
Proof of serializability for semistructured databases

Technical Report UA 04-01

Jan Hidders
Jan Paredaens

Roel Vercammen

University of Antwerp
Dept. Math and Computer Science

Middelheimlaan 1, BE-2020 Antwerp, Belgium
Tel. +32-3-2653-873, Fax +32-3-2653-777

{jan.hidders, jan.paredaens, roel.vercammen}@ua.ac.be

Abstract

Semistructured databases require tailor-made concurrency control mechanisms since tradi-
tional solutions for the relational model have been shown to be inadequate. Such mechanisms
need to take full advantage of the hierarchical structure of semistructured data, for instance
allowing concurrent updates of subtrees of, or even individual elements in, XML documents.
We present a general framework to study concurrency control. This framework is document-
independent in the sense that two schedules of semistructured transactions are equivalent if
they are equivalent on all possible documents. We prove that it is decidable in polynomial
time and space whether two given schedules in this framework are equivalent. This also
solves the serializability for semistructured schedules polynomially in the number of actions
and exponentially in the number of transactions.

Contents

1 Introduction 2

2 Data Model and Operations 3

3 Correctness of Queryless schedules 7
3.1 Addition and Deletion Sets . 8
3.2 Basic-Input-Trees and Basic-Output-Trees . 9
3.3 C-Condition . 17

4 Equivalence and Serializability of QL Schedules 24
4.1 Deciding Equivalence . 24
4.2 Composing Correct Schedules . 26
4.3 Deciding Serializability . 30

5 Equivalence and Serializability of Schedules 32
5.1 SOP - Set Of Prefixes . 33
5.2 PQRN - Potential Query Result Nodes . 37
5.3 Deciding Serializability . 40

References 45

1

Chapter 1

Introduction

In general two actions, on two different nodes of a document tree, that are completely ‘in-
dependent’ from each other, cannot cause a conflict, even if they are updates. Changing
the spelling of the name of one of the authors of a book and adding a chapter to the book
cannot cause a conflict for instance. This consideration is the main reason why the relational
approach seems to be inadequate as a concurrency control mechanism for semistructured
data.

The total behavior of the processes that we consider in this paper is straightforward: each
cooperating process produces a transaction of atomic actions that are queries or updates on
the actual document. The transactions are interleaved by the scheduler and the resulting
schedule has to be equivalent with a serial schedule. Two schedules on the same set of
transactions are called equivalent if for each possible input document they represent the
same transformation and each query gives the same result in both schedules.
The updates that we consider are very primitive: the addition of an edge of the document
tree and the deletion of an edge. Semantically the addition is only defined if the added edge
does not already exist in the document tree. Analogously the deletion is only defined if the
deleted edge exists. A more general semantics, that does not include this constraint, can be
easily simulated by adding first some queries.
There are some schedules that are not defined for any document tree. These schedules are
meaningless and are called incorrect. We prove that the correctness of schedules is polyno-
mially decidable.
In order to tackle the equivalence of schedules and transactions we first consider schedules
without queries, and as such we have only to focus on the transformational behavior of the
schedules. We will see that, contrary to the relational model, the swapping of the actions
cannot help us in detecting the equivalence of two schedules. We prove that the equivalence of
queryless schedules is also polynomially decidable and that the serializability can be decided
polynomially in the size of the schedule and exponentially in the number of transactions.
Finally we generalize the results above for general schedules over the same set of transactions.
The paper is structured as follows: Section 2 defines the data model, the operations and the
semistructured schedules. Section 3 studies the correctness of schedules without queries. In
Section 4 we study the equivalence and the serializability for these queryless schedules. In
Section 5 we generalize these results for correct schedules.

2

Chapter 2

Data Model and Operations

The data model we use is derived from the classical data model for semistructured data [1].
We consider directed, unordered trees in which the edges are labelled.

Consider a fixed universal set of nodes N and a fixed universal set of edge labels L not
containing the symbol /.

Definition 1 A graph is a tuple (N,E) with N ⊆ N and E ⊆ N ×L×N . A document tree
(dt) T is a tuple (N,E, r) such that (N,E) is a graph that represents a tree with root r. The
edges are directed from the parent to the child.

Figure 2.1: A fragment of an XML document and its dt representation.

Example 1 Figure 2.1 shows a fragment of an XML document and its dt representation.

This data model closely mimics the XML data model as illustrated in Example 1. We remark
however the following differences:

• order Siblings are not ordered. This is not crucial, as an ordering can be simulated by
using a skewed binary dt.

3

• attributes Attributes, like elements, are represented by edges labeled by the name of
the attributes (started with a @) or elements. The difference is that in this data model
an element may contain several attributes of the same name.

• labels Labels represent tag names, attribute names, values and text. References are
treated as in XML: the attributes in which they appear are modeled as ordinary edges
in the tree T .

• text Unlike in XML, it is possible for several text edges to be adjacent to each other.

A label path is a string of the form l1/ . . . /lm with m ≥ 0 and every li an edge label in L.
Given a path p = ((n1, l1, n2), . . . , (nm, lm, nm+1)) in a graph G, the label path of p, denoted
λ̄T (p) (or λ̄(p) when T is subsumed) is the string l1/ . . . /lm.
Processes working on document trees do so in the context of a general programming language
that includes an interface to a document server which manages transactions on documents.
The process generates a list of operations that will access the document. In general there
are three types of operations: the query, the addition and the deletion. The input to a
query-operation will be a node and a path expression, while the result of the invocation of a
query-operation will be a set of nodes. The programming language includes the concepts of
sets, and has constructs to iterate over their entire contents. The input to an addition or a
deletion will be an edge. The result of an addition or a deletion will be a simple transformation
of the original tree into a new tree. If the result would not be a tree anymore it is not defined.
We now define the path expressions and the query-operations, subsuming a given dt T .
The syntax of path expressions1 is given by P:

P ::= peε | P+

P+ ::= F | P+/F | P+//F
F ::= ∗ | L

The set L(pe) of label paths represented by a path expression pe is defined as follows:

L(peε) = {ε}
L(∗) = L
L(l) = {l}

L(pe/f) = L(pe) · {/} · L(f)
L(pe//f) = L(pe) · {/} · (L · {/})∗ · L(f)

We will first give some examples of path expressions and their languages.

Example 2 Some legal path expressions are a/b, a//∗ and ∗//∗. Examples of illegal path
expressions are a/, a//, /a and a/peε.
Suppose L = {a, b, c}. Then for example L(a//∗)= {a/a, a/b, a/c, a/a/a, a/a/b, a/a/c,
a/b/a, a/b/b, a/b/c,. . .}. Note also that different path expressions may have the same lan-
guage. For example L(∗// ∗ /∗) = L(∗/ ∗ //∗) = L(∗/ ∗ /∗) ∪ L(∗/ ∗ / ∗ //∗).
Let n be an arbitrary node of T and pe a path expression. We now define the three kinds of
operations: the query, the addition and the deletion.

1Remark that path expressions form a subset of XPath expressions.

4

Definition 2 The query-operation query(n, pe) returns a set of nodes, and is defined as fol-
lows:

• query(n, pe) with n ∈ N and pe ∈ P. The result of a query on a dt T is defined as
query(n, pe)[T] = {n′ ∈ N | ∃p a simple path in T from n to n′ with λ̄(p) ∈ L(pe)}.

The update operations add(n, l, n′) and del(n, l, n′) return no value but transform a dt T =
(N,E, r) into a new dt T ′ = (N ′, E′, r):

• add(n, l, n′) with n, n′ ∈ N and l ∈ L. The resulting T ′ = add(n, l, n′)[T] is defined
by E′ = E ∪ {(n, l, n′)} and N ′ = N ∪ {n′}. If the resulting T ′ is not a document tree
anymore or (n, l, n′) was already in the document tree then the operation is undefined.

• del(n, l, n′) with n, n′ ∈ N and l ∈ L. The resulting T ′ = del(n, l, n′)[T] is defined by
E′ = E − {(n, l, n′)} and N ′ = N − {n′}. If the resulting T ′ is not a document tree
anymore or (n, l, n′) was not in the document tree then the operation is undefined.

Example 3 Suppose that the following sequence of update operations is applied on the docu-
ment tree of Figure 2.1.

del(n2, “swimming”, n3)
del(n1, “hobby”, n2)
del(n4, “cycling”, n5)
add(n4, “triathlon”, n5)

This results in the new document tree of Figure 2.2. The execution of the query operation
query(r, //hobby) will result in the nodes in which an edge with label “hobby” ends. Hence
the execution of this query on the document tree of Figure 2.2 has the result set {n4, n6}.

Figure 2.2: A fragment of an XML document and its dt representation.

We now give some straightforward definitions of schedules and their semantics.

5

Definition 3 An action is a pair (o, t), where o is one of the three operations query(n, pe),
add(n, l, n′) and del(n, l, n′) and t is a transaction identifier. A transaction is a sequence of
actions with the same transaction identifier. A schedule over a set of transactions is an inter-
leaving of these transactions. The size nS of a schedule S is the length of its straightforward
encoding on a Turing tape2. The length na of a schedule is the number of actions that appear
in the schedule.
We can apply a schedule S on a dt T . The result of such application is

• the dt that results from the sequential application of the actions of S; this dt is denoted
by S[T]

• for each query in S, the result of this query.

If some of these actions are undefined the application is undefined. An input document tree
T is a dt for which the application of S[T] is defined. An output document tree T is a dt
such that there exists a input document tree T ′ for which the application of S[T ′] equals T .
Two schedules are equivalent on a dt T iff their application on T has the same result. Two
schedules are equivalent iff they are defined on the same non-empty set of dt’s and they are
equivalent on these dt’s. The definition of serial and serializable schedules is straightforward.

Since a transaction is a special case of a schedule all the definitions on schedules also apply
on transactions.

Note that the equivalence of schedules and transactions is a document-independent definition.
Let
T1 = ({n1, n2}, {(n1, b, n2)}, n1),
T2 = ({n1, n2}, {(n1, a, n2)}, n1) and
T3 = ({n1}, ∅, n1) be three dt’s and let
S1 = (add(n2, b, n3), t1), (query(n1, a/b), t2) and
S2 = (query(n1, a/b), t2), (add(n2, b, n3), t1) be two schedules.
S1 and S2 are equivalent on T1, they are not equivalent on T2 and their application is undefined
on T3.
Let S3 be the empty schedule and
S4 = (add(n1, l1, n2), t1), (del(n1, l1, n2), t2).
S3 and S4 are not equivalent although they are equivalent on many dt’s. S4 is not defined
on any dt with edge (n1, l1, n2), while S3 is defined on all dt’s.

2We assume that nodes can be encoded in O(1)-space

6

Chapter 3

Correctness of Queryless schedules

A schedule is called queryless (QL) iff it contains no queries. If the first occurence of the
node n (the edge (m, l, n)) in a QL schedule S has the form of the operator o, then we say
that φS(n, o) (φS((m, l, n), o)) holds. Else φS(n, o) does not hold. 1 Analogously, λS(n, o)
(λS((m, l, n), o)) indicates that the last occurrence of the node n (the edge (m, l, n)) in the
QL schedule S has the form of the operation o.

Because of the way that operations can fail it is possible that the application of a certain
transaction is not defined for any document tree. We are not interested in such transactions.
We call a transaction t correct iff there is a dt T with t[T] defined.

Example 4 The next transaction is correct:
(add(r, l1, n1), t1), (del(r, l1, n1), t1),
(add(r, l2, n2), t1), (del(r, l2, n2), t1),
(add(r, l2, n2), t1), (del(r, l2, n2), t1).
The next transaction is not correct:
(add(n1, l1, n), t1), (add(n2, l2, n), t1).

We call a schedule S correct iff there is a dt T with S[T] defined. But there are correct
schedules that cannot be serializable because they contain an incorrect transaction. For
instance the correct schedule
S = (add(r, l1, n1), t1), (del(r, l1, n1), t2), (add(r, l1, n1), t1)
is defined on T = ({r}, ∅, r) but that is not serializable because of the transaction t1 that is
not correct. Every equivalent serial QL schedule would be undefined! Transaction t1 has the
property that all QL schedules over a set of transactions that contain t1 are non-serializable,
independent of T .

Note that the definition of correct QL schedule is document-independent. It is clear that
we are only interested in correct transactions and schedules. Remark also that if two QL
schedules are equivalent then they are both correct, because in order for two QL schedules
to be equivalent, they need to be defined on a non-empty set of dts (definition 3). This
equivalence relation is defined on the set of correct QL schedules.

1For example, φS(n2, add(r, l2, n2)) in the correct QL schedule in Example 4.

7

3.1 Addition and Deletion Sets

By ADD(S) we denote the set of edges that are added by the QL schedule S, i.e., they are
added without being removed again afterwards, and by DEL(S) we denote the set of edges
that are deleted by the QL schedule S, i.e., they are deleted without being added again
afterwards. We now first give a formal definition of ADD and DEL and then prove that this
corresponds to the informal notion previously described.

Definition 4 Let S be a correct QL schedule. We denote
ADD(S) = {(m, l, n) | λS((m, l, n), add(m, l, n))}
DEL(S) = {(m, l, n) | λS((m, l, n),del(m, l, n))}

We call ADD(S) the addition set of S and DEL(S) its deletion set.

Remark that two correct QL schedules with the same ADD and DEL are not necessarily
equivalent. Indeed S1 = (del(n1, l1, n2), t2) and S2 = (add(n1, l1, n2), t1)(del(n1, l1, n2), t2)
are not equivalent although ADD(S1) = ADD(S2) and DEL(S1) = DEL(S2). Furthermore,
note that ADD(S) ∩ DEL(S) = ∅, since there is at most one last action concerning a given
edge (m, l, n), hence both λS((m, l, n), add(m, l, n)) and λS((m, l, n), del(m, l, n)) cannot hold
for the same schedule S.

Let T be a dt and E be a set of edges. We denote by T ∪ E the graph obtained by adding
the edges of E to T and by T − E the graph obtained by deleting the edges of E from T .
Note that T ∪ E nor T − E are necessarily dt’s.

Lemma 1 Let S be a correct QL schedule and T a document tree for which S[T] is defined.
Then S[T] = T ∪ADD(S)−DEL(S).

Proof We prove this lemma by induction on the number of actions na of the schedule
S. If na = 0 then S is the empty schedule, ADD(S) = ∅ and DEL(S) = ∅, so S[T] =
T ∪ADD(S)−DEL(S) = T . Suppose that the lemma holds for na < K.
Let S be a schedule of length na = K and S′ the same schedule without the first operation
o of S. If the result of o[T] = T ′, then we know by the induction hypothesis (i.h.) that
S′[T ′] = T ′ ∪ ADD(S′) − DEL(S′). Suppose o acts on the edge (m, l, n). We now have two
possibilities:

• If (m, l, n) ∈ DEL(S′) or (m, l, n) ∈ ADD(S′), then the addition and deletion sets of
both S and S′ are the same, since o is not the last operation on (m, l, n).

– If o = add((m, l, n), ti) then o[T] = T ∪ {(m, l, n)}.
S[T] = S′[o[T]]

= (T ∪ {(m, l, n)}) ∪ADD(S′)−DEL(S′)
= (T ∪ {(m, l, n)}) ∪ADD(S)−DEL(S)
= T ∪ADD(S)−DEL(S)

– If o = del((m, l, n), ti) then o[T] = T − {(m, l, n)}.
S[T] = S′[o[T]]

= T − {(m, l, n)} ∪ADD(S′)−DEL(S′)
= T − {(m, l, n)} ∪ADD(S)−DEL(S)
= T ∪ADD(S)−DEL(S)

8

It is important to see the last simplification is only possible since (m, l, n) is in ADD(S)
or in DEL(S).

• If (m, l, n) /∈ DEL(S′) and (m, l, n) /∈ ADD(S′), then o is the last operation on (m, l, n)
in the schedule S.

– If o = add((m, l, n), ti) then o[T] = T ∪{(m, l, n)}, ADD(S) = ADD(S′)∪ (m, l, n)
and DEL(S) = DEL(S′).
S[T] = S′[o[T]]

= T ∪ {(m, l, n)} ∪ADD(S′)−DEL(S′)
= T ∪ ({(m, l, n)} ∪ADD(S′))−DEL(S)
= T ∪ADD(S)−DEL(S)

– If o = del((m, l, n), ti) then o[T] = T − {(m, l, n)}, ADD(S) = ADD(S′) and
DEL(S) = DEL(S′) ∪ (m, l, n)
S[T] = S′[o[T]]

= (T − {(m, l, n)}) ∪ADD(S′)−DEL(S′)
= (T ∪ADD(S)− {(m, l, n)})−DEL(S′)
= (T ∪ADD(S))− (({(m, l, n)} ∪DEL(S′)))
= T ∪ADD(S)−DEL(S)

3.2 Basic-Input-Trees and Basic-Output-Trees

We will characterize correct QL schedules and prove that this property is decidable. For this
purpose we will first attempt to characterize for which document trees a given correct QL
schedule S is defined, and what the properties are of the document trees that result from a QL
schedule. We do this by defining the sets Nmin

I (S), Nmax
I (S), EminI (S) and EmaxI (S), whose

informal meaning is respectively the set of nodes that are required in the input document
trees on which S is defined, the set of nodes that are allowed, the set of edges that are
required and the set of edges that are allowed. In the same way we define the sets Nmin

O (S),
Nmax
O (S), EminO (S) and EmaxO (S), whose informal meaning is respectively the set of nodes

that are required in an output document tree of S, the set of nodes that are allowed, the set
of edges that are required and the set of edges that are allowed.

Definition 5 Let S be a QL schedule. We define the sets Nmin
I (S), Nmax

I (S), EminI (S) and
EmaxI (S), and the sets Nmin

O (S), Nmax
O (S), EminO (S) and EmaxO (S) as in Figure 3.1.

A dt T is called a basic-input-tree (basic-output-tree) of S iff it contains all the nodes of
Nmin
I (S) (Nmin

O (S)), only nodes of Nmax
I (S) (Nmax

O (S)), all the edges of EminI (S) (EminO (S))
and only edges of EmaxI (S) (EmaxO (S)).

9

Nmin
I (S) = {m | φS(m, add(m, l, n))} ∪ {m | φS(m, del(m, l, n))} ∪ {n | φS(n,del(m, l, n))}

Nmax
I (S) = N − {n | φS(n, add(m, l, n))}

EminI (S) = {(m, l, n) | φS((m, l, n), del(m, l, n))}
EmaxI (S) = EminI (S) ∪ {(m, l, n) | no (m1, l1,m) nor (m1, l1, n) occurs in S}
Nmin
O (S) = {m | λS(m, del(m, l, n))} ∪ {m | λS(m, add(m, l, n))} ∪ {n | λS(n, add(m, l, n))}

Nmax
O (S) = N − {n | λS(n,del(m, l, n))}

EminO (S) = {(m, l, n) | λS((m, l, n), add(m, l, n))}
EmaxO (S) = EminO (S) ∪ {(m, l, n) | no (m1, l1,m) nor (m1, l1, n) occurs in S}

Figure 3.1: The Definition of the Basic Input and Output Sets.

Consider S = (add(n1, l1, n2), t1), (del(n4, l2, n3), t2), (del(n1, l1, n4), t3) then
Nmin
I (S) = {n1, n3, n4}

Nmax
I (S) = N − {n2}

EminI (S) = {(n4, l2, n3), (n1, l1, n4)}
EmaxI (S) = EminI (S) ∪ {(m, l, n) ∈ N × L×N | m,n 6= n2, n3, n4}
Nmin
O (S) = {n1, n2}

Nmax
O (S) = N − {n3, n4}

EminO (S) = {(n1, l1, n2)}
EmaxO (S) = EminO (S) ∪ {(m, l, n) ∈ N × L×N | m,n 6= n2, n3, n4}

We will show that the informal meaning for the E- and N -sets is correct in respect to their
definition. In order to prove this, we first show that if a node does not appear in the schedule,
then it cannot be required or disallowed and if an edge does not appear in the schedule S,
then it cannot be required. For an edge (m, l, n), it does not suffice to say that (m, l, n) has to
appear in S to be disallowed. For example the schedule with only operation add((m′, l′, n), ti)
would disallow (m, l, n) to be in the input document tree.

Lemma 2 Let S be a correct QL schedule. For any dt T , denote NT as the set of nodes of
T and ET as the set of edges of T . Then the following holds:

• If ((∀T).(S[T] defined → n ∈ NT)) then n appears in an action of S.

• If ((∀T).(n ∈ NT → S[T] undefined)) then n appears in an action of S.

• If ((∀T).(S[T] defined → (m, l, n) ∈ ET)) then (m, l, n) appears in an action of S.

• If ((∀T).((m, l, n) ∈ ET → S[T] undefined)) then an edge of the form (m1, l1,m) or
(m1, l1, n) appears in an action of S.

Proof. We prove the four implications seperately.

• Let (∀T).(S[T] defined → n ∈ NT). Suppose that n does not appear in an action of S.
Since S is correct, we know (∃T).(S[T] defined), for instance T1. Clearly n ∈ NT1 , since
otherwise we get a contradiction. Since N is infinite, there exists a n′ that is not in T1

and not in an action of S. Let T2 be the same dt as T1, but with n substituted by n′.
Since n does not appear in S, this renaming has no influence on the fact whether the

10

new document tree is defined or undefined. Hence S[T2] is defined and n /∈ NT2 . This
contradicts our assumption, so n has to appear in an action of S.

• Let (∀T).(n ∈ NT → S[T] undefined). Suppose that n does not appear in an action of
S. Since S is correct, we know ∃T : S[T] defined. Let T1 be such a T on which the
application of S is defined. Clearly n /∈ NT1 , since otherwise we get a contradiction.
From the definition of the actions follows that the root never changes. Let rT1 be the
root of T1, then all operations in S act on the root rT1 or its descendants. If we construct
a new dt T2 = (NT1∪n,ET1∪(n, l, rT1), n), then clearly S[T2] is defined, since all actions
occur below rT1 and no action occurs on n or the edge from n to rT1 . This contradicts
the assumption ‘(∀T).(n ∈ NT → S[T] undefined)’, hence n has to appear in an action
of S.

• Let (∀T).(S[T] defined → (m, l, n) ∈ ET). Suppose that (m, l, n) does not appear in
an action of S. Since S is correct, we know (∃T).(S[T] defined). Let T1 be such a T
on which the application of S is defined. Clearly (m, l, n) ∈ ET1 , since otherwise we
get a contradiction. Since L is infinite, there exists a l′ that is not used as label of an
edge in an action of S. Let T2 be the same dt as T1, but with (m, l, n) substituted by
(m, l′, n). Since (m, l′, n) does not appear in S, this renaming has no influence on the
fact whether the new document tree is defined or undefined. Hence S[T2] is defined and
(m, l, n) /∈ ET2 . This contradicts our assumption, so (m, l, n) has to appear in an action
of S.

• Suppose that no (m1, l1,m) nor (m1, l1, n) appears in an action of S. We then have to
show that there exists a document tree T such that (m, l, n) ∈ ET and S[T] is defined.
First we construct a candidate tree T ′, then we prove that S is defined on this tree.

– Let T be the graph with edges EminI (S) and nodes Nmin
I (S) ∪ {m,n}.

– T is a forest, since S is correct and EminI (S) is a subgraph of each document tree
on which S is defined2.

– We know that only the edges of EminI (S) are in T , i.e., only edges on which an
action occurs. Since no edge ending in m or n appears in an action of S, no edge
ending in m or n appears in T . Hence the nodes m and n are root of a tree in T .

– Let r be a node that does not appear in S or T and T ′ = (r∪NT , ET ∪{(r, l1, n1)|n1

is root of a tree in T and n1 6= n} ∪ {(m, l, n)}, r) (with NT the nodes from T and
ET the edges from T).

– All trees of T (except the tree with root m) are connected to a new root r. The
tree with root m is connected to n, hence T ′ is a tree.

We now have to prove that S[T ′] is defined. We will prove this by induction on the
length of the schedule S. If S is the empty schedule then S[T] is defined on all dts and
hence S[T ′] is defined. Suppose that for all schedules S of length na < K the application
S[T ′] is defined (induction hypothesis).
Let S be a schedule of length na = K and o the last action of S. Then S = S′.o, where
S′ is a schedule of length K − 1. From the induction hypothesis follows that S′[T ′] is

2We use in the proof of this part of the lemma the result for the min-sets of Lemma 4. This is sound (i.e.,
we do not have a circular reasoning) since that part of Lemma 4 only uses the two first parts of this lemma.

11

defined and hence (by Lemma 1) S′[T ′] = T ′∪ADD(S′)−DEL(S′). Suppose that S[T ′]
is not defined. Then the last operation o must fail. We now have two possibilities:

– The operation o is an addition (i.e., o = add((m2, l2, n2), ti)). Then o can fail for
two reasons: n2 is already in S′[T ′] or m2 is not in S′[T ′].
Suppose n2 is already in T ′′ = S′[T ′]. This node cannot be in ADD(S′), since it is
independent of the document tree and hence the node would occur in every output
document tree of S′, so S′.o = S would be incorrect. Therefore a node occuring in
T ′ −DEL(S′) causes the conflict, but since NT ′ = Nmin

I (S) ∪ {m,n, r} and S is
correct, the node causing the conflict must be m,n or r (otherwise S will fail on
all document trees and hence be not correct). Since r is chosen not to occur in S
and no (m1, l1, n) nor (m1, l1,m) occurs in S, we get a contradiction.
Hence o will fail because m2 is not in S′[T ′]. It’s obvious that m2 does not appear
in ADD(S′), since these edges are not deleted afterwards and hence m2 would be
in S′[T ′]]. If m2 is in DEL(S′) then the operation o in S will always fail and hence
S is incorrect. Therefore m2 is not in T ′ and does not appear as child node in any
action of S′. But in this case the operation o is the first addition of m2 and hence
m2 ∈ Nmin

I (S) and hence in T ′.
Hence o cannot fail.

– The operation o is a deletion (i.e., o = del((m2, l2, n2), ti)). Then o can fail for two
reasons: (m2, l2, n2) is not in S′[T ′] or there is an edge (n2, l3,m3) in S′[T ′].
Suppose o fails because (m2, l2, n2) is not in S′[T ′]. It’s obvious that (m2, l2, n2) is
not in ADD(S′) (otherwise the edge would be in S′[T ′]. Therefore either (m2, l2, n2) /∈
ET ′ or (m2, l2, n2) ∈ DEL(S′). Since the second case is independent of the docu-
ment tree and S is correct, (m2, l2, n2) is not in ET ′ and this deletion is the first
action on (m2, l2, n2). But then we know from the definition of basic-input-trees
that (m2, l2, n2) ∈ EminI (S) and hence in ET ′ . This is a contradiction.
Hence o will fail because there is an edge (n2, l3, n3) in S′[T ′]. This edge can-
not be in ADD(S′) since this set is independent of the document tree and the
edge would occur in every output document tree of S′, resulting in the applica-
tion of S to be always undefined (and hence S would be incorrect). Furthermore
(n2, l3, n3) /∈ DEL(S′) since then it is impossible for S′[T ′] to contain the edge
(n2, l3,m3). Therefore (n2, l3, n3) has to be in ET ′ = EminI (S′) ∪ {(r, l1, n1)|n1 is
root of a tree in T and n1 6= m}∪{(m, l, n)}. Since no action occurs on (n2, l3, n3)
in S′ we know that (n2, l3, n3) /∈ EminI (S′). Furthermore (n2, l3, n3) 6= (m, l, n)
since no action on an edge ending in n (ande hence (m, l, n)) occurs in S. There-
fore (n2, l3, n3) has to be in {(r, l1, n1)|n1 is root of a tree in T and n1 6= m}, but
since r does not occur in S, we get a contradiction.
Hence o cannot fail.

This gives a contradiction with our assumption that S[T ′] is undefined, since o[S′[T ′]] =
S[T ′] is defined.

Before we prove that the informal meaning of the basic input trees and basic output trees
is correct, we first define the reverse of a QL schedule. This will help us in simplifying our
proof.

12

Definition 6 Let S be a QL schedule. Sσ, the reverse of S where every addition of an edge
is substituted by the deletion of the edge and vice versa.

Lemma 3 Sσ is the ‘undo’ operation for the schedule S:

• If S[T] is defined, then Sσ[S[T]] is defined and Sσ[S[T]] = T .

• If Sσ[T] is defined, then S[Sσ[T]] is defined and S[Sσ[T]] = T .

• Nmin
O (S) = Nmin

I (Sσ)

• EminO (S) = EminI (Sσ)

• Nmax
O (S) = Nmax

I (Sσ)

• EmaxO (S) = EmaxI (Sσ)

Proof. In this proof we will use the operator σ for the substition of a deletion by an addi-
tion and vice versa: σ(add(m, l, n)) = del(m, l, n) and σ(del(m, l, n)) = add(m, l, n). Some
properties follow directly from definition 6:

λS((m, l, n), o)⇔ φSσ((m, l, n), σ(o))
λS(m, o)⇔ φSσ(m,σ(o))

Using these two properties, we can derive directly the four equations for the input and output
sets by substituting the output sets with the input sets of the reverse operation. Hence we
only have to prove that if S[T] is defined, then Sσ[S[T]] is defined and Sσ[S[T]] = T .

Suppose S[T] = T ′ is defined. We will show that Sσ[T ′] = T and hence Sσ is defined. We
know Sσ[T ′] = Sσ[S[T]] = (S.Sσ)[T]. We will prove that this is defined by induction on the
length na of the schedule S. If S is the empty schedule then Sσ is the empty schedule too
and hence Sσ[S[T]] = T is defined. Suppose that (S.Sσ)[T] is defined for each schedule S of
length na < K (induction hypothesis). Then S = S′.o is a schedule of length na = K where
o is the last operation of S. Hence Sσ = (σ(o)).(S′)σ. Let T be a tree for which S[T] is
defined. Then there is a document tree T ′′ = S′[T]. For this T ′′, the operation o is defined
since otherwise S[T] is undefined. In the schedule (S.Sσ) the operation o is directly followed
by the operation σ(o). If o adds an edge, then σ(o) deletes this edge and hence σ(o) is defined
on o[T ′′]. If o deletes an edge, then σ(o) adds this edge and hence σ(o) is defined on o[T ′′].
In both cases (σ(o))[o[T ′′]] = T ′ = S′[T]. Hence Sσ[S[T]] = S′σ[(σ(o))[o[S′[T]]] = S′σ[S′[T]].
From the induction hypothesis we know that this is defined and that it equals T . We now still
have to prove the second implication of the lemma, but this follows from the first implication,
since we know that (Sσ)σ = S (Definition 3).

We now use the last three lemmas in order to prove that the informal meaning of the input-
document-trees and output-document-trees is correct iff S is correct.

Lemma 4 The definition of basic-input-trees and basic-output-trees agrees with its informal
meaning, i.e., for a correct QL schedule S, the following properties hold:
Nmin
I (S) is the set of nodes required in the input document tree of S.

Nmax
I (S) is the set of nodes allowed in the input document tree of S.

EminI (S) is the set of edges required in the input document tree of S.
EmaxI (S) is the set of edges allowed in the input document tree of S.

13

Nmin
O (S) is the set of nodes required in the output document tree of S.

Nmax
O (S) is the set of nodes allowed in the output document tree of S.

EminO (S) is the set of edges required in the output document tree of S.
EmaxO (S) is the set of edges allowed in the output document tree of S.

Proof We prove the first four equations. The last four can be derived from the first four
and Lemma 3. The first four equations will be proven by showing two inclusions. Using the
extensionality axiom we get the equality of the sets. For any document tree T we use the
following notation: NT is the set of nodes of T and ET is the set of edges of T .

• Suppose that n ∈ Nmin
I (S) is not in the input document tree T of S. From the definition

of Nmin
I (S) we know that the first occurence of n is either in a deletion or in an addition

as parent node. Since n is not in the document tree at the time of this first operation,
the operation (and hence S[T]) is undefined.
Suppose that n in required in the input document tree of S (i.e., (∀T).(S[T] defined
→ n ∈ NT)), but not in Nmin

I (S). From Lemma 2 follows that at least one action on n
is needed, hence φS(n, add(m, l, n)) holds (since n /∈ Nmin

I (S)). But this action requires
that n is not in the document tree at the time of the operation (i.e.. (∀T).(S[T] defined
→ n /∈ NT)). This results in (∀T).(S[T] defined → n ∈ NT ∧ n /∈ NT), which is only
true if S is incorrect (but S is supposed to be correct).

• Let n be a node that is in the input document tree T of S, but not in the set Nmax
I (S).

Then we know by the definition that n occurs in S and that the first occurence of n in
S is as a child node in an addition. Since n would be in the document tree when the
edge (m, l, n) is added, the addition (and hence S[T]) would be undefined. Therefore n
is not allowed in the input document tree of S.
Suppose that n ∈ Nmax

I (S) and that n is not allowed in the input document tree of
S (i.e., (∀T).(n ∈ NT → S[T] undefined)). If n does not appear in any action of S,
n cannot cause S to be undefined (according to Lemma 2). Hence n has to appear in
at least one action of S. Since n ∈ Nmax

I (S), we know that the first action is not the
addition of an edge with n as child node and hence n ∈ Nmin

I (S). But from the previous
part of this proof we know n ∈ Nmin

I (S) → ((∀T).(S[T] defined → n ∈ NT)). Hence
(∀T).(S[T] defined → S[T] undefined). This is only true when S[T] is never defined,
and hence S is incorrect. But this is a contradiction of our assumption that S is correct.

• Suppose that (m, l, n) ∈ EminI (S) is not in the input document tree T of S. From the
definition we know that (m, l, n) occurs in S and that the first occurence of this edge in
S is its deletion. At the time of this deletion (m, l, n) is not in the document tree, so
the operation (and hence S[T]) is undefined. Therefore (m, l, n) has to be in the input
document tree of S.
Suppose that (m, l, n) /∈ EminI (S) and (m, l, n) is required in any input document tree T
of S (i.e. (∀T).(S[T] defined→ (m, l, n) ∈ ET)). Since (m, l, n) is required, there has to
be at least one operation on this edge (this follows from Lemma 2). But we know that
the first operation has to be an addition (since (m, l, n) /∈ EminI (S)). Hence (∀T).(S[T]
defined → (m, l, n) /∈ ET). From this we can conclude that S has to be incorrect, but
this is a contradiction with our assumption.

14

• Let (m, l, n) be an edge that is in the input document tree T of S, but not in EmaxI (S).
This means that the first action (if any) on (m, l, n) is not a deletion (i.e., (m, l, n) /∈
EminI (S) and that (m, l, n) /∈ {(m, l, n)| no (m1, l1,m) nor (m1, l1, n) occurs in S} (i.e.,
an operation on an edge that ends in m or n occurs in S). If the first occurence of
(m, l, n) is an addition then this operation would be undefined, since (m, l, n) is still in
the document tree. Therefore (m, l, n) does not occur in an operation of S. We then
have two possibilities: (m1, l1, n) occurs in S or (m1, l1,m) occurs in S. For the edge
(m1, l1, n) no addition (since we would have two edges ending in n) nor deletion (since
this edge cannot be in T) can occur in S. But also the edge (m1, l1,m) cannot have
an addition (since this would result in two edges ending in m) or a deletion (since the
node m still has an outgoing edge) in S. Hence no (m1, l1,m) nor (m1, l1, n) occurs in
S, which is a contradiction with our assumption. Therefore (m, l, n) is not allowed in
the input document tree T of S.
Suppose that (m, l, n) ∈ EmaxI (S). If (m, l, n) ∈ EminI (S), then it is easy to see that
(m, l, n) is allowed in the input tree, since S is correct and (m, l, n) is required. Therefore
suppose that no (m1, l1, n) nor (m1, l1,m) appears in S. We then have to show that
there exists a document tree that contains (m, l, n) and on which the schedule S is
defined. Since no (m1, l1,m) nor (m1, l1, n) appears in S we see that (m, l, n) is allowed
in the input document tree. This follows from Lemma 2.

We will prove in Theorem 1 that the application of a correct schedule S is defined on each
basic-input-tree of S.

Lemma 5 Nmax
I (S), EmaxI (S), Nmax

O (S) and EmaxO (S) are in general infinite, but they can
be represented in a finite way:

• Nmax
I (S) by {n | φS(n, add(m, l, n))}

• EmaxI (S) by EminI (S) ∪ {n | there is a (m1, l1, n) that occurs in S}
• Nmax

O (S) by {n | λS(n,del(m, l, n))}
• EmaxO (S) by EminO (S) ∪ {n | there is a (m1, l1, n) that occurs in S}.

Proof The representation of Nmax
I (S) and Nmax

O (S) is a direct result of the definition,
i.e., we represent these sets by their complements in a unique way. In order to prove that
the finite representations of EmaxI (S) and EmaxO (S) are valid, it suffices that we show that
the set AS = {n | there is a (m1, l1, n) that occurs in S} is finite and that it is a valid
representation of BS = {(m, l, n) | no (m1, l1,m) nor (m1, l1, n) occurs in S}, since we know
from the definition that EminI (S) and EminO (S) are finite. In order to show this we have to
show that f : A → B : AS 7→ {(m, l, n)|(m /∈ AS)∧ (n /∈ AS)} is bijection between A = {AS |S
is a QL schedule} and B = {BS |S is a QL schedule}. Obviously f is a (total) function
from A to B. Suppose that f(AS1) = f(AS2). Then {(m, l, n)|(m /∈ AS1) ∧ (n /∈ AS1)} =
{(m, l, n)|(m /∈ AS2)∧(n /∈ AS2)}. Suppose that A1 6= A2 and that (without loss of generality)
a ∈ (AS1 − AS2) (i.e., a ∈ AS1 and a /∈ AS2 . Then the edges with a as child or parent node
are in f(AS2) but not in f(AS1). Hence if f(AS1) = f(AS2) then A1 = A2, which means that
f is an injection. Furthermore image(f) = B, since if BS = {(m, l, n) | no (m1, l1,m) nor

15

(m1, l1, n) occurs in S} then there exists an AS = {n | there is a (m1, l1, n) that occurs in
S} such that BS = f(AS). Therefore f is a surjection and hence a bijection from A to B.

Lemma 6 Nmin
I (S), Nmax

I (S), EminI (S), EmaxI (S), Nmin
O (S), Nmax

O (S), EminO (S) and EmaxO (S)
can be calculated in O(na.log(na))-time (O(nS .log(nS))-time) and in O(na)-space (O(nS)-
space), na being the number of actions in S.

Proof For the computation of the N and E-sets we need to know which node or edge has
which first or last operation in the schedule S. For EmaxI (S) and EmaxO (S) we also need to
know the nodes n for which a (m1, l1, n) occurs in S (this follows from Lemma 5). For the
first part we will create a list of (node, action)- or (edge, action)-pairs in the same order as
the actions appear in S. After this we will do a stable sort on this list on the node or edge,
so all (node, action)- or (edge, action)-pairs of the same node or edge are brought together,
but still appear in the same relative order (w.r.t. each other) in the list. This can be done
in O(na.log(na)) time and O(na) space. Now we can look for the first or last occurence of
a node or edge in O(na) time and depending on this action we can see whether this node
or edge will be in the computed set. In order to determine for which nodes n a (m1, l1, n)
occurs in S we need O(na) time. Hence the computation of the N - and E-sets can be done
in O(na.log(na))-time (O(nS .log(nS))-time) and O(na)-space (O(nS)-space).

Lemma 7 For any node n and for any edge (m, l, n), it is decidable whether n is in Nmin
I (S),

Nmax
I (S), Nmin

O (S), or Nmax
O (S) and whether (m, l, n) is in EminI (S), EmaxI (S), EminO (S) or

EmaxO (S) in O(na)-time (O(nS)−time) and in O(log(na))-space (O(log(nS))-space), na being
the number of actions in S.

Proof In order to decide whether n is in Nmin
I (S) or Nmax

I (S), we need to look for the
first occurence of a node in an action. We do this by running over all actions in order of the
schedule. If the first action of the node n is an addition with n as parent node, we accept
for Nmin

I (S) and reject for Nmax
I (S). If no action involving n is encountered, we reject for

Nmin
I (S) and accept for Nmax

I (S). Anologously we obtain results for Nmin
O (S) and Nmax

O (S).
It’s easy to see that the we need O(na)-time. The space requirements (O(log(na))) are for
the counter used to run over all actions.
For deciding whether (m, l, n) is in EminI (S) or EmaxI (S) we follow the same strategy. If
the first action is the deletion of this edge, then we accept for EminI (S), else we reject. For
deciding EmaxI (S), we need two runs over the set of actions. In the first run we accept an
edge (m, l, n) if its first occurence is a deletion. If this is not true, then we’ll execute a second
run over all actions. If (m1, l1,m) or (m1, l1, n) occurs in S (for any m1, l1) then we reject. If
no acception nor rejection happened during these two runs, we accept the edge for EmaxI (S).
Obviously analogous results can be achieved for EminO (S) and EmaxO (S), and the space and
time complexity is respectively O(log(na)) (O(log(nS))) and O(na) (O(nS)).

For the N -sets and the E-sets we can derive the following properties:

Property 1 If S is a correct QL schedule then EminI (S) and EminO (S) are forests.

Proof Since S is a correct QL schedule there exists a document tree T such that S[T] is
defined (and hence S[T] is also a tree). We know from Lemma 4 that EminI (S) and EminO (S)
are subgraphs of respectively T and S[T] (which are trees) and hence are forests.

16

The following lemma establishes the relationships between the addition and deletion sets, and
the basic input and output sets.

Lemma 8 Let S be a correct QL schedule.
EminO (S) = EminI (S)−DEL(S) ∪ADD(S)
EmaxO (S) = EmaxI (S)−DEL(S) ∪ADD(S)

Proof

• Suppose that (m, l, n) is an edge in EminO (S) and hence by Lemma 4 required in the
output. An edge is required in the output iff all dts T for which S[T] is defined have
this edge in S[T]. From Lemma 1 follows that S[T] = T ∪ ADD(S) − DEL(S) for
all basic-input-trees T . Hence if S[T] is defined, then the edge (m, l, n) is required in
T ∪ ADD(S) − DEL(S). This means that (m, l, n) /∈ DEL(S) and either (m, l, n) is in
ADD(S), or (m, l, n) is required in T , but then it is required in the input and hence in
EminI (S).
Suppose that (m, l, n) ∈ EminI (S) − DEL(S) ∪ ADD(S). Then we know by Lemma 1
that for all dts S for which S[T] is defined, the edge (m, l, n) has to be in the output
of S, since it was required in the input and if an action occured on S, then the last one
was the addition of this edge. Hence (m, l, n) ∈ EminO (S).

• Suppose that (m, l, n) is an edge in EmaxO (S) and hence by Lemma 4 allowed in the
output. An edge is allowed in the output iff there is a dt T (say T ′) for which S[T] is
defined that has this edge in S[T]. From Lemma 1 follows that S[T] = T ∪ ADD(S)−
DEL(S) for all basic-input-trees T . Hence the edge (m, l, n) is allowed in T ′∪ADD(S)−
DEL(S). This means that (m, l, n) /∈ DEL(S) and either (m, l, n) is in ADD(S), or
(m, l, n) is allowed in T , but then it is allowed in the input and hence in EmaxI (S).
Suppose that (m, l, n) ∈ EmaxI (S) − DEL(S) ∪ ADD(S). Then we know by Lemma 1
that there is a dts T for which S[T] is defined and that has (m, l, n) in the output of S,
since it was allowed in the input and if an action occured on S, then the last one was
the addition of this edge. Hence (m, l, n) ∈ EmaxO (S).

3.3 C-Condition

When a QL schedule is not correct this is always because two operations in the QL sched-
ule interfere, as for example the two operations in the incorrect transaction of Example 4:
(add(n1, l1, n), t1) and (add(n2, l2, n), t1). If these two operations immediately follow each
other then at least one of them will always fail. However, if between them we find the action
del(n1, l1, n) then this does no longer hold. The following definition attempts to identify such
pairs of interfering operations and states which operations we should find between them to
remove the interference.

Definition 7 A QL schedule fulfills the C-condition iff all following subconditions are fulfilled

1. If the actions (add(n, l1, n1), t1) and (add(n2, l2, n), t2) appear in that order in S then
the action (del(n, l1, n1), t3) appears between them.

17

2. If the actions (add(n1, l1, n), t1) and (add(n2, l2, n), t2) appear in that order in S then
the action (del(n1, l1, n), t3) appears between them.

3. If the actions (add(n, l1, n1), t1) and (del(n2, l2, n), t2) appear in that order in S then
the action (del(n, l1, n1), t3) appears between them.

4. If the actions (add(n1, l1, n), t1) and (del(n, l2, n2), t2) appear in that order in S then
the action (add(n, l2, n2), t3) appears between them.

5. If the actions (add(n1, l1, n), t1) and (del(n2, l2, n), t2) appear in that order in S and
(n1, l1) 6= (n2, l2) then the action (del(n1, l1, n), t3) appears between them.

6. If the actions (del(n, l1, n1), t1) and (add(n2, l2, n), t2) appear in that order in S then an
action of the form (del(n3, l3, n), t3) appears between them.

7. If the actions (del(n1, l1, n), t1) and (add(n, l2, n2), t2) appear in that order in S then an
action of the form (add(n3, l3, n), t3) appears between them.

8. If the actions (del(n1, l1, n), t1) and (del(n, l2, n2), t2) appear in that order in S then an
action of the form (add(n3, l3, n), t3) appears between them.

9. If the actions (del(n1, l1, n), t1) and (del(n2, l2, n), t2) appear in that order in S then the
action (add(n2, l2, n), t3) appears between them.

We will use the C-condition for deciding whether a QL schedule is correct. Before we give
the theorems (and proofs) for this, we show an example of an incorrect schedule that does
not satisfy the C-condition.

Example 5 The next schedule is incorrect:
(add(r, l1, n1), t1), (add(n1, l2, n2), t1), (add(n2, l3, n3), t1), (del(r, l1, n1), t2)
We see that the C-condition does not hold, since the third subcondition does not hold. One
way to fix this problem is by inserting the action (del(n1, l2, n2), t3) right before the first del
statement. In fact we see the same subcondition will again cause a problem, so we will have
to insert (del(n2, l3, n3), t3) right after the last add statement. This causes the schedule to be
correct.

The following theorem establishes the relationship between correctness, basic-input-trees and
the C-condition.

Theorem 1 The following conditions are equivalent for a QL schedules S:

1. there is a basic-input-tree of S and the application of S is defined on each basic-input-tree
of S.

2. there is a basic-input-tree of S on which the application of S is defined;

3. S is correct;

4. S fulfills the C-condition;

5. there is a tree on which the application of S is defined and all trees on which the appli-
cation of S is defined are basic-input-trees of S.

18

Proof We prove this theorem by proving 6 implications. Using these 6 implications we can
deduce every condition from another condition, what will conclude our proof.

• 1 → 2. Since there is a basic-input-tree T of S and the application of S is defined on
each basic-input-tree of S, the application of S on the basic-input-tree T of S is defined.

• 2 → 3. This follows from the definition of correctness of a schedule.

• 3 → 4. Suppose S is correct and S does not fulfill the C-condition. Then at least
one of the nine subconditions of the C-condition is not fulfilled, i.e., o3 does not appear
between o1 and o2 (this is the general form of all subconditions). But in this case the
operation o2 is not defined on the document tree at the time of the execution of o2 since
either an edge (or a node) is present in the document tree right before o2 and this edge
(or node) is not allowed or an edge (or a node) is not present in the document tree
right before o2 and this edge (or node) is needed. Hence S is not correct. For instance
suppose that the seventh subcondition of the C-condition does not hold. Then there is
never an edge ending in n in the schedule at the time of the addition of (n, l2, n2) and
hence (since n is not the root) the addition of this edge is always undefined, so S is not
correct.

• 4 → 1. First we prove that there is a basic-input-tree of S. Therefore we show that
EminI (S) is a forest if S fulfills the C-condition and use this forest to construct a tree.
Suppose EminI (S) is not a forest and S fulfills the C-condition. Then either two edges
of EminI (S) end in the same node or EminI (S) contains a cycle. If EminI (S) has two
edges (m1, l1, n) and (m2, l2, n) ending in the same node n then for both (m1, l1, n)
and (m2, l2, n) the first operation in S is its deletion. Suppose (without loss of gener-
ality) that (m1, l1, n) is deleted before (m2, l2, n). From the ninth subcondition of the
C-condition then follows that add(m2, l2, n) has to appear between the two deletions
in S. But then (m2, l2, n) /∈ EminI (S). Therefore suppose EminI (S) contains a cycle
(n1, l1, n2), (n2, l2, n3), ..., (nk, lk, n1). Then the first action for all these edges is the
deletion. Suppose that the first deletion of (n1, l1, n2) occurs before the first deletion
of (n2, l2, n3). Then from the eighth and fourth subcondition of the C-condition follows
that add(n2, l2, n3) has to occur between them. But then the first action on (n2, l2, n3)
is the addition and hence this edge is not in EminI (S). From this follows that the first
occurence del(n2, l2, n3) has to appear before the first occurence of del(n1, l1, n2). For
all other edges that share a node we find a similar result. Therefore the first occurence
of del(n1, l1, n2) has to occur before the first occurence of del(nk, lk, n1), which has to
occur (omitting some intermediate steps) before (n2, l2, n3). This is a contradiction,
hence EminI (S) is a forest.

Let r be a node that does not occur in an action of S and let T be the graph EminI (S)
augmented with r and all nodes of Nmin

I (S). Add to the graph T edges from r to the
roots of T . This (new) T is a basic-input-tree since T is a tree and the new edges of
T are also in EmaxI (S). This follows from the fact that no action on an edge ending
in r (since r is chosen not to appear in S) nor action on an edge ending in a root
r′ of EminI (S) appears in S. Indeed, suppose that an action on an edge ending in
a root r′ of EminI (S) appears in S. If such an action appears in S, then the first
action on this edge is of the form add(m1, l1, r

′) (since in case of a deletion r′ would
not be a root of EminI (S)). If the first addition add(m1, l1, r

′) occurs before the first

19

deletion of an edge (r′, l2, n2) ∈ EminI (S) then it follows from the fourth subcondition
of the C-condition that the addition of the edge (r′, l2, n2) appears in between. Hence
(r′, l2, n2) /∈ EminI (S). If the first addition add(m1, l1, r

′) occurs after the first deletion
of an edge (r′, l2, n2) ∈ EminI (S) then it follows from the sixth subcondition of the C-
condition that an action of the form del(n3, l3, r

′) has to occur in between, but then r′

is not a root of EminI (S′).

We now prove that the application of S is defined on each basic-input-tree of S. We
do this by induction on the length of S. First let S be the empty schedule. It is easy
to see that the application of S is defined on each document tree and hence on each
basic-input-tree of S. Suppose that the application of S of length na < K is defined on
each basic-input-tree (induction hypothesis). A schedule S of length K can be written
as the schedule o.S′, where S′ is a schedule of length K − 1 and o is the first operation
of S. From the induction hypothesis follows that S′ is defined on each basic-input-tree
of S′. We now have to show that o is defined on each basic-input-tree of S and that
for each basic-input-tree T of S the application o[T] is a basic-input-tree of S′. The
operation o is one of the two following operations:

– add(m, l, n): Suppose that o[T] is not defined. This is only possible if an edge of
the form (m1, l1, n) ∈ ET ⊆ EmaxI (S) exists (since the first action on (m, l, n) is the
addition, it follows that (m1, l1) 6= (m, l)) or m /∈ NT ⊇ Nmin

I (S). The first case
((m1, l1, n) ∈ EmaxI (S)) is impossible since an action occurs on n in S (add(m, l, n))
and (m1, l1, n) /∈ EminI (S). Indeed, if (m1, l1, n) ∈ EminI (S) then the first action
on (m1, l1, n) is a deletion and the operations add(m, l, n) and del(m1, l1, n) occur
in that order, but then the fifth and ninth subcondition of the C-condition require
the addition of (m1, l1, n) to appear before del(m1, l1, n) (which is the first action
in S on (m1, l1, n)). The second case (m /∈ Nmin

I (S)) is also impossible since the
first action on m in S is add(m, l, n). Hence o[T] = T ′ is defined and its result is
the following:
ET ′ = ET ∪ {(m, l, n)}
NT ′ = NT ∪ {n}

Furthermore EminI (S) = EminI (S′). Suppose T ′ is not a basic-input-tree of S′. This
means that at least one of the following four statements does not hold:

∗ EminI (S′) ⊆ ET ′ . Since T is a basic-input-tree of S we know that EminI (S) ⊆
ET . Hence EminI (S′) = EminI (S) ⊆ ET ⊆ ET ′ .
∗ ET ′ ⊆ EmaxI (S′). Since T is a basic-input-tree of S we know that ET ⊆
EmaxI (S). Furthermore we know thatEminI (S) = EminI (S′) and that {(m1, l1, n1)
| no action on an edge ending in m1 or n1 occurs in S} ⊆ {(m1, l1, n1)| no ac-
tion on an edge ending in m1 or n1 occurs in S′} (since all actions in S′ are
also actions in S). Hence EmaxI (S) ⊆ EmaxI (S′). Hence ET ⊆ EmaxI (S) ⊆
EmaxI (S′). We now have to prove that (m, l, n) ∈ EmaxI (S′), which will result
in ET ∪ {(m, l, n)} = ET ′ ⊆ EmaxI (S′). If no action on an edge ending in
m or n occurs in S′ then clearly {(m, l, n)} ∈ EmaxI (S′). Else we have four
possibilities for the first operation on m or n in S′, i.e., an edge ending in m
or n is deleted or added. Since S = o.S′ and S fulfills the C-condition, we
know by the first, second, third and fifth subcondition of the C-condition that
a deletion of (m, l, n) has to appear in S between o and the first action on

20

an edge ending in m or n. But this deletion would cause (m, l, n) to be in
EminI (S′) ⊆ EmaxI (S′).

∗ Nmin
I (S′) ⊆ NT ′ . If this is not true then there is a node n1 ∈ Nmin

I (S′) which
is not in NT ′ . We know that n1 6= m,n since m,n ∈ NT ′ . But then the first
action on n1 in S′ is the same action as the first action on n1 in S. Hence if
n1 ∈ Nmin

I (S′) then n1 ∈ Nmin
I (S) ⊆ NT ⊆ NT ′ .

∗ NT ′ ⊆ Nmax
I (S′). If this is not true. then there is a node n1 ∈ NT ′ which is not

in Nmax
I (S′). If n1 = n then the first occurence of n in S′ is its addition since

n /∈ Nmax
I (S′). From the second subcondition of the C-condition then follows

that the deletion of n has to occur between o and the first action on n in S′.
Else if n1 = m then it follows from the first subcondition of the C-condition
that the addition of m has to occur between o and the first action on m in
S′. Both cases result in a contradiction since S = o.S′. Therefore n1 6= m,n,
so the first occurence of n1 is the same action in S as it is in S′. But since
n1 ∈ (NT ′ −{n}) = NT we know that the first occurence of n1 in S and hence
S′ is not its addition. Hence n1 ∈ Nmax

I (S′), which is a contradiction.

Since all four statements hold it follows that if T is a basic-input-tree of S = o.S′

then o[T] is defined and is a basic-input-tree of S′.
– del(m, l, n): Suppose that o[T] is not defined. This is only possible if (m, l, n) /∈
ET ⊇ EminI (S) or an edge of the form (n, l1, n1) ∈ ET ⊆ EmaxI (S). The first
case (i.e., (m, l, n) /∈ EminI (S)) is impossible since the first operation on (m, l, n)
is the deletion and hence (m, l, n) is by definition in EminI (S). The second case
(i.e., (n, l1, n1) ∈ EmaxI (S)) is also impossible since an action occurs on n in S
(del(m, l, n)) and (n, l1, n1) /∈ EminI (S). Indeed, if (n, l1, n1) ∈ EminI (S) then the
first operation on (n, l1, n1) is its deletion. Hence del(m, l, n) and del(n, l1, n1)
appear in that order in S without any action on (n, l1, n1) between them. But
this contradicts the eighth and fourth subcondition of the C-condition, which says
that add(n, l1, n1) has to appear between them. Hence o[T] = T ′ is defined and its
result is the following:
ET ′ = ET − {(m, l, n)}
NT ′ = NT − {n}

Furthermore EminI (S′) = EminI (S)− {(m, l, n)}, since for all edges the first action
on it in S is the same as in S′ except for (m, l, n). However if (m, l, n) ∈ EminI (S′)
then its first action in S′ is its deletion, but then the ninth subcondition of the
C-condition will require to have the addition between o and the first action on this
edge in S′, which is a deletion, and hence the addition is the first action on (m, l, n)
in S′. Suppose T ′ is not a basic-input-tree of S′. This means that at least one of
the following four statements has to hold:

∗ EminI (S′) ⊆ ET ′ . Since T is a basic-input-tree of S we know that EminI (S) ⊆
ET and hence EminI (S′) = EminI (S)− {(m, l, n)} ⊆ ET − {(m, l, n)} = ET ′

∗ ET ′ ⊆ EmaxI (S′). Since T is a basic-input-tree of S we know that ET ⊆
EmaxI (S) and hence ET ′ = ET − {(m, l, n)} ⊆ EmaxI (S)− {(m, l, n)}. We still
have to prove EmaxI (S)−{(m, l, n)} ⊆ EmaxI (S′). This follows from EminI (S′) =
EminI (S) − {(m, l, n)} and {(m1, l1, n1) | no action on an edge ending in m1

or n1 occurs in S} ⊆ {(m1, l1, n1)| no action on an edge ending in m1 or n1

occurs in S′} (since all actions in S′ are also actions in S).

21

∗ Nmin
I (S′) ⊆ NT ′ . If this is not true then there is a node n1 ∈ Nmin

I (S′) which
is not in NT ′ . If n1 = n then the seventh, eighth and ninth subcondition of the
C-condition say that between del(m, l, n) and the first operation that causes
n1 to be in Nmin

I (S′) an addition of n1 has to appear. But since S = o.S′

this addition has to be in S′ and hence n1 /∈ Nmin
I (S′). If n1 = m then

n1 ∈ NT ′ . Therefore suppose n1 6= m,n. Then the first occurence of n1

in an action is the same in S′ as it is in S. Hence if n1 ∈ Nmin
I (S′) then

n1 ∈ Nmin
I (S) ⊆ NT = (NT ′ − {n}) and hence n1 ∈ NT ′ .

∗ NT ′ ⊆ Nmax
I (S′). If this is not true then there is a node n1 ∈ NT ′ which is not

in Nmax
I (S′). Since n1 ∈ NT ′ we know that n1 6= n. If n1 = m then del(m, l, n)

and add(m1, l1,m) has to appear in that order, where add(m1, l1,m) is the
first action on m in S′. From the sixth subcondition of the C-condition then
follows that an action of the form del(m2, l2,m) has to appear between these
two actions, but then the addition of m is not the first occurence of m in S′.
Hence n1 6= m,n, so the first occurence of n1 in S′ is the same as it is in S.
Since we also know that n1 ∈ (NT ′ − {n} = NT ⊆ Nmax

I (S) it follows that
n ∈ Nmax

I (S′).

Since all four statements hold it follows that if T is a basic-input-tree of S = o.S′

then o[T] is defined and is a basic-input-tree of S′.

• 3 → 5. From Lemma 4 and Definition 5 follows that any input document tree T for
which S[T] is defined has to be a basic-input-tree. Furthermore there has to be at least
one such T , since S is correct.

• 5 → 3. Since there is at least one tree on which the application of S is defined and since
this tree has to be a basic-input-tree, there is at least one basic-input-tree on which the
application of S is defined and hence S is correct by definition.

Corollary 1 It is decidable whether a QL schedule or a transaction is correct in O(n3
a)-time

(O(n3
S)-time) and O(log(na))-space (O(log(nS))-space), na being the number of actions.

Proof We first show that it is decidable whether a QL Shedule S fulfills the C-condition in
O(n3

a)-time and O(log(na))-space.

All nine subconditions of the C-condition involve checking whether a given action appears
between two other (interfering) actions. This can be done by the following algorithm:

1 proc C-condition(S)
2 interferenceFound :=false
3 for i := 0 to na
4 for j := i+ 2 to na
5 if possible interference
6 then
7 OK :=false
8 for k := i+ 1 to j − 1

22

9 if actionk is needed between actioni and actionj to resolve the interference
10 then OK :=true
11 fi
12 end
13 if ¬OK
14 then interferenceFound :=true
16 fi
17 fi
18 end
19 end
20 C-condition := ¬interferenceFound

The outer loop (lines (3)-(19)) will be executed at most na times. The middle loop (lines
(4)-(18)) will be executed at most na − 2 times each execution of the outer loop. In each
middle loop we will have at most na−2 iterations each time of the inner loop (lines (8)-(12)).
This leads us to an upperbound of O(na(na − 2)2) = O(n3

a) for the time needed to decide
the C-condition. Furthermore only three pointers to nodes are needed in this algorithm. We
assume that the number of nodes is dependent of the number of actions, so each pointer needs
O(log(na)) space.

We just showed that we can decide whether a QL schedule S fulfills the C-condition in O(n3
a)-

time and O(log(na))-space. Hence it is decidable, by consequence of Theorem 1, whether a QL
schedule S is correct in O(n3

a)-time and O(log(na))-space (O(n3
S)-time and O(log(nS))-space).

23

Chapter 4

Equivalence and Serializability of
QL Schedules

The purpose of a scheduler is to interleave requests by processes such that the resulting
schedule is serializable. This can be done by deciding for each request whether the schedule
extended with the requested operation is still serializable, without looking at the instance. In
this section we discuss the problem of deciding whether a correct QL schedule is serializable
and whether two correct QL schedules are equivalent.
One possible approach for a scheduler could be to introduce a locking mechanism such that
operations of a certain process would only be allowed if they do not require locks that conflict
with locks required by earlier operations. Because operations with non-conflicting locks can
be commuted any schedule that is allowed by such a scheduler can be serialized. The following
example shows however that the reverse does not hold: Indeed, the next QL schedule

S = (add(r, l1, n1), t1), (del(r, l1, n1), t2), (add(r, l2, n2), t2),
(del(r, l2, n2), t2), (add(r, l2, n2), t1), (del(r, l2, n2), t1).

is correct since it is defined on T = ({r}, ∅, r). Furthermore it is serializable, and the equivalent
serial QL schedules are

S1 = (add(r, l1, n1), t1), (add(r, l2, n2), t1), (del(r, l2, n2), t1),
(del(r, l1, n1), t2),(add(r, l2, n2), t2), (del(r, l2, n2), t2)

and

S2 = (del(r, l1, n1), t2),(add(r, l2, n2), t2), (del(r, l2, n2), t2)
(add(r, l1, n1), t1), (add(r, l2, n2), t1), (del(r, l2, n2), t1).

but we cannot go from S to S1 or to S2 only by swapping such that the intermediate schedules
are correct.
Therefore we will investigate in the following sections the possibility of an algorithm that
exactly decides serializability.

4.1 Deciding Equivalence

A subproblem of deciding serializability is deciding equivalence. It can be shown that the
application of two QL schedules over the same set of transactions on the same dt T result in
the same dt, if they are both defined.

24

Lemma 9 Let S and S′ be two QL schedules over the same set of transactions. S[T] = S′[T]
if S[T] and S′[T] are both defined.

Proof Suppose (m, l, n) is an arbitrary edge that appears in S (and hence S′). Since S and
S′ are two correct QL schedules over the same set of transactions, the number of deletions
and additions of (m, l, n) are equal for both schedules and (m, l, n) is alternatively added and
deleted. Suppose (without loss of generality) that the first operation on (m, l, n) is the addition
in S and the deletion in S′. Since S and S′ are both defined on T , we get a contradiction.
Therefore the first operation on the edge (m, l, n) is the same on both schedules and hence the
last operation on this edge is for both schedules the same. Since this holds for any edge (m, l, n)
that occurs in S and S′, we know that ADD(S) = ADD(S′) and DEL(S) = DEL(S′). Hence
we conclude (using Lemma 1) that S[T] = T∪ADD(S)−DEL(S) = T∪ADD(S′)−DEL(S′) =
S′[T].

As a consequence the problem of deciding whether two correct schedules over two given
transactions are equivalent reduces to the problem of deciding whether their result is defined
for the same dts, which in turn can be decided with the help of the basic input and output
sets.

Theorem 2 Two correct QL schedules S1, S2 over the same set of transactions are equivalent
iff they have the same set of basic-input-trees, i.e., iff Nmin

I (S1) = Nmin
I (S2), Nmax

I (S1) =
Nmax
I (S2), EminI (S1) = EminI (S2) and EmaxI (S1) = EmaxI (S2). Hence their equivalence is

decidable in O(na.log(na))-time (O(nS .log(nS))-time) and O(na)-space (O(nS)-space).

Proof If two correct schedules have the same set of basic-input-trees then their result is
defined for the same set of dts and hence it follows from Lemma 9 that they are equivalent.
Suppose that two correct QL schedules S1 and S2 (over the same set of transactions) are
equivalent. This means that when they are applied on the same document tree T , they either
are both undefined or they are both defined and their result is the same (i.e., S1[T] = S2[T]).
Suppose (without loss of generality) that a node or an edge is required in all document trees T
for S1 and that it is not in all document trees T for which S2[T] is defined. Then there exists
a dt T ′ so that this node or edge is in T ′ and S1[T ′] is defined and S2[T ′] is not defined. This
is a contradiction, hence the minimal input sets have to be equal, i.e., Nmin

I (S1) = Nmin
I (S2),

and EminI (S1) = EminI (S2). Suppose (again, without loss of generality) that a node or an edge
is allowed in an input tree (say T ′) for S1 and not in any input tree for S2. Then S1[T ′] is
defined and S2[T ′] is not defined. This is again a contradiction and hence the maximul input
sets have to be equal, i.e., Nmax

I (S1) = Nmax
I (S2), and EmaxI (S1) = EmaxI (S2).

From Lemma 6 follows that the N - and E-sets can be calculated in O(na.log(na))-time
(O(nS .log(nS))-time) and O(na)-space (O(nS)-space). In order to decide equivalence we
need to calculate the sets for both schedules and compare them to each other (i.e., do some
kind of sorting and stepwise compare each element from the first list to the element at the
same position in the second list).

Note that this theorem does not hold for two arbitrary QL schedules. Indeed S1 = (add(m, l, n), t)
and S2 = (add(m, l, n), t), (del(m, l, n), t) have the same basic-input-trees and are not equiv-
alent.

25

4.2 Composing Correct Schedules

We can use the basic input and output sets to decide whether one correct schedule can directly
follow another correct schedule without resulting in an incorrect schedule.

Lemma 10 Let S1 and S2 be two correct QL schedules. Let na be the number of actions
in S1.S2. S1.S2 is correct iff Nmin

I (S2) ⊆ Nmax
O (S1), EminI (S2) ⊆ EmaxO (S1), Nmin

O (S1) ⊆
Nmax
I (S2), EminO (S1) ⊆ EmaxI (S2). The correctness of S1.S2 is decidable in O(na.log(na))-

time (O(nS .log(nS))-time) and O(na)-space (O(nS)-space).

Proof We will prove this lemma in three parts. In the first two parts we prove both directions
of the iff clause (using Lemma 4), in the third part we will show the space and time complexity.

• Suppose Nmin
I (S2) ⊆ Nmax

O (S1), EminI (S2) ⊆ EmaxO (S1), Nmin
O (S1) ⊆ Nmax

I (S2) and
EminO (S1) ⊆ EmaxI (S2). Suppose S1.S2 is not correct. If T is an arbitrary basic-input-
tree of S1 (since S1 is correct, there exists such a basic-input-tree), then T ′ = S1[T] is
a basic-output-tree of S1. Since we assumed that S1.S2 is not correct, we know that
S2[T ′] is never defined, for any T ′ = S1[T]. Hence for every T ′ there is a node or edge
in T ′ that is not allowed or a node or edge that is needed and that is not in T ′. If there
is a node (or edge) in T ′ that is not allowed in an input-tree of S2, then this node (or
edge) is not in Nmax

I (S2) (or EmaxI (S2)) and hence not in Nmin
O (S1) (or EminO (S1)), so

this node (or edge) is not required in T ′, hence we may choose another T such that
T ′ = S1[T] does not contain this node (or edge). If there is a node (or edge) that is
required and that is not in T ′ then this node (or edge) is in Nmin

I (S2) (or EminI (S2))
and hence in Nmax

O (S1) (or EmaxO (S1)) but not in T ′. Since T ′ = S1[T] for an arbitrary
basic-input-tree of S1, this means that the node (or edge) is in Nmax

O (S1) (or EmaxO (S1)),
but never in the result of S1, i.e., they are not allowed. This is a contradiction, hence
S1.S2 is correct.

• Suppose S1.S2 is correct and that at least one of the four inclusions does not hold. We
will show that this is impossible, since then the C-condition (see Definition 7) is violated
and hence S1.S2 is not correct (this follows from Theorem 1), which is a contradiction.

– If Nmin
I (S2) * Nmax

O (S1) then there is a node n ∈ Nmin
I (S2) such that n /∈

Nmax
O (S1). Hence the last action on n in S1 is the deletion of an edge with child

node n and the first action on n in S2 is either an addition with n as parent node
or a deletion. But then respectively the seventh, eighth and ninth subcondition of
the C-condition are violated.

– If EminI (S2) * EmaxO (S1) then there is an edge (m, l, n) ∈ EminI (S2) such that
(m, l, n) /∈ EmaxO (S1). Hence the first action on (m, l, n) in S2 is its deletion, if
there is an action on (m, l, n) in S1 then the last action on this edge in S1 is not
the addition and either (m1, l1, n) or (m1, l1,m) occur in S1. If the last occurence
of an edge of the form (m1, l1, n) is a deletion then the ninth subcondition of the C-
condition is violated, else if it is an addition then the fifth subcondition is violated.
Hence (m1, l1, n) does not occur in S1, so an edge of the form (m1, l1,m) has to
occur in S1. But then the last occurence of this edge makes S1.S2 dissatisfy the
C-condition, since if it is an addition or a deletion then respectively the fourth and
eighth subcondition of the C-condition are violated.

26

– If Nmin
O (S1) * Nmax

I (S2) then there is a node n ∈ Nmin
O (S1) such that n /∈

Nmax
I (S2). Hence the last action on n in S1 is either an addition or a deletion

with n as parent node and the first action on n in S2 is the addition with n as
child node. But then respectively the first, second and sixth subcondition of the
C-condition are violated.

– If EminO (S1) * EmaxI (S2) then there is an edge (m, l, n) ∈ EminO (S1) such that
(m, l, n) /∈ EmaxI (S2). Hence the last action on (m, l, n) in S1 is its addition, if
(m, l, n) occurs in S2 then its first occurence is not the deletion and (m1, l1,m) or
(m1, l1, n) occurs in S2. If (m1, l1, n) occurs in S2 then its first occurence is either
an addition or a deletion, but then respectively the second and fifth subconditions
of the C-condition are violated. Therefore (m1, l1,m) has to occur in S2, but then
again its first occurence is either an addition or a deletion, which respectively
violates the first and third subcondition of the C-condition. Hence the C-condition
cannot be satisfied.

Hence all four inclusions have to hold, since the C-condition has to be satisfied.

• In order to decide the correctness of S1.S2 we compute the input-sets of S2 and the
output-sets of S1 which can be done in O(na.log(na))-time and O(na)-space (this follows
from Lemma 6). We may assume that the results of this computation is ordered, since
we have enough time and space to do so. We now have to decide whether one set of
length O(na) is a subset of another set of length O(na), which can be done in O(na)-
time and O(log(na)) space. Hence we need O(na.log(na))-time (O(nS .log(nS))-time)
and O(na)-space (O(nS)-space) to decide the correctness of S1.S2.

The following theorems show how the basic input and output sets can be computed for a
concatenation of schedules if we know these sets for the concatenated schedules.

Lemma 11 Let S1, S2 and S1.S2 be three correct QL schedules. Then
Nmin
I (S1.S2) = Nmin

I (S1) ∪ (Nmax
I (S1) ∩Nmin

I (S2))
Nmax
I (S1.S2) = Nmax

I (S1) ∩ (Nmin
I (S1) ∪Nmax

I (S2))
EminI (S1.S2) = EminI (S1) ∪ (EmaxI (S1) ∩ EminI (S2))
EmaxI (S1.S2) = EmaxI (S1) ∩ (EminI (S1) ∪ EmaxI (S2))

Proof We prove this theorem by using Lemma 10 and Definition 5. The equality of the sets
will be proven by using the extensionality axiom.

• If a node n is in Nmin
I (S1.S2) then it occurs in an action of S1.S2 and its first occurence

is in a deletion or as a parent node in an addition. If this first occurence is in S1 then
n ∈ Nmin

I (S1). Else n ∈ Nmin
I (S2) and n ∈ Nmax

I (S1), since no operation on n occurs
in S1. Hence if n ∈ Nmin

I (S1.S2) then n ∈ Nmin
I (S1) ∪ (Nmax

I (S1) ∩Nmin
I (S2)).

If n ∈ Nmin
I (S1) then it occurs in an action of S1 and its first occurence in S1 (and hence

S1.S2) is in a deletion or as a parent node in an addition, so (m, l, n) ∈ Nmin
I (S1.S2).

Else if n ∈ (Nmax
I (S1)∩Nmin

I (S2)) then we assume that n does not appear in an action
of S1 since otherwise n ∈ Nmin

I (S1). In this case the first occurence in S1.S2 of n will
be in S2 and since this is in a deletion or as a parent node in an addition, we know that
n ∈ Nmin

I (S1.S2).

27

• If a node n is in Nmax
I (S1.S2) then its first occurence is not as a child node in an

addition iff it occurs in an action of S1.S2. If it does not occur in S1.S2 then it does
not occur in S1 nor S2, hence n ∈ Nmax

I (S1) ∩ Nmax
I (S2). If it occurs in S1.S2 then

either its first occurence is in S1, resulting in n ∈ (Nmax
I (S1) ∩ Nmin

I (S1)) (since its
first occurence is not as a child node in an addition), or its first occurence is in S2,
resulting in n ∈ (Nmax

I (S1) ∩ Nmax
I (S2)). Hence we see that if n ∈ Nmax

I (S1.S2) then
n ∈ (Nmax

I (S1) ∩ (Nmin
I (S1) ∪Nmax

I (S2))).
If n ∈ Nmax

I (S1) ∩ Nmin
I (S1) then n occurs in S1 and its first occurence in S1 (and

hence in S1.S2) is not as a child node in an addition, hence n ∈ Nmax
I (S1.S2). Else

if n ∈ Nmax
I (S1) ∩ Nmax

I (S2) then we may assume that n does not occur in S1 since
otherwise n ∈ Nmax

I (S1) ∩ Nmin
I (S1). Therefore if n occurs in S2 and hence in S1.S2

then its first occurence is not as a child node in an addition, so n ∈ Nmax
I (S1.S2).

• If an edge (m, l, n) is in EminI (S1.S2) then either the first deletion of the edge (m, l, n)
in S1.S2 is in S1 or it is in S2. If it is in S1 then (m, l, n) ∈ EminI (S1). Else if it is
in S2 then (m, l, n) ∈ EminI (S2). In this case we still have to prove that (m, l, n) is
also in EmaxI (S1), since (m, l, n) has to be in EmaxI (S1) ∩ EminI (S2) (because it cannot
be an element of EminI (S1)). We know from Lemma 10 that EminI (S2) ⊆ EmaxO (S1),
hence (m, l, n) ∈ EmaxO (S1). This means that (m, l, n) ∈ {(m, l, n)| no (m1, l1,m) nor
(m1, l1, n) occurs in S}, since (m, l, n) /∈ EminO (S1) (because no operation and hence no
addition on (m, l, n) occurs in S1). Hence (m, l, n) ∈ EmaxI (S1).
If (m, l, n) ∈ EminI (S1) then the first occurence in S1 and hence in S1.S2 is the deletion
of this edge. Hence (m, l, n) ∈ EminI (S1.S2). Else if (m, l, n) ∈ EmaxI (S1) ∩ EminI (S2)
then the edge (m, l, n) does not occur in S1 and the first action on this edge in S2 (and
hence in S1.S2) is its deletion. Therefore (m, l, n) ∈ EminI (S1.S2).

• If an edge (m, l, n) is in EmaxI (S1.S2) then (m, l, n) ∈ EminI (S1.S2) or (m, l, n) ∈
{(m, l, n)| no (m1, l1,m) nor (m1, l1, n) occurs in S1.S2}. Suppose (m, l, n) ∈ EminI (S1.S2).
In this case the first action in S1.S2 on the edge (m, l, n) is its deletion. If this
first deletion is in S1 then (m, l, n) ∈ EminI (S1) and hence (m, l, n) ∈ EmaxI (S1) ∩
(EminI (S1)∪EmaxI (S2)). Else the first action on (m, l, n) in S1.S2 is the deletion of this
edge and occurs in S2. Hence (m, l, n) ∈ EminI (S2) (and also (m, l, n) ∈ EmaxI (S2)).
By Lemma 10 follows that (m, l, n) ∈ EmaxO (S1). But since (m, l, n) does not oc-
cur in S1, we know that (m, l, n) /∈ EminI (S1) and hence (m, l, n) ∈ {(m, l, n)| no
(m1, l1,m) nor (m1, l1, n) occurs in S1}. From this follows that (m, l, n) ∈ EmaxI (S1),
hence (m, l, n) ∈ EmaxI (S1) ∩ (EminI (S1) ∪ EmaxI (S2)). Suppose (m, l, n) ∈ {(m, l, n)| no
(m1, l1,m) nor (m1, l1, n) occurs in S1.S2}. Then we know also that (m, l, n) ∈ {(m, l, n)|
no (m1, l1,m) nor (m1, l1, n) occurs in S1} and (m, l, n) ∈ {(m, l, n)| no (m1, l1,m) nor
(m1, l1, n) occurs in S2}. Hence (m, l, n) ∈ EmaxI (S1) and (m, l, n) ∈ EmaxI (S2), so
(m, l, n) ∈ EmaxI (S1) ∩ (EminI (S1) ∪ EmaxI (S2)).
If (m, l, n) ∈ EmaxI (S1) ∩ EminI (S1) then the first occurence in S1 and hence in S1.S2

is the deletion of this edge. Hence (m, l, n) ∈ EminI (S1.S2) ⊆ EmaxI (S1.S2). Else if
(m, l, n) ∈ EmaxI (S1)∩EmaxI (S2) then either (m, l, n) ∈ EminI (S2) or (m, l, n) ∈ {(m, l, n)|
no (m1, l1,m) nor (m1, l1, n) occurs in S2}. In the first case we can use the previous
part of this lemma to deduce that (m, l, n) ∈ EminI (S1.S2) ⊆ EmaxI (S1.S2). In the
second case we assume that (m, l, n) ∈ {(m, l, n)| no (m1, l1,m) nor (m1, l1, n) occurs
in S1}, since otherwise (m, l, n) ∈ EmaxI (S1) ∩ EminI (S1). By consequence we know

28

that (m, l, n) ∈ {(m, l, n)| no (m1, l1,m) nor (m1, l1, n) occurs in S1.S2}, resulting
in (m, l, n) ∈ EmaxI (S1.S2). Hence if (m, l, n) ∈ EmaxI (S1) ∩ (EminI (S1) ∪ EmaxI (S2))
then (m, l, n) ∈ EmaxI (S1) ∩ EminI (S1) or (m, l, n) ∈ EmaxI (S1) ∩ EmaxI (S2) and hence
(m, l, n) ∈ EmaxI (S1.S2).

This lemma can be generalized to:

Lemma 12 Let S1, S2, ..., Sn and S1.S2...Sn be (n+ 1) correct QL schedules. Then
Nmin
I (S1...Sn) =

⋃n
i=1(Nmin

I (Si) ∩ (
⋂
k<iN

max
I (Sk)))

Nmax
I (S1...Sn) =

⋂n
i=1(Nmax

I (Si) ∪ (
⋃
k<iN

min
I (Sk)))

EminI (S1...Sn) =
⋃n
i=1(EminI (Si) ∩ (

⋂
k<iE

max
I (Sk)))

EmaxI (S1...Sn) =
⋂n
i=1(EmaxI (Si) ∪ (

⋃
k<iE

min
I (Sk)))

If na is the number of actions in S1.S2...Sn then these equalities can be verified in O(n3
a)-time

(O(n3
S)-time) and O(na)-space (O(nS)-space).

Proof We prove this lemma by induction on n. If n = 1 then the four equations are trivial.
Suppose that the four equations hold for all n < N (induction hypothesis). If n = N , then
we know that S2, S3, ..., Sn, S2.S3...Sn are N − 1 correct QL schedules, so we can use the
induction hypothesis and Lemma 12 to obtain following equations for the N -sets:
Nmin
I (S1...Sn) = Nmin

I (S1.(S2...Sn))
= Nmin

I (S1) ∪ (Nmax
I (S1) ∩Nmin

I (S2...Sn))
= Nmin

I (S1) ∪ (Nmax
I (S1) ∩⋃n

i=2(Nmin
I (Si) ∩ (

⋂
1<k<iN

max
I (Sk))))

= Nmin
I (S1) ∪ (

⋃n
i=2((Nmin

I (Si) ∩ (
⋂

1<k<iN
max
I (Sk))) ∩Nmax

I (S1)))
= Nmin

I (S1) ∪ (
⋃n
i=2(Nmin

I (Si) ∩ (
⋂
k<iN

max
I (Sk))))

=
⋃n
i=1(Nmin

I (Si) ∩ (
⋂
k<iN

max
I (Sk)))

Nmax
I (S1...Sn) = Nmax

I (S1.(S2...Sn))
= Nmax

I (S1) ∩ (Nmin
I (S1) ∪Nmax

I (S2...Sn))
= Nmax

I (S1) ∩ (Nmin
I (S1) ∪⋂n

i=2(Nmax
I (Si) ∪ (

⋃
1<k<iN

min
I (Sk))))

= Nmax
I (S1) ∩ (

⋂n
i=2((Nmax

I (Si) ∪ (
⋃

1<k<iN
min
I (Sk))) ∪Nmin

I (S1)))
= Nmax

I (S1) ∩ (
⋂n
i=2(Nmax

I (Si) ∪ (
⋃
k<iN

min
I (Sk))))

=
⋂n
i=1(Nmax

I (Si) ∪ (
⋃
k<iN

min
I (Sk)))

Analogous results are obtained for the E-sets.

The result for these sets can be calculated by following algorithm (this example illustrates
Nmin
I , analogous algorithms exist for the other sets):

1 proc Nmin
I (S1...Sn)

2 result1 := ∅
3 for i := 1 to n
4 result2 := ∅
5 foreach node ∈ Nmin

I (Si)
6 addNode := true
7 for k := 1 to i− 1
8 if node /∈ Nmax

I (Sk)
9 then addNode := false

10 fi

29

11 end
12 if addNode
13 then result2 := result2 ∪ {node}
14 fi
15 end
16 result1 := result1 ∪ result2
17 end
18 Nmin

I (S1...Sn) := result1

We see that this algorithm only uses O(na)-space, since there are a constant number of
variables, with result1 and result2 (O(na)-space) being the largest ones. In order to determine
the time complexity, we will use the auxiliary notation na,i to denote the number of actions
in schedule Si. Since na is the number of actions in the combined schedule, na =

∑n
i=1 na,i.

On line (8) we will determine whether a node is in a N -set, which can be decided in O(na,k)
(this follows from Lemma 7) and hence in O(na). Line (9) takes constant time, so (7)-(11)
has time complexity O(n2

a) (since O(na) is an upperbound for i). Lines (6) and (12)-(14) take
constant time, hence (5)-(15) has time complexity O(na,i.n2

a + (na,i.log(na,i)) = O(na,i.n2
a).

The steps at line (4) and (16) take less time, so we will not have to consider them in order to
get the time complexity of (3)-(17). Determining the time complexity of this loop results in∑n

i=1O(na,i.n2
a) =

∑n
i=1O(na,i).O(n2

a) = O(na).O(n2
a) = O(n3

a). From these results follows
the total complexity of O(n3

a)-time (O(n3
S)-time) and O(na)-space (O(nS)-space).

4.3 Deciding Serializability

In this section, we will use the previous theorems to show that serializability is decidable.

Theorem 3 Given a QL schedule S of nt transactions and na actions. It is decidable whether
S is serializable in O(f(nt).n3

a)-time (O(f(nt).n3
S)-time), where f(nt) is exponential in nt,

and in O(n2
a)-space (O(n2

S)-space).

Proof Deciding whether S is serializable is done in three steps:

• First we verify whether each transaction is correct. For each transaction this is done in
O(n3

a)-time and O(na)-space according to Corollary 1. We can reuse the space in which
we decided for each transaction whether it was correct, but obviously we cannot reuse
the time, so the total space needed is O(na) and the total time needed is O(n3

a.nt).

• Then we draw a graph that indicates which transactions can follow directly which other
transactions. In order to do this we have to consider all n2

t couples of transactions ti
and tj and decide whether ti.tj is correct, which can be done in O(na.log(na))-time
and O(na)-space according to Lemma 10. Since we have to check the correctness of the
concatenation for each of the couples transactions we need O(n2

t .na.log(na))-time. The
space requirement is of size O(n2

t + na) ⊆ O(n2
a) since we need the n2

t results of the
correctness and for each check for correctness we can reuse the work space.

• We now see that S is serializable iff there is a Hamiltonian path that is equivalent with
S (i.e., the execution of the schedule is equivalent with the execution of some sequence
of all transactions of the schedule). We will verify this as follows:

30

– We first calculate for each of the nt transactions the ordered Nmin
I , Nmax

I ,EminI

and EmaxI sets, which is done in O(nt.na.log(na))-time and O(nt.na)-space (this
follows from Lemma 6).

– Then we compute all Hamiltonian paths and check whether it is equivalent with S.
For this we use the fact that a Hamiltonian path is a permutation of all nt nodes.

1. Compute the first permutation of all nt nodes.
2. If the permutation is not a path in the graph then go to (6), else it is a

Hamiltonian path. Checking whether the permutation is a path in the graph
can be done in O(nt)-time and O(1)-space.

3. We verify the correctness of the Hamiltonian path, which can be done inO(n3
a)-

time and O(na)-space (Corollary 1). If the Hamiltonian path is not correct,
then go to (6).

4. We calculate the ordered Nmin
I , Nmax

I , EminI and EmaxI sets of the Hamiltonian
path, which is done in O(na.log(na))-time and O(na)-space (Lemma 6).

5. To decide whether the Hamiltonian path and S are equivalent we use the
results of Theorem 2. But therefore we first have to calculate the set of basic-
input-trees which can be done in O(n3

a)-time and in O(na)-space according to
Lemma 12. After the computation of these sets the equivalence can be checked
in O(na.log(na))-time and O(na)-space. If the Hamiltonian path is equivalent
with S then S is serializable.

6. Compute the next permutation of all nt nodes.

We know that all permutations can be generated in O(nt)-space and O(nntt)-time,
which is in O(2n

2
t) = O(f(nt)) (we assume f(nt) = 2n

2
t , which is exponential in nt).

Also at most O(n!) ⊆ O(f(nt)) permutations were checked. If we never concluded
that S is serializable then S is not serializable.

Hence this step takes O(f(nt).n3
a)-time (O(f(nt).n3

S)-time) and O(n2
a)-space (O(n2

a)-
space), since for each Hamiltonian path we can reuse the work memory and we have
to remember all Hamiltonian paths. This is also the complexity for deciding whether a
given QL schedule S is serializable.

31

Chapter 5

Equivalence and Serializability of
Schedules

In the previous section we only considered queryless schedules, but in this section we consider
all schedules. We start with generalizing the notions that were introduced for QL schedules.

Definition 8 A schedule S is called correct iff its corresponding QL schedule S′ is correct.
ADD(S) = ADD(S′) where S′ is the QL schedule of S. Analogously for DEL, EminI , EmaxI ,
EminO , EmaxO , Nmin

I , Nmax
I , Nmin

O , Nmax
O .

To verify whether two correct schedules over the same set of transactions are equivalent, we
first eliminate the queries and verify whether the resulting QL schedules are equivalent. (Cfr.
Theorem 2). In this section we investigate the equivalence of two correct schedules over the
same set of transactions and whose QL schedules are equivalent. In the following examples
it is shown that such schedules can sometimes be equivalent on all the DTs they are defined
on, on only some of them or on none.

Example 6 Consider the following two schedules:

S1 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
(del(n2, l2, n3), t1), (del(n1, l1, n2), t1)

and

S2 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1),
(del(n2, l2, n3), t1), (del(n1, l1, n2), t1)

S1 and S2 are correct and their corresponding QL schedules are equal. They are equivalent
on no dt on which they are defined. Let

S3 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
(del(n2, l2, n3), t1)

and

S4 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1),
(del(n2, l2, n3), t1)

32

S3 and S4 are correct and their corresponding QL schedules are equal. They are equivalent
on some dt’s on which they are defined and not equivalent on others. Let l1 6= l3 and

S5 = (add(n2, l2, n3), t1), (query(n1, l1/l2), t2),
(del(n2, l2, n3), t1), (del(n1, l3, n2), t1)

and

S6 = (query(n1, l1/l2), t2), (add(n2, l2, n3), t1),
(del(n2, l2, n3), t1), (del(n1, l3, n2), t1)

S5 and S6 are correct and their corresponding QL schedules are equal. They are equivalent
on all dt’s on which they are defined, hence they are equivalent. Finally let l 6= l1 and

S7 = (query(n1, l/l), t1), (del(n2, l, n3), t2),
(add(n2, l1, n3), t2)

and

S8 = (del(n2, l, n3), t2),
(add(n2, l1, n3), t2), (query(n1, l/l), t1)

S7 and S8 are correct and their corresponding QL schedules are equal. They are equivalent
on some dt’s on which they are defined and not equivalent on others.

In order to prove the decidability of the equivalence of two transactions over the same set of
transactions we first define the notion of SOP, Set Of Prefixes in Subsection 5.1 and some
additional notation in Subsection 5.2.

5.1 SOP - Set Of Prefixes

Let pe be a path expression and lp a label path. We define the set of non-empty lp-prefixes in
pe, denoted as SOP(pe)lp as a set of path expressions that together represent the set of label
paths pe′ such that pe′/lp ∈ L(pe)1. For instance SOP(b//∗)a = {b, b//∗}.

Definition 9 Let pe be a path expression, lp be a label path and l ∈ L. The set of non-empty
lp-prefixes in pe, denoted as SOP(pe)lp is defined by

• SOP(pe)ε = {pe}
• SOP(pe/∗)l = SOP(pe/l)l = {pe}
• SOP(pe//∗)l = SOP(pe//l)l = {pe, pe//∗}
• SOP(pe/∗)lp/l = SOP(pe/l)lp/l = SOP(pe)lp

• SOP(pe//∗)lp/l = SOP(pe//l)lp/l = SOP(pe)lp ∪ SOP(pe//∗)lp
• Otherwise SOP(pe)lp = ∅.

Furthermore we define L(SOP(pe)lp) =
⋃
pei∈SOP(pe)lp

L(pei).

1We consider pe/ε to be equal to pe.

33

Lemma 13 L(SOP(pe)lp) = {lp′ | lp′/lp ∈ L(pe)}.

Proof We prove this lemma by induction on the length of the label path lp. Suppose lp = ε.
From the definition follows that:
L(SOP(pe)lp) =

⋃
pei∈SOP(pe)lp

L(pei)
=

⋃
pei∈SOP(pe)ε

L(pei)
=

⋃
pei∈{pe} L(pei)

= L(pe)
Since lp′/ε = lp′, we know that {lp′ | lp′/ε ∈ L(pe)} = L(pe). Hence the lemma holds for
label paths of length 0.
Assume that the lemma holds for label paths of length n. Then we will prove that it must
also hold for label paths of length n+1. Suppose lp/l is a label path of length n+1. There are
three possibilities for the path expression pe for which we want to determine L(SOP(pe)lp).

• If pe = pe′/∗ or pe = pe′/l then the following holds:
L(SOP(pe′/∗)lp/l) = L(SOP(pe′/l)lp/l)

= L(SOP(pe′)lp)
= {lp′ | lp′/lp ∈ L(pe′)}
= {lp′ | lp′/(lp/l) ∈ L(pe′/l)}
= {lp′ | lp′/(lp/l) ∈ L(pe′/∗)}

Hence in both cases L(SOP(pe)lp) = {lp′ | lp′/lp ∈ L(pe)}.
• Else if pe = pe′//∗ or pe = pe′//l then the following holds:

L(SOP(pe′//∗)lp/l) = L(SOP(pe′//l)lp/l)
= L(SOP(pe′)lp ∪ SOP(pe′//∗)lp)
= L(SOP(pe′)lp) ∪ L(SOP(pe′//∗)lp)
= {lp′ | lp′/lp ∈ L(pe′)} ∪ {lp′ | lp′/lp ∈ L(pe′//∗)}
= {lp′ | lp′/lp ∈ (L(pe′) ∪ L(pe′//∗))}
= {lp′ | lp′/(lp/l) ∈ (L(pe′/l) ∪ L(pe′// ∗ /l))}
= {lp′ | lp′/(lp/l) ∈ L(pe′//l)}
= {lp′ | lp′/(lp/l) ∈ L(pe′//∗)}

Hence in both cases L(SOP(pe)lp) = {lp′ | lp′/lp ∈ L(pe)}. Note that the validness of
the third equation holds by Definition 9.

• Else SOP(pe)lp/l = ∅. From Definition 9 then follows that pe has to end with a label
l′ 6= l. Hence {lp′ | lp′/(lp/l) ∈ L(pe)} = ∅.

Hence in all three cases we get the desired equation, which almost concludes our proof. The
only case we did not cover is that of label paths of length 1, but this can be proven analogously
to the proof for label pahts of length n.

Example 7

• SOP(a/ ∗ / ∗ /b)a/b = SOP(a/ ∗ /∗)a = {a/∗}
• SOP(a// ∗ /c)a/b/c = SOP(a//∗)a/b = SOP(a)a ∪ SOP(a//∗)a = {a, a//∗}
• SOP(∗//∗)a/b/c = SOP(∗)a/b ∪ SOP(∗//∗)a/b = ∅ ∪ SOP(∗)a ∪ SOP(∗//∗)a = ∅ ∪ ∅ ∪
{∗, ∗//∗} = {∗, ∗//∗}

34

• SOP(a//b//d)b/c/d = {a, a//∗, a//b, a//b//∗}

Lemma 14 Let pe be a path expression and lp be a label path. SOP(pe)lp = {pe′ | pe′ a prefix
of pe and L(pe′/lp) ⊆ L(pe)} ∪ {pe′// ∗ | pe′ a prefix of pe and L(pe′// ∗ /lp) ⊆ L(pe)}.

Proof We prove this lemma by induction on the length of the label path lp. For each length
of lp we must prove three inclusions, i.e.:

• SOP(pe)lp ⊆ {pe′ | pe′ a prefix of pe and L(pe′/lp) ⊆ L(pe)} ∪ {pe′// ∗ | pe′ a prefix of
pe and L(pe′// ∗ /lp) ⊆ L(pe)}
• {pe′ | pe′ a prefix of pe and L(pe′/lp) ⊆ L(pe)} ⊆ SOP(pe)lp

• {pe′// ∗ | pe′ a prefix of pe and L(pe′// ∗ /lp) ⊆ L(pe)} ⊆ SOP(pe)lp

Using these three inclusions we get the equality that need to be proven.

Suppose lp = ε

• If pe′ ∈ SOP(pe)lp then pe′ = pe and hence pe′ ∈ {pe′ | pe′ a prefix of pe and L(pe′/lp) ⊆
L(pe)}.
• If pe′ is a prefix of pe and L(pe′) ⊆ L(pe) then pe′ = pe since otherwise there would be

label paths in L(pe′) that are not in L(pe). From pe = pe′ follows that pe′ ∈ SOP(pe)ε =
{pe}.
• If pe′ is a prefix of pe and L(pe′//∗) ⊆ L(pe) then pe′//∗ = pe since otherwise there

would be label paths in L(pe′//∗) that are not in L(pe). From pe = pe′//∗ follows that
pe′//∗ ∈ SOP(pe)ε = {pe}.

Assume that the Lemma holds for all label paths with length less then N (induction hypoth-
esis). Suppose lp = lp/l and has length N + 1.

• Let pe′ ∈ SOP(pe)lp/l. We may assume that pe ends with l or ∗ since otherwise
SOP(pe)lp/l = ∅. If pe = pe2/l then pe′ ∈ SOP(pe2)lp (Definition 9). From the in-
duction hypothesis follows that pe′ is a prefix of pe2 and L(pe′/lp) ⊆ L(pe2) and hence
pe′ is a prefix of pe2/l = pe and L(pe′/(lp/l)) ⊆ L(pe2/l) = L(pe). All other cases for
pe (e.g. pe = pe2//l or pe = pe2/∗) are proven analogously.

• Let pe′ be a prefix of pe and L(pe′/(lp/l)) ⊆ L(pe). It is obvious that pe has to end with ∗
or l since otherwise the inclusion of the two languages could not hold. If pe = pe′/pe2/l
then L(pe′/(lp/l)) ⊆ L(pe′/pe2/l) and hence L(lp/l) ⊆ L(pe2/l) holds. Furthermore
pe′ is a prefix of pe′/pe2 which is shorter than pe′/pe2/l. Therefore we can use the
induction hypothesis to derive that pe′ ∈ SOP(pe′/pe2)lp = pe′ ∈ SOP(pe′/pe2/l)lp/l =
pe′ ∈ SOP(pe)lp/l. All other cases for pe (e.g. pe = pe′//pe2/l or pe = pe′//pe2//∗) are
proven analogously.

• {pe′// ∗ | pe′ a prefix of pe and L(pe′// ∗ /(lp/l)) ⊆ L(pe)} ⊆ SOP(pe)lp/l is proven in
the same fashion as the previous inclusion.

Note that in fact we also need to proof this lemma for label paths of length 1. This is done
analogously to the proof of the induction step.

35

Lemma 15 Let pe be a path expression of length npe and lp be a label path of length nle.
SOP(pe)lp is uniquely defined, finite and is computable in O(n2

pe.(npe+nlp)
2)-time and O(log(npe+

nlp))-space.

Proof From Lemma 14 we know that we have to calculate the two sets: {pe′ | pe′ a prefix
of pe and L(pe′/lp) ⊆ L(pe)} and {pe′// ∗ | pe′ a prefix of pe and L(pe′// ∗ /lp) ⊆ L(pe)}.
Hence to compute each set we have to check for each prefix pe′ of pe (there are npe such
prefixes) whether one path expression contains another path expression (i.e., they have the
same language). From the results of [2] we know that we can decide the containment of
two path expressions (i.e., does L(p) ⊆ L(p′) hold?) in O(|p|2|p′|)-time if p′ only contains
labels, /, // and ∗. Since this is true, we can decide the containments for a given prefix pe′

during the computation of one of the two sets in O((npe + nlp)2.npe)-time (|p′| = npe and
O(|p|) = O(npe + nlp)). Hence SOP(pe)lp can be calculated in O(n2

pe.(npe + nlp)2)-time, and
in O(log(npe + nlp))-space (since we only need a pointer for both path expressions).

Lemma 16 Let pe be a path expression and lp1 and lp2 be two label paths. L(SOP(pe)lp1) ⊆
L(SOP(pe)lp2) iff (∀pei ∈ SOP(pe)lp1).(L(pei/lp2) ⊆ L(pe)).

Proof We prove this lemma by proving two implications

• If L(SOP(pe)lp1) ⊆ L(SOP(pe)lp2) then it follows from Lemma 13 that L(SOP(pe)lp1) ⊆
{lp′|lp′/lp2 ∈ L(pe)}. Hence for all lp′ ∈ L(SOP(pe)lp1) it holds that (lp′/lp2) ∈ L(pe).
This is equal to saying that (∀pei ∈ SOP(pe)lp1).(L(pei/lp2) ⊆ L(pe)).

• Suppose (∀pei ∈ SOP(pe)lp1).(L(pei/lp2) ⊆ L(pe)). If we know for pei that L(pei/lp2) ⊆
L(pe) then all label paths in L(pei/lp2) have to be in L(pe). Hence for all pei ∈
SOP(pe)lp1 it holds that if lp′ ∈ L(pei) then lp′/lp2 ∈ L(pe). This is equal to saying
that if lp′ ∈ ⋃pei∈SOP(pe)lp1

L(pei) then lp′/lp2 ∈ L(pe). It then follows from Definition 9
and Lemma 13 that if lp′ ∈ L(SOP(pe)lp1) then lp′ ∈ L(SOP(pe)lp2).

Theorem 4 Let pe be a path expression and lp1 and lp2 be two label paths. If npe is the
length of pe and nlp the length of the longest label path lp1 or lp2 then it is decidable in
O(n2

pe.(npe + nlp)2)-time and in O(npe + (log(npe + nlp)))-space whether L(SOP(pe)lp1) =
L(SOP(pe)lp2).

Proof In order to decide whether the equation holds, we need to check whether both inclusions
hold. This can be done by using Lemma 16. If we want to check whether L(SOP(pe)lp1) ⊆
L(SOP(pe)lp2) holds, we first have to compute SOP(pe)lp1 and then check for each path
expression pei in the result whether L(pei/lp2) ⊆ L(pe) holds. The computation of SOP(pe)lp1

can be done in O(n2
pe.(npe + nlp)2)-time and O(log(npe + nlp))-space (Lemma 15). We also

know that the number of path expressions in SOP(pe)lp1 is at most 2.npe (each prefix and
each prefix followed by ‘//∗’). Then we check for each element of the result set whether
the inclusion L(pei/lp2) ⊆ L(pe) holds, which can be done within the same space and time
as the computation of SOP(pe)lp1 . Hence deciding the identity of the languages of two sets
of prefixes of the same path expression takes O(n2

pe.(npe + nlp)2)-time and can be done in
O(npe + (log(npe +nlp)))-space (we need to store SOP(pe)lp1 and SOP(pe)lp2 as intermediate
result).

36

5.2 PQRN - Potential Query Result Nodes

In this section, we will give some additional notation of the concepts that we will need in the
next section. We also give some complexity results for calculating the value of these concepts.
Let S be a correct schedule that contains the query Q = query(n, pe).

• We denote by SQ the actions of S that occur before Q; SQ is actually a subtransaction
of S;

• Let T be a basic-input-tree of S. We define TQ = SQ[T] as the dt on which Q in S is
evaluated; hence the result of the application of the query Q in S is Q[TQ];

• We denote by Emin(SQ) as the set that contains exactly those edges that are required
in TQ; This set is equal to (EminI (S)−DEL(SQ)) ∪ADD(SQ) (Lemma 8);

• We denote by Emax(SQ) as the set that contains exactly those edges that are allowed
in TQ; This set is equal to (EmaxI (S)−DEL(SQ)) ∪ADD(SQ) (Lemma 8).

Emin(SQ) is a forest (Property 1). As such every node m of Emin(SQ) has a unique ancestor
without a parent in Emin(SQ); it is denoted by ARoot(SQ,m). The label of the path from
ARoot(SQ,m) to m in Emin(SQ) is denoted by ALabel(SQ,m).

Lemma 17 ALabel(SQ,m) and ARoot(SQ,m) can be computed in O(n2
a)-time (O(n2

S)-time)
and O(na)-space (O(nS)-space), na being the number of actions in S.

Proof We will compute ALabel and ARoot together. In order to do this, we first have to
compute Emin(SQ), which can be done in O(na.log(na))-space and O(na)-time (Lemma 6).
The result of the computation of Emin(SQ) is a forest with at most O(na) edges. Then we
execute the following algorithm:

1 proc ARoot and ALabel(S)
2 n := m;
3 ALabel := m;
4 while ((∃m1, l1).((m1, l1, n) ∈ Emin(SQ))) do
5 n := m1;
6 ALabel := m1/ALabel
7 end
8 ARoot := n

Since there are at most O(na) edges in the forest, the while loop will be executed at most
O(na) times. Each time we have to check the condition (∃m1, l1).((m1, l1, n) ∈ Emin(SQ)),
which can be done in O(na)-time and O(log(na))-space. Hence the total complexity is O(n2

a)-
time (O(n2

S)-time) and O(na)-space (O(nS)-space).

If add(m, l, n) or del(m, l, n) are operations of S we say that n is a non-building-node of S.
Otherwise n is called a building-node of S. Note that
Emax(SQ) = Emin(SQ) ∪ {edges that contain only building nodes} since
Emin(SQ) = (EminI (S)−DEL(SQ)) ∪ADD(SQ),
Emax(SQ) = (EmaxI (S)−DEL(SQ)) ∪ADD(SQ) and
EmaxI (S) = EminI (S) ∪ {edges that contain only building nodes} (Figure 2).

37

Lemma 18 Let S be a correct schedule and T a basic-input-tree of S. Then at any time
of the application of S on T all descendants of a non-building-node of S that occurs in the
intermediate result T ′ are also non-building-nodes of S.

Proof Suppose (m, l, n) is an edge in T ′ = S′[T], with S′ a first part of S, m a non-building-
node of S and n a building-node of S. From Lemma 1 follows that T ′ = T ∪ ADD(S′) −
DEL(S′). Since (m, l, n) ∈ T ′ and n a building-node of S (i.e., no action on an edge ending in
n appears in S and hence in S′), we know that (m, l, n) has to be in T . But T is a basic-input-
tree and hence it only contains edges that are in EmaxI (S). Since m is a non-building-node,
we know that an action on an edge ending in m appears in S and hence it follows from
Definition 5 that (m, l, n) has to be in EminI (S) = {(m′, l′, n′) | φS((m′, l′, n′), del(m′, l′, n′))}
and hence φS((m, l, n), del(m, l, n)), which is a contradiction since n is a building-node of S.

We will now show that all edges that occur in Emin(SQ) arrive in non-building-nodes of S and
that every non-building-node in SQ[T] (with T a basic-input-tree of S) is also in Emin(SQ).
Therefore we will first introduce a notation for the set of nodes in which the edges of a given
set of edges arrive.

Definition 10 Let E be a set of edges. We define Π3(E) as:
Π3(E) = {n|(∃m, l).((m, l, n) ∈ E)}.

Lemma 19 Let S be a correct schedule and Q a query that occurs in S. Then Π3(Emin(SQ))
contains only non-building-nodes of S. Furthermore for every non-building-node n of S and
for every basic-input-tree T of S, it holds that if n is in SQ[T] then n is also in Π3(Emin(SQ)).

Proof From the definition it follows that Emin(SQ) = EminI (S) − DEL(SQ) ∪ ADD(SQ) =
{(m, l, n)|φS((m, l, n),del(m, l, n))}−DEL(SQ)∪ADD(SQ), so Emin(SQ) contains only edges
on which an action in S occurs and hence Π3(Emin(SQ)) contains only non-building-nodes
of S. On the other hand, suppose that n is a non-building-node, T is a basic-input-tree of
S and n is a node of SQ[T]. Then n is a node of T − DEL(SQ) ∪ ADD(SQ) and hence
n ∈ (Nmax

I (S)−Π3(DEL(SQ))) ∪Π3(ADD(SQ)) (Lemma 1, Definition 3, 4 and 5). Suppose
n /∈ Π3(Emin(SQ)). Then we know that n is not in Π3(EminI (S) − DEL(SQ)) and n not in
Π3(ADD(SQ)). Hence n ∈ (Nmax

I (S)−Π3(DEL(SQ))), which implies that the first occurence
of n in S is not its addition (Definition 5) and n /∈ Π3(DEL(SQ)). Since an action occurs
on an edge ending in n (n is a non-building-node), we know that this first action on n has
to be the deletion of n and hence n ∈ Π3(EminI (S)). We then get a contradiction with the
assumption that n /∈ Π3(Emin(SQ)) (this follows from the definition of Emin(SQ) and the
fact that we have shown that n /∈ Π3(DEL(SQ)) and n /∈ Π3(ADD(SQ))).

We will now define the set of nodes PQRN(S,Q). This set will contain all non-building-nodes
that can be in the result of a query that starts with a node n that is not in Emin(SQ). After
the formal definition we will show that this definition corresponds to this informal description.
Finally we will show that this set is computable in polynomial time and space.

Definition 11 Let S be a correct schedule that contains a query Q = query(n, pe). We define
the set PQRN(S,Q) as:
PQRN(S,Q) = {m|

38

• m ∈ Emin(SQ);

• m a non-building-node;

• ARoot(SQ,m) a building-node;

• ARoot(SQ,m) 6= n;

• L(SOP(pe)ALabel(SQ,m)) 6= ∅
}.

Lemma 20 Let S be a correct schedule, Q = query(n, pe) a query that appears in S and
n /∈ Emin(SQ). Then PQRN(S,Q) is the set of non-building-nodes m, such that there exists
a basic-input-tree T of S for which m is in the result of the query Q on the document tree
SQ[T].

Proof We will prove this lemma by proving that if a node m can occur in the result of the
query Q on a document tree SQ[T], then m ∈ PQRN(S,Q) and vice versa.

• Assume that m is a non-building-node that can occur in the result of the query Q
and m /∈ PQRN(S,Q). Suppose that lp is the label path from n to m in SQ[T].
Since m is a non-building-node and m appears in SQ[T] we know by Lemma 19 that
m ∈ Π3(Emin(SQ)) and hence m ∈ Emin(SQ). We also know that ARoot(SQ,m)
is a building-node, since ARoot(SQ,m) ∈ SQ[T] and ARoot(SQ,m) /∈ Π3(Emin(SQ))
(Lemma 19). Furthermore ARoot(SQ,m) 6= n because n /∈ Emin(SQ). Since we sup-
posed that m /∈ PQRN(S,Q), we now have to prove that L(SOP(pe)ALabel(SQ,m)) = ∅.
We know from the fact that SQ[T] is a document-tree, m a descendant of ARoot(SQ,m)
and Lemma 19 that the path from n to m has to go through the node ARoot(SQ,m).
For each SQ[T] the path from ARoot(SQ,m) to m is fixed and is ALabel(SQ,m). Since
there is a label path lp from n to m such that lp ∈ L(pe) (m can be in the result of
query(n, pe)) and lp always end with ALabel(SQ,m) (i.e., lp = lp′/ALabel(SQ,m) for a
given lp′), it follows from Lemma 13 that there is a lp′ ∈ L(SOP(pe)ALabel(SQ,m)), which
is a contradiction with our assumption that L(SOP(pe)ALabel(SQ,m)) is empty.

• Assume m ∈ PQRN(S,Q). From Lemma 19 and the assumption that n /∈ Emin(SQ) we
know that n is a building node. Hence it follows from ARoot(SQ,m) 6= n that for each
label path lp there is a corresponding path in EmaxI (S) from n to ARoot(SQ,m) with the
same labels. We also know that m is always in the document tree on which the query Q
gets applied in S since m ∈ Emin(SQ). From the fact that L(SOP(pe)ALabel(SQ,m)) 6= ∅}
then follows that there is a label path that we can use for a path in Emax(SQ) from n
to ARoot(SQ,m) such that m is in the result of Q. Hence there is a basic-input-tree T
such that Q applied on SQ[T] has the node m in its result set.

Lemma 21 PQRN(S,Q) can be computed in O(na(n2
a+n2

pe.(npe+na)2))-time (O(n5
S)-time)

and O(na + npe)-space (O(nS)-space).

39

Proof We start the computation of PQRN(S,Q) by computing Emin(SQ). This can be done
in O(na.log(na))-time and O(na)-space. Then we check for every node in Emin(SQ) whether
it is a non-building-node and we make a set of all non-building-nodes that appear in edges
of Emin(SQ). We need O(n2

a)-time to make this set and O(na)-space to save the result as an
intermediate result. For each node in the intermediate result, which has a size of O(na), we
compute ARoot(SQ,m) and if this root is equal to n or a non-building-node then we remove
the node from the intermediate result. The computation of ARoot(SQ,m) can be done in
O(n2

a)-time and O(na)-space (Lemma 17). Checking whether the root is a non-building-node
and comparing the root to n needs less time and space. Until now we needed O(na(n2

a))-
time and O(na)-space. All what is left, is checking whether L(SOP(pe)ALabel(SQ,m)) 6= ∅
holds. From Definition 9 follows that L(SOP(pe)ALabel(SQ,m)) is empty iff SOP(pe)ALabel(SQ,m)

is empty or L(pei) is empty for all pei ∈ SOP(pe)ALabel(SQ,m). Since we know from the
definition that the language off a path expression is never empty, it suffices to check whether
SOP(pe)ALabel(SQ,m) is empty. We do this by computing SOP(pe)ALabel(SQ,m). According to
Lemma 15 we need O(n2

pe.(npe+na)2)-time and O(npe+(log(npe+na)))-space to do this, since
nlp = O(na). Hence the computation of PQRN(S,Q) can be done in O(na(n2

a + n2
pe.(npe +

na)2))-time and O(na + npe)-space. Since both na and npe are in O(nS) we are allowed to
rewrite these results to a complexity of O(n5

S)-time and O(nS)-space.

5.3 Deciding Serializability

In order to decide whether a query Q gives the same answer in two correct schedules S1

and S2 for any basic-input-tree on which they are defined, given that their QL schedules are
equivalent, we need to define a condition CND(S1, S2, Q) and prove that this condition in
deed detects when Q gives the same answer in S1 as in S2 for every basic-input-tree of S1

and S2.

Definition 12 We define the condition CND(S1, S2, Q) as:

1. {m | there is a path of L(pe) from n to m in Emin(SQ1)} = {m | there is a path of
L(pe) from n to m in Emin(SQ2)};

2. furthermore, if n is a building-node of Si:

(a) PQRN(S1, Q) = PQRN(S2, Q)

(b) for the nodes m ∈ PQRN(S1, Q) hold that

i. ARoot(SQ1 ,m) = ARoot(SQ2 ,m)
ii. L(SOP(pe)

ALabel(SQ1 ,m)
) = L(SOP(pe)

ALabel(SQ2 ,m)
)

Lemma 22 Given two correct schedules S1 and S2 over the same set of transactions and
whose QL schedules are equivalent. Then Q gives the same answer in S1 as in S2 for every
possible basic-input-tree of S1 and S2 iff CND(S1, S2, Q) holds.

Proof We prove this lemma in two steps: first we show that if CND(S1, S2, Q) then Q =
query(n, pe) gives the same answer in S1 as in S2 for every possible basic-input-tree of S1 and
S2, and then we show the reverse.

40

• Suppose that CND(S1, S2, Q) holds. Then we consider the four cases for n in which it
is or is not in Π3(Emin(SQ1)) and/or Π3(Emin(SQ2)).

1. If n ∈ Π3(Emin(SQ1)) and n ∈ Π3(Emin(SQ2)) then we know that n is a non-
building-node of S (Lemma 19) and hence all descendants of n in SQ1 [T] and SQ2 [T]
are also non-building-nodes of S (Lemma 18). From this follows, by applying
Lemma 19, that these descendants are also in respectively Emin(SQ1) and n ∈
Emin(SQ2). For this reason and since we only allow downward axes in our queries
we know that the result of the query is always in Emin(SQi) if n ∈ Π3(Emin(SQi))
for i = 1, 2. Hence we know by the first condition of CND that the query Q has
always the same result in S1 as in S2 for any basic-input-tree of S1 and S2.

2. Suppose n ∈ Π3(Emin(SQ1)) and n /∈ Π3(Emin(SQ2)). Since n is a non-building-node
of S1 (Lemma 19) and the schedules S1 and S2 are over the same set of transactions,
we know that n is also a non-building-node of S2. But from Lemma 19 it then
follows (∀T).(n ∈ SQ2 [T] → n ∈ Π3(Emin(SQ2))) and hence (∀T).(n /∈ SQ2 [T]).
From this follows that the result of the query in S2 is always empty and hence
{m | there is a path of L(pe) from n to m in Emin(SQ1)} is also empty. From the
first part of the CND condition we then know that {m | there is a path of L(pe)
from n to m in Emin(SQ1)} is empty. It follows that also the result of Q in S1 is
always empty, since n ∈ Π3(Emin(SQ1)) and since we know that, as in the previous
item, the result of Q in S1 is always in Emin(SQ1).

3. The case for n /∈ Π3(Emin(SQ1)) and n ∈ Π3(Emin(SQ2)) is analogous to the previous
case.

4. Suppose n /∈ Π3(Emin(SQ1)) and n /∈ Π3(Emin(SQ2)). If n is a non-building-node
of S1 and S2 then we have seen in the previous parts of this proof that the result
of Q in both S1 and S2 is always empty for every basic-input-tree of S1 and S2.
Therefore suppose that n is a building-node of S1 and S2. Then any building-node
m is a node in a basic-input-tree T iff m ∈ SQ1 [T] and m ∈ SQ2 [T] (since m does
not get deleted nor added in S1 and S2). Hence it is impossible for building-nodes
to be in the result of Q for S1 and not in the result of Q for S2 (since it follows
from Lemma 18 that no non-building-nodes lie between n and a descendant that is
a building-node). For any label path we can construct a path from building-nodes
in T (and hence in SQ1 [T] and SQ2 [T]) from n to a root of EminI (S1), since the
constructed path is a subset of EmaxI (S1) Note that EminI (S1) = EminI (S2) and
EmaxI (S1) = EmaxI (S2), since the QL schedules are equivalent (Theorem 2). Since
the second part of CND tells us that PQRN(S1, Q) = PQRN(S2, Q), we know
that the set of nodes of Emin(S1) that can be in the result of Q in S1 is the same
as the set of nodes of Emin(S2) that can be in the result of Q in S2. But this does
not mean that for each of these nodes m, the set of basic-input-trees T for which
m is in the result of the query is the same for S1 and S2. The fact that these sets
are the same follows from 2.b of the CND condition, which states that m has the
same root r in Emin(SQ1) as in Emin(SQ2) and that the set of prefixes (SOP) for the
label path from r to m in SQ1 has the same language as that for the SOP for the
label path from r to m in SQ2 . We still have to note that this does not hold when
n is a root of Emin(SQ1) and hence (by the first subcondition of part 2.b of the

41

CND condition) a root of Emin(SQ2), since we don’t have the ability to construct
the paths in order to get nodes in the result of the query. But then it follows from
the first part of the CND condition that the result of the query Q is the same in
S1 and S2 for every basic-input-tree.

• Suppose that Q gives the same answer in S1 as in S2 for every possible basic-input-tree
of S1 and S2. We then have to show that both subconditions of CND(S1, S2, Q) have
to hold.

1. If {m | there is a path of L(pe) from n to m in Emin(SQ1)} 6= {m | there is a path
of L(pe) from n to m in Emin(SQ2)} then suppose (without loss of generality) that
m is a node for which there is a path of L(pe) from n to m in Emin(SQ1) and there
is no path of L(pe) from n to m in Emin(SQ1), then m is always in the result of Q
in S1 but is not always in the result of Q in S2. Since S1 and S2 are equivalent,
they are defined on the same set of basic-input-trees (Theorem 2), hence there is
a basic-input-tree for which Q gives another answer in S1 than in S2 for Q.

2. Assume n is a building-node of Si.

(a) Suppose PQRN(S1, Q) 6= PQRN(S2, Q). Then we may assume (without loss
of generality) that m ∈ PQRN(S1, Q) and m /∈ PQRN(S2, Q). We now know
by Lemma 20 that there exists a basic-input-tree T such that m is in the
result of query Q when applied to SQ1 [T] and for every basic-input-tree T it
holds that m is not in the result of query Q when applied to SQ2 [T]. This is
a contradiction with our assumption that the result of Q in S1 and S2 is the
same for any basic-input-tree.

(b) We now show for the nodes m ∈ PQRN(S1, Q) = PQRN(S2, Q) that the two
subconditions of part 2.b of the CND condition have to hold:

i. Suppose ARoot(SQ1 ,m) 6= ARoot(SQ2 ,m). Since m ∈ PQRN(S1, Q), we
know that we can construct a basic-input-tree T with a label path lp from
node n to ARoot(SQ1 ,m) such that m is in the result of Q applied on SQ1 [T]
(Lemma 20). Since ARoot(SQ2 ,m) is a building-node that is not equal to
ARoot(SQ1 ,m), we are allowed to add an edge from another building-node
to ARoot(SQ1 ,m) and n such that n and ARoot(SQ1 ,m) are siblings. Since
we only consider downward axes in our path expressions, no descendant of
ARoot(SQ2 ,m) can be in the result of the query Q on this document-tree.
Hence m is in the result for Q in SQ1 [T] but not in SQ2 [T].

ii. Suppose L(SOP(pe)
ALabel(SQ1 ,m)

) 6= L(SOP(pe)
ALabel(SQ2 ,m)

). Then sup-
pose (without loss of generality) that the label path lp is in the language
L(SOP(pe)

ALabel(SQ1 ,m)
) but not in L(SOP(pe)

ALabel(SQ2 ,m)
). This means

that we can construct a path in a basic-input-tree T with corresponding
labels lp from n to r = ARoot(SQ1 ,m) such that lp/ALabel(SQ1 ,m) ∈ L(pe)
(Lemma 13) and hence m is in the result of the query Q for SQ1 [T]. Since
lp /∈ L(SOP(pe)

ALabel(SQ2 ,m)
), it follows that m is not in the result of the

query Q for SQ2 [T] (since by Lemma 13 we know that lp/ALabel(SQ2 ,m) /∈
L(pe)).

Hence also the second subcondition of CND has to hold.

42

This concludes the proof of ‘correctness’ of CND.

Lemma 23 Given two correct schedules S1 and S2 over the same set of transactions and
whose QL schedules are equivalent. Let Q = query(n, pe) be a query in these schedules and let
na be the total number of actions in S1 and S2. It is decidable in O(na(n2

a+n2
pe.(npe+na)2))-

time (O(n5
S)-time) and O(na +npe)-space (O(nS)-space) whether Q gives the same answer in

S1 as in S2 for every possible basic-input-tree of S1 and S2.

Proof From Lemma 22 follows that we have to prove that the we can check the CND
condition in O(na(n2

a + n2
pe.(npe + na)2))-time and O(na + npe)-space. The first part of the

definition is decided in O(na.n2
pe)-time and O(log(na + npe))-space. This is a consequence of

a result in [2]. In the second part we first have to compute PQRN(S1, Q) and PQRN(S2, Q),
which can be done in O(na(n2

a + n2
pe.(npe + na)2))-time and O(na + npe)-space (Lemma 21).

Then we compare those sets, which can be done in less time and space than the computation of
PQRN, since the size of the set PQRN is at most O(na). For each element in PQRN(S1, Q)
we check whether the two subconditions hold (i.e. ARoot(SQ1 ,m) = ARoot(SQ2 ,m) and
L(SOP(pe)

ALabel(SQ1 ,m)
) = L(SOP(pe)

ALabel(SQ2 ,m)
)). The first subcondition can be checked

in O(n2
a)-time and O(na)-space (Lemma 17), the second in O(n2

pe.(npe + na)2)-time and in
O(npe + (log(npe + na)))-space (Theorem 4). Hence checking the two subconditions for all
elements of the PQRN-set can be done in O(na(n2

a + n2
pe.(npe + na)2))-time (O(n5

S)-time)
and O(na + npe)-space (O(nS)-space). This is also the total time and space complexity for
deciding whether CND holds, since the first subcondition was shown to be decidable in
O(na(n2

a + n2
pe.(npe + na)2))-time and O(na + npe)-space.

Example 8 In Example 6 we have Emin(SQ1) = {(n1, l1, n2), (n2, l2, n3)} and Emin(SQ2) =
{(n1, l1, n2)}; hence S1 and S2 are not equivalent, since 1. is not fulfilled and Q does not give
the same answer in S1 as in S2 for every possible basic-input-tree of S1 and S2.

Emin(SQ3) = {(n2, l2, n3)} and Emin(SQ4) = ∅; 1. is fulfilled; n2 is a building-node; n3 is a
non-building-node; PQRN(S3, Q) = {n3} and PQRN(S4, Q) = ∅; hence 2.(a) is not fulfilled
and Q does not give the same answer in S3 as in S4 for every possible basic-input-tree of S3

and S4.

Emin(SQ5) = {(n1, l3, n2), (n2, l2, n3)} and Emin(SQ6) = {(n1, l3, n2)}; 1. is fulfilled; n1 is a
building-node; n2 and n3 are non-building-nodes; PQRN(S5, Q) = PQRN(S6, Q) = ∅; hence
CND(S5, S6, Q) is fulfilled and Q gives the same answer in S5 as in S6 for every possible
basic-input-tree of S5 and S6.

Emin(SQ7) = {(n2, l, n3)} and Emin(SQ8) = {(n2, l1, n3)}}; 1. is fulfilled; n2 is a building-node;
n3 is a non-building-node; PQRN(S7, Q) = PQRN(S8, Q) = {n3}; ARoot(SQ7 , n3) = n2 =
ARoot(SQ8 , n3), but SOP(l/l)l = {l} 6= ∅ = SOP(l/l)l1 hence CND(S7, S8, Q) is not fulfilled
and Q does not give the same answer in S7 as in S8 for every possible basic-input-tree of S7

and S8.

Theorem 5 Given two correct schedules S1 and S2 over the same set of transactions and
whose QL schedules are equivalent. It is decidable in O(n2

a(n
2
a+n2

pe.(npe+na)
2))-time (O(n6

S)-
time) and O(na + npe)-space (O(nS)-space) whether they are equivalent, with npe the length
of the longest path expression in a query of S1 or S2.

43

Proof In order to check the equivalence of two schedules over the same set of transactions we
have to check whether their QL schedules are equivalent and whether for each query Q in both
schedules we get the same result for every basic-input-tree of S1 and S2. The first part can
be done in O(na.log(na))-time and O(na)-space (Theorem 2). Since there are at most O(na)
queries in both schedules, the second part can be decided in O(na(n2

a+n2
pe.(npe+na)2))-time

and O(na+npe)-space (Lemma 23). This results in a total complexity of O(n2
a(n

2
a+n2

pe.(npe+
na)2))-time (O(n6

S)-time) and O(na + npe)-space (O(nS)-space).

Theorem 6 Given a correct schedule S. It is decidable in O(f(nt).n2
a(n

2
a+n2

pe.(npe+na)2))-
time (O(n6

S)-time) and O(n2
a+npe)-space (O(n2

S)-space) whether S is serializable, where f(nt)
is exponential in nt.

Proof The proof of this Theorem is analogous to the proof of Theorem 3. The only difference
is that we now have to check whether the schedule corresponding to the Hamiltonian path and
S are equivalent using a different approach, since we now allow queries in S. The algorithm
is the same as in the proof of Theorem 3, except that we now use Theorem 5 in stead of
Theorem 2 to check equivalence of the schedules (this is done in the fifth substep of the
third step). Since checking the equivalence needs to be done for all Hamiltonian paths we
get a total time complexity of O(f(nt).n2

a(n
2
a + n2

pe.(npe + na)2)) (O(n6
S)) and we will need

O(n2
a + npe)-space (O(n2

S)-space) to decide the serializability.

44

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan-Kaufmann, San Francisco, 1999.

[2] G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In Sym-
posium on Principles of Database Systems, pages 65–76, 2002.

45

