
Mining Interesting Sets and Rules in Relational Databases

Bart Goethals

University of Antwerp
Department of Mathematics

and Computer Science
bart.goethals@ua.ac.be

Wim Le Page

University of Antwerp
Department of Mathematics

and Computer Science
wim.lepage@ua.ac.be

Michael Mampaey
∗

University of Antwerp
Department of Mathematics

and Computer Science
michael.mampaey@ua.ac.be

ABSTRACT
In this paper we propose a new and elegant approach toward
the generalization of frequent itemset mining to the multi-
relational case. We define relational itemsets that contain
items from several relations, and a support measure that can
easily be interpreted based on the key dependencies as defined
in the relational scheme. We present an efficient depth-first
algorithm, which mines relational itemsets directly from
arbitrary relational databases. Several experiments show the
practicality and usefulness of the proposed approach.

1. INTRODUCTION
Itemset mining algorithms are probably the most well-

known algorithms in the field of frequent pattern mining.
Many efficient solutions have been developed for this rela-
tively simple class of patterns. While the task of mining
frequent itemsets in a single relation is well-studied, only a
few solutions exist for mining frequent itemsets in arbitrary
relational databases, which typically have more than one re-
lation [4,5,9,10]. These methods consider a relational itemset
to be a set of items, where each item is an attribute-value
pair, belonging to one or more relations in the database. In
order for two or more items from different relations to be in
the same itemset, they must be connected. Two items are
considered to be connected if there exists a join of their two
relations in the database that connects them. In general,
an itemset is said to occur in the database, if there exists a
tuple in a join of the relations, which contains the itemset.
In this paper we also adopt this notion of occurrence.

A good definition of a unit in which the support of a pat-
tern is expressed — i.e. what is being counted — is a primary
requirement to mine any type of frequent pattern. In existing
works on relational itemset mining [4,9,10], the frequency of
an itemset over multiple relations is expressed in the number

†An extended version of this paper is available at [7].
∗Michael Mampaey is supported by the Institute for the
Promotion of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

of occurrences in a join of the database’s relations. However,
this definition of itemset support is hard to interpret, because
it heavily depends on how well the items in the set are con-
nected. In this paper, we assume that key dependencies are
specified in the relational scheme of the input database. We
determine the support of an itemset by counting unique key
values in the tuples where the itemset occurs. Consider the
relational database in Figure 1, which we will use as a run-
ning example throughout the paper. For this database, the
keys to be used are {Professor.PID, Course.CID, Student.SID,
Study.YID}. This new support counting technique allows for
interpretable frequent itemsets, as it goes without saying that
itemsets frequent in Professor.PID have different semantics
than itemsets frequent in Course.CID. This approach permits
an efficient depth-first algorithm that generates interesting
frequent relational itemsets that are easy to understand.

2. DEFINITIONS
Before formally defining relational itemsets, we first con-

sider the relational scheme as it forms the basis of our defini-
tion of patterns.

2.1 Relational Scheme
Every relational database has a relational scheme. For the

sake of clarity, we focus on simple relational schemes. More
specifically, we consider acyclic schemes using only binary
relations, i.e. schemes that can be represented as an unrooted
tree. Let sort be a function that maps a relation name to its
attributes [1]. We define such schemes as follows.

Definition 1. Let E be a set of entities and R a set of
binary relations. A simple relational scheme is a tuple
(E ,R) such that

1. ∀E ∈ E : ∃!key(E) ⊆ sort(E), the key attributes of E

2. ∀R ∈ R : ∃!Ei, Ej ∈ E , Ei 6= Ej such that sort(R) =
key(Ei) ∪ key(Ej)

3. ∀Ei, Ej ∈ E : ∃!E1, . . . , En ∈ E such that

(a) E1 = Ei and En = Ej

(b) ∀k, l : if k 6= l then Ek 6= El

(c) ∀k, ∃!R ∈ R : sort(R) = key(Ek) ∪ key(Ek+1)

Informally, this states that every entity needs to have
a unique key, and that for every two entities there is a
unique path of binary relations and entities connecting them.
Many realistic relational databases satisfy such simple rela-
tional schemes. Moreover, databases with star schemes and
snowflake schemes can be formulated in this way.

2.2 Relational Itemsets
We are now ready to formally define the type of pattern

we want to mine.

Definition 2. Given a simple relational scheme (E ,R),
the set {(A1 = v1), . . . , (An = vn)}K is a relational itemset
in key K where K ∈

S
E∈E{key(E)}, each (Ai = vi) is an

attribute-value pair (or item) such that Ai ∈
S

E∈E sort(E)
and vi ∈ Dom(Ai), and there is no (Aj = vj) with j 6= i such
that Aj = Ai. We denote the set of all items by I.

Given the relational database in Figure 1, let us abbreviate
the relation names to P, C, Stnt and Stdy. The relational
itemset {(P.Name = Jan), (C.Credits = 10)}C.ID describes
courses that have 10 credits and that are taught by professors
named Jan, since C.ID is the key of the Courses relation, and
professors can only be connected to courses in one way, via
the relation Teaches.

Next, we define the support measure for relational itemsets.
In order to do this we need to consider the unique path of
entities and relations connecting an itemset’s entities.

Proposition 1. Given a simple relational scheme (E ,R),
and a relational itemset IK = {(A1 = v1), . . . , (An = vn)}K ,
let EIK = {E ∈ E | key(E) = K or ∃i : Ai ∈ sort(E)}. There
exists a unique path PIK connecting all entities E ∈ EIK .

Definition 3. Given an instance of a simple relational
scheme (E ,R), the absolute support of a relational itemset
IK = {(A1 = v1), . . . , (An = vn)}K is the number of distinct
values of the key K in the answer of the query (expressed
here in relational algebra [1]):

πKσA1=v1,...,An=vnE1 1key(E1)R1,2 1key(E2)E2 1 . . .1Em

where Ei 1key(Ei)Ri,i+1 represents the equi-join on Ei.key(Ei)
= Ri,j .key(Ei) and all Ei ∈ EIK are joined using the unique
path PIK . We call the result of this query the KeyID list of
IK . The relative support of an itemset is the absolute sup-
port of that itemset divided by the number of distinct values
of K in the entity E of which K is the key, i.e. the number
of tuples in E. A relational itemset is called frequent if its
support exceeds a given minimal support threshold.

Proposition 2. The support measure defined above is
monotonic with respect to set inclusion, i.e. for all keys K
and for all itemsets IK , JK it holds that

IK ⊆ JK ⇒ supp(IK) ≥ supp(JK).

The absolute support of the itemset {(C.Credits = 10)}P.PID

is 6, since the answer to the query πP.PIDσC.Credits=10P 1PID

Teaches 1CID C is {A,B,C,D,G,I}. This means that six pro-
fessors teach a course with 10 credits. The relative support
is 6/9, as there are nine professors in the Professor relation.

2.3 Relational Association Rules
Association rules are defined just as in standard itemset

mining. The only restriction is that the antecedent and the
consequent need to be expressed in the same key.

Definition 4. Let IK be the set of all relational items in
key K. The rule A⇒K C is a relational association rule
in key K if A,A ∪ C ⊆ IK .

Professor

PID Name Surname

A Jan P

B Jan H

C Jan VDB

D Piet V

E Erik B

F Flor C

G Gerrit DC

H Patrick S

I Susan S

Student

SID Name Surname

1 Wim LP

2 Jeroen A

3 Michael A

4 Joris VG

5 Calin G

6 Adriana P

Teaches

PID CID

A 1

A 2

B 2

B 3

C 4

D 5

D 6

E 7

F 8

G 9

G 10

G 11

I 11

Takes

SID CID

1 1

1 2

2 1

3 1

4 3

5 2

6 11

Course

CID Credits Project

1 10 Y

2 10 N

3 20 N

4 10 N

5 5 N

6 10 N

7 30 Y

8 30 Y

9 10 N

10 10 N

11 10 N

Studies

SID YID

1 I

2 I

3 I

4 II

5 II

6 II

Study

YID Name

I Computer Science

II Mathematics

Full Outer Join

tid P.PID P.Name P.Surname C.CID C.Project C.Credits S.SID S.Name S.Surname Y.YID Y.Name

1 A Jan P 1 Y 10 1 Wim LP I Computer Science

2 A Jan P 1 Y 10 2 Jeroen A I Computer Science

3 A Jan P 1 Y 10 3 Michael A I Computer Science

4 A Jan P 2 N 10 1 Wim LP I Computer Science

5 A Jan P 2 N 10 5 Calin G II Mathematics

6 B Jan H 2 N 10 1 Wim LP I Computer Science

7 B Jan H 2 N 10 5 Calin G II Mathematics

8 B Jan H 3 N 20 4 Joris VG II Mathematics

9 C Jan VDB 4 N 10 NULL NULL NULL NULL NULL

10 D Piet V 5 N 5 NULL NULL NULL NULL NULL

11 D Piet V 6 N 10 NULL NULL NULL NULL NULL

12 E Erik B 7 Y 30 NULL NULL NULL NULL NULL

13 F Flor C 8 Y 30 NULL NULL NULL NULL NULL

14 G Gerrit DC 9 N 10 NULL NULL NULL NULL NULL

15 G Gerrit DC 10 N 10 NULL NULL NULL NULL NULL

16 G Gerrit DC 11 N 10 6 Adriana P II Mathematics

17 H Patrick S NULL NULL NULL NULL NULL NULL NULL NULL

18 I Susan S 11 N 10 6 Adriana P II Mathematics

Professor ! Teaches

P.PID P.Name P.Surname C.CID

A Jan P 1

A Jan P 2

B Jan H 2

B Jan H 3

C Jan VDB 4

D Piet V 5

D Piet V 6

E Erik B 7

F Flor C 8

G Gerrit DC 9

G Gerrit DC 10

G Gerrit DC 11

H Patrick S NULL

I Susan S 11

Figure 1: Example of an instance of a simple rela-
tional scheme.

Definition 5. The support of A ⇒K C is the support
of (A ∪ C)K . The confidence of A⇒K C is the support of
(A ∪ C)K divided by the support of AK .

Given Figure 1, an example of a relational association
rule is {(P.Name = Jan)} ⇒C.CID {(C.Credits = 10)}. The
confidence is 3/4 = 0.75 since there are three courses {1,2,4}
taught by a ‘Jan’ that have ten credits, compared to the four
courses {1,2,3,4} taught by a ‘Jan’ in total. The relative
support is 3/11 = 0.27 since there are eleven courses.

3. ALGORITHM: SMURFIG
In this section we present two algorithms for mining rela-

tional itemsets. We first construct a naive algorithm based on
the computation of the full outer join. Then we present the
SMuRFIG algorithm (Simple Multi-Relational Frequent
Itemset Generator). Both algorithms employ KeyID lists,
similar to the tid (transaction identifier) lists used in the
well-known Eclat algorithm [12].

First, we consider the naive approach. The input of the
Naive algorithm is an instance of a simple relational scheme
and a relative support threshold minsup. The support query
from Definition 3 is straightforwardly decomposed into three
parts, i.e. a join, a selection, and a projection. First, a join
table J is constructed, in which the correct supports are to
be found. However, this join is different for each itemset, and
performing all such possible joins is infeasible. Instead, we
create a single large join table using all entities and relations.
To construct J , we cannot use an equi-join. Indeed, if a tuple
is not connected to any tuples in other tables, it does not
appear in the full equi-join of all entity tables, which means
we lose some information. To avoid this, we combine the
entities and relations using a full outer join, which combines
all non-connected tuples with NULL-values.

Then, a standard frequent set miner, Eclat, is applied to J
using a new threshold. Rather than using the relative support
threshold minsup, we must use a new absolute threshold
abssup = minsup×minE |E| for J . The absolute support of
an itemset in J is at least as high as the absolute support
of that itemset for any key K, so any itemset frequent in
some key K with respect to minsup will also be frequent
in J with respect to abssup. In a way, the Eclat algorithm

fulfills the role of the select clause (σ) of the support query.
We assume that the tid lists of the itemsets (the lists of
tuples of J where the itemsets occur) are accessible to us.
Finally, these tid lists are translated to their appropriate
KeyID lists. Translating a tid list T to a KeyID list comes
down to performing the projection πK(J 1 T) to each key
K. This can be done efficiently by using lookup tables that
can be created during the construction of J . At the end,
the relative minimum support threshold is imposed for each
itemset’s KeyID list, and the frequent itemsets are reported.

The advantage of the Naive algorithm is that it can be
implemented as a wrapper around an existing itemset min-
ing algorithm. However, the computation of the full outer
join can be expensive in both time and memory, making it
infeasible to use on larger databases. Moreover, too many
candidates are generated. We can only prune itemsets that
are infrequent with respect to abssup, but many candidate
sets that are frequent in J may turn out to be infrequent for
all keys K with respect to the minsup threshold.

The SMuRFIG algorithm (see Algorithm 1) does not suffer
from these disadvantages, i.e. it is efficient in both time and
memory. It uses the concept of KeyID list propagation. First,
the KeyID lists of all items are fetched from the data in their
respective entities (Line 3), and then these KeyID lists are
propagated to all other entities (Line 5). The propagation
function recursively translates a KeyID list from one entity
Ei to its adjacent entities Ej , until all entities are reached.
Translating a KeyID list Ti from Ei to Ej via Ri,j is equiv-
alent to executing the relational query πkey(Ej)(Ti 1 Ri,j).
It is easy to verify that we now have the KeyID lists of all
items for all keys K, and hence their supports.

Next, the (frequent) singleton itemsets are combined into
larger sets by the Keyclat function (Algorithm 2), which is
the core of SMuRFIG. The search space is traversed depth-
first. In each recursion, two k-itemsets I ′ and I ′′ with a
common prefix P (initially empty) are combined to form a
new candidate set I = I ′ ∪ I ′′ of size k + 1. To compute the
support of I, we first determine that the entity tables of the
suffixes of I ′ and I ′′ are E1 and E2 (Line 4). We intersect the
KeyID lists of I ′ and I ′′ in E1 and E2, to obtain the support
of I in E1 and E2 (Line 7), and then these KeyID lists are
propagated to all other entities (Line 8). For these remaining
entities E with key K, it does not necessarily hold that
KeyIDs(I ′K) ∩KeyIDs(I ′′K) results in KeyIDs(IK). We must
additionally intersect this with the propagated KeyID lists,
in order to obtain the final KeyID list of IK in E (Line 11).
Some further optimizations, as well as a proof of correctness
of SMuRFIG are provided in [7].

Algorithm 1 SMuRFIG: Relational itemset miner

Input: An instance of a simple relational scheme (E ,R);
relative support threshold minsup

Output: Set F of all frequent itemsets I
1: for all E ∈ E do
2: K := key(E)
3: IE := Singletons(E)
4: for all IK ∈ IE do
5: Propagate(KeyIDs(IK))
6: if ∃K′ : supp(IK′) ≥ minsup× |E| then
7: I := I ∪ {I}
8: F := Keyclat(I, minsup)
9: return F

Algorithm 2 Keyclat: computation of itemsets’ KeyID lists

Input: Set of k-itemsets LP having a common prefix P ;
relative support threshold minsup

Output: Set F of frequent itemsets I with prefix P
1: for I ′ in LP do
2: for I ′′ in LP with I ′′ > I ′ do
3: I := I ′ ∪ I ′′
4: E1, E2 := entity of suffix items I ′ \ P, I ′′ \ P resp.
5: for i ∈ {1, 2} do
6: Ki := key(Ei)
7: KeyIDs(IKi) := KeyIDs(I ′Ki

) ∩KeyIDs(I ′′Ki
)

8: pKeyIDsi(I) := Propagate(KeyIDs(IKi))
9: for E ∈ E \ {E1, E2} do

10: K := key(E)
11: KeyIDs(IK) := pKeyIDs1(IK) ∩ pKeyIDs2(IK)

∩ KeyIDs(I ′K) ∩KeyIDs(I ′′K)
12: supp(IK) := |KeyIDs(IK)|
13: if supp(IK) ≥ minsup× |E| then
14: FI′ := FI′ ∪ IK

15: F := F ∪ FI′ ∪Keyclat(FI′ ,minsup)
16: return F

The time complexity of SMuRFIG is as follows. Per
itemset at most three intersections are required for each
entity E, taking O(

P
E∈E |E|), where |E| is the number

of tuples in E. The propagation function is executed at
most twice and uses each relation R once, amounting to
O(
P

R∈R |R|). Hence, the time complexity of SMuRFIG is
O (|F| · size(DB)), where |F| is the total number of frequent
itemsets and size(DB) =

P
E∈E |E|+

P
R∈R |R| is the size

of the database. SMuRFIG only requires a small amount of
patterns to be stored in memory simultaneously. When an
itemset of length k is generated, we have (k2 + k)/2 previous
itemsets in memory due to the depth-first traversal. For each
of these itemsets, KeyID lists are stored for all keys. The
maximal total size of these lists for one itemset is

P
E∈E |E|.

Next to this, we also keep all relations R in memory, which
are needed in the propagation function. To sum up, if l is the
size of the largest frequent itemset, then SMuRFIG’s worst
case memory consumption is O

`
l2 ·
P

E∈E |E|+
P

R∈R |R|
´
.

4. SUPPORT DEVIATION
The relational setting that we are considering also brings

additional challenges. For instance, let us consider the item-
set {(C.project = Y)}S.SID having a support of 67%. For a
lower support threshold this would be a frequent itemset,
but it is not necessarily an interesting one. Suppose that we
also find that {(C.project = Y)} holds for 30% of the courses.
Depending on the connectedness of students and courses, a
support of 67% could even be the expected value. For exam-
ple, if students typically take one course then the expected
support (if one assumes no bias) would be 30%. However, if
they take two courses each, it rises to 51.2%, for three courses
this becomes 66.1%, etc. So in the case of an average of three
courses per student, a support of 67% is expected, and thus
we could consider this pattern to be uninteresting. Hence, in
order to determine if {(C.project = Y)}S.SID is interesting, we
use the connections and the support in C.CID to compute
the expected support of {(C.project = Y)}S.SID, and we discard
the itemset if its real support does not deviate substantially
from its expected support.

To formalize this notion, we start off by only considering
intra-entity itemsets, i.e. relational itemsets IK consisting
of items from a single entity E with key K. We only want
to find those frequent itemsets IK′ where the support in K′

deviates enough from the expected support in K′. We now
formally define expected support in our context (based on
the general definition of expected value) as follows.

Definition 6. Let IK ⊆ I be an intra-entity itemset con-
taining items from a single entity E with key K, and let
K′ be the key of some other entity E′. Then the expected
absolute support of IK′ , given that supp(IK) = s, equals

E[supp(IK′)|supp(IK) = s] =

k′X
i=1

1−

di−1Y
j=0

„
1− s

k − j

«!

where k = |E|, k′ = |E′|, and di is the degree of the i-th
tuple in E′, i.e. the number of tuples in E that tuple i is
connected to.

The derivation of this formula is omitted due to the lack
of space, but can be found in [7]. Using this definition of
expected support, we formally introduce deviation.

Definition 7. Given an itemset IK ⊆ I, let EK be the
entity of key K. We define the deviation of IK as

|sup(IK)− E[sup(IK)]|
|EK |

.

Our goal is to find frequent relational itemsets with a given
minimal deviation, in order to eliminate redundant relational
itemsets. An experimental evaluation can be found in the
next section. Note that we restricted ourselves to a special
case of intra-entity itemsets. In order to generalize deviation
and expected support to itemsets containing attributes from
multiple entities, which we refer to as inter-entity itemsets, it
is necessary to generalize the definition of itemset support to
allow sets of keys. This would also entail substantial changes
to our algorithm and is therefore part of our future work.

5. EXPERIMENTS
In this section we consider a summary of the results of

several experiments we performed on real world databases.
A more extensive experimental evaluation can be found in [7].
The SMuRFIG algorithm1 was implemented in C++, and
run on a system with a 2.16 GHz processor and 2GB RAM.

First, we consider a snapshot of the student database from
the University of Antwerp’s Computer Science department.
The scheme roughly corresponds to the one of Figure 1.
There are 174 courses, 154 students and 40 professors, 195
links between professors and courses, and 2949 links between
students and courses. The second database comes from
the KDD-Cup 20032, and comprises a large collection of
High Energy Physics (HEP) papers. It consists of HEP
papers linked to authors, journals, and also to other papers
(citations). It contains 2543 papers, 23621 authors and 76
journals, and there are 5012 connections between authors
and papers, plus 458 links from papers to journals.

1http://www.adrem.ua.ac.be/
2http://kdl.cs.umass.edu/data/

5.1 Patterns
Several interesting patterns were discovered in the Student

database, and we now discuss a few of them. We found
{(S.Study = 1-MINF-DB)}P.PID with a support of 63%, stating
that 63% of the professors teach a course that is taken by
students of 1-MINF-DB. We also find this pattern with a differ-
ent key {(S.Study = 1-MINF-DB)}S.SID with a support of 7%,
telling us that only 7% of the students belong to 1-MINF-DB.
This is a clear example of the merit of key-based frequency.
Some patterns found in the HEP database include the fol-
lowing association rules: {(earliest year=2002)} ⇒paper.id

{(published=false)} and {(earliest year=2003)} ⇒paper.id

{(published=false)} with respectively 60% and 93% confi-
dence. Since the dataset is from the 2003 KDD-Cup, this
tells us that most recently submitted papers (earliest year
> 2002) are not yet published. These examples demonstrate
that relational itemsets and rules with key-based frequency
allow us to find interesting, easily interpretable patterns.

5.2 Performance
We experimentally evaluated the performance of the Naive

and SMuRFIG algorithms on the Student and HEP datasets,
gradually varying the minimum support threshold. In our
experiments we also ran a standard categorical Eclat algo-
rithm [3] on the full outer join table, an approach taken in
previous works. The number of patterns and the runtimes are
reported below. In Figure 2a we see that the Eclat algorithm
applied directly to the join table finds far fewer patterns than
SMuRFIG (and Naive which mines the same patterns) on
both the Student and HEP databases. Since the (relative)
minimum support threshold is set against the size of the full
outer join of the database and not the size of an individual
table, an itemset must be very connected to have a high
support in this join. Clearly, many interesting patterns that
are not highly connected will be discarded this way. Apart
from this, the support of an itemset in this join table is of
course less interpretable. The runtimes reported in Figure 2b
clearly indicate that the Naive algorithm takes a lot more
time than SMuRFIG, often up to an order of magnitude or
more. Although SMuRFIG performs more operations per
itemset than Naive does, the latter operates on an extremely
large data table, while SMuRFIG works with smaller tables
from the original database. Note that SMuRFIG is also
faster than Eclat on the join table, even though the latter
finds far fewer patterns. To evaluate the deviation measure
we carried out experiments on the Student DB with varying
support and deviation thresholds. As is apparent in Fig-
ure 2c, increasing the deviation threshold effectively reduces
the number of itemsets. Scalability experiments confirming
our complexity analysis are reported in [7].

6. RELATED WORK
Our work is related to more general frequent query mining

algorithms such as Conqueror [8] and Warmr [6]. Since the
pattern types considered there are more general and complex,
and especially since they use different support measures, a
direct and fair comparison cannot easily be made. On the
other hand, we are not aware of many approaches considering
the more specific case of (categorical) itemsets in a multi-
relational setting. Koopman and Siebes’ R-KRIMP [9], and
Crestana-Jensen and Soparkar’s algorithm [4] both use the
number of occurrences of the itemset in the join of all tables as
the support measure. This is done without fully computing or

0 0.2 0.4 0.6 0.8

100

101

102

103

104

105

106

minimal support

n
u
m

b
er

o
f

p
a
tt

er
n
s

SMuRFIG on Student DB

Eclat on FOJ of Student DB

SMuRFIG on HEP DB

Eclat on FOJ HEP DB

(a) Student and HEP DB: Number
of patterns

0 0.1 0.2 0.3 0.4

101

102

103

minimal support

ti
m

e
(s

)

Naive

Eclat on full outer join

SMuRFIG

(b) HEP DB: Runtime

0 0.2 0.4 0.6

102

103

104

105

106

minimal support

n
u
m

b
er

o
f

p
a
tt

er
n
s

no deviation

0.1 deviation

0.2 deviation

0.3 deviation

(c) Student DB: Results of pruning
itemsets for varying minimal deviation

Figure 2: Experimental Results for the Student and HEP Databases.

at least storing this join. Some existing techniques are used;
Crestana-Jensen and Soparkar is based on Apriori [2] and
R-KRIMP is based on KRIMP [11], both with the addition of
some case-specific optimizations. These algorithms return the
same results as Apriori (∼KRIMP) run on the full join. This
is not the case for our algorithm, since we compute supports
simultaneously for multiple keys. Furthermore, compared to
the two-phased approach of Crestana-Jensen and Soparkar,
the computation of intra- and inter-entity itemsets is merged
in our algorithm, and is performed in a depth-first manner.
Ng et al. [10] focus on star schemes, in which case the join
table is essentially already materialized as the fact table. This
approach closely mirrors the two-phased method of Crestana-
Jensen and Soparkar, but adds some optimizations specific
to star schemes. None of these relational mining techniques
take into consideration the semantic consequences of the
blow-up that occurs in the joining of all tables. Cristofor and
Simovici [5] do define a support measure similar to ours called
entity support. For those itemsets consisting of attributes
from a single entity, next to the join support, they also
consider the support in the number of unique tuples of that
entity. In other words, they do consider KeyID-based support,
but only for inter-entity itemsets and only in the key of that
entity. Furthermore, their proposed Apriori-based algorithm
is only defined for star schemes, and explicitly computes
joins, which does not scale well to larger databases.

7. CONCLUSIONS AND FUTURE WORK
In this paper we defined frequent relational itemsets using

a novel support measure, based on the keys of the relational
database scheme. We implemented an efficient depth-first
propagation-based algorithm for mining these frequent rela-
tional itemsets. Our experiments showed that the SMuRFIG
algorithm performs well on real datasets, is scalable, and
is capable of finding interesting patterns. This stands in
contrast with most existing work, where the support mea-
sure being used is unintuitive or inefficient to compute. In
addition, we defined the deviation measure in order to ad-
dress the statistical pattern blow-up that is specific to the
relational context. Part of our future work is to study this
measure further and extend it to inter-entity itemsets.

For the sake of clarity, we restricted ourselves to simple
schemes. This already allows us to mine a large collection
of databases (or parts thereof), and can result in interesting

discoveries, as we have seen in Section 5. Preliminary exper-
iments show that some small extensions to our definitions
allow us to find more complex patterns while only suffer-
ing a small loss of efficiency. The study of the algorithmic
implications of such extensions is part of our future work.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proceedings of ACM SIGMOD 1993,
pages 207–216, 1993.

[3] T. Calders, B. Goethals, and M. Mampaey. Mining
itemsets in the presence of missing values. In
Proceedings of ACM SAC 2007, pages 404–408, 2007.

[4] V. Crestana-Jensen and N. Soparkar. Frequent itemset
counting across multiple tables. In Proceedings of
PAKDD 2000, pages 49–61, 2000.

[5] L. Cristofor and D. Simovici. Mining association rules
in entity-relationship modeled databases. Technical
Report, University of Massachusetts Boston, 2001.

[6] L. Dehaspe and H. Toivonen. Discovery of frequent
datalog patterns. Data Mining and Knowledge
Discovery, 3(1): pages 7–36, 1999.

[7] B. Goethals, W. Le Page, and M. Mampaey. Mining
interesting sets and rules in relational databases.
Technical Report 09.02, University of Antwerp, 2009.

[8] B. Goethals, W. Le Page, and H. Mannila. Mining
association rules of simple conjunctive queries. In
Proceedings of SDM 2008, pages 96–107, 2008.

[9] A. Koopman and A. Siebes. Discovering relational item
sets efficiently. In Proceedings of SDM 2008, pages
108–119, 2008.

[10] E. Ng, A. Fu, and K. Wang. Mining association rules
from stars. In Proceedings of ICDM 2002, pages
322–329, 2002.

[11] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets
that compress. In Proceedings of SDM 2006, pages
393–404, 2006.

[12] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In Proceedings of KDD 1997, pages 283–286, 1997.

