
FP-Bonsai:
the Art of Growing and Pruning Small FP-Trees

Francesco Bonchi1 and Bart Goethals2

1 Pisa KDD Laboratory, ISTI - CNR, Area della Ricerca di Pisa, Italy
2 HIIT - BRU, Dept. of Computer Science, University of Helsinki, Finland

Abstract. In the context of mining frequent itemsets, numerous strate-
gies have been proposed to push several types of constraints within the
most well known algorithms. In this paper, we integrate the recently
proposed ExAnte data reduction technique within the FP-growth algo-
rithm. Together, they result in a very efficient frequent itemset mining
algorithm that effectively exploits monotone constraints.

1 Introduction

The problem of how to push different types of constraints into the frequent item-
sets computation has been extensively studied [5, 6, 3]. However, while pushing
anti-monotone constraints deep into the mining algorithm is easy and effective,
the case is different for monotone constraints. Indeed, anti-monotone constraints
can be used to effectively prune the search space to a small downward closed
collection, while the upward closed collection of the search space satisfying the
monotone constraints cannot be pruned at the same time. Recently, it has has
been shown that a real synergy of these two opposite types of constraints exists
and can be exploited by reasoning on both the itemset search space and the
input database together, using the ExAnte data-reduction technique [2]. This
way, pushing monotone constraints does not reduce anti-monotone pruning op-
portunities, but on the contrary, such opportunities are boosted. Dually, pushing
anti-monotone constraints boosts monotone pruning opportunities: the two com-
ponents strengthen each other recursively. This idea has been generalized in an
Apriori-like computation in ExAMiner [1].

In this paper we show how this synergy can be exploited even better within
the well known FP-growth algorithm [4]. Thanks to the recursive projecting ap-
proach of FP-growth, the ExAnte data-reduction is pervasive all over the compu-
tation. All the FP-trees built recursively during the FP-growth computation can
be pruned extensively by using the ExAnte property, obtaining a computation
with a smaller number of smaller trees. We call such a tiny FP-tree, obtained by
growing and pruning, an FP-bonsai.

The resulting method overcomes on one hand the main drawback of FP-
growth, which is its memory requirements, and on the other hand, the main
drawback of ExAMiner which is the I/O cost of iteratively rewriting the reduced
datasets to disk.



2 Preliminaries

Let I = {x1, ..., xn} be a set of items. An itemset X is a non-empty subset
of I. A transaction is a couple 〈tid , X〉 where tid is the transaction identifier
and X is an itemset. A transaction database D is a set of transactions. An
itemset X is contained in a transaction 〈tid , Y 〉 if X ⊆ Y . The support of an
itemset X in database D, denoted by suppD(X) is the number of transactions
in D that contain X. Given a user-defined minimum support σ, an itemset X
is called frequent in D if suppD(X) ≥ σ. The frequent itemset mining problem
requires to compute the set of all frequent itemsets.A constraint on itemsets is
a function C : 2I → {true, false}. We say that an itemset I satisfies a constraint
if and only if C(I) = true. Let Th(C) = {X | C(X) = true} denote the set
of all itemsets X that satisfy constraint C. In general given a conjunction of
constraints C the the constrained frequent itemsets mining problem requires to
compute Th(Cfreq) ∩ Th(C), where Cfreq is the frequency constraint.

In particular we focus on two kinds of constraint: a constraint CAM is anti-
monotone if CAM (X) ⇒ CAM (Y ) for all Y ⊆ X; a constraint CM is monotone
if: CM (X) ⇒ CM (Y ) for all Y ⊇ X. Since any conjunction of anti-monotone
constraints is an anti-monotone constraint, and any conjunction of monotone
constraints is a monotone constraint, we consider without loss of generality the
conjunction Cfreq ∩ Th(CM ) where CM is a simple monotone constraint such as
sum(X.prices) ≥ n.

The recently introduced ExAnte method [2] exploits monotone constraints in
order to to reduce the input database and thus to prune the search space. This
method is based on the synergy of the following two data-reduction operations:
(1) µ-reduction, which deletes transactions in D which do not satisfy CM ; and (2)
α-reduction, which deletes from all transactions in D singleton items which do
not satisfy Cfreq . The ExAnte property states that a transaction which does not
satisfy the given monotone constraint can be deleted from the input database (µ-
reduction) since it will never contribute to the support of any itemset satisfying
the constraint. A major consequence of reducing the input database in this way
is that it implicitly reduces the support of a large amount of itemsets. As a
consequence, some singleton items can become infrequent and can not only be
removed from the computation, but they can be deleted from all transactions
in the input database (α-reduction). This removal also has another positive
effect. That is, the reduced transaction might violate the monotone constraint.
Obviously, we are inside a loop where two different kinds of pruning (α and
µ) cooperate to reduce the search space and the input dataset, strengthening
each other step by step until no more pruning is possible (a fix-point has been
reached). This is the key idea of the ExAnte preprocessing method [2]. In the
end, the reduced dataset resulting from this fix-point computation is usually
much smaller than the initial dataset

Given a transaction database D, a conjunction of monotone constraints CM ,
and a conjunction of anti-monotone constraints CAM , we define the reduced
dataset obtained by the fix-point application of µ and α pruning as: µ+

CAM ,CM
(D).



3 FP-Bonsai

The FP-growth algorithm [4] stores the actual transactions from the database in
a trie structure (prefix tree), and additionally stores a header table containing
all items with their support and the start of a linked list going through all
transactions that contain that item. This data structure is denoted by FP-tree
(Frequent-Pattern tree) [4]. For example, consider the transaction database in
Figure 2(a) and a minimal support threshold of 4. First, all infrequent items are
removed from the database, all transactions are reordered in support descending
order and inserted into the FP-tree, resulting in the tree in Figure 2(b).

Given a transaction database D and a minimal support threshold σ, we
denote the set of all frequent itemsets with the same prefix I ⊆ I by F [I](D, σ).
FP-growth recursively generates for every singleton item {i} ∈ Th(Cfreq) the set
F [{i}](D, σ) by creating the so called i-projected database of D. This database,
denoted Di, is made of all transactions in D containing i, from which i and all
items which come before i, w.r.t. the support descending order, are deleted. This
i-projected database, which is again stored as an FP-tree, is recursively mined
by FP-growth. The FP-growth algorithm is shown in Figure 1.

Algorithm FP-growth

Input: D, σ, I ⊆ I
Output: F [I](D, σ)
F [I] := {}
for all i ∈ I occurring in D do
F [I] := F [I] ∪ {I ∪ {i}}
H := {};Di := {}
for all j ∈ I occurring in D such that
j > i do

if suppD(I ∪ {i, j}) ≥ σ then
H := H ∪ {j}

for all (tid , X) ∈ D with i ∈ X do
Di := Di ∪ {(tid, X ∩H)}

Compute F [I ∪ {i}](Di, σ)
F [I] := F [I] ∪ F [I ∪ {i}]

Algorithm FP-pruning

Input: D, CAM , CM , I
Output: µ+

CM ,CAM
[D]

repeat
// µ-pruning of D
for all transactions t occurring in D
do

if CM (I ∪ t) = false then
Remove t from D

// α-pruning of D
for all items i occurring in D do

if CAM (I ∪ {i}) = false then
Remove i from D

until nothing changed

Fig. 1. The FP-growth and FP-pruning algorithms.

The main trick exploited in FP-growth is that it only needs to find all singleton
frequent itemsets in the given database. Then, for every such item, it creates
the corresponding projected database in which again, only the (local) singleton
frequent itemsets have to be found. This process goes on until no more (local)
items exist. The FP-tree structure guarantees that all this can be done efficiently.
In this way, FP-growth implicitly creates a lot of databases, represented by FP-
trees. The good news is that all these datasets (trees) can be reduced (pruned)
using the ExAnte technique. We call such a pruned FP-tree an FP-bonsai.

The FP-pruning procedure is shown in Figure 1. In order to obtain the com-
plete algorithm that finds all itemsets satisfying the given constraints, the FP-
pruning algorithm should be called before the first line of the FP-growth al-
gorithm. The fact that the database is stored as an FP-tree is not specifically



mentioned. That is because this is actually not necessary, but the FP-tree is sim-
ply the most effective data structure for these algorithms to use. How the pruning
mechanisms can be effectively applied on the FP-tree structure is described by
the following Example.

(a) (b)

tID Itemset

1 b,c,d,g
2 a,b,d,e
3 b,c,d,g,h
4 a,e,g
5 c,d,f,g
6 a,b,c,d,e
7 a,b,d,f,g,h
8 b,c,d
9 b,e,f,g

e

a

c

g

d

b

4

4

5

6

7

7

c:2

g:3

e:1

c:2

e:1

a:1

d:6

e:1

g:1

b:7

g:1

c:1

d:1 g:1

e:1

a:1

null

a:1a:1

Header Table

Item

Node−Link

Support

null

b:5 d:1

g:1

c:1c:2g:2

c:2

d:5

c

b
d
g

5
6
3
5

Item

Support

Node−Link

Item

Support

Node−Link

c

b
d
g

5
6
3
5

null

b:5 d:1

d:5 c:1

c:4

b:5

d:5

c:4

null

Item

Support

Node−Link

c

b
d
g

5

3
5

4

(c) (d) (e)

Fig. 2. A transaction database (a), the corresponding FP-tree for minimal support
threshold of 4 (b), the initial FP-bonsai for Example 1 (c), the FP-bonsai after the
removal of item g (d), and (e) the final FP-bonsai.

Example 1. Consider again the transactional database in Figure 2(a) and the
price-table: {a : 5, b : 8, c : 14, d : 30, e : 20, f : 15, g : 6, h : 12}. Suppose that we
want to compute itemsets with support no less than 4 and sum of prices no less
than 45. The FP-bonsai construction starts with a first scan of D to count the
support of all singleton items. Note that transaction 4 is not used since it does
not satisfy the monotone constraint. This causes item a and e to be infrequent
and are not included in the header table. Frequent items are ordered in support
descending order and the tree is built as seen in Figure 2(c). At this point we
find that the item g is no longer frequent than we remove all its occurrences
in the tree using the link-node structure. The resulting pruned tree is in Figure
2(d). This α-pruning has created a new opportunity for µ-pruning. in fact, the
path on the right edge of the tree does no longer satisfy the monotone constraint
and hence it can be removed from the tree. In Figure 2(e) we have the final
FP-bonsai (the fix-point has been reached) for the given problem. Note the the
final size of the FP-bonsai is 3 nodes (which represents the unique solution to
the given problem: itemset bcd with support = 4 and sum of prices = 52, while
the size of the usual FP-tree for the same problem (Figure 2(b)) is 18 nodes!



Once the FP-bonsai has been built (i.e. once the fix-point of α and µ pruning
has been reached) we can efficiently mine all frequent itemsets satisfying the
given constraints using FP-growth. Thanks to the recursive structure of the FP-
growth based algorithm, the ExAnte property is deeply amalgamated with the
frequent itemset computation: not only the initial tree is a pruned tree (an FP-
bonsai), but also all the other projected trees, built during the recursive growing
phase will be much more smaller in number and in size.

The reduction of number of trees built w.r.t. FP-growth (which is the compu-
tation with minimum sum of prices = 0) is dramatic, as illustrated in Figure 3(a).

Our experimental study confirms that FP-bonsai outperforms ExAMiner,
which is the state-of-the-art algorithm for the computational problem addressed
in many occasions.

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

nu
m

be
r o

f F
P

-B
on

sa
i

minimum price

FP-Bonsai

retail
BMS-POS

0.1

1

10

100

1000

10000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e 

(in
 s

ec
)

minimum price

FP-bonsai vs. Examiner (BMS-POS)

FP-Bonsai
Examiner

0.1

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

tim
e 

(in
 s

ec
)

minimum support

FP-Bonsai vs. Examiner (BMS-POS)

FP-Bonsai
Examiner

(a) (b) (c)

Fig. 3. Number of FP-bonsai built with fixed minimum support and moving mono-
tone threshold (a); run time of ExAMiner and FP-bonsai on dataset BMS-POS with
minimum support = 200 (b); and minimum sum of prices = 3000 (c).

From those pictures we can see that ExAMiner is faster only when the selec-
tivity of one of the two constraints is very strong, and hence the set of solutions
very small. In particular, ExAMiner is faster in recognizing when the user-defined
constraints are so selective that the problem has an empty set of solutions. But
in all the other cases FP-bonsai performs much better. In particular, when one
of the two constraints is not-so-selective, FP-bonsai exhibits a much more stable
behavior, while ExAMiner’s computation time increases quickly. Consider, for
instance Figure 3(c): at an absolute minimum support of 150, FP-bonsai takes 36
seconds against the 4841 seconds (1 hour and 20 minutes) taken by ExAMiner.

References

1. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAMiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proc. of ICDM’03.

2. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data
reduction in constrained pattern mining. In Proc. of PKDD03.

3. C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A dual-pruning algorithm
for itemsets with constraints. In Proc. of ACM SIGKDD’02.

4. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc of ACM SIGMOD’00.

5. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and prun-
ing optimizations of constrained associations rules. In Proc. of ACM SIGMOD’98.

6. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In Proc. of ICDE’01.


