
E�cient XPath Axis Evaluation for DOM Data Structures

Jan Hidders Philippe Michiels
University of Antwerp

Dept. of Math. and Comp. Science
Middelheimlaan 1, BE-2020 Antwerp, Belgium,
fjan.hidders,philippe.michielsg@ua.ac.be

Abstract

In this article we propose algorithms for imple-
menting the axes for element nodes in XPath
given a DOM-like representation of the docu-
ment. Each algorithm assumes an input list that
is sorted in document order and duplicate-free
and returns a sorted and duplicate-free list of
the result of following a certain axis from the
nodes in the input list. The time complexity
of all presented algorithms is at most O(l +m)
where l is the size of the input list andm the size
of the output list. This improves upon results in
[4] where also algorithms with linear time com-
plexity are presented, but these are linear in the
size of the entire document whereas our algo-
rithms are linear in the size of the intermediate
results which are often much smaller.

1 Introduction

The XQuery Formal Semantics [3] requires that
the result of an XPath path expression returns
a list of document nodes that is sorted in doc-
ument order and duplicate free. This can be
achieved by always sorting the list at the end
of the evaluation of the path expression or even
sorting after each step in the path expression.
The �rst approach may seem more e�cient but
as shown in [4] can lead to an exponential blow-
up of the intermediate results in the size of the
query. The second approach, however, has the
drawback that the sorting operations become a
major bottleneck in the evaluation of the ex-
pression. One way to improve this situation is
presented in [8] where given a straightforward
implementation of the axes unnecessary sorting
operations are detected and removed. In this
paper we investigate the possibilities for alter-
native implementations of the axes such that

these use the fact that the previous intermedi-
ate result is sorted and return a result that is
always sorted and duplicate-free. For this pur-
pose we will assume that the document is stored
in a DOM-like pointer structure [1] and that the
nodes are numbered with their so-called pre-
numbers and post-numbers, i.e., their position
in a preorder and postorder tree-walk, respec-
tively.

2 Related Work

Previous research on the complexity of XPath
evaluation has shown us that it is possible to
construct e�cient algorithms for the evaluation
of XPath [5, 9]. In fact, there even exists a frag-
ment of XPath (Core XPath) that can be evalu-
ated in the linear combined complexity O(jDj �
jQj), where jDj is the size of the instance and
jQj the size of the query [4]. We improve these
results in the sense that our approach leads to
linear evaluation in the size of the intermediate
results, which can be much smaller than the size
of the document.

This work is mostly inspired by the results
presented in [6] and [7]. There it is shown that if
the document nodes have prenumbers and post-
numbers associated with them then it possible
to e�ciently retrieve the results of certain axes
in document order and without retrieving nodes
that are not in the result. For example, if we let
pre(n) and post(n) be the pre- and postnumber
of n then we can e�ciently test their relative
positions because then n0 is a descendant of n
i� pre(n0) > pre(n) ^ post(n0) < post(n), and n0

is a follower of n0 i� pre(n) < pre(n0)^post(n) <
post(n0).

1

3 The Data Model

The logical data model that we will use is a sim-
pli�cation of the XML data model where a doc-
ument is an ordered node-labelled tree and for
such a tree the document order is de�ned as the
strict total order over its nodes that is de�ned
by the preorder tree-walk over the tree.

The physical data model describes in an ab-
stract way how we assume that documents are
stored. The �rst assumption that we make is
that the following partial functions are available
for document nodes (if unde�ned the result as
assumed to be null) and can be evaluated in
O(1) time:

� fc(n) returns the �rst child of n

� ns(n) returns the next sibling of n

� ps(n) returns the previous sibling of n

� pa(n) returns the parent of n

� �(n) returns the �rst follower of n

� lp(n) returns the last predecessor of n

Note that except for the last two functions these
are all existing pointers in the Document Object
Model.

The second assumption that we make is that
there are functions such that we can retrieve the
pre- and postnumbers in O(1) time:

� pre(n) returns the prenumber of n

� post(n) returns the postnumber of n

The reasonableness of these assumptions is demon-
strated by the fact that this physical data model
can be generated from a SAX representation [2]
that consists of a string of opening and closing
tags in LogSpace. This can be shown by an ex-
tension of the proof given in [9] for the original
DOM data model.

The data type we will use the most is that
of List. We use the following operations:

� newList() returns a new list

� �rst(L) returns �rst element of L

� last(L) returns last element of L

� empty(L) determines if L is empty

� addAfter(L; n) adds n at end of L

� addBefore(L; n) adds n at begin of L

� delFirst(L) removes and returns the �rst
element of L

� delLast(L) removes and returns the last
element of L

� isList(L) determines if L is a list

The lists are assumed to be represented as a ref-
erence to a pair that consists of a reference to the
beginning and the end, respectively, of a doubly
linked list. Therefore we can assume that all
the operations above and assignments and pa-
rameter passing can be done in O(1) time. Fur-
thermore this means that if an argument of a
function or procedure is a List then it is passed
as a reference and therefore all the operations
applied to the formal argument are in fact ap-
plied to the original list that was passed as an
argument.

We now proceed by giving for each axis the
corresponding algorithm.

4 Descendant Axis

4.1 Informal Description

Given a list of document nodes that is in doc-
ument order and without duplicates we cannot
compute a sorted list of descendants by simply
concatenating the lists of descendants. The rea-
son for this is that if n1 and n2 appear in the
list in that order and n2 is a descendant of n1
then the descendants of n2 will appear twice in
the result of the concatenation. However, if n2
is not a descendant of n1 then all descendants
of n2 will follow in document order the descen-
dants of n1. It follows that we only have to skip
the nodes in the input list that are preceded by
an ancestor, to get a result that is in document
order and without duplicates.

4.2 The Algorithm

We �rst present a procedure that adds the de-
scendants of a document node n behind a list L
in document order.

1 proc addDesc(L; n)
2 n0 := fc(n);
3 while n0 6= null do
4 addAfter(L; n0);
5 addDesc(L; n0);
6 n0 := ns(n0)
7 od
8 end

2

The procedure iterates over all children of n in
document order and for each (1) adds the child
to L and (2) adds its descendants to L. Since
the descendants of a node precede in document
order the descendants of the following siblings,
it follows that the result is indeed that all de-
scendants of n are added to L. Furthermore, it
is easy to see that the time complexity is O(m)
where m is the number of added elements to L.

Next, we present the function that given a
sorted and duplicate-free list Lin returns the
sorted and duplicate-free list of descendants of
the nodes in Lin.

1 funct allDescOrd(Lin)
2 Lout := newList();
3 while :empty(Lin) do
4 n := delFirst(Lin);
5 addDesc(Lout; n));
6 while :empty(Lin) ^
7 post(�rst(Lin)) < post(n)
8 do
9 delFirst(Lin)

10 od
11 od;
12 Lout
13 end

The function iterates over the elements in Lin
and adds their descendants to Lout unless they
are preceded in the list by an ancestor. In line 7
this is tested by comparing the post numbers of
�rst(Lin) and n. Since n appeared in Lin before
�rst(Lin) if follows that pre(n) < pre(�rst(Lin))
and therefore that �rst(Lin)) is a descendant of
n i� this condition is true. The time complexity
of the function is O(l+m) where l is the size of
Lin and m the size of Lout.

5 Descendant-or-self Axis

The algorithm for this axis is identical to that
of the descendant axis except that for each node
in Lin that is not preceded by an ancestor we
retrieve not only the descendants but also the
node itself. The time complexity is therefore
the same as the previous algorithm.

6 Ancestor Axis

6.1 Informal Description

The problem for this axis is similar to the de-
scendant axis because two distinct nodes can

have common ancestors. Moreover, this can not
only happen for nodes that have an ancestor-
descendant relationship, but also for nodes that
do not. The solution for this problem is to re-
trieve for each node in the input list only those
ancestors that were not already retrieve before.
Because the input list is sorted in document or-
der we can do this by walking up the tree and
stopping if we �nd a node that is an ancestor of
the previous node in the input list.

6.2 The Algorithm

We �rst present two helper procedures. The �rst
retrieves all ancestors of a document node n and
appends them in document order after a list L.

1 proc addAnc(L; n)
2 n0 := pa(n);
3 if n0 6= null
4 then addAnc(L; n0);
5 addAfter(L; n0)
6 �
7 end

If the number of ancestor nodes in m then
the time complexity if this procedure is in O(m).

The next helper procedure will, given a list
L, a document node n and a document node
n0 that precedes n in document order, retrieve
the ancestors n that are not ancestors of n0 and
append them in document order after L.

1 proc addAncUntilLeft(L; n; n0)
2 n00 := pa(n);
3 if n00 6= null ^ pre(n00) � pre(n0)
4 then addAncUntilLeft(L; n00; n0);
5 addAfter(L; n00)
6 �
7 end

Note that since n0 precedes n in document
order it holds that the condition pre(n00) � pre(n0)
indeed checks if an ancestor n00 of n is an ances-
tor of n0. Also here the time complexity is O(m)
where m is the number of retrieved ancestors.

Finally, we present the function that given a
sorted and duplicate-free list of document nodes
Lin returns a sorted duplicate-free list of all
their ancestors.

1 funct allAncOrd(Lin)
2 Lout := newList();
3 if :empty(Lin)
4 then n := delFirst(Lin);
5 addAnc(Lout; n)
6 �;
7 while :empty(Lin) do
8 n0 := delFirst(Lin);

3

9 addAncUntilLeft(Lout; n
0; n);

10 n := n0

11 od;
12 Lout
13 end

In the �rst part of the algorithm (line 3-6) all
ancestors of the �rst node in Lin are retrieved.
After this a while loop (line 7-11) iterates over
the remaining nodes in Lin and retrieves for each
node n0 all ancestors of n0 that are not ancestors
of n, the node that preceded n0 in Lin. Since
n also precedes n0 in document order it follows
that all the ancestors of n0 that are retrieved
indeed follow those that were retrieved for n.
As a result all ancestors that are retrieved are
appended in document order. The time com-
plexity of this function is O(l+m) if l is the size
of Lin and m is the size of the result.

7 Ancestor-or-self Axis

The algorithm for this axis as similar to the one
for the ancestor axis except that we we retrieve
the ancestors of a node we also add the node
itself. The time complexity is therefore also the
same.

8 Child Axis

8.1 Informal Description

We cannot use the approach of the previous axes
here. Consider for example the fragment in Fig-
ure 1. If, for example, we only retrieve for each
node the children that we know to precede in
document order the children of the next node
then for the list Lin = [1; 3] we only obtain
[2; 3; 4]. To solve this we introduce a stack on
which we store the children of node 1 which were
not retrieved already such that we can return to
them when we are �nished with the children of
node 3.

<b id="2"/>

<b id="3"> <c id="4"/>

<b id="5"/>

Figure 1: An XML fragment

8.2 The Algorithm

Before we present the actual algorithm we present
a helper function that results in a list of all chil-
dren of a document node n in document order.

1 funct allChildren(n)
2 L := newList();
3 n0 := fc(n);
4 while n0 6= null do
5 addAfter(L; n0);
6 n0 := ns(n0)
7 od;
8 L
9 end

The function simply goes to the �rst child
of n and then follows the following-sibling ref-
erence until there is no more following sibling.
The time complexity of this function is O(m) if
m is the number of retrieved children.

Next, we present the actual algorithm that
given a sorted and duplicate-free list of docu-
ment nodes Lin returns a sorted duplicate-free
list of all their children.

1 funct allChildOrd(Lin)
2 Lout := newList();
3 Lst := newList();
4 while :empty(Lin) do
5 n := �rst(Lin);
6 if empty(Lst)
7 then L0 := allChildren(n);
8 addBefore(Lst; L

0);
9 delFirst(Lin);
10 elsif empty(�rst(Lst))
11 then delFirst(Lst)
12 elsif pre(�rst(�rst(Lst))) > pre(n)
13 then L0 := allChildren(n);
14 addBefore(Lst; L

0);
15 delFirst(Lin)
16 else n0 := delFirst(�rst(Lst));
17 addAfter(Lout; n

0)
18 �
19 od;
20 while :empty(Lst) do
21 if empty(�rst(Lst))
22 then delFirst(Lst)
23 else n0 := delFirst(�rst(Lst));
24 addAfter(Lout; n

0)
25 �
26 od;
27 Lout
28 end

The algorithm consists of two while loops.
The �rst (line 4-19) iterates over the nodes in
Lin and retrieves the children that it knows it
can send to the output list Lout and stores the

4

others on the stack Lst. The second while loop
(line 20-26) iterates over the remaining children
on the stack Lst and appends those behind Lout.
In the following we discuss each while loop in
more detail.

The �rst loop stores unprocessed children on
the stack Lst where the beginning of Lst is the
top of the stack. Each position on the stack
contains a sorted list of siblings that were not
yet transferred to Lout. The loop maintains an
invariant that states that the nodes in lists that
are higher on the stack precede in document or-
der those that are lower on the stack. This is
mainly achieved by the if statement on line 12
that tests if the node at the beginning of Lin
precedes the �rst child node on top of the stack.
If this is true then the list of children of n are
pushed on the stack and n is removed from Lin,
otherwise the �rst child node on top of the stack
is moved to the end of Lout. Note that in the
latter case it indeed holds that all the children of
the remaining nodes in Lin indeed succeed this
child in document order.

The second loop simply
ushes the stack which
indeed results in adding the remaining nodes to
Lout in document order because of the invariant
that was described for the previous loop.

Since the algorithm iterates over all the nodes
in Lin and retrieves only those nodes that are
added to Lout it follows that the time complex-
ity is O(l +m) where l is the size of Lin and m
the size of Lout.

9 Parent Axis

9.1 Informal Description

The fundamental property that will be used for
this axis is that if for a duplicate-free sorted list
of document nodes we retrieve the parent nodes
we obtain a sublist of the list of nodes that we
meet when we follow the contour of the tree. For
example, if we follow the contour of the nodes
in the tree for the fragment in Figure 1 then we
obtain the list [1; 2; 1; 3; 4; 3; 1; 5; 1]. If we start
with the list [2; 3; 4; 5] and we retrieve the list
of parents, then we obtain [1; 1; 3; 1] which is
indeed a sublist of the �rst list.

This information can be used by the algo-
rithm because when it iterates over the list of
parents and encounters a parent n that precedes
the last parent in the output list then it is walk-
ing up the tree in the contour walk. As a con-

sequence it knows that after it inserts n in the
output list the tail of the output list that starts
with n will not change anymore because all the
following nodes in the input list will either be af-
ter or before this tail in document order. There-
fore the algorithm can simply summarize this
tail and pretend it corresponds to the node n.
It does this by replacing it with a nested list
that contains this tail.

As an illustration consider the following pos-
sible list of parents: [1; 2; 5; 4; 9; 8; 2]. For rea-
sons of homogeneity we represent the output list
as a list of lists and if we add a single node it is
represented as a singleton list. Therefore after
processing the nodes 1, 2 and 5 we obtain the
list [[1]; [2]; [5]]. Since the next node 4 precedes 5
the algorithm represents the tail as a nested list
that starts with 4 and obtains [[1]; [2]; [4; [5]]].
From this point on the nested list [4; [5]] will
be considered as if equal to [4], i.e., the algo-
rithm considers only the �rst node of the nested
lists. Since the next node 9 follows 4 it is simply
added, giving [[1]; [2]; [4; [5]]; [9]]. The next node
is 8 which precedes 9 but follows 4, so we ob-
tain [[1]; [2]; [4; [5]]; [8; [9]]]. Also here the nested
list [8; [9] is considered as equivalent to [8]. Fi-
nally the node 2 is added and since it precedes
node 4 the two lists starting with 4 and 8 are
nested in a list starting with 2 and we obtain
[[1]; [2]; [2; [4; [5]]; [8; [9]]]].

As will be clear from the previous example,
the result is a nested list that when
attened
gives the sorted list of parents but may still con-
tain duplicates. Since the list is sorted these can
be eliminated easily.

9.2 The Algorithm

We �rst present a helper function and a helper
procedure. The following function will, given a
sorted list L, return a sorted list that contains
all the elements in L but no duplicates.

1 funct dupElimSort(L)
2 Lout := newList();
3 if :empty(L) then n := delFirst(L) �;
4 while :empty(L) do
5 n0 := delFirst(L);
6 if n0 6= n
7 then addAfter(Lout; n

0)
8 n := n0

9 �
10 od;
11 Lout
12 end

5

The time complexity of this function is clearly
O(l) if l is the size of L.

Te following procedure will, given a list L
and a nested list Ltr of document nodes,
atten
the list Ltr and append it to L.

1 proc addFlatList(L;Ltr)
2 while :empty(Ltr) do
3 n := delFirst(Ltr);
4 if isList(n)
5 then addFlatList(L;Ltr)
6 else addAfter(L; n)
7 �
8 end
9 end

If at each level every nested list in Ltr con-
tains at least one document node then the time
complexity if this procedure is O(m) if m is the
number of document nodes in the result.

Finally, we present the actual algorithm that
given a duplicate-free sorted list of document
nodes will return a duplicate-free sorted list of
their parents.

1 funct allParOrd(Lin)
2 Ltr := newList();
3 while :empty(Lin) do
4 n := pa(delFirst(Lin));
5 L := newList();
6 while :empty(Ltr) ^
7 pre(�rst(last(Ltr))) > pre(n)
8 do
9 n0 := delLast(Ltr);

10 addBefore(L; n0)
11 od;
12 addBefore(L; n);
13 addAfter(Ltr; L)
14 od;
15 Ldup := newList();
16 addFlatList(Ldup; Ltr);
17 Lout := dupElimSort(Ldup);
18 Lout
19 end

The list Ltr is used to represent the list of
nested lists. Note that in Ltr every nested list
will always start with a document node. The
crucial part is the while loop on lines 6-11 that
determines the tail L of Ltr where the �rst nodes
of the lists in this tail follow n in document order
and removes this tail from Ltr. On line 12 this
tail is extended with n and �nally on line 13 the
tail is put back as a nested list at the end of Ltr.
At the end of the algorithm, when all the nodes
of Lin have been processed, the resulting nested
list Ltr is
attened and duplicates are removed
from it.

The time complexity if this algorithm is O(l)
where l is the size of Lin. To understand this
consider the number of times the pre-numbers of
two nodes are compared in the while condition
starting on line 6. The number of equations that
were false are at most l, one for each parent
that is considered. The number of successful
equations is also at most l because a successful
comparison means that the node is from then
on nested and will no longer be considered, so
in the �nal Ltr every document node has been
successfully compared at most once.

10 Following Axis

10.1 Informal Description

To �nd all the followers of the nodes in a duplicate-
free sorted list of document nodes it is su�cient
to retrieve the followers of the �rst node in the
list that is not an ancestor of the next node in
the list. To understand this consider the follow-
ing. Let n be this node and n0 a node that
is in the list after n. Since the node in the
list immediately after n is not its descendant
n0 and its followers are also not descendants of
n. Therefore it follows that (1) n0 is a follower
of n and (2) all followers of n0 are also followers
of n. Since n0 is not a follower of itself, it holds
that the set of followers of n0 is a proper sub-
set of those of n. On the other hand it can be
shown that if n0 is an ancestor of n then the set
of followers of n0 is a subset of those of n.

10.2 The Algorithm

We �rst present a helper procedure that, given
a list L and a document node n, appends to L
all followers of n.

1 proc addFoll(L; n)
2 if �(n) 6= null
3 then addAfter(L;�(n));
4 addDesc(L;�(n));
5 addFoll(L;�(n))
6 �
7 end

The correctness of this procedure follows from
the fact that �(n) returns the smallest node (in
document order) that is a follower of n, and that
the followers of a node n are de�ned as those
nodes that are larger in document order but not
a descendant of n. Its time complexity is O(m)
where m is the number of followers added to L.

6

Next we present the actual algorithm that
given a duplicate-free sorted list Lin of docu-
ment nodes returns a duplicate-free sorted list
of all the followers of these nodes.

1 funct allFollOrd(Lin)
2 Lout := newList();
3 if :empty(Lin)
4 then n := delFirst(Lin);
5 while :empty(Lin) ^
6 pre(�rst(Lin)) > pre(n) ^
7 post(�rst(Lin)) < post(n)
8 do
9 n := delFirst(Lin)

10 od;
11 addFoll(Lout; n);
12 �;
13 Lout
14 end

The correctness of this function follows from
what was said before and the fact that the while
condition indeed tests that the �rst node in Lin
is a descendant of n. Because the algorithm it-
erates over all the nodes in Lin, determines a
single node n and then applies addFoll, it fol-
lows that the time complexity is O(l+m) if l is
the size of Lin and m the size of Lout.

11 Preceding Axis

11.1 Informal Description

To �nd the preceding nodes of a sorted list of
document nodes we only have to retrieve the
preceding nodes of the last node in the list. If
this is node n we can retrieve its preceding nodes
in document order as follows. We �rst apply to
n the function � repeatedly until there is no
more immediate predecessor. Let the nodes we
encounter be n0 = n; n1; : : : ; nk. Then nk is the
�rst predecessor of n in document order. For
this node we �rst retrieve all its ancestors in
document order that are not ancestors of n and
nk itself. After this we return to nk�1 and re-
trieve all its ancestors in document order that
are not ancestors of nk and also not ancestors
of n, and we retrieve nk�1 itself. We repeat this
for each ni with 0 < i < k by retrieving all
ancestors of ni in document order that are not
ancestors of ni+1 or n, and ni itself. It is easy
to see that for each ni the retrieved nodes follow
in document order those of ni+1 and that those
nodes are predecessors of n. Conversely all pre-
decessors of n are either in n1; : : : ; nk or one of
their ancestors.

11.2 The Algorithm

Before we present the actual algorithm we present
three helper algorithms. The �rst algorithm
will, given a list L and three document nodes
n, n0 and n00 such that n0 is a predecessor of n
and n is a predecessor of n00, adds after L in
document order the ancestors of n that are not
ancestors of n0 or n00.

1 proc addAncBetween(L; n; n0; n00)
2 n000 := pa(n);
3 if n000 6= null ^
4 (pre(n000) � pre(n0)) ^
5 (post(n000) � post(n00))
6 then addAncUntil(L; n000; n0);
7 addAfter(L; n000)
8 �
9 end

Note that to test if n000 is not an ancestor
of n0 it must be tested whether :(pre(n000) <
pre(n0) ^ post(n000) > post(n0)) or equivalently
pre(n000) � pre(n0) _ post(n000) � post(n0). How-
ever, since n is a follower of n0 it holds that
post(n) > post(n0) and since n000 is the parent of
n it holds that post(n000) > post(n), from which
it follows that post(n000) > post(n0). A similar
argument shows that the test for n000 and n00 in
the if-expression is also su�cient to test whether
n000 is not an ancestor of n00. The time complex-
ity of this procedure is O(m) if m is the number
of nodes added to L.

The second helper function is similar and
will, given a list L and document nodes n and
n0 such that n is a predecessor of n0, add all the
ancestors of n that are not ancestors of n0 to L
in document order.

1 proc addAncUntilRight(L; n; n0)
2 n00 := pa(n);
3 if n00 6= null ^ post(n00) � post(n0)
4 then addAncUntilRight(L; n00; n0);
5 addAfter(L; n00)
6 �
7 end

The correctness of this procedure can be shown
in a way similar to that of the previous one.
Also here the time complexity is O(m) if m is
the number of added document nodes.

The third helper procedure will, given a list
L and two document nodes n and n0 such that
n is a predecessor of n0, adds all those nodes to
L in document order which are (1) predecessors
of n but not ancestors of n0, (2) ancestors of n
but not ancestors of n0 or (3) n itself.

1 proc addLeftUntil(L; n; n0)

7

2 if lp(n) 6= null
3 then n00 := lp(n);
4 addLeftUntil(L; n00; n0);
5 addAncBetween(L; n; n00; n0)
6 else addAncUntilRight(L; n; n0)
7 �;
8 addAfter(L; n)
9 end

The correctness of this procedure follows from
the correctness of the previous procedures. The
time complexity is O(m) if m is the number of
added document nodes.

Finally, we present the algorithm itself which,
given a list Lin of document nodes returns a
duplicate-free sorted list of all their predeces-
sors.

1 funct allPredOrd(Lin)
2 Lout := newList();
3 if :empty(Lin)
4 then n := last(Lin);
5 if lp(n) 6= null
6 then addLeftUntil(Lout; lp(n); n)
7 �
8 �;
9 Lout

10 end

The correctness follows from the correctness
of the helper procedures. The time complexity
is O(m) if m is the size of Lout.

12 Following-Sibling Axis

12.1 Informal Description

The problems for this axis are very similar to
those of the child axis and can be solved in the
same way, i.e., by introducing a stack of lists
of nodes that contains the nodes that still need
to be move to the output list. An extra com-
plication is here that the following siblings of
two di�erent nodes may have nodes in common.
The solution for this is simple: if we encounter
simultaneously the same node in the input list
and at the beginning of the list on top of the
stack the we ignore the node in the input list.

12.2 The Algorithm

We �rst present a helper function that given a
document node n returns a duplicate-free sorted
list of all the following siblings of n.

1 funct allFollSibl(n)
2 L := newList();

3 n0 := ns(n);
4 while n0 6= null do
5 addAfter(L; n0);
6 n0 := ns(n0)
7 od;
8 L
9 end

Correctness of this function follows from the
fact that the function ns returns the �rst sibling
of n that follows n in document order. The time
complexity is O(m) where m is the size of the
result.

Next we present the actual algorithm which
given a list Lin of document nodes returns a
duplicate-free sorted list of all following siblings
of the nodes in this list.

1 funct allFollSiblOrd(Lin)
2 Lout := newList();
3 Lst := newList();
4 while :empty(Lin) do
5 n := �rst(Lin);
6 if empty(Lst)
7 then L0 := allFollSibl(n);
8 addBefore(Lst; L

0);
9 delFirst(Lin);
10 elsif empty(�rst(Lst))
11 then delFirst(Lst)
12 elsif pre(�rst(�rst(Lst))) > pre(n)
13 then L0 := allFollSibl(n);
14 addBefore(Lst; L

0);
15 delFirst(Lin)
16 elsif pre(�rst(�rst(Lst))) < pre(n)
17 then n0 := delFirst(�rst(Lst));
18 addAfter(Lout; n

0)
19 else delFirst(Lin)
20 �
21 od;
22 while :empty(Lst) do
23 if empty(�rst(Lst))
24 then delFirst(Lst)
25 else n0 := delFirst(�rst(Lst));
26 addAfter(Lout; n

0)
27 �
28 od;
29 Lout
30 end

The correctness of this function is similar to
that of the corresponding function for the child
axis. The main di�erence is in line 19 where the
case is considered that the current node in the
input list, n, is equal to the �rst node of the list
on top of the stack Lst. In this case the node n
is removed from the input list without copying
its siblings to the stack or the output list. The
time complexity is also similar, i.e., O(l + m)

8

where l is the size of Lin and m is the size of
Lout.

13 Preceding-Sibling Axis

13.1 Informal Description

This axis is symmetric to the following-sibling
axis in the sense that we can use the same al-
gorithm except that we have to do everything
in reverse, i.e., we iterate over the input list in
reverse and we move nodes from the back of the
lists on the stack to the front of the output list.

13.2 The Algorithm

We �rst present a helper function that give a
document node n returns a duplicate-free sorted
list of all preceding siblings of n.

1 funct allPrecSibl(n)
2 L := newList();
3 n0 := ps(n);
4 while n0 6= null do
5 addBefore(L; n0);
6 n0 := ps(n0)
7 od;
8 L
9 end

Similar to the previous axis correctness of
this function follows from the fact that the func-
tion ps returns the last sibling of n that precedes
n in document order. Also here the time com-
plexity is O(m) where m is the size of the result.

Finally we present the algorithm that given a
duplicate-free and sorted list of document nodes
Lin returns a duplicate-free and sorted list of all
the preceding siblings of these document nodes.

1 funct allPrecSiblOrd(Lin)
2 Lout := newList();
3 Lst := newList();
4 while :empty(Lin) do
5 n := last(Lin);
6 if empty(Lst)
7 then L0 := allPrecSibl(n);
8 addBefore(Lst; L

0);
9 delLast(Lin);

10 elsif empty(�rst(Lst))
11 then delFirst(Lst)
12 elsif pre(last(�rst(Lst))) > pre(n)
13 then L0 := allFollSibl(n);
14 addBefore(Lst; L

0);
15 delLast(Lin)
16 elsif pre(last(�rst(Lst))) < pre(n)
17 then n0 := delLast(�rst(Lst));

18 addBefore(Lout; n
0)

19 else delFirst(Lin)
20 �
21 od;
22 while :empty(Lst) do
23 if empty(�rst(Lst))
24 then delFirst(Lst)
25 else n0 := delLast(�rst(Lst));
26 addBefore(Lout; n

0)
27 �
28 od;
29 Lout
30 end

The correctness follows from the symmetry
with the previous axis, and for the same reason
the time complexity is also O(l +m) with l the
size of Lin and m the size of Lout.

14 Conclusion

The presented algorithms allow us to e�ciently
evaluate XPath axes, preserving both order and
duplicate freeness, assuming that the document
is stored as a DOM structure and pre- and post-
numbers are available. The algorithms only eval-
uate the axis and do not evaluate node tests or
predicates. As long as the predicates do not re-
fer to the context set of the resulting nodes, i.e.,
use directly or indirectly the functions position()
and last(), these can be easily applied to the re-
sult of the algorithms afterwards. If there is a
reference to the context set then there is a prob-
lem because the resulting list of nodes does not
contain any information about the context set.
In this case we can either attempt to reconstruct
the context set (e.g., if the step was child::*
then the context set of n is simply all its siblings)
or fall back to the optimization techniques pro-
posed in [8]. Because both techniques guarantee
that the result of each step is duplicate-free and
sorted it is possible to mix the two techniques
within the same path expression.

References

[1] Document Object Model (DOM). Available
at: http://www.w3c.org/dom/.

[2] Simple API for XML (SAX). Available at:
http://www.saxproject.org/.

[3] D. Draper, P. Fankhauser, M. Fern�andez,
A. Malhotra, K. Rose, M. Rys, J. Sim�eon,
and P. Wadler. XQuery 1.0 and XPath

9

2.0 formal semantics, w3c working draft 2
may 2003, 2002. http://www.w3.org/TR/

query-semantics.

[4] G. Gottlob, C. Koch, and R. Pichler.
E�cient algorithms for processing XPath
queries. In Proc. of the 28th Interna-
tional Conference on Very Large Data Bases
(VLDB 2002), Hong Kong, 2002.

[5] G. Gottlob, C. Koch, and R. Pichler.
The complexity of XPath query evalua-
tion. In Proc. of the 22nd ACM SIGACT-
SIGMOD-GIGART Symposium on Priciples
of Database Systems (PODS), San Diego
(CA), 2003.

[6] T. Grust. Accelerating XPath location steps.
In Proceedings of the 2002 ACM SIGMOD
international conference on Management of
data, pages 109{120, Madison, 2002.

[7] T. Grust, M. van Keulen, and J. Teubner.
Staircase Join: Teach a Relational DBMS
to Watch its (Axis) Steps. In VLDB 2003,
2003.

[8] J. Hidders and P. Michiels. Avoiding Un-
necessary Ordering Operations in XPath. In
DBPL 2003, 2003.

[9] L. Segou�n. Typing and querying XML
documents: Some complexity bounds.
In Proc. of the 22nd ACM SIGACT-
SIGMOD-GIGART Symposium on Priciples
of Database Systems (PODS), San Diego
(CA), 2003.

10

