21 If the atomic Jackson net Ω is generated by the Jackson type τ
then Tr(Ω) = Tr(τ).

Proof. We introduce the notion of interpreted trace set of a workflow net
Ω labeled with types, inTr(Ω) = {α1 · . . . · αk | x1 . . . xk ∈ Tr(Ω), α1 ∈
Tr(x1), . . . , αk ∈ Tr(xk)}. Informally the interpreted trace set defines the sets
of traces of a workflow net where we associate with an event associated with
a place or transition not simply an atomic type, but an element of the trace
set of the type that the place or transition is labeled with. Note that if Ω
is an atomic net then Tr(Ω) = inTr(Ω). Then it can be shown that when
we generate Ωi+1 from Ωi with one of the generation rules for Jackson nets
then inTr(Ωi+1) = inTr(Ωi). Since for Ω0 it will hold that inTr(Ω0) = Tr(τ)
and by induction for the generated Ω that inTr(Ω) = Tr(Ω) it follows that
Tr(Ω) = Tr(τ). 2

Another important issue is whether the generate dossier data type is unique or
not. The following theorem shows that it is not, but that all the different Jack-
son types generated from a certain Jackson net are algebraically equivalent as
defined by the algebraic identities in Figure 9.

Theorem 22 Two Jackson types τ and τ ′ generate the same Jackson net iff
τ and τ ′ are algebraically equivalent.

In order to prove Theorem 22 we first prove a simplified lemma for which
we need the following definitions. We first define simple types which can be
informally described as types with the operators + and ‖ replaced with the
single operator ⊕.

Definition 23 (Simple Type) The set of simple types is defined by the fol-
lowing syntax of JS:

JS ::=A | (JS ; JS) | (JS ⊕ JS) | (JS # JS).

As for normal types we can similarly define algebraic equivalence.

22

Definition 24 (Algebraic Equivalence of Simple Types) The algebraic
equivalence ≡Salg is the smallest equivalence relation on the set of simple types
that fulfils the identities of Figure 9.

(τ0 ; τ1) ; τ2 ≡Salg τ0 ; (τ1 ; τ2)

(τ0 ⊕ τ1) ⊕ τ2 ≡Salg τ0 ⊕ (τ1 ⊕ τ2)

τ0 ⊕ τ1 ≡Salg τ1 ⊕ τ0

(τ0 # τ1) # τ2 ≡Salg τ0 # (τ1 ⊕ τ2)

Fig. 9. Defining Identities for the Algebraic Equivalence for Simple Types

The second notion is input-output graph which are very similar to the notion
of graph of a net.

Definition 25 (Input-Output Graph) An input-output graph is a tuple
(V,E, I, O) with (V,E) a directed graph and I and O subsets of V which are
called input nodes and output nodes, respectively.

Finally, just like for Jackson nets we introduce rules that associate simple
types with input-output graphs. The rules are given in Figure 10. The rules
may be applied to any node in the input-output graph and the after each rule
the new input and output sets are the same except that

• after S1 if v1 was an input node then v2 is an input nodes,
• after S1 if v1 was an output node then v3 is an output node,
• after S2 if v1 was an input node then v2 and v3 are input nodes,
• after S2 if v1 was an output node then v2 and v3 are output nodes,
• after S3 if v1 was an input node then v2 is an input nodes, and
• after S3 if v1 was an output node then v2 is an output nodes.

The class of input-output graphs that can be generated from a simple type is
called simple Jackson graphs.

The two following properties can be shown for simple Jackson graphs with
induction upon their generation:

• It does not contain loops.
• It has at least one input node and at least one output node.
• For every node it holds that (1) it is either an input node or there is a

non-empty path to it to from an input node and (2) it is either an output
node or there is a non-empty path from it to an output node.

We now set out to prove the following Lemma.

Lemma 26 If two simple types τ and τ ′ generate the same simple Jackson

23

S1: Sequential split:

⇒ v
3

S2: Parallel split:

v
1

v
3

v
2⇒

S3: Loop addition:

v
1

v2⇒

λ(p
1
) = (λ(p

2
) # λ(t

1
))

λ(v
1
) = (λ(v

2
) ; λ(v

3
)) λ(p

1
) = (λ(p

2
) ⊕ λ(p

3
))

v
1

v
2

v
3

Fig. 10. The generation rules for simple Jackson graphs

graph then τ and τ ′ are algebraically equivalent.

Proof. The proof proceeds as follows. We consider only so-called normalized
simple types which means that the algebraic identities are applied as rewrite
rules such that (1) all brackets are moved to the right, i.e., we do not allow
types of the form ((τ1; τ2); τ3), ((τ1⊕τ2)⊕τ3) or ((τ1#τ2)#τ3) and (2) we assign
some kind of Gödel-number G(τ) to every simple type τ and allow (τ1 ⊕ τ2)
only if τ2 is of the form (τ3⊕ τ4) and G(τ1) ≤ G(τ3) or if if τ2 is not of the form
(τ3 ⊕ τ4) and G(τ1) ≤ G(τ2). Then we show that with each simple Jackson
graph there is exactly one such simple type that generates it.

As discussed in the proof of Theorem 20 we can relate subexpressions of a
simple type to subgraphs by considering the abstract syntax tree of the type.
With this it can be shown that simple Jackson graphs can be decomposed
into smaller simple Jackson graphs based on the type they were generated.
These decompositions are schematically indicated in Figure 11 where (a) is
the decomposition defined by an atomic type, (b) by a sequence type, (c)
by a parallel type and (d) by an iteration type. Note that the input nodes
and output nodes of the decomposed graph contain I and O, respectively.
However, every simple Jackson graph can only be decomposed in one of these
ways since with each decomposition certain properties of the graph must hold.
For decomposition (a) the graph must contain exactly one node, whereas for
all other decompositions there must be more. For decomposition (b) it must
hold that from every input node there is a path to every output node, which
is not true if decomposition (c) is possible since then there is no path from a
node in G1 to a node in G2. For decomposition (d) the graph must be strongly
connected, which is not the case if (b) or (c) is possible since in both cases
there is no path from a node in G2 to a node in G1. It follows that only one of
the decompositions is possible for a certain simple Jackson graph and hence
all the simple types that generate it have the same form, i.e., the root node of

24

the abstract syntax tree has the same label.

In the following we show with induction on the size of the simple Jackson
graph that once we know the type of the root node of the syntax tree and the
simple type that generates the simple Jackson graph is a normalized simple
type then we can derive (1) what the type of the root node of G1 is and (2)
which part of the input-output graph is G1 and which part is G2.

First we consider the case where the root node of the abstract syntax tree
indicates a sequence type. Since the type is normalized there are only three
possibilities for the left-hand side and the corresponding decompositions are
indicated in Figure 12. We can observe that decomposition (b.1) is character-
ized by a single input node, which is not possible for the other decompositions
in the figure. Moreover, in (b.3) there are paths between all input nodes, which
is not possible in (b.2). Once we know which decomposition applies we can
derive what G1 (and therefore also G2) as follows. For (b.1) G1 consists of the
single input node. For (b.2) G1 consists of all the nodes that are reachable
from at least one of the input nodes but not from all of them. For (b.3) G1

consists of all the nodes that can be reached from an input node and from
which we can reach an input node.

Next we consider the case where the root node of the abstract syntax tree
indicates an iteration type. Because the type is normalized we have also here
only three possibilities for the left-hand side and the corresponding decompo-
sitions are indicated in Figure 13. We can observe that decomposition (d.1)
is characterized by a single input node which is also an output node, which
is not possible for (d.2) since there input nodes cannot be output nodes and
also not for (d.3) since there we have at least two input nodes. Moreover, if
we define internal paths as paths that, except for the first and last node, only
go through nodes that are not input or output nodes, then in (d.2) there is
between every input node and output node an internal path, whereas in (d.3)
this is not possible. Also here we can derive what G1 (and therefore also G2)
is since it consists in all cases of the input nodes and all those nodes that can
be reached from them with internal paths.

Finally we consider the case where the root node of the abstract syntax tree
indicates a parallel type. If we assume that the type that generates the simple
graph is (τ1 ⊕ (τ2 ⊕ . . . τk . . .)) with all τi not parallel types, then the k corre-
sponding components can be found by taking the finest partition of the nodes
such that two nodes connected by an edge are in the same set. By induction we
may assume that there is a unique normalized simple type for each component
that generates that component, and the component with simple normalized
type with the smallest Gödel number has to be G1.

25

This concludes the cases to be considered, so it is in all cases uniquely deter-
mined how the simple Jackson graph has to be divided into component simple
Jackson graphs, and by induction we may assume that for these components
there is only one unique normalized simple type that generates them, and
hence also only one that generates the complete simple Jackson graph. 2

IO
I

I
G
1

G
2

O

O

I

I

O

O
G
2

G
1

O

O

I

I

G
2

G
1

O

O

I

I

(a) a (b) (τ1 ; τ2) (c) (τ1 ⊕ τ2) (d) (τ1 # τ2)

Fig. 11. Decompositions of simple Jackson graphs based on their generating type

I G
2

O

O

I

I

G
1.2

G
1.1

I

I

G
1.2

G
1.1

I

I

(b.1) (a ; τ1) (b.2) ((τ1.1 ⊕ τ1.2) ; τ2) (b.3) ((τ1.1 # τ1.2) ; τ2)

G
2

O

O G
2

O

O

Fig. 12. Decompositions based on sequence types

IO

I

I
G

1.1
G

1.2
O

O

I

I

O

O
G

1.2

G
1.1

O

O

I

I

G
2

(d.3) ((τ1.1 ⊕ τ1.2) # τ2)(d.1) (a # τ2)

G
2

(d.2) ((τ1.1 ; τ1.2) # τ2)

G
2

Fig. 13. Decompositions based on iteration types

Using Lemma 26 we can now prove Theorem 22.

Proof. We first show that two Jackson types τ and τ ′ generated the same
Jackson net if τ and τ ′ are algebraically equivalent. As was shown in the
proof of Theorem 20 the graph of the place-expanded net is determined by
the abstract syntax tree of the type such that for every leaf there is a node in

26

the graph and there is an edge between two such nodes if the path between
these nodes define a string in a certain regular language. It can then be shown
that if an algebraic identity is applied to a syntax tree the string associated
with two leaves is in that language iff it was before the identity was applied.
It follows that the associated graph of the net stays the same if we apply an
identity, and hence the whole Jackson net remains the same.

Next we show that if two Jackson types τ and τ ′ generate the same Jackson
net then τ and τ ′ are algebraically equivalent. Assume that with an atomic
Jackson net Ω we associate two Jackson types τ and τ ′ and that these are not
algebraically equivalent. With the Jackson type we can associate the simple
types σ and σ′ that are obtained by replacing || and + with ⊕. It can be shown
that two Jackson types are algebraically equivalent iff the corresponding simple
types are algebraically equivalent. It also holds that the graph of a Jackson
net that is generated by a Jackson type is identical to the input-output graph
that is generated by the simple type that is generated by the Jackson type.
So it follows that σ and σ′ are not algebraically equivalent and hence that the
graphs of the Jackson nets generated by τ and τ ′ are not isomorphic. But this
contradicts the assumption that τ and τ ′ generate the same Jackson net, so
the assumption that they are not algebraically equivalent must be false. 2

Summarizing, we can now characterize the ambiguity in the relationship be-
tween Jackson types and Jackson nets with the following corollary.

Theorem 27 If the Jackson nets Ω1 and Ω2 are generated by the Jackson
types τ1 and τ2, respectively, then the following are equivalent:

(1) Ω1 and Ω2 are isomorphic
(2) τ1 ≡alg τ2

Proof. Clearly (1) ⇒ (2) because if Ω1 and Ω2 are isomorphic then τ2 also
generates Ω1 and so by Theorem 22 it follows that τ1 ≡alg τ2. It also holds
that (2) ⇒ (1) because if τ1 ≡alg τ2 then by Theorem 22 there is a Jackson
net Ω3 generated by both τ1 and τ2. Since both Ω1 and Ω3 are generated by
τ1, and both Ω2 and Ω3 are generated by τ2 it follows by Theorem 20 that Ω1

and Ω3 are isomorphic, and Ω2 and Ω3 are isomorphic. Hence Ω1 and Ω2 are
also isomorphic. 2

5.3 Characterizing the expressive power of Jackson Nets

The set of Jackson nets is a proper subset of the set of workflow nets, which
raises the question whether the class of workflows that they can express is not
too limited. One way of comparing the expressive power of such formalisms is
by looking at the sets of traces that can be expressed. These are in both

27

cases the same, viz., if both places and transitions are labeled then both
formalisms can express exactly all sets of trances that can be described by
Jackson types and if only places are labeled then both can express all regular
languages. There is however a difference if we restrict ourselves to nets where
each place and transition has a unique label. In that case the Jackson nets
can only express trace sets that can be described by a Jackson type in which
every atomic type appears at most once. Consider for example the net in Fig-
ure 8 which is not a Jackson net. Its trace set is described by the Jackson
type (a; b; g; h) + (a; b; (((c; e; d)#f) ‖ ((d; f; c)#e)); g; h) + (a; b; ((d#(f; c; e)) ‖
(c#(e; d; f))); g; h). It can be verified that there is indeed no equivalent Jackson
type where all the atomic types appear at most once. As is shown by The-
orem 28 this is a characteristic property of trace sets that can be expressed
by Jackson nets without duplicate labels, i.e., such Jackson nets can express
exactly all trace sets that can be described by Jackson types in which every
atomic type appears at most once. Moreover, as is shown in Corollary 32, this
Jackson net is completely determined by the trace set, i.e., given a certain
trace set there is at most one Jackson net without duplicate labels that rep-
resents this trace set. In the same corollary it is shown that it follows that
for types in which atomic types appear at most once algebraic equivalence
coincides with trace equivalence

Theorem 28 Let Ω be an atomic sound net without duplicate labels. Ω is a
Jackson net iff there is an Jackson type τ in which every atomic type appears
at most once and it holds that Tr(τ) = Tr(Ω).

Before we prove this theorem we first prove the following lemmas.

Lemma 29 Let the atomic Jackson net Ω be generated by the Jackson type
τ . All labels of Ω are different iff τ contains no duplicate labels

Proof. Let us define the number of occurrences of an atomic type a in a
labeled Petri net as the sum of the number of times a appears in the label of
each of the nodes of the net. It can be easily verified for each generation step
Ωi ⇒ Ωi+1 that an atomic type a occurs once in Ωi iff a occurs once in Ωi+1.
By induction it follows that for any generation sequence Ω0 ⇒ . . .⇒ Ωk = Ω
the same holds for Ω0 and Ωk. If this generation sequence associates τ with Ω
then, since Ω0 consists of a single node labeled with τ , it holds that a occurs
once in τ iff it does so in Ω0 and, as was already shown, the latter is true iff
a occurs once in Ωk = Ω. 2

Note that the fact that for each generation step Ωi ⇒ Ωi+1 an atomic type a
occurs once in Ωi iff a occurs once in Ωi+1, would not be true if we would use
the Kleene-star in our types instead of the # that we use now.

Lemma 30 If τ is a Jackson type without duplicate labels, Ω is a sound work-
flow net and Tr(τ) = Tr(Ω) then Ω is safe, i.e., in all markings m that are

28

reachable from the initial marking mi it holds that m(p) ≤ 1 for all places p
in Ω.

Proof. It can be shown with induction on the structure of τ that Tr(τ) does
not contain a trace of the form xaay where x and y are strings of atomic types
and a is an atomic type:

• If τ = B with B an atomic type then this clearly holds.
• If τ = (τ1; τ2) then we know by induction that aa does not appear in Tr(τ1)

or Tr(τ2). So if there is a trace of the form xaay in Tr((τ1; τ2)) then Tr(τ1)
contains a trace of the form xa and Tr(τ2) contains a trace of the form ay.
However, since every atomic type appears only once in τ this is not possible.
• If τ = (τ1 ‖ τ2) then we know by induction that aa does not appear in Tr(τ1)

or Tr(τ2). So if there is a trace of the form xaay in Tr((τ1 ‖ τ2)) then Tr(τ1)
contains a trace with a and Tr(τ2) contains a trace with a. However, since
every atomic type appears only once in τ this is not possible.
• If τ = (τ1 + τ2) then we know by induction that aa does not appear in
Tr(τ1) or Tr(τ2). Since Tr((τ1 + τ2)) = Tr(τ1) ∪ Tr(τ2) it follows that aa
also not appears in Tr((τ1 + τ2)).
• If τ = (τ1#τ2) then we know by induction that aa does not appear in
Tr(τ1) or Tr(τ2). So if there is a trace of the form xaay in Tr((τ1#τ2))
then, because the empty string is not in the trace set of any type, there
must be traces of the form x′a and ay′ in Tr(τ1) and Tr(τ2), respectively, or
vice versa. However since every atomic type appears only once in τ it holds
that a cannot appear in both τ1 and τ2 and therefore this is not possible.

However, it can also be shown that if Ω is not safe then there is a trace of
the form xaay in its trace set. Assume that Ω′ is the place-expanded net of
Ω With every marking m of Ω we associate an associated marking m of Ω′

such that whenever place p is split into input place p′1 and output place p′2
then m′(p1) = m(p) and m′(p2) = 0. Clearly it holds that if a marking m for
Ω is reachable from the initial marking of Ω then m′ is reachable from the
initial marking of Ω′. Moreover, from the fact that Ω is sound as proven in
Theorem 18, it can be derived that from every marking reachable from m′ we
can reach the final marking of Ω′. Since Ω is not safe there must be a marking
m2 that is reachable from the initial marking mi of Ω and a place p in Ω such
that m2(p) > 1. Then it holds for the associated marking m′2 that m′2(p1) > 1.
If the place p is labeled with a in Ω then it follows that the transition with
label a in Ω′ can fire at least twice in a row after which we can still reach the
final marking of Ω′. So there will be a trace of the form xaay in the trace set
of Ω. 2

Lemma 31 Let Ω1 and Ω2 be two sound safe atomic workflow nets without
duplicate labels. If Tr(Ω1) = Tr(Ω2) then Ω1 and Ω2 are isomorphic.

29

Proof. In the following we will describe markings of a place-expanded net
Ω′ in terms of markings of the original net Ω where if a place p is split into
begin place p1, transition t and end place p2 then the tokens in p1 and p2

under the associated marking m′ are described as inactive and active tokens,
respectively, in p under the marking m.

If Ω is a sound safe atomic workflow net and a and b two labels in Ω then we
say that a enables b iff there is in Tr(Ω) a trace of the form xaby but not of
the form xby′. We will show that in the graph of Ω it holds for two nodes with
labels a and b that there is an edge between these two nodes iff a enables b.

First, it can be observed that if a enables b then either a is a label of a place
and b of a transition or vice versa. This is shown as follows. Assume that a
and b are both labels of places and there is a trace of the form xaby. Then
after trace x there will be an inactive token in the places for a and b. So there
will also be a trace of the form xbay, which contradicts the assumption that
a enables b. Assume that a and b are both labels of transitions and there is a
trace of the form xaby. Then after trace x there are active tokens that enable
the transition a and active tokens that enable transition b, since the firing of
a produces only inactive tokens which cannot enable b. So there will also be a
trace of the form xbay, which contradicts the assumption that a enables b.

We now consider the two remaining cases: a is the label of place and b is the
label of a transition and vice versa.

Assume that a is the label of a place p and b the label of a transition t. We
consider the two directions:

if: Assume there is no edge from p to t and there is a trace of the form xaby.
Then b is also already enabled after x and from the soundness of Ω it follows
that there is a trace of the form xby′.

only if: Assume there is an edge from p to t. From the soundness of Ω it
follows that there is a trace of the form xaby. Since Ω is safe it holds that
after the trace x there is one inactive token in p and therefore transition t
is not enabled, hence there is no trace of the form xby′.

Assume that a is the label of a transition t and b the label of a place p. We
consider the two directions:

if: Assume there is no edge from t to p and there is a trace of the form xaby.
Then b contains already an inactive after x and from the soundness of Ω it
follows that there is a trace of the form xby′.

only if: Assume there is an edge from t to p. From the soundness of Ω it
follows that there is a trace of the form xaby. Since Ω is safe it holds that
after the trace x there is no token in p that can be activated, hence there is
no trace of the form xby′.

30

From the above it follows that the graph of Ω is exactly defined by the trace set.
Moreover, since the first and the last label in every trace must be the label of
the input and output place, respectively, it follows that it is determined which
label belongs to a transition and which label belongs to place. Consequently
the net is fully determined by the trace set. 2

We now proceed with the proof of Theorem 28:

Proof. The only-if part of the theorem follows from the definition of Jackson
net, Lemma 29 and Theorem 21.

By definition of Jackson net and Theorem 21 it holds that we can derive from
the Jackson type τ a Jackson net Ω′ such that Tr(Ω′) = Tr(τ). We know that
Ω′ is sound and safe by Theorem 18 and Lemma 30. Since Tr(Ω′) = Tr(τ) =
Tr(Ω) it follows by Lemma 31 that Ω and Ω′ are isomorphic. Since Ω′ is a
Jackson net, it follows that Ω is also a Jackson net. 2

With this result we can now extend Theorem 27 as follows.

Corollary 32 If the Jackson nets Ω1 and Ω2 have no duplicate labels and are
generated by the Jackson types τ1 and τ2, respectively, then the following are
equivalent:

(1) Ω1 and Ω2 are isomorphic
(2) τ1 ≡alg τ2

(3) Tr(Ω1) = Tr(Ω2)
(4) Tr(τ1) = Tr(τ2)

Proof. That (1)⇔ (2) was already established in the proof of Theorem 27.
That (3)⇔ (4) follows from Theorem 21. That (2)⇒ (3) follows from Theo-
rem 7. That (3)⇒ (1) follows from Lemma 31 and Lemma 30. 2

Observe that this corollary implies that for Jackson types in which every
atomic type appears at most once it holds that algebraic equivalence is the
same as trace equivalence, and hence, for these types we can indeed axiomatize
algebraically trace equivalence. This is in contrast with the set of all types,
which cannot be axiomatized in that way, as was shown in Theorem 4.

6 Case Study

Recall the model of section 2.3 in particular Figure 1. The places have an
atomic type denoted by a single character label, while the transitions represent
tasks or activities in the process and they labeled with a number and a name.

31

pip
i

a 1: Patient
identification

b

2: Known
patient

3: New
Patient

c 4: Problem
registration

d

5: Preliminary
diagnosis e

15: Diagnosis

16: Exit

po
k

12: Test 2

11: Double
test

9: Test 1

8: Protocol 36: Protocol 1

7: Protocol 2

10: Test 1 13: Test 2

14: End
double test

f g

h i

j Model 1

5: Preliminary
diagnosis e

15: Diagnosis

16: Exit

po
k

12: Test 2

B

9: Test 1

8: Protocol 36: Protocol 1

7: Protocol 2

j Model 2

pi
A

5: Preliminary
diagnosis e

15: Diagnosis

16: Exit

po
k

C

j

Model 3

pi
A

5: Preliminary
diagnosis e

16: Exit

po
k

D

Model 4

pi
A

5: Preliminary
diagnosis E

16: Exit

po
k

Model 5

pi
A

F

Model 6

Fig. 14. Generation of the singleton net

To derive the document type for the cases handled by this process, we start
with a reduction process according to the Murata rules R1,...,R5. In Figure 14
we show the reduction process. Note that several steps are aggregated into
single steps. We start with the original model, model 1. We cluster one box
into a place with label A using rules R5 and R1 twice. The other box is
reduced to a transition with label B using rules R1 and R4 twice. This gives
model 2. The definitions of these labels are: A = (a; 1; b; (2 + 3); c; 4; d) and
B = (11; ((f ; 10;h)‖(g; 13; i)); 14). Note that the transitions are represented by
their numbers only. In model 2 we reduce everything in the box, using rule R5
five times. This leads to model 3 where one transition with label C represents
the cluster. Label C is defined by C = (6‖7‖8‖9‖B‖12). Note that we use
here the associativity (algebraic equivalence rules) of the parallel composition
constructor ‖. This brings us to model 4. Here we apply rule R2 to obtain label
D defined by D = (C; j; 15). Next we reduce the loop with rule R3, leaving us
a place with label E where E = (e#D). So we obtain model 5. The last step
is the application of rule R1 twice. This leads us to model 6, a singleton net
with label F , where F = (A; 5;E; 16; k). Hence we have verified that we have
indeed a Jackson net and we can derive a tree structure by expanding type
F . This is in fact the Jackson type (see Figure 15). This tree structure is the
basis for the document type for the case data, which can be considered as an
electronic patient record.

Note that in this tree the non-leaf nodes are labeled with a constructor (se-
quential, parallel, choice or loop constructors) and that the leaf nodes represent
places or transitions in the Jackson net. To make a useful document type of

32

;

a 1 b + c 4 d 5 # 16 k

2 3 e ;

+ j 15

6 7 8 9 12

; ;

f h g 13 i10

;

11 || 14

Fig. 15. Jackson type as tree

this we have to modify the tree in two ways: we have to delete the leaves that
refer to a place in the net and we have to add data elements to the transition
leaves. The reason is that in our approach the places are only used as the
“glue” between the transitions and that the tokens in the places only carry
references to the case document. The transitions represent the tasks and in
each task new data may be created that should be recorded in the case docu-
ment. The reduced tree is displayed in Figure 16. Note that the loop has only
one child node and that some sequences are reduced to a single node. Since
tasks 11 and 14 are in fact only control flow tasks, we can also omit them
which makes the sequence constructor between tasks 9 an 12 superfluous. The
sequence constructors containing tasks 10 and 13 can also be omitted since
they both have only one remaining child.

;

1 + 4 5 # 16

2 3 ;

+ 15

6 7 8 9 12

1310

||

Fig. 16. Reduced tree

Next we add data elements to the task nodes. In principle they can belong to
any kind of data type, however we choose a record type here. The augmented
tree is displayed in Figure 17.

In task 1 we identify a patient by an identity card and we create a new case,

33

● test type

● date

● outcome 1

● outcome 2

● image type

● date

● image

● image type

● date

● image

● name of doctor

● date

● observations

● first diagnosis

● plan

● reason for exit

● date

● approving doctor

● name of doctor

● date

● observations

● first diagnosis

● plan

● problem description

● type of specialist

● name

● address

● date of birth

● name of GP

● name

● address

● date of birth

● name of GP

● patient id

● case id

● date

;

1 + 4 5 # 16

2 3

;

+ 15

6 7 8 9 12||

13
● test type

● date

● outcome 1

● outcome 2

10

Fig. 17. Case tree

with a case identity. If the patient is known then its patient identity number
is registered otherwise a new patient identity number is created. In task 3:
“New patient”, the relevant patient data, such as name, address, day of birth
and identity of the general physician are entered to the document. In task
2: “Known patient” the same data elements are retrieved from earlier cases
and updated if necessary. In task 4: “Problem registration” the problem is
described based on an interview with the patient or a letter of the general
physician. Also the type of medical specialist for the preliminary diagnosis is
selected. In task 5: “Preliminary diagnosis” a doctor describes the observations
of the physical examination, the first diagnosis and the plan for next steps. In
tasks 9 and 10 we perform Test 1 and so they have the same record type. We
assume that Test 1 is a laboratory test and that Test 2 is image generation.
For task 15: “Diagnosis” we have the same structure as for task 5. For task
16: “Exit” we register the reason for the exit, and the doctor who approved
it. For tasks 6, 7 and 8 we have not detailed these records. This could be a
record but also a subtree for the processes belonging to the protocols.

Now we have for each new case of a patient a new document. It is often prefer-
able to have one patient document that contains all the cases of a patient. This
is easy to construct out of the data structure we have made so far by making a
new tree structure with a leave node “Basic patient data” sequentially coupled
to the case tree in Figure 18. We also created one root node on top of this with
a loop construct, to collect all patient documents into one document. Finally

34

● test type

● date

● outcome 1

● outcome 2

● image type

● date

● image

● image type

● date

● image

● name of doctor

● date

● observations

● first diagnosis

● plan

● reason for exit

● date

● approving doctor

● name of doctor

● date

● observations

● first diagnosis

● plan

● problem description

● type of specialist

● name

● address

● date of birth

● name of GP

● name

● address

● date of birth

● name of GP

● patient id

● case id

● date

;

1 + 4 5 # 16

2 3 ;

+ 15

6 7 8 9 12||

13
● test type

● date

● outcome 1

● outcome 2

10

#

;

basic patient data

cases

case

patient

#
patients

dbl-test-1 dbl-test-2

protocol-1 double-testprotocol-2 protocol-3 test-1 test-2

action diagnosis

treatment

treatments exit

known-patient unknown-patient

patient-id in-take registration prelim-diagnosis

basic-data

Fig. 18. Patients tree

we added a unique label to each node in the tree. From this tree structure we
can easily derive a DTD (Document Type Definition) for XML documents.
The DTD of the case tree of Figure 17 is given in Figure 19. Note that the
fields of records such as in case are optional. This allows the representation
of runs of cases that have not already completed. Also note, however, that the
DTD does not capture that the fields need to be added in a certain order, e.g.,
it allows the addition of the field registration even if the field intake has
not been defined.

From this document type we can formulate queries on the trees in XPath or
XQuery. So we can ask questions concerning the business process. For example
we may ask:

• How many patients have more than two unfinished cases?

fn:count(/patients/patient[fn:count(cases/case[not(exit)]) > 2])

• In how many cases with a heart problem, two tests were taken in parallel (tasks

35

<!DOCTYPE patients [
<!ELEMENT patients (patient*)>
<!ELEMENT patient (basic-data, cases)>
....
<!ELEMENT cases (case*)>
<!ELEMENT case (patient-id, intake?, registration?,

prelim-diagnosis?, treatments?, exit?)>
<!ELEMENT in-take (known-patient | unknown-patient)>
....
<!ELEMENT treatments (treatment*)>
<!ELEMENT treatment (action, diagnosis?)>
<!ELEMENT action (protocol-1 | double-test | protocol-2 |

protocol-3 | test-1 | test-2)>
....
<!ELEMENT double-test (test-1, test-2?)>
....

]>

Fig. 19. A partial DTD for the Patients tree

10 and 13)?

fn:count(/patients/patient/cases/case[
fn:contains(registration/problem, "heart") and
treatments/treatment/action/double-test])

• What is the percentage of cases where the patient is new?

fn:count(/patients/patient/case[in-take/unknown-patient]) * 100

So far we have seen how we could derive a data model from a process model.
The opposite is also possible. We will not show this in detail, but in principle it
is possible to traverse the derivation we have made here in opposite direction. It
means that we first have to look for the subtree that describes the cases instead
of the whole patient population. Then we have to strip the data elements. Next
we have to add leave nodes for places and sometimes a level with a constructor
in order to obtain a Jackson type. Deriving a Jackson net from a Jackson type
can be done automatically.

7 Possibilities and limitations of Jackson types

In the preceding sections it is shown that there is a close relationship between
certain process specifications, viz., Jackson nets, and certain document types,
viz., Jackson types. In this section we briefly discuss in more detail how and

36

when we think this relationship can be useful in practice.

7.1 Generating dossier data types from process specifications

The most straightforward use of the relationship is the generation of a data
type for dossiers that contain all the information that is involved in a certain
run of a workflow, as is demonstrated in the preceding section. Such a data
structure is especially useful for case-based information systems where, as it is
often required for audit reasons, data is only added to the database and never
removed. We claim that the generated data type organizes the data in a way
that closely corresponds to the structure of the workflow, and therefore makes
it easy to formulate queries over workflow runs that involve both the control
flow and the data flow, as illustrated in Section 6.

The generated data structure is a conceptual view that contains and organizes
all the data associated with a run. By a conceptual view we mean a data model
that describes the data at the conceptual level and therefore is not necessarily
directly related to how it is stored at the physical level, i.e., at the level of the
file system or at the physical level in a DBMS. There are many ways to map a
hierarchical data-structure to a file system or a relational DBMS, and if it is
stored in a DBMS that supports hierarchical data-structures then this DBMS
will often have several ways of mapping the data structure to the physical
level. Also note that the Jackson type describes only a high-level view in the
sense that it treats the types associated with the places and transitions as
atomic. For a full description of the dossier data structure these need to be
specified as well.

The generated data structure is not the only or even necessarily the best
possible conceptual view for all purposes. For example, for a data-centric ap-
plication where the control flow is of less concern, a view that organizes the
data by class (e.g., for the use case presented in the previous section by the
classes Patient, Diagnosis, Protocol and Test) might be more compact and
appropriate. However, as was shown in related research [14] it is possible to
transparently integrate such different views.

The generation of the dossier data type requires that the process specification
is a Jackson net, and the class of Jackson nets is a proper subclass of the class
of sound, safe, choice-free workflow nets. This raises the question whether this
class is big enough to be of practical interest.

An important point of reference is the industrial standard BPEL, a process
specification language. In BPEL workflows are essentially specified as hierar-
chically nested activities; at the lowest level we find the basic activities and
at each level activities of lower levels can be combined into sequence activi-

37

ties, flow activities, switch activities, pick activities and while activities. Here
a sequence activity is an activity that consists of a sequence of activities that
are executed in the specified sequence. A flow activity consists of a bag of
activities that are executed in parallel. A switch activity chooses from a set of
activities one activity to execute on the basis of certain specified conditions.
A pick activity does the same but makes the choice based on external events
or time outs. Finally, a while activity repeats a certain activity while a certain
specified condition holds.

As is shown in [34], the basic behavior of these constructs can be described with
Jackson nets. In fact, these constructs correspond roughly to the constructors
of Jackson types: sequence activities correspond to the sequence constructor
(;), flow activities correspond to the parallelism constructor (‖), switch and
pick activities correspond to the choice constructor (+), and the while activity
corresponds to the loop constructor (#). However, the basic behavior of these
constructs can be altered by additional BPEL constructs such as control links
and scopes.

Control links allow the specification of additional control flow dependencies
between activities, which is hard to describe with Jackson types. However,
such links have no information associated with them, so a Jackson type that
is generated while ignoring these links can still accommodate all the informa-
tion involved in a workflow run. Another problematic construct in BPEL is the
scope construct which allows the association of several types of handlers with
a certain activity which is called the primary activity. There are several types
of handlers, such as event handlers, fault handlers and compensation handlers.
With some exceptions, such as event handlers for events that happen at most
one time, these are hard to represent with Jackson types. For example, de-
scribing event handlers for events that can happen more than once probably
requires an extra type constructor that describes the parallel execution of an
arbitrary number of instances of a sub-process. Finally we wish to mention
the notion of exit activity which, when executed, stops all running activities in
the scope. Also this behavior is currently hard to describe with Jackson types,
but as a data type Jackson types are able to accommodate the information
involved in such an aborted run.

Given the above considerations we can summarize the applicability of Jackson
types for BPEL specifications as follows. For specifications that only use the
basic behavior of structured activities and control links, the Jackson types
seem appropriate and straightforwardly lead to suitable dossier data types. For
specifications that use handlers and special termination behavior this approach
seems less appropriate, although future research might lead to extensions of
Jackson types that can deal with some of these BPEL features.

38

7.2 Deriving process specifications from dossier data types

Another use of the relationship between Jackson nets and Jackson types is
the design of a workflow specification based on a data type that represents
all information and artifacts that have to be generated by the workflow. This
process can start with a normal data type consisting of recursively nested tu-
ple, union and list types. In a next step this type can then be extended with
some annotation to indicate which Jackson type corresponds to each nested
type. For example, a record type is marked as either a sequence constructor
or a parallelism constructor. As already discussed, the resulting process spec-
ification can be readily mapped to industry standard specifications such as
BPEL.

Generation of the process specification from a data type is only interesting if
the structure of the workflow process is largely determined by the structure
of the product of the workflow and if the control flow that has to be added is
minimal. It can be that the control flow that has to be added is more complex
than Jackson types can describe, in which case more powerful formalisms such
as data types with instance-dependent access rules [5] can be more appropriate.
It can also be that the structure of the workflow is mostly determined by other
factors such as the data model that describes involved artifacts and data, and
subprocesses or life cycles that are associated with the described entities in
this data model. For these cases there are alternative approaches which are
discussed in more detail in the next section on related work.

8 Related work

The problem that we addressed in this paper is the integration of the data
and the process views, and the possible generation of one from the other. In
the existing literature, we can find many different approaches to achieve this
integration and to generate workflow specifications from data models or other
models. In the following we will attempt to give an overview of these and
compare them to our approach.

The first type of approach is the one where a process is specified based on
a hierarchical data or product structure which describes the product of the
workflow. An example of this is the Product-Based Workflow Design approach
(PBWD) which was presented by Reijers, Limam and van der Aalst in [36] and
[41]. It aims at determining the workflow process in product manufacturing
and generates a process specification from a produce specification in the form
of a Bill-of-Material (BOM) [33]. For an example see Appendix B.1. This work
can be considered an early predecessor of the work in this paper, and the main

39

differences are that it only considers generation in one direction and does not
consider list types and iteration.

Another type of approach is where the process is specified based on a fixed set
of objects with each a certain object life cycle (OLC), which are essentially
finite state machines, and certain types of synchronization between these life
cycles. An example of this is the Team Automata formalism [2], which was
introduced by Ellis to describe coordination, collaboration and cooperation
in groupware. It describes processes in terms of finite automata where tran-
sitions describe both internal and external events, and these automata are
synchronized on external events. A similar approach based on life cycles are
Interaction Expressions and Graphs [13], introduced by Heinlein, where sev-
eral operators are defined to compose and synchronize life cycles in different
ways. Finally, a similar recent approach for generating a process specification
is introduced in [22] where Küster, Ryndina and Gall propose a technique for
generating a business process description from a given set of objects and their
reference OLCs. This is illustrated by an example in Appendix B.2. These ap-
proaches differ from the one presented in this paper in that they do not start
from a product structure, although the initial set of objects can be interpreted
as such, and they do not establish a link between the data that is used in the
process and the process specification. The interaction expressions and graphs
approach, however, is very similar in that some of its composition operations
directly correspond to the Jackson types, but it does not analyze formally the
relationship between the expressions and workflow graphs.

Another type of OLC-based approach is the one where next to the objects
and their OLCs also a global workflow is specified in which these objects flow.
An example of this are Object/Behavior Diagrams as introduced by Kappel
and Schrefl in [21] and extended for business processes and workflows in [4].
A specification consists of an object diagram that defines the data model,
life cycle diagrams that define the life cycles of the objects, and a workflow
diagram that describes the global workflow in terms of stores and workflow
steps. The stores contain objects that are in certain states and satisfy certain
conditions, and the workflow steps move objects between these stores. The
workflow diagram is linked to the life cycle diagrams by workflow realization
diagrams that specify for a particular step in the workflow in more detail when
which transitions in the OLCs of the involved objects happen. The involved
objects are in this case those that stream into and out of the workflow step. A
similar approach based on business artifacts is the Operational Specification
approach (OpS) presented by Nigam and Caswell in [28]. Also here, objects,
called key artifacts, and their OLCs are specified in terms of business tasks and
repositories. In addition the collection of the OLCs of all the artifacts and the
interaction between them, can be aggregated into a model that specifies the
operational model for the whole business. Although in these approaches there
is usually a data model that describes the structure of the objects, there is no

40

notion of a global data structure that contains all the information concerning
a certain case.

Another OLC-based approach where the process specification also depends on
a data model and its instance, is described in [26] by Müller, Reichert and
Herbst. They propose a framework where a workflow is specified by a data
structure and a description of the behavior of the elements in this structure.
The data structure is defined by an ER-like schema with classes and binary re-
lationships, and a particular instance of that schema. The behavior is specified
by associating with each class an OLC that describes the behavior of objects
in this class, and by indicating with relationships in the schema OLC depen-
dencies, i.e., synchronization links between states in the OLCs of the classes
that are connected by the relationship. For an example see Appendix B.3. This
approach in many ways generalizes the PBWD approach, and is appropriate
for data-driven workflows, i.e., workflows where the process structure is largely
determined by the structure of the data model. It is especially useful if this
data model, i.e., the data schema, is fairly stable and the data structure, i.e.,
the instance of the schema, often changes, because then only the new instance
needs to be specified. It is similar to our work in that it allows the specifica-
tion of processes based on a data structure, and in that sense it is even more
general because it can deal with a more general class of data structures and
more complex types of coordination, but it largely ignores the data aspect
of the involved objects, i.e., their attribute values etc., and establishes the
relationship between data model and process structure only in one direction.
An important feature of this work is that it allows multiple instantiations of
a subprocess based on the number of objects in a certain class [10]. This can-
not be represented by Jackson types except by simply repeating the type for
each instantiation. For example, if a process produces a car with four wheels
which can be produced in parallel, then the parallel production of the four
wheels can be described by a type (τw ‖ τw ‖ τw ‖ τw) where τw describes the
production of a single wheel. In the described approach it is also possible to
have intermediate synchronization between the different instantiations, which
is harder and sometimes even impossible to specify with Jackson types.

In some approaches the emphasis is not on object and their life cycles, but
more on processes and activities which may be combined into networks by
connecting them through data flow and control flow edges, and nesting such
networks as subprocesses in other processes. An example of such an approach
is STATEMATE which is presented by Harel et al in [12] and was designed for
the integrated process modeling of reactive systems. It proposes a notation and
semantics for three types of related diagrams: module charts, activity charts
and state charts that roughly describe the physical structure of the system,
the decomposition the system into activities, and the coordination of these
activities. For an illustrative example see Appendix B.4. The process specifi-
cation consists roughly of a hierarchy of activities and sub-activities, and the

41

behavior of an activity can be described by a state chart. An approach similar
to STATEMATE is the Object Process Methodology (OPM) which was intro-
duced by Dori in [7]. It features a full-blown object-oriented data model and
has a more elaborate graphical notation with a corresponding textual counter-
part. In these approaches, the link between the involved data and the process
is established by assigning data types to data flows between the activities and
data stores within the activities. There is no further relationship between data
structure and process structure, but in related later work such as [11] by Harel,
Kugler and Pnueli, it is shown how such process specifications can themselves
be generated from, and checked against, scenario-based requirements.

Many approaches for adding data flow to process specifications are some vari-
ant of high-level Petri nets. Examples of these models are the case-handling
workflows [37], the NR/T-nets [30] and the XML Nets [24]. In these models,
places are interpreted as containers for data (relations in NR/T nets, XML
documents in XML Nets). The flow of data is defined by occurrences of transi-
tions which manipulate (create, change, delete) data of their adjacent places.
The firing of a transition may depend on conditions over the consumed to-
kens that appear as labels of the adjacent edges. For illustration, an example
of XML Nets is given in Appendix B.5. These approaches can all be used in
conjunction with our techniques, if their types of Petri nets are restricted to
Jackson nets.

An approach that emphasizes a more integrated modeling of dataflow in pro-
cesses is PPM (Process and Product Modeling) [23] by Lee, Eastman and
Sacks. This provides a formal framework, called Requirements Collection and
Modeling (RCM), that allows the specification of the data flows in a process,
their integration and the validation of their consistency. A process is defined
as an act of processing data items [9]. A process receives, generates, updates,
deletes or distributes a data item. The model consistency is based on the inter-
action and interdependence of the processes with regard to the availability or
unavailability of data. Data items are categorized into input and output data
and subcategorized in five types. The input data is subdivided into remain-
ing data (data not transferred) and the rest of the input data. The output
data comprises the data modified, the data passed-through (not modified but
transferred) and the data generated (newly generated in the process). Rules
that define the relationship between these data types are used for checking
the model consistency. Examples of such rules are: “output is the union of
passed-through, remaining and modified data” or “intersection of input and
generated data is an empty set”.

Another approach comes from the domain of software engineering. AHEAD
[19] by Jäger, Schleicher and Westfechtel, offers tools for supporting the man-
agement and execution of (software) development process. In this approach
tasks and data flow are modeled by graph-based specifications. Control flow

42

relationships define the order of subtask enactment. Data flow relationships
connect input and output parameters of tasks and allow data exchange be-
tween them. With respect to dynamic task nets, AHEAD distinguishes be-
tween process definitions and process instances. A process instance represents
a specific development process being executed while a process definition de-
scribes a whole class of processes. AHEAD supports the generation of process
instances (i.e., program code). This work is similar to ours in that it proposes
a unified specification of data and processes. It differs from our work as it
does provide a generation from model to instance but not from one model to
another one.

Finally we wish to mention the work on workflow data patterns [38] by Russell,
ter Hofstede and van der Aalst, where a list of important use cases and pat-
terns are given of usage and representation of data in workflow management
systems and workflow specification languages. Since the purpose of dossier
data structures is to record all data usage it is important to determine which
patterns can be covered by the Jackson type approach. Recall that the ap-
proach assumes that all data usage is captured by the types associated with
the places and transitions. Also recall that Jackson nets do not allow places
that model data stores that are both read and written by a transition. So
the patterns (1) task data and (8) data interaction between tasks are straight-
forwardly covered by the place and transition types, but the other visibility
patterns such as (2) block data, (3) scope data, etc., can only be dealt with
by including the interaction with this data into the type associated with the
transition. For the internal data interaction patterns that deal with decompo-
sitions, patterns (9) and (10), can be dealt with by generating the type for the
flattened net. The patterns for multiple instance tasks, (11) and (12), cannot
be dealt with directly because Jackson nets do not support multiple instances
of tasks. Finally, pattern (13), data interaction between different cases, is not
covered directly since Jackson types only describe data used within a case, but
also here a simulation is possible by including the interaction with the data
in the type of the transition in question. The considerations for the remaining
patterns are similar and straightforward.

9 Conclusion

In this paper we have presented a framework in which it is possible to establish
a straightforward relationship between the process model and the data model
of a case-based information system such as a workflow system. To this end
we introduced a special class of Petri nets, called Jackson nets, to model the
business processes, and a document type, called Jackson types, to represent
the data model. We have shown that there is a one-to-one correspondence
between Jackson nets and Jackson types with several interesting theoretical

43

properties. Finally, we have illustrated the use of the framework by an example
in which it is shown that the resulting data model allows the straightforward
formulation of queries over runs of the system.

In future research we intend to extend the presented framework to address
the problem of constructing and integrating the different data models that
are associated with each event in a run of the system. Some preliminary work
on this was presented in [14] but no attempt was made yet to integrate it
into the framework that is presented here. In addition we will develop tools
to support the design of workflows based on Jackson types.

Acknowledgment: The authors would like to thank the anonymous refer-
ees whose remarks have helped considerably to improve the quality and
readability of this paper.

References

[1] Luca Aceto, Willem Jan Fokkink, and Anna Ingólfsdóttir. On a question of
A. Salomaa: The equational theory of regular expressions over a singleton
alphabet is not finitely based. Theoretical Computer Science, 209(1–2):141–
162, December 1998.

[2] Maurice H. Ter Beek, Clarence A. Ellis, Jetty Kleijn, and Grzegorz Rozenberg.
Synchronizations in team automata for groupware systems. Comput. Supported
Coop. Work, 12(1):21–69, 2003.

[3] Gèrard Berthelot. Checking properties of nets using transformation. In
Advances in Petri Nets 1985, covers the 6th European Workshop on Applications
and Theory in Petri Nets-selected papers, volume 222 of Lecture Notes in
Computer Science, pages 19–40, London, UK, 1986. Springer-Verlag.

[4] Peter Bichler, Günter Preuner, and Michael Schrefl. Workflow transparency.
In CAiSE ’97: Proceedings of the 9th International Conference on Advanced
Information Systems Engineering, pages 423–436, London, UK, 1997. Springer-
Verlag.

[5] Toon Calders, Stijn Dekeyser, Jan Hidders, and Jan Paredaens. Analyzing
workflows implied by instance-dependent access rules. In PODS ’06: Proceedings
of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 100–109, New York, NY, USA, 2006. ACM.

[6] Piotr Chrzastowski-Wachtel, Boualem Benatallah, Rachid Hamadi, Milton
O’Dell, and Adi Susanto. A top-down petri net-based approach for dynamic
workflow modeling. In Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and
Mathias Weske, editors, Business Process Management, volume 2678 of Lecture
Notes in Computer Science, pages 336–353. Springer, 2003.

44

[7] Dov Dori. Object-process methodology as a business-process modelling tool.
In Proceedings of the 8th European Conference on Information Systems, Trends
in Information and Communication Systems for the 21st Century, ECIS 2000,
Vienna, Austria, July 3–5 2000.

[8] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede. Process-
aware information systems: bridging people and software through process
technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

[9] Charles M. Eastman. Managing integrity in design information flows.
Computer-Aided Design, 28(6-7):551–565, 1996.

[10] Adnene Guabtni and François Charoy. Multiple instantiation in a dynamic
workflow environment. In Anne Persson and Janis Stirna, editors, CAiSE,
volume 3084 of Lecture Notes in Computer Science, pages 175–188. Springer,
2004.

[11] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Generating
statechart models from scenario-based requirements. In Hans-Jörg Kreowski,
Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, and Gabriele Taentzer,
editors, Formal Methods in Software and Systems Modeling, volume 3393 of
Lecture Notes in Computer Science, pages 309–324. Springer, 2005.

[12] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi
Sherman, Aharon Shtull-Trauring, and Mark B. Trakhtenbrot. Statemate: A
working environment for the development of complex reactive systems. IEEE
Trans. Software Eng., 16(4):403–414, 1990.

[13] Christian Heinlein. Workflow and process synchronization with interaction
expressions and graphs. In Proceedings of the 17th International Conference
on Data Engineering, pages 243–252, Washington, DC, USA, 2001. IEEE
Computer Society.

[14] Jan Hidders, Jan Paredaens, Philippe Thiran, Geert-Jan Houben, and Kees van
Hee. Non-destructive integration of form-based views. In Johann Eder, Hele-Mai
Haav, Ahto Kalja, and Jaan Penjam, editors, 9th East European Conference on
Advances in Databases and Information Systems (ADBIS 2005), number 3631
in Lecture Notes in Computer Science, pages 74–86. Springer, September 2005.

[15] Healthcare Information and Management Systems Society (HIMSS). Electronic
health records: A global perspective. http://www.himss.org/content/files/
DrArnold20011207EISPresentationWhitePaper.pdf, January 2007.

[16] Michael A. Jackson. Principles of Program Design. Academic Press, 1975.

[17] Michael A. Jackson. System Development. Prentice Hall Publishing, 1983.

[18] Michael A. Jackson. Software requirements & specifications: a lexicon of
practice, principles and prejudices. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1995.

45

[19] Dirk Jäger, Ansgar Schleicher, and Bernhard Westfechtel. Ahead: A graph-
based system for modeling and managing development processes. In Manfred
Nagl, Andy Schürr, and Manfred Münch, editors, AGTIVE, volume 1779 of
Lecture Notes in Computer Science, pages 325–339. Springer, 1999.

[20] Kurt Jensen. Coloured petri nets: a high level language for system design and
analysis. In G. Rozenberg, editor, APN 90: Proceedings on Advances in Petri
nets 1990, volume 483 of Lecture Notes in Computer Science, pages 342–416,
New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[21] Gerti Kappel and Michael Schrefl. Object/behavior diagrams. In Proceedings
of the Seventh International Conference on Data Engineering, pages 530–539,
Washington, DC, USA, 1991. IEEE Computer Society.

[22] Jochen Malte Küster, Ksenia Ryndina, and Harald Gall. Generation of business
process models for object life cycle compliance. In Gustavo Alonso, Peter
Dadam, and Michael Rosemann, editors, BPM, volume 4714 of Lecture Notes
in Computer Science, pages 165–181. Springer, 2007.

[23] Ghang Lee, Charles M. Eastman, and Rafael Sacks. Eliciting information for
product modeling using process modeling. Data Knowl. Eng., 62(2):292–307,
2007.

[24] Kirsten Lenz and Andreas Oberweis. Inter-organizational business process
management with XML nets. In Hartmut Ehrig, Wolfgang Reisig,
Grzegorz Rozenberg, and Herbert Weber, editors, Petri Net Technology for
Communication-Based Systems, volume 2472 of Lecture Notes in Computer
Science, pages 243–263. Springer, 2003.

[25] Alain J. Mayer and Larry J. Stockmeyer. The complexity of word problems –
this time with interleaving. Inf. Comput., 115(2):293–311, 1994.

[26] Dominic Müller, Manfred Reichert, and Joachim Herbst. Data-driven modeling
and coordination of large process structures. In Robert Meersman and Zahir
Tari, editors, OTM Conferences (1), volume 4803 of Lecture Notes in Computer
Science, pages 131–149. Springer, 2007.

[27] Tadao Murata. Petri nets, properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[28] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational
specification. IBM Syst. J., 42(3):428–445, 2003.

[29] OASIS. Web services business process execution language version 2.0. http:
//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April 2007.

[30] A. Oberweis. An integrated approach for the specification of processes and
related complex structured objects in business applications. Decision Support
Systems, 17:31–53, 1996.

[31] Object Management Group. Unified modeling language specification, version
1.4.2. http://www.omg.org/docs/formal/05-04-01.pdf, January 2005.

46

[32] Object Management Group. Business process modeling notation, v1.1. http:
//www.omg.org/spec/BPMN/1.1/PDF/, January 2008.

[33] A. Orlicky. Structuring the bill of materials for mrp. Production and Inventory
Management, pages 19–42, 1972.

[34] Chun Ouyang, Eric Verbeek, Wil M. van der Aalst, Stephan Breutel, Marlon
Dumas, and Arthur ter Hofstede. Formal semantics and analysis of control flow
in WS-BPEL. Science of Computer Programming, 67(2-3):162–198, July 2007.

[35] Hajo A. Reijers. Design and Control of Workflow Processes: Business Process
Management for the Service Industry. Number 2617 in Lecture Notes in
Computer Science. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[36] Hajo A. Reijers, Selma Limam, and Wil M. P. van der Aalst. Product-based
workflow design. Journal of Management Information Systems, 20(1):229–262,
2003.

[37] Hajo A. Reijers, J. H. M. Rigter, and Wil M. P. van der Aalst. The case handling
case. Int. J. Cooperative Inf. Syst., 12(3):365–391, 2003.

[38] Nick Russell, Arthur ter Hofstede, David Edmond, and Wil van der Aalst.
Workflow data patterns. Technical report, Queensland University of Technology,
Brisbane, 2004.

[39] K. T. Sridhar and C. A. R. Hoare. JSD expressed in CSP. In Malcolm P.
Atkinson, Peter Buneman, and Ronald Morrison, editors, Data Types and
Persistence, Informal Proceedings of the First Workshop on Persistent Objects,
pages 49–82, August 1985.

[40] W. M. P. van der Aalst. The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[41] W. M. P. van der Aalst. On the automatic generation of workflow processes
based on product structures. Comput. Ind., 39(2):97–111, 1999.

[42] Wil M. P. van der Aalst. Verification of workflow nets. In ICATPN ’97:
Proceedings of the 18th International Conference on Application and Theory
of Petri Nets, volume 1248 of Lecture Notes in Computer Science, pages 407–
426, London, UK, 1997. Springer-Verlag.

[43] Wil M. P. van der Aalst and Kees van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

[44] Kees M. van Hee, Natalia Sidorova, and Marc Voorhoeve. Soundness and
separability of workflow nets in the stepwise refinement approach. In Wil M. P.
van der Aalst and Eike Best, editors, ICATPN, volume 2679 of Lecture Notes
in Computer Science, pages 337–356. Springer, 2003.

[45] Kees M. van Hee, Natalia Sidorova, and Marc Voorhoeve. Generalised soundness
of workflow nets is decidable. In Jordi Cortadella and Wolfgang Reisig, editors,
ICATPN, volume 3099 of Lecture Notes in Computer Science, pages 197–215.
Springer, 2004.

47

A Proof of Soundness and Generalized Soundness of Jackson Nets

In this appendix we prove that all Jackson nets are sound and in addition
satisfy the property of generalized soundness. We start with defining the latter
property more formally.

Definition 33 (Generalized Sound Net) A net Ω = (P, T, F, pi, po, λ) is
said to be generalized sound if it holds in the reachability graph of Ω for every
natural number k that from every marking reachable from k ·mi, we can reach
k ·mo.

Recall that the property of soundness is defined in Definition 14 is defined
such that a net Ω = (P, T, F, pi, po, λ) is said to be sound if it holds in the
reachability graph of Ω that

(1) from every marking reachable from mi, we can reach mo and
(2) for every transition t ∈ T there is a run with an edge (mi, t,mj).

It will be clear that the property of generalized soundness is a generalization
of the first requirement for soundness. It was introduced by van Hee, Sidorova
and Voorhoeve in [44] and is motivated by both practical and theoretical con-
siderations. The practical argument is that this type of soundness is relevant
for batch processing systems where multiple cases are processed at the same
time and where generalized soundness guarantees that in spite of possible in-
terference between the different cases the system will always terminate with
all cases correctly processed. The theoretical argument is that conventional
soundness is not compositional with respect to refinement. For example, it is
not the case that if in a sound net we replace a place with another sound
net that then the result is necessarily also sound. However, this does hold for
generalized soundness and this allows for the verification of soundness in a
compositional way.

Since general soundness implies the second property of soundness we will prove
Theorem 18 by proving the following stronger theorem.

Theorem 34 Every Jackson net is a sound net and a generalized sound net.

Proof. It easy to show by induction upon the number of generation steps for
generating the Jackson net that it is a labeled Petri net. In the same fashion
it can be shown that it satisfies the properties of a workflow net using the
fact that rules R3 and R4 cannot be applied to the input place pi and output
place po. Finally, also with induction on the number of steps, we show that
each generated workflow net is both sound and generalized sound. For this it
is sufficient to show that in the reachability graph of the net it holds that (1)
from every marking reachable from the initial marking k · mi we can reach

48

the final marking k ·mo and (2) for every transition there is a run from mi to
mo in which t is fired. We consider for this each of the generation rules and
assume that Ω̃ was constructed from Ω by applying that rule:

R1 Consider the two soundness properties:
• Assume that there is a transition path r1 from k ·mi to a marking m′ for

the net Ω̃. We define a mapping of transition paths of Ω̃ to transition paths
of Ω as follows. First, we define a mapping of markings m of Ω̃ to markings
m̂ of Ω such that m̂ is equal to m except that m̂(p1) = m(p2) + m(p3).
Then we define the mapping of transition paths r of Ω̃ to a transition path
r̂ of Ω by mapping each edge (m′i, t,m

′
j) to the edge (m̂′i, t, m̂

′
j) if t 6= t1,

and removing the edge if t = t1. It is easy to verify that the resulting
list of edges is indeed a transition path of Ω. It then follows that there
is a transition path r̂1 from k · mi to the marking m̂′ for the net Ω. By
induction it then holds that there is for Ω a transition path r2 from m̂′ to
k ·mo.

We now define a reverse mapping from transition paths of Ω̃ to tran-
sition paths of Ω as follows. First, we define a mapping of markings of
Ω to markings of Ω̃ such that m is mapped to m where m is equal to m
except that m(p2) = 0 and m(p3) = m(p1). Then we define the mapping
of a transition path r of Ω to a transition path r of Ω̃ by mapping each
edge (mi, t,mj) to (mi, t,mj) if t 6∈ •p1 and to the two consecutive edges
(mi, t,m

′
i) and (m′i, t1,mj) where m′i = mi − •t + t• otherwise, where •t

and t• denote •t and t• in Ω̃. Note that in the latter case it indeed holds
that in m′i transition t1 is enabled in Ω̃ and mj = m′i − •t1 + t1• in Ω̃.
In m′i transition t1 is enabled because t ∈ •p1 = •p2. It follows that r is
indeed a transition path of Ω̃.

With this mapping we can then show that there is a transition path r2

from m̂′ to k ·mo for Ω̃. Since there is also a transition path of Ω̃ from m′

to m̂′ which consists of m′(p2) times firing t1, there is a transition graph
path for Ω̃ from m′ to k ·mo and in addition it holds that for Ω̃ that
k ·mo = k ·mo.
• Consider a transition t in Ω̃. Either t is a transition in Ω or t = t1. We

first consider the case where t is a transition in Ω. By induction we know
there is run for Ω from mi to a marking m such that t is enabled in m.
As was shown in the previous point it then holds that for Ω̃ there is also
a run from mi to m and by the way that Ω̃ is constructed it holds that
t is enabled in m. Next we consider the case where t = t1. Either p2 is
the input place of Ω̃, in which case t is enabled in mi, or it is not and
then there is at least one transition t′ ∈ •p2 and, as shown in the previous
case, a marking m′ that is reachable from mi and in which t′ is enabled.
It follows that after firing t′ we obtain a marking that is reachable from
mi and in which t is enabled.

R2 Consider the two soundness properties:
• Assume that there is a transition path r1 from k·mi to a marking m′ for the

49

net Ω̃. We define a mapping of transition paths of Ω̃ to transition paths of
Ω as follows. First, we define a mapping of markings m of Ω̃ to markings m̂
of Ω such that m̂ is equal to m except that m̂(p) = m(p)+m(p1) if p ∈ t1•.
Then we define the mapping of transition paths r of Ω̃ to a transition path
r̂ of Ω by mapping each edge (m′i, t,m

′
j) to the edge (m̂′i, t, m̂

′
j) if t 6= t2

and t 6= t3, to (m̂′i, t, m̂
′
j) if t = t2 and removing the edge if t = t3. It is

easy to verify that the resulting list of edges is indeed a transition path
of Ω. It then follows that there is a transition path r̂1 from k ·mi to the
marking m̂′ for the net Ω. By induction it then holds that there is for Ω
a transition path r2 from m̂′ to k ·mo.

We now define a reverse mapping from transition paths of Ω̃ to tran-
sition paths of Ω as follows. First, we define a mapping of markings of
Ω to markings of Ω̃ such that m is mapped to m̂ where m̂ is equal to m
except that m̂(p) = m(p) +m(p1) if p ∈ t1•. Then we define the mapping
of a transition path r of Ω to a transition path r of Ω̃ by mapping each
edge (m′i, t,m

′
j) to the edge (m̂′i, t, m̂

′
j) if t 6= t2 and t 6= t3, to (m̂′i, t, m̂

′
j) if

t = t2 and removing the edge if t = t3. It can be verified that r is indeed
a transition path of Ω̃.

With the latter mapping we can then show that there is a transition
path r2 from m̂′ to k ·mo for Ω̃. Since there is also a transition path from
m′ to m̂′ which consists of m′(p1) times firing t3, there is a transition path
from m′ to k ·mo and in addition it holds that for Ω̃ that k ·mo = k ·mo.
• Consider a transition t in Ω̃. Either t 6∈ {t2, t3}, t = t2 or t = t3. We first

consider the case where t 6∈ {t2, t3}. By induction we know there is run
for Ω from mi to a marking m such that t is enabled in m. As was shown
in the previous point it then holds that for Ω̃ there is also a run from mi

to m and by the way that Ω̃ is constructed it holds that t is enabled in
m. Next we consider the case where t = t2. By induction we know there
is run for Ω from mi to a marking m such that t1 is enabled in m. As was
shown in the previous point it then holds that for Ω̃ there is also a run
from mi to m and since •t2 in Ω̃ is equal to •t1 in Ω it holds that t2 is
enabled in m. The case for t = t3 is similar except after t2 is enabled we
fire it once such that t3 becomes enabled.

R3 Consider the two soundness properties:
• Assume that marking m′ is reachable from k ·mi for the net Ω̃. We can

then construct a transition path for Ω that ends in the marking m′ by
omitting all edges for transition t1. By induction we know that there is for
Ω a transition path from m′ to k ·mo. Clearly this path is also a transition
path from m′ to k ·mo for Ω̃.
• Consider a transition t in Ω̃. Either t 6= t1 or t = t1. We first consider the

case where t 6= t1. By induction we know there is run for Ω from mi to a
marking m such that t is enabled in m. The same path will be a run for Ω̃
and in its final marking t will be enabled. Next we consider the case where
t = t1. If p2 is the start place of Ω̃ the t will be enabled after an empty run.

50

If ps is not the start place of Ω̃ then there is a transition t′ ∈ •p2 and as
was shown in the previous case there is a run after which t′ is enabled. If
we extend this run by firing t′ we end in a marking in which t1 is enabled.

R4 Consider the two soundness properties:
• Assume that marking m′ is reachable from k ·mi for the net Ω̃. We define

a mapping of markings of Ω̃ to markings of Ω such that m is mapped to
m̂ where m̂ is equal to m except that m̂(p2) = m̂(p3) = m(p1). Observe
that a transition t is enabled in m for Ω̃ iff it is enabled in m̂ for Ω. Also
observe that if for a marking m1 transition t is enabled for Ω̃ and after the
firing of t in Ω̃ we arrive in marking m2 then if we fire t for a marking m̂1

in Ω then we arrive in marking m̂2. We can then construct a transition
path for Ω that ends in the marking m′ by firing the same transitions. By
induction we know that there is for Ω a transition path from m′ to k ·mo.
Clearly the path that fires the same transitions is also a run from m′ to
mo for Ω̃.
• Consider a transition t in Ω̃. By induction we know there is run for Ω

from mi to a marking m such that t is enabled in m. As was shown in
the previous point then there is a similar path for Ω̃ that fires the same
transitions in the same order and ends in m̂ in which t is enabled.

R5 Consider the two soundness properties:
• Assume that marking m′ is reachable from k ·mi for the net Ω̃. We can

then construct a run for Ω that ends in the marking m′ by replacing all
edges for transitions t2 and t3 with edges for t1. Note that this will still
be a run since •t1 = •t2 = •t3 and t1• = t2• = t3•. By induction we
know that there is for Ω a transition path from m′ to k ·mo. We obtain a
transition path from m′ to k ·mo for Ω̃ by replacing all edges for t1 with
edges for t2.
• Consider a transition t in Ω̃. Either t ∈ {t2, t3} or t is a transition in Ω

and not t1. We first consider the case where t ∈ {t2, t3}. By induction we
know there is run for Ω from mi to a marking m such that t1 is enabled in
m. As shown in the previous point we obtain a run from mi to m for Ω̃ by
replacing edges for t1 with edges for t2, and in m the transitions t2 and t3
are both enabled in Ω̃. Next we consider the case where t is a transition
in Ω that is not equal to t1. By induction we know there is run for Ω from
mi to a marking m such that t is enabled in m. As shown in the previous
point we obtain a run from mi to m for Ω̃ by replacing edges for t1 with
edges for t2, and in m the transition t is enabled in Ω̃.

Summarizing we have shown that if Ω̃ is generated from Ω by one of the rules
R1, R2, R3, R4 and R5, and Ω is sound and generalized sound then Ω̃ is
also sound and generalized sound. Since singleton nets are clearly sound and
generalized sound it the follows by induction upon the number of generation
steps that these properties hold for all Jackson nets. 2

51

B Examples of Workflow Modeling Approaches

In this section we illustrate some of the process modeling approaches that are
mentioned in Section 8 on related work.

B.1 Product-Based Workflow Design

The Product-Based Workflow Design approach (PBWD) was introduced by
Reijers, Limam and van der Aalst in [36] and [41]. The approach aims at
determining the workflow process in product manufacturing. The workflow
process is obtained from the structure and characteristics of a product. The
Bill-of-Material (BOM) [33] is used for capturing the structure of the products
to be produced. The BOM is a tree-like structure with the end product as
root and raw materials and purchased products as leaves. The edges are used
to specify composition relation. They can have a cardinality to indicate the
number of products needed. In PBWD, the classical BOM is extended with
options and choices. This extension allows specifying sequencing, parallelism
and choice. A workflow is generated as a Petri net from a BOM and the
resulting Petri net is proved to be sound.

An example of PBWD is given in Figure B.1. In this example, the BOM
consists of an end product (P1) and 5 components. A black dot indicates that
the sub-product is a mandatory component while a circle indicates that a
choice is made between several components (P5 or P6). The resulting workflow
of the given BOM is given in the same figure. The end product P1 corresponds
to a net responsible for the production of P1 and the components needed to
produce it. The net starts with a transition, prep(P1). This transition triggers
the activities needed to produce P1. Transition prep(P1) starts the production
of P2, P3 (optional) and P4. The possibility to refrain from P3 is modeled by
the by-pass via transition skip(P3). For the product P4, the choice between
P5 and P6 is modeled by the place in(P5, P6). The actual production of a Pi
is modeled by transition, prod(Pi).

B.2 Integrating Object Life Cycles

In [22] Küster, Ryndina and Gall propose a technique for generating a busi-
ness process from a set of given reference object life cycles (OLCs) for the
involved objects. The generation technique also requires the specification of
synchronization between transitions in the OLCs. The composition of the OLC
is computed and used to generate a process model in which dependencies be-
tween input and output object states are preserved. The result of the genera-

52

Product model (BOM)
P1

P2 P3

prep(P1)in(P1)

P4

P5 P6

prod(P2)

mandatory

in(P2)

prod(P3)
in(P3)

skip(P3)
out(P3)

in(P4) prep(P4) in(P5,P6)
prod(P5)

prod(P6)
out(P5,P6)

out(P2)

prod(P4)

prod(P1)

out(P4)

out(P1)

Workflow

choice

optional

Legend

prep(P1) Start the production
of P

1

skip(P1) Skip the production
of P

1

prod(P1) Produce P
1

Fig. B.1. Generation of a workflow net from a given BOM

tion is proved to be compliant with the reference OLCs through the notions
of conformance and coverage which informally state that within the complete
business process the individual objects can do no more and no less than the
transitions specified in the reference OLCs.

In Figure B.2 we give an example illustrating the technique for two OLCs with
one synchronization point between transitions b and e. From these OLCs, the
product automation is determined, but it is formulated in terms of transitions.
These transitions are defined by a transition from one of the OLCs and a set
of input pins and output pins that indicate for each of the objects in which
state it is before the transition and after the transition, respectively. If an
object is still in the state of the start node then its pin is omitted to indicate
that the object has not yet been really activated. The resulting transitions are
ordered with respect to their input and output pins, and a start node, a final
node, and additional decision nodes and merge nodes are added to make the
structure of the resulting process more explicit.

B.3 Integrating object life cycles of objects in a data model

Another OLC-based approach is described in [26] by Müller, Reichert and
Herbst. They propose a framework that distinguishes model and instance lev-
els when creating data-driven process structures. It is based on a data model
that describes classes of objects that the process has to deal with and bi-

53

OLC of O
1

1

b

32

a

c

4

e

5

d

OLC of O
2

Synchronization

(generation and connections of transitions)

a

O
1
[1]

a
O

1
[1]

O
2
[4]O

2
[4]

d

d

O
1
[1]

O
2
[4]

O
1
[1]

O
2
[4]

b|e
O

1
[2]

O
2
[5]

O
1
[1]

O
2
[4]

c
O

1
[3]

O
2
[5]

O
1
[2]

O
2
[5]

Process model

final node

decision node

start node

Legend

merge node

transition a with an
input pin for O

1
in state

3 and an output pin for
O

2
 in state 4

a

O
2
[4]

O
1
[3]

Fig. B.2. Generation of a process model from 2 OLCs with a synchornization point

nary relationships between these classes which typically represent composi-
tion relations between the objects. For an example consider the data model in
Figure B.3 where the classes T and ST are specified with a relationship Has
SubSys. For each class, an OLC is given that describes the behavior of the
objects in this class. In addition, for the relationships OLC dependencies can
be specified that model external transitions between the states of the objects
in the classes that are involved in the relationship. Together this forms the life
cycle coordination model, of which an example is given in Figure B.3, where
an x transition is specified from state 2 to state 4 and a y transition from state
6 to state 3. Then, if an instance of the data model is given, as for example in
the data structure in Figure B.3 where we see an object O of class T and ob-
jects O1 and O2 of class ST, then this defines a complete process specification
which is called the life cycle coordination structure, which is also represented
in the figure. It consists of a life cycle for each object in the data structure and
all states 2 are connected by external transitions as defined by the specified
OLC dependencies.

The semantics of the life cycle coordination structure are that all OLCs are
executing in parallel, but are synchronized by the external transitions. The
latter means that an OLC with a state that has incoming external transitions
can only become the current state if the OLCs from which the transitions
depart are all in the source state of these external transitions. For example,

2 We have for simplicity omitted the special global begin and end state that are
included in [26].

54

because of the y transitions, object O can only go to state 3 if O1 and O2 are
both in state 6. In the other direction, because of the x transitions, objects O1

and O2 can only go to state 4 if O is in state 2. The process as a whole begins
with each object in a special state in which it is not yet active and which has
a silent transition to the begin state of the OLC. The process can end if all
objects are in a final state.

Data model

T a 2 b 3

(OLCs and dependencies)

ST

Has SubSys

1

OLC for T

c 54

OLC for ST
Has

SubSys

2

4

3

6

OLC dependencies

x y

M
od

el
 le

ve
l

O

O1 O2In
st

an
ce

 le
ve

l

a 2 b 3

(Generated instantiation)

1

OLC for O

c 54

OLC for O1

c 54

OLC for O2

x x y y

d 6

d 6 d 6

1

0..*

Has SubSys

Life cycle coordination model

Data structure Life cycle coordination structure

Fig. B.3. Generation of the life cycle coordination structure of three objects of two
classes for which an OCL and the OCL dependencies are given

B.4 STATEMATE

The STATEMATE formalism for integrated process modeling of reactive sys-
tems is presented by Harel et al in [12]. It proposes a notation and semantics
for three types of related diagrams: module charts, activity charts and state
charts. Examples of these charts are given in Figure B.4 and we briefly explain
their meaning in the following.

The module chart describes the physical structure of the system, i.e., how
it is composed of modules which are usually physical components, but can
also be more logical components such as software modules. It specifies the
external modules outside the system, here EM1, EM2 and EM3, and internal
modules, here M1, M2 and SM3, of which SM3 is a storage module that
stores information or physical objects. The modules are connected through
directed flow lines that indicate communication between the modules. The

55

Module chart

EM1

EM2

EM3

SM3

M1 M2

M0

c4
d5

d1

d9

d8

e6

Activity chart

EA1

EA2

EA3A2 A4

A0 CA1

A3

d1

d5

d2

e3e6 e7

c4

d8

d9

DS5

State chart
CA1

S1

e6[d1>10]/e3

e6[d1<=10]/e3

stopped(A2)/start(A4)

/d2 := 10written(d1)/
start(A2)

read(d2)
/d2 := d1

S2

S3

S4

S5

S6

Fig. B.4. A module chart, activity chart and state chart in STATEMATE

labels indicate whether the flow lines transport data items (d1, d5 and d9),
conditions / booleans (c4) or atomic events (e6). In general module charts can
be recursively nested and flow lines may cross the boundaries of such nested
modules, which is an important aspect of the STATEMATE charts, but for
simplicity we do not consider such nesting here.

The activity chart describes the functional structure of the system, i.e., it de-
scribes the activities and tasks that have to be performed by the system. In
the example the external activities are EA1, EA2 and EA3, and the internal
activities are CA1, A1, A2, A3 and DS5. Of the latter, CA1 is a control ac-
tivity of which there is always exactly one in each activity chart and which
coordinates all the other activities. The activity DS5 represents a data store
which is an activity that only stores data items. As in the module chart the
activities are connected by labeled flow lines which again indicate data flow
and control flow between the activities. The relationship between the activity
chart and the module chart is simply an assignment of each of the activities
to one of the modules, where external activities must be mapped to external
modules, internal activities must be mapped to internal modules, and data
stores must be mapped to storage modules. In the example we can map the
external activities EA1, EA2 and EA3 to EM1, EM2 and EM3, respectively,
the activities CA1, A3 and A4 to M2, the activity A2 to M1 and the data store
DS5 to storage module SM3. Observe that this mapping also implies which
flow lines there should be in the module chart.

The state chart specifies for a control activity, in this case CA1, how it coor-
dinates all the activities within its activity chart. As such it defines together
with the flow lines in the activity chart the complete control flow at that level.

56

The nested activities such as A2, A3 and A4, will either be basic or have their
own activity chart with a control activity for which a state chart is given. Al-
though the notation and semantics of state charts is more general, the given
example can be understood as a finite automaton with states S1, . . . , S6 where
the transitions are in general of the form e[c]/a where e is a triggering event, c
a condition and a an action, but all three parts are optional. Such a transition
can only happen if both e is happening and c holds, and if it does then the
action a is taken.

Possible triggering events include basic events arriving on incoming flow lines,
e.g., an event on flow line e1, special starting and stopping events of activities
in the activity chart, e.g., started(A1) and stopped(A2), entering or leaving
certain states in the state chart (it is in general possible to be in more than
one state of the state chart), conditions on incoming flow lines becoming true
or false, data-items on on incoming flow lines being written, e.g., written(d1),
and data-items on outgoing flow lines being read, e.g., read(d2). The condi-
tions can be boolean combinations of basic conditions specified for conditions
and data items on incoming flow lines, e.g., d1 > 10, for being in a certain
state in the state chart, and for being active or suspended for activities in the
activity chart. Finally, the possible actions include events on outgoing flow
lines, e.g., an event on flow line e3, control actions on activities in the activity
chart such as starting, stopping, suspending and resuming, and writing data
items and truth values to outgoing flow lines, e.g., d2 := 10.

We end this treatment of state charts with a brief informal description of the
semantics of the state chart in Figure B.4. We start in the initial state S1.
When a data item is written on flow line d1, activity A2 is started. After this
we wait in state S2 until in flow line e6 an event appears and, depending on
whether the data item d1 is larger then 10 or not, we write either the number
10 or this data item to the flow line d2. Then we wait in state S5 until A2 has
stopped and start A4. Then we wait in state S6 until the data item written
on d2 has been read by A4, and then we return to state S1.

B.5 XML Nets

As an illustration of the High level Petri net approaches, we present XML nets
[24]. XML nets model the data flow through a Petri net as XML documents.

XML schemas are defined in GXSL, a graphical specification language that
represents a document type definition DTD by XML schema diagrams. In
GXSL, element types are represented by UML classes and hierarchies are
structured by aggregation. An example of an XML schema in GXSL and its
equivalent DTD are given in the Figure B.5. Manipulation and querying of

57

XML documents are specified by an extension of GXSL, namely XManiLa, a
GXSL-based document manipulation language. In XManiLa, an XML schema
definition is interpreted as a template for a set of XML documents that spec-
ifies the structure of matching documents.

In XML nets, the static components (i.e., the places) are typed by GXSL
specifications, each of them representing a DTD. Places are interpreted as
containers of XML documents which are valid for the corresponding DTD. An
edge between a place and a transition is labeled with XManiLa which specifies
the prerequisite for the firing of a transition. An edge from transition to place
specifies the result of a document manipulation by the transition. The initial
marking assigns to each place a (possible empty) set of valid XML documents.
Examples of insert and delete operations of documents are given in Figure B.5.
In order to express in XManiLa that the matching documents may contain
within E1 any element preceding E4, the rectangle inscribed with an “Any”
is used.

58

Data model (GXSL)
E1

E2 E3

Create
new E1

E4

E5 E6

E1

Workflow (Petri net and XManiLa)

<!ELEMENT E1(E2, E3, E4*)>
<ATTLIST E1(eid ID)>
<!ELEMENT E4(E5,E6)>
<!ELEMENT E2 #PCDATA>
<!ELEMENT E3 #PCDATA>
<!ELEMENT E5 #PCDATA>
<!ELEMENT E6 #PCDATA>

*

eid: ID
E1

E2 E3 E4

E5 E6

*

eid: ID

E1

E2 E3

eid: ID
E1

E2=e2 E3=e3

eid: 1

Insert E4

for E1with eid=1

E1

E3

eid: ID
E1

Any Any

eid: 1

E1

E2 Any E4

E5 E6=e6

eid: ID
E1

Any E4

E5=e5

eid: 1
E1

Delete E1
with eid=1

E1

eid: ID
E1

eid: 1

DTD

Fig. B.5. An XML net and its related XML schema diagram

59

