
UNIVERSITY OF ANTWERP
Department of Mathematics and Computer Science

Technical Report 2005-2006

Expressive power of XQuery node construction

Wim Le Page
Jan Hidders

Philippe Michiels
Jan Paredaens

Roel Vercammen

Abstract

In the relational model it has been shown that the flat relational algebra has the same
expressive power as the nested relational algebra, as far as queries over flat relations and
with flat results are concerned [11]. Hence, for each query that uses the nested relational
model and that, with a flat table as input always has a flat table as output, there exists
an equivalent flat query that only uses the flat relational model. In [12] a very direct proof
is given of this fact using a simulation technique. In analogy, we study a related flat-flat
problem for XQuery. We show that for each expression that only has original, copied or
equal nodes in its result sequence there exists an expression without node construction
yielding the same or a deep-equal result. In this work we will show how to generate
automatically equivalent constructor-free expressions for node-conservative expressions.
This result gives an indication of the expressive power of the node construction.

Contents

Introduction 1

1 Construction in (Li)XQuery 4
1.1 XQuery Construction and Formal Semantics 4

1.1.1 Constructors . 4
1.1.2 Node Identity . 5
1.1.3 Deep equality . 7
1.1.4 Copying . 8
1.1.5 XQuery Formal Semantics . 8

1.2 LiXQuery Construction, Syntax and Semantics 12
1.2.1 Formal Semantics of LiXQuery Expressions 14
1.2.2 Construction in LiXQuery . 18
1.2.3 Types of Result Nodes . 21

2 Expressive Power of the Node Construction 23
2.1 Eliminating Node Construction . 23
2.2 Outline of the simulation . 25
2.3 Encoding the Store and Environment . 27
2.4 A Correct Transformation Function . 29

2.4.1 Variables . 30
2.4.2 Built-in functions . 30
2.4.3 If-expressions . 42
2.4.4 For-expressions . 43
2.4.5 Let-expression . 44
2.4.6 Concatenation . 44
2.4.7 Boolean Operators . 45
2.4.8 Atomic Value Comparison . 46
2.4.9 Node Comparison . 47
2.4.10 Arithmetic . 48
2.4.11 Union . 49
2.4.12 Axis Steps . 49
2.4.13 Filter-expression . 51
2.4.14 Path-expressions . 52

I

2.4.15 Literals and the empty sequence . 54
2.4.16 Constructors . 55
2.4.17 Typeswitch-expression . 59
2.4.18 Functions . 61

2.5 An Illustrative Example . 61
2.6 Creating a Constructor-Free Expression . 67
2.7 Beyond node-conservatism . 71

3 Conclusion 82
3.1 Future Work . 83

II

Introduction

Extensible Markup Language (XML) [1] has become the language of choice for storing
and transmitting data across diverse application domains. It is used in corporate IT de-
partments, academic research institutions or small programming projects. XML therefore
encodes a huge amount of datatypes scattered across a large number of diverse applica-
tion domains. Of course, with this vast store of XML-encapsulated information, there are
people who are going to need to query it. XQuery, an XML Query Language [2] invented
by the World Wide Web Consortium, offers a powerful, standardized way to do just that.
XQuery provides a flexible and easy-to-use mechanism for querying not only content, but
structure as well. With its ability to integrate XML and non-XML data, XQuery seems
to be able do for XML what SQL has done for relational data. It is therefore important
to study the properties of this powerful query language. However this language is rather
complex and its not easy to define its semantics in a precise and concise manner. For this
reason, J. Hidders, J. Paredaens and R. Vercammen have defined LiXQuery [8, 9], an ele-
gant and simple sublanguage of XQuery. LiXQuery has almost the same expressive power
as XQuery, but has the advantage that it’s syntax and semantics can be written down in
a few pages. This sublanguage was designed with the audience of researchers investigating
the expressive power of XQuery in mind. It will therefore form the basis of our study.

In XQuery, a query result can contain atomic values and different types of nodes. The
nodes can be original (selected from the input) or they can be new nodes, not occurring in
the input. These new nodes are constructed during the evaluation of the expression. Con-
structing new XML nodes is useful for several purposes, including creating a new result
shape (transformation), representing temporary intermediate data structures (composi-
tion), and organizing data into conceptual groups (views). It is important to realize that
these new nodes can therefore be copies of nodes occurring in the input or can be created
to be (deep) equal to nodes in the input.

Nevertheless, it is still possible that only original nodes occur in the final result. We
call such expressions node-conservative. For example, the query in Example 0.1 creates
new nodes not occurring in the result. In this example we perform a join and a projection
of two XML documents in XQuery.

In the relational model it has been shown that the flat relational algebra has the same
expressive power as the nested relational algebra, as far as queries over flat relations and
with flat results are concerned [11]. Hence, for each query that uses the nested relational
model and that, with a flat table as input always has a flat table as output, there exists

1

Example 0.1 Node-Conservative Expression

The following XQuery expression

let $jointtable :=

element {"table"}{

for $b1 in doc("table.xml")/table/row

for $b2 in doc("table2.xml")/table/row

where $b1/a = $b2/a

return element{"row"}{$b1/*,$b2/*} }

return

for $b in $jointtable/row/b return string($b)

has the result sequence "one","two"when given the input documents table.xml and
table2.xml which look as follows

<table>

<row><a>1one</row>

<row><a>2two</row>

<row><a>3three</row>

</table>

<table>

<row><a>1<c>red</c></row>

<row><a>2<c>blue</c></row>

</table>

2

an equivalent flat query that only uses the flat relational model. In [12] a very direct
proof is given of this fact using a simulation technique. In analogy, we study a related
flat-flat problem for XQuery. We show that for each node-conservative expression there
exists an expression without node construction yielding the same result. For example,
the query in Example 0.1 can be rewritten to the query shown in Example 0.2. In this
work we will show how to generate automatically equivalent constructor-free expressions
for node-conservative expressions.

We then extend this result to expressions that can have copies of original nodes (node-
restructuring expressions) and/or nodes that are deep-equal to orinal nodes (node-crafting
expressions) in the result. We show that for an expression of one of these types there exist
an expression without node construction that yields an equivalent result.

These results give an indication of the expressive power of the node construction. Fur-
thermore it can be interesting for query optimization, since optimizing node construction
can be hard. For example, consider the translation of XQuery expressions to SQL, where
complete translations also have to deal with simulating node construction. In [7] such a
translation is given, where the construction of new elements yields larger SQL statements
which are harder to optimize.

Example 0.2 Constructor-Free Expression

The following XQuery expression

for $b1 in doc("table.xml")/table/row

for $b2 in doc("table2.xml")/table/row

where $b1/a = $b2/a

return

for $b in ($b1/*, $b2/*)/b return string($b)

is equivalent to the query of Example 0.1 and does not contain node constructors.

Other work studied the effect of adding object creation to query languages on the expres-
sive power of these languages. For example, in [5] the effect of object identity on the power
of query languages is studied and a notion of determinate transformations is introduced
as a generalization of the standard domain-preserving transformations. However, obvi-
ous extensions of complete database programming languages with object creation are not
complete for determinate transformations. In [13] this mismatch is solved by introducing
the notion of constructive transformations, a special kind of determinate transformations
which are precisely the transformations that can be expressed by these obvious extensions.

This work is structured as follows. In Chapter 1 we give some background information
about the creation of nodes in XQuery. An introduction to LiXQuery is given, which we
will use as a formal model for XQuery and for proving our theorems. Chapter 2 investigates
the expressive power of the construction. Finally, the conclusion of this work is presented
in Chapter 3.

3

Chapter 1

Construction in (Li)XQuery

The XQuery language is rather complex and its not easy to define its semantics in a precise
and concise manner. For this reason, LiXQuery [8, 9] has been defined. LiXQuery is a
fully downwards compatible sublanguage of XQuery that has almost the same expressive
power as XQuery and that has a compact and well defined syntax and semantics. In this
Chapter we will focus on the mechanisms of construction in XQuery and the related topics
of Node Identity, Deep-equality and copying, and shed some light on the formal semantics
which describes this language. Then we will give a short introduction to LiXQuery, which
we will use as a basis for studying the expressive power of node construction in XQuery.

1.1 XQuery Construction and Formal Semantics

In XQuery it is possible to construct XML directly in a query. This is a very useful feature
which allows us to create structured output. This structured output can organize data in
conceptual groups similar to the use of views in SQL. Another possibility is to use this
ability for transformations. One can for example have xml files to store the data of a
system and transform this data into xhtml to display it via a standard web browser to the
users of the system. Construction can also be used to represent temporary intermediate
data structures which allow for composition, similar to joins in SQL.

1.1.1 Constructors

In XQuery expressions exist for creating all the XML node kinds. The basic element,
attribute and text nodes can be created, but also comment, processing-instruction and
namespace nodes. The way these can all be created is using the same syntax as XML.
But this syntax, called the direct constructor syntax, is not sufficient. Sometimes you will
want to simulate a document loaded by the built-in doc() function, by writing a function
that will return a computed document instead of one loaded from XML. Sometimes you
will want to create element or attribute nodes that have a name which is the result of an
another XQuery expression. For these reasons there exists an alternative, more powerful

4

XML construction syntax in XQuery, the so called computed constructor syntax. An
example of such syntax is given in the expression in Example 1.1 where the new element
$book1 and its subelements are constructed. We also demonstrate the feature to have
the name of the element be the result of an expression in this example. The value of the
attribute name of the first extra element in the input document is used as the name for
the fourth element in $book1.

One of the basic functions of construction is the creation of new nodes which have
certain selected elements as their children. These children will be created as copies of the
selected nodes. In Example 1.1 we can see that the author element of the newly constructed
book is created as a copy of the author of the first book in the input document. We can
clearly see that it is a copy in the result sequence of the expression.

In the result sequence of the expression in Example 1.1 the publisher element and the
extra field element are totally new nodes, the first author element is an original node,
the second author element is a copied node and 14.95 and “Someone Else” are atomic
values.

So informally we can say that in a result of an expression which contains construction
we can get three types of nodes:

– orginal nodes, selected by an expression

– copies of original nodes, created as children of constructed nodes

– totally new (constructed) nodes, as a result of constructor expressions

and besides these nodes, atomic values (strings, numbers, ...).

1.1.2 Node Identity

In XQuery it is necessary to distinguish nodes from each other. Even if they are for example
element nodes that have exactly the same name, attributes and values, they can still differ.
They can for example originate from totally different documents. To be able to make this
distinction in XQuery each node has a unique identity. Every node in an instance of the
XQuery data model is unique: identical to itself, and not identical to any other node.
It is important to note that atomic values do not have an identity. Every instance of the
value “5” as an integer is identical to every other instance of the value “5” as an integer.

So in the light of this the expression in Example 1.2 returns true, because it compares
the exact same nodes. The is-operator provides us with a test for node identity.

But the expression in Example 1.3 returns false, because two different nodes are com-
pared which were created here by use of the XQuery element constructor (using the XML
syntax).

Two sequences of items are identical if they have the same number of items and
every item in the first sequence is identical to the item at the same position in the second
sequence.

5

Example 1.1 Computed Element

The following XQuery expression

let $book1 := element {"book"}

{

attribute {"year"} { 1977 },

doc("input.xml")/books/book[1]/author,

element {"publisher"} {"Puzzin Books"},

element {"price"} { 14.95 },

element {fn:string(doc("input.xml")/books/extra[1]/@name)}

{fn:data(doc("input.xml")/books/extra[1])}

}

return

($book1/publisher, doc("input.xml")/books/book[1]/author,

$book1/author, $book1/*[4], fn:data($book1/price),

fn:data($book1/author))

has the result sequence

<publisher>Puzzin Books</publisher>,

<author>Someone Else</author>,

<author>Someone Else</author>,

<extra_field>Extra content</extra_field>,

14.95,

Someone Else

when given this input document (input.xml)

<books>

<book>

<author>Someone Else</author>

</book>

<extra name="extra_field">Extra content</extra>

</books>

Example 1.2 Identical Nodes

let $book1 :=

doc("input.xml")/books/book[1]

return

$book1 is doc("input.xml")/books/book[1]

6

Example 1.3 Non-identical Nodes

<book1 /> is <book1 />

1.1.3 Deep equality

We now now it is important to be able to distinguish two nodes even if they look the same.
It is however equally important to be able to know if two nodes indeed do look the same,
or to put it an another way, to know if two nodes are equal. That is why we introduce the
notion of deep equality. Informally we can say that two nodes are deep equal if they are of
the same kind1, with the same name and have the same attributes (the order of which may
vary between the two) and deep equal children (the order of which must be the same).

Note that these nodes may differ in their parent. For atomic values the notion of deep
equality coincides with identity.

To illustrate this notion we can see that the arguments of the fn:deep-equal function
in Example 1.4 are indeed the same except for attribute order and node identity. The
expression in this example therefore returns true. In a XQuery expression deep equality
can be tested with the deep-equal function.

Example 1.4 Deep equal items

fn:deep-equal(

<book year="1998" ISBN="1111111">

<author>Someone</author>

</book>,

<book ISBN="1111111" year="1998">

<author>Someone</author>

</book>)

We will now define deep equality for items and sequences in a formal way:

Definition 1.1 (Deep equal). Two items are deep equal if they are both atomic values
that compare equal, or they are nodes of the same kind, with the same name, whose sets2

of attributes are deep equal and whose sequences3 of children are deep equal.

Two sequences of items are deep equal if they have the same number of items and
every item in the first sequence is deep equal to the item at the same position in the second
sequence.

1one of the seven kinds of nodes (document, element, attribute, text, namespace, processing
instruction, and comment) defined in [3].

2 The order of the attributes may differ
3The order of the children must be the same

7

1.1.4 Copying

One of the things construction in XQuery was useful for was the ability to structure the
output or intermediate nodes. This is achieved by creating new element nodes and selecting
nodes from the input to be their children. As mentioned before the children of these new
nodes are not the original nodes selected from the output, but are deep equal versions of
these nodes with new node identities. We will call these nodes copies of the original nodes.
Now we will define the notion of a copy formally.

Definition 1.2 (Direct copy of). Item a is a direct copy of item b if it is created as a
descendant of a newly constructed element c, by selecting4 the item b or an ancestor of b
in the constructor of element c.

Item a is therefore deep-equal to item b but as it is a new node it has a new node
identity and therefore it is not identical to b. Therefore in Example 1.1 the two author

elements in the result sequence are deep-equal but not identical because the second author

element is a direct copy of the first.

Definition 1.3 (Copy of). We define the binary relation copy of as the transitive closure5

of the binary relation direct copy of.

This enables us to include copies of copies, copies of copies of copies, etc.. in the notion
of copy.

1.1.5 XQuery Formal Semantics

XQuery is not a simple language. The typing system it contains and the many implicit
casts that go with it makes it hard to oversee. The XQuery language is specified by in two
ways. In the XQuery language document[2] normal prose is used to describe the language
specifications of XQuery. In the XQuery Formal Semantics document[4] symbols are used
to do the same. These two documents have their own benefits. The prose document can
be easily read by people who want to be able to use the language to query XML data. But
prose always lacks some degree precision that only symbols can achieve. Therefore these
Formal Semantics are also vital, especially for implementers writing an complete, correct,
and conforming XQuery engine and for researchers who are investigating expressive power,
optimizations or other features of the language.

The formal semantics of XQuery has three components: a dynamic semantics, a sta-
tic semantics, and normalization rules. The dynamic semantics specifies the relationship
between input data, an XQuery expression, and output data. The static semantics spec-
ifies the relationship between the type of the input data, an XQuery expression, and the

4This selection can be as a result of a XPath expression or a complete FLWOR expression (more details
see [2])

5 A transitive closure is an extension or superset of a binary relation such that whenever (a, b) and
(b, c) are in the extension, (a, c) is also in the extension

8

type of the output data. The normalization rules transform full XQuery into a small core
language, which is easier to define, implement, and optimize. In this process the implicit
functionality and casts (e.g. a atomic string value converted to a text node) will become
apparent. The dynamic and static semantics are defined in terms of the core language.

The technique that is used to specify XQuery’s static and dynamic semantics is com-
monly known as an operational semantics. An operational semantics is specified using
inference rules (similar to those used in the study of logic). Inference rules consists mainly
of evaluation judgments. In their general form they are written as Env ` Expr ⇒ V alue,
which you read as “In environment Env, the evaluation of expression Expr yields the value
V alue.” The environment can for example be the dynamic environment which contains
among other things the values of variables. To make up an inference rule with evalua-
tion judgements you have zero or more judgments above a line, called the hypotheses or
premises, and one judgement below the line, called the conclusion. Such a rule means to
say that when all the hypotheses are true, then the conclusion must also be true. A trivial
example may look like this:

dynEnv ` Expr1 ⇒ true dynEnv ` Expr2 ⇒ true

dynEnv ` Expr1 and Expr2 ⇒ true

Of course not all rules are as simple as this, even this rule is preceded by a normalization
phase where the effective boolean value6 is extracted from the expressions. Besides these
standard judgments there are amongst others special matching judgments, to enable typing,
and error judgments for raising errors, and ways to indicate the values of variables in the
environment. The following rules illustrate this:

dynEnv ` Expr1 ⇒ V alue1 Type0 = [SequenceType]sequencetype

V alue1 matches Type0 statEnv ` V arRef of var expands to V ariable1

dynEnv + varV alue(V ariable1 ⇒ V alue1) ` Expr2 ⇒ V alue2

dynEnv ` let $V arRef1 as SequenceType := Expr1 return Expr2 ⇒ V alue2

dynEnv ` Expr1 ⇒ V alue1 Type0 = [SequenceType]sequencetype not(V alue1 matches Type0)

dynEnv ` let $V arRef1 as SequenceType := Expr1 return Expr2 raises typeError

The of var expands to judgment is for expanding qualified names in the light of
namespaces, and the sequencetype normalization rule resolves the type name to a type.

These were just some illustrative examples form the dynamic semantics. Other types
of judgments exist for the dynamic semantics and a way to write down normalization rules.
We will not go into these, and refer to the XQuery Formal Semantics document[4]. Next we
will take a closer look at one inference rule in particular, that of the element constructor.

6In XQuery special rules exist that determine how to convert an item or a sequence to its boolean value

9

Formal Semantics of the Element Constructor

In Section 1.1 we gave an introduction of construction in XQuery. Now we will examine it
more closely using the formal semantics. We will limit ourselves to the dynamic semantics
of computed element constructor since the formal semantics of other computed constructors
are similar, and the direct constructor variants are normalized to their computed version.
The The dynamic semantics for computed element constructors is the most complex of all
expressions in XQuery. If we look at the formal inference rule for element construction as
it appears in [4] it looks like this7

dynEnv ` Expr1 ⇒ V alue0 statEnv ` V alue0 matches xs:Qname
Expr2 = CompElemNamespace1, ..., CompElemNamespacen, (Expr3)

CompElemNamespace1 = namespace NCName1{URI1}
... CompElemNamespacen = namespace NCNamen{URIn}
statEnv1 = statEnv + namespace(NCName ⇒ (active, URI1))

... statEnvn = statEnvn−1 + namespace(NCName ⇒ (active, URIn))
statEnvn, dynEnv ` fs:item-sequence-to-node-sequence(Expr3) ⇒ V alue1

statEnvn ` V alue1 matches (attribute*, (element | text | processing-instruction | comment)*)
NamespaceBindings = (CompElemNamespace1, ...CompElemNamespacen),

fs:active ns(statEnv.namespace), fs:get static ns from items(statEnv, V alue1)
statEnv, dynEnv ` element {Expr1} {Expr2} ⇒ element {V alue0} of type xdt:untyped {V alue1}

This rule is rather complex due to it’s use of namespaces. As we do not consider
namespaces to be essential for our further approach, we can omit them here. This way the
rule becomes a lot simpler:

dynEnv ` Expr1 ⇒ V alue0 statEnv ` V alue0 matches xs:Qname
statEnvn, dynEnv ` fs:item-sequence-to-node-sequence(Expr2) ⇒ V alue1

statEnvn ` V alue1 matches (attribute*, (element | text | processing-instruction | comment)∗)
statEnv, dynEnv ` element {Expr1} {Expr2} ⇒ element {V alue0} of type xdt:untyped {V alue1}

First we see that the name expression (Expr1) is evaluated and its result value (V alue0)
is checked to see that it matches xs:QName, which is the type for qualified names.

Second, the function fs:item-sequence-to-node-sequence() is applied to the el-
ement’s content expression (Expr2). This function call is evaluated in the static and
dynamic environment. This function converts a sequence of item values to a sequence of
nodes called the content sequence, by applying the normative rules of the element construc-
tion. It has most of the construction semantics packed in to it, but its semantics is only
described informally as it refers to the XQuery language document[2]. We will look at these

7 In fact, it does not appear like this in the considered working draft of the formal semantics [4]. The con-
clusion of the dynamic semantics of the element constructor differs, and is written as: statEnv, dynEnv `
element {Expr1} {Expr2} ⇒ V alue1. This is in fact wrong, as it would imply that an element con-
structor returns the children of the constructed element. As we can deduce from the XQuery language
document[2], the static semantics of the element constructor and the semantics of the element constructor
this is certainly not the case. Therefore we corrected this error here.

10

normative rules, but we will leave out the rules concerning namespaces and typing (as this
also adds extra complexity but we do not consider it essential in our further approach):

– For each adjacent sequence of one or more atomic values returned by an enclosed
expression, a new text node is constructed, containing the result of casting each
atomic value to a string, with a single space character inserted between adjacent
values.

– For each node returned by an enclosed expression, a new copy is made of the given
node and all nodes that have the given node as an ancestor, collectively referred to
in what follows as copied nodes.

Each copied node receives a new node identity. The parent, children, and attributes
properties of the copied nodes are set so as to preserve their inter-node relationships.
For the topmost node (the node directly returned by the enclosed expression), the
parent property is set to the newly-constructed element node.

All other properties of the copied nodes are preserved.

– Adjacent text nodes in the content sequence are merged into a single text node by
concatenating their contents, with no intervening blanks. After concatenation, any
text node whose content is a zero-length string is deleted from the content sequence.

– If the content sequence contains a document node, the document node is replaced in
the content sequence by its children.

– If the content sequence contains an attribute node following a node that is not an
attribute node, a type error is raised

The resulting value V alue0 must match zero-or-more attributes followed by zero-or-
more element, text, processing-instruction or comment nodes.

The properties of the newly constructed element node are determined as follows:

– It has a new node identity.

– The node-name is the qualified name resulting from Expr1.

– The parent is the node constructed by the nearest containing element or document
node constructor, if such a constructor exists; otherwise parent is empty.

– The attributes consist of all the attribute nodes in the content sequence. The parent
property of each of these attribute nodes has been set to the newly constructed
element node.

– The children consist of all the element, text, comment, and processing instruction
nodes in the content sequence. The parent property of each of these nodes has been
set to the newly constructed element node.

11

– The string-value property is equal to the concatenated contents of the text-node
descendants in document order.

As we can see, the main semantic of the element constructor is not stated formally but
is captured informally in the meaning of the fs:item-sequence-to-node-sequence()

function call.

1.2 LiXQuery Construction, Syntax and Semantics

The LiXQuery language was designed with the audience of researchers investigating the
expressive power of XQuery in mind. The XQuery features that are omitted in LiXQuery
are therefore only those that are not essential from a theoretical perspective. However, to
ensure the validity of LiXQuery, it is designed as a proper sublanguage. Specifically, all
syntactically valid LiXQuery expressions do also satifsfy the XQuery syntax. Moreover,
the LiXQuery semantics is defined in such a way that the result of a query evaluated using
the LiXQuery semantics will be a proper subset of the same query evaluated by XQuery.
The lack of a complete formal sematics for XQuery does not allow this to be proved.

LiXQuery is largely the same as XQuery but has only a few built-in functions and no
primitive data-types, order by clause, namespaces, comments, programming instructions
and entities. Furthermore it ignores typing and only provides descendant-or-self and
child as navigational axes, but the other navigational axes can be simulated using these
2 axes. Although the features that LiXQuery lacks, are important for practical purposes,
they are not relevant to the study of the expressive power. Note that LiXQuery does
support recursive functions, positional predicates and atomic values, which will prove to
be essential in our later approach. The syntax of LiXQuery is given in Fig. 1.1 as an
abstract syntax, i.e., it assumes that extra brackets and precedence rules are added for
disambiguation.

The non-terminal 〈Name〉 refers to the set of names N which we will not describe in
detail here except that the names are strings that must start with a letter or “ ”. The
non-terminal 〈String〉 refers to strings that are enclosed in double quotes such as in "abc"

and 〈Integer〉 refers to integers such as 100, +100, and -100.8 Therefore the sets associated
with 〈Name〉, 〈String〉 and 〈Integer〉 are pairwise disjoint.

The ambiguity between rule [5] and [24] is resolved by giving precedence to [5], and
for path expressions we will assume that the operators “/” and “//” (rule [18]) are left
associative and are preceded by the filter operation (rule [17]) in priority.

We define LQE as the set of LiXQuery expressions. In LiXQuery, expressions are
evaluated against an XML store and an evaluation environment. The XML store contains
the XML fragments that are created as intermediate results in an expression, as well as all

8Integers are the only numeric type that exists in LiXQuery.

12

[1] 〈Query〉 → (〈FunDef〉“;”)∗〈Expr〉
[2] 〈FunDef〉 → “declare” “function” 〈Name〉 “(”(〈Var〉(“,”〈Var〉)∗)?“)”

“{”〈Expr〉“}”
[3] 〈Expr〉 → 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 |

〈AndOr〉 | 〈ValCmp〉 | 〈NodeCmp〉 | 〈AddExpr〉 | 〈MultExpr〉 |
〈Union〉 | 〈Step〉 | 〈Filter〉 | 〈Path〉 | 〈Literal〉 | 〈EmpSeq〉 |
〈Constr〉 | 〈TypeSw〉 | 〈FunCall〉

[4] 〈Var〉 → “$”〈Name〉
[5] 〈BuiltIn〉 → “doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “string(”〈Expr〉“)” |

“xs:integer(”〈Expr〉“)” | “root(”〈Expr〉“)” |
“concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” |
“not(”〈Expr〉“)” | “count(”〈Expr〉“)” | “position()” | “last()”

[6] 〈IfExpr〉 → “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉
[7] 〈ForExpr〉 → “for”〈Var〉(“at”〈Var〉)? “in”〈Expr〉 “return”〈Expr〉
[8] 〈LetExpr〉 → “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉
[9] 〈Concat〉 → 〈Expr〉“,”〈Expr〉
[10] 〈AndOr〉 → 〈Expr〉(“and” | “or”)〈Expr〉
[11] 〈ValCmp〉 → 〈Expr〉(“=” | “<”)〈Expr〉
[12] 〈NodeCmp〉 → 〈Expr〉(“is” | “<<”)〈Expr〉
[13] 〈AddExpr〉 → 〈Expr〉 (“+” | “-”) 〈Expr〉
[14] 〈MultExpr〉 → 〈Expr〉 (“*” | “idiv”) 〈Expr〉
[15] 〈Union〉 → 〈Expr〉“|”〈Expr〉
[16] 〈Step〉 → “.” | “..” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”
[17] 〈Filter〉 → 〈Expr〉“[”〈Expr〉“]”
[18] 〈Path〉 → 〈Expr〉(“/” | “//”)〈Expr〉
[19] 〈Literal〉 → 〈String〉 | 〈Integer〉
[20] 〈EmpSeq〉 → “()”
[21] 〈Constr〉 → “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

“attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” |
“text”“{”〈Expr〉“}” | “document”“{”〈Expr〉“}”

[22] 〈TypeSw〉 → “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+
“default” “return”〈Expr〉

[23] 〈Type〉 → “xs:boolean” | “xs:integer” | “xs:string” | “element()” |
“attribute()” | “text()” | “document-node()”

[24] 〈FunCall〉 → 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”

Figure 1.1: Syntax for LiXQuery queries and expressions

13

the documents accessible from the web. The store that only contains all the web documents
is called the initial XML store. The evaluation environment essentially contains mapping
information for function names, variable names and the context item (including context
position in the context sequence and the context sequence size). Formally, the XML store
is a defined as a 6-tuple9 St = (V, E,�, ν, σ, δ) where: V is the set of available nodes;
(V, E) forms an acyclic directed graph to represent the tree-structures; � defines a total
order over the nodes in V ; ν labels element and attribute nodes with their node name;
σ labels the attribute and text nodes with their string value; δ is a partial function that
uniquely associates with an URI or a file name, a document node.

The environment in LiXQuery is denoted by a tuple Env = (a, b, v, x, k, m) where a
is a partial function that maps a function name to its formal argument; b is a partial
function that maps a function name to the body of the function; v is a partial function
that maps variable names to their values; x is an item of St and indicates the context item
or x is undefined; k is an integer denoting the position of the context item in the context
sequence or k is undefined; m is an integer denoting the size of the context sequence, or m
is undefined.

The result of an expression evaluated against an XML store and environment is a
(possibly expanded) XML store (result store) and a sequence of one or more items over
the result store (result sequence). Items in the result sequence can either be atomic values
or nodes. Like in XQuery, each node has a unique identity while atomic values do not.

Formal definitions of the XML store and the environment can be found in [8, 9].

1.2.1 Formal Semantics of LiXQuery Expressions

The semantics of a LiXQuery expression is defined by statements of the form St, Env `
e ⇒ St′, v, which state that when e is evaluated against a store St and an environment Env
then St′ is the result store and v is the result sequence over St. We derive such statement
by using inference rules, which are given in [9]. The LiXQuery inference rules are similar
to those of the formal semantics of XQuery as described in Chapter 1 Section 1.1.5. Each
LiXQuery inference rule consists of a set of premises and a conclusion which will be the
statement we want to derive. The premise generally consists of statements which define
the result of the evaluation of the subexpressions and how they relate to the result of the
statement we are inferring. It also contains conditions on the expressions and their results
which must be true in order to apply the inference rule. The free variables in the rules
are always assumed to be universally quantified. In these rules the following notation is
used: v for values, x for items, n for nodes, r for roots, s for strings and names, f for
function names, b for booleans, i for integers and e for expressions. We denote the empty
sequence by 〈〉, non-empty sequences by, for example, 〈1, 2, 3〉 and the concatenation of
two sequences l1 and l2 by l1 ◦ l2.

We will now continue by listing all the semantic rules of LiXQuery. We will focus on
some of the rules to compare them with the XQuery counterparts given in Section 1.1.5

9This tuple is the same as in [9] except that the sibling order < is replaced by the document order �.

14

in Chapter 1. We will also explain the rules for the construction in detail separately in
Section 1.2.2.

Semantic Rules

Rule 1.4 (Query (Rules [1] and [2])). A function declaration extends a and b and then
the last expression is evaluated with these a and b. We express this using the following
notation. If En is an environment, n a name and y an item then we let En[a(n) 7→ y]
(En[b(n) 7→ y], En[v(n) 7→ y]) denote the environment that is equal to En except that
the function a (b, v) maps n to y. Similarly, we let En[x 7→ y] (En[k 7→ y], En[m 7→ y])
denote the environment that is equal to En except that x (k, n) is defined as y if y 6= ⊥
and undefined otherwise. Function declarations are allowed to be mutually recursive.

En′ = En[a(f) 7→ 〈s1, . . . sm〉][b(f) 7→ e] St,En′ ` e′ ⇒ (St′, v)
St,En ` declare function f(s1, . . . , sm){ e }; e′ ⇒ (St′, v)

Rule 1.5 (Variable (Rule [4])).

St,En ` $s ⇒ (St,vEn(s))

Rule 1.6 (Built-in Functions (Rule [5])). These rules use root(),true and false for-
mally defined in [9].

St,En ` e ⇒ (St′, 〈s〉) δSt′(s) = n

St,En ` doc(e) ⇒ (St′, n)
St,En ` e ⇒ (St′, 〈n〉) n ∈ Ve ∪ Va

St,En ` name(e) ⇒ (St′, 〈νSt′(n)〉)

St,En ` e ⇒ (St′, 〈n〉) n ∈ Va ∪ Vt

St,En ` string(e) ⇒ (St′, 〈σSt′(n)〉)

St,En ` e ⇒ (St′, 〈x〉) x ∈ A AtValueToString(x) = s

St, En ` string(e) ⇒ (St′, 〈s〉)

St,En ` e ⇒ (St′, 〈s〉) s ∈ S StringToInteger(s) = i

St, En ` xs : integer(e) ⇒ (St′, 〈i〉)

St,En ` e ⇒ (St′, 〈n〉) n ∈ VSt′

St,En ` root(e) ⇒ (St′, 〈root(n)〉)

St,En ` e1 ⇒ (St1, 〈s1〉) s1 ∈ S St1, En ` e2 ⇒ (St2, 〈s2〉) s2 ∈ S
St,En ` concat(e1, e2) ⇒ (St2, 〈s1 · s2〉)

St,En ` true() ⇒ (St, 〈true〉) St,En ` false() ⇒ (St, 〈false〉)

St,En ` e ⇒ (St′, 〈b〉) b ∈ B
St,En ` not(e) ⇒ (St′, 〈¬b〉)

St,En ` e ⇒ (St′, 〈x1, . . . , xm〉)
St,En ` count(e) ⇒ (St′, 〈m〉)

St,En ` position() ⇒ (St, 〈kEn〉) St,En ` last() ⇒ (St, 〈mEn〉)

15

Rule 1.7 (If-expression (Rule [6])). The semantics of the if-expression is given by two
inference rules: one for the case the condition evaluates to true and one for false. This is
similar to the formal specification of and in XQuery, as seen in Section 1.1.5, where their
are different inference rules for the different values of the operands of the and operator.
Note that in each case only one of the branches is executed.

St,En ` e ⇒ (St′, 〈true〉) St′, En ` e1 ⇒ (St1, v1)
St,En ` if e then e1 else e2 ⇒ (St1, v1)

St,En ` e ⇒ (St′, 〈false〉) St′, En ` e2 ⇒ (St2, v2)
St,En ` if e then e1 else e2 ⇒ (St2, v2)

Rule 1.8 (For-expression (Rule [7])). The rule for for $s at $s′ in e return e′ spec-
ifies that first e is evaluated and then e′ for each item in the result of e but with s and s′

in the environment bound to the respectively the item in question and its position in the
result of e. Finally the results for each item are concatenated to a single sequence.

St,En ` e ⇒ (St0, 〈x1, . . . , xm〉) St0, En[v(s) 7→ x1][v(s′) 7→ 1] ` e′ ⇒ (St1, v1)
. . . Stm−1, En[v(s) 7→ xm][v(s′) 7→ m] ` e′ ⇒ (Stm, vm)
St,En ` for $s at $s′ in e return e′ ⇒ (Stm, v1 ◦ . . . ◦ vm)

Rule 1.9 (Let-expression (Rule [8])). We can see that this rule is simpler than its
XQuery counterpart given in Section 1.1.5. But if we omit the typing in the XQuery rule
we can see that the semantics correspond. As you can also so there are no error judgments
in LiXQuery. LiXQuery does not raise errors, instaid the results are undefined.

St,En ` e ⇒ (St′, v) St′, En[v(s) 7→ v] ` e′ ⇒ (St′′, v′)
St,En ` let $s := e return e′ ⇒ (St′′, v′)

Rule 1.10 (Concatenation (Rule [9])).

St,En ` e′ ⇒ (St′, v′) St′, En ` e′′ ⇒ (St′′, v′′)
St,En ` e′, e′′ ⇒ (St′′, v′ ◦ v′′)

Rule 1.11 (Boolean Operators (Rule [10])). We can see some differences with the
corresponding XQuery formal semantics inference rule as given in Section 1.1.5. That rule
represents only one instance, while this rule represents them all at once. But it is clear
that they are basically the same.

St,En ` e′ ⇒ (St′, 〈b′〉) St′, En ` e′′ ⇒ (St′′, 〈b′′〉) b′, b′′ ∈ B
St,En ` e′ and e′′ ⇒ (St′′, 〈b′ ∧ b′′〉) St,En ` e′ or e′′ ⇒ (St′′, 〈b′ ∨ b′′〉)

Rule 1.12 (Atomic Value Comparisons (Rule [11])).

St,En ` e′ ⇒ (St′, 〈x′1, . . . , x′m′〉) x′1, . . . , x
′
m′ ∈ A St′, En ` e′′ ⇒ (St′′, 〈x′′1 , . . . , x′′m′′〉)

x′′1 , . . . , x′′m′′ ∈ A b= ⇔ ∃1≤i≤m′,1≤j≤m′′(x′i = x′′j) b< ⇔ ∃1≤i≤m′,1≤j≤m′′(x′i < x′′j)
St,En ` e′ = e′′ ⇒ (St′′, 〈b=〉) St,En ` e′ < e′′ ⇒ (St′′, 〈b<〉)

16

Rule 1.13 (Node Comparisons (Rule [12])).

St,En ` e′ ⇒ (St′, 〈n′〉)
St′, En ` e′′ ⇒ (St′′, 〈n′′〉) n′, n′′ ∈ V bis ⇔ (n′ = n′′) b� ⇔ (n′ �St′′ n′′)

St,En ` e′ is e′′ ⇒ (St′′, 〈bis〉) St,En ` e′ << e′′ ⇒ (St′′, 〈b�〉)

Rule 1.14 (Additions (Rule [13])).

St,En ` e′ ⇒ (St′, 〈d′〉) St′, En ` e′′ ⇒ (St′′, 〈d′′〉) d′, d′′ ∈ I
St,En ` e′ + e′′ ⇒ (St′′, 〈d′ + d′′〉) St,En ` e′ − e′′ ⇒ (St′′, 〈d′ − d′′〉)

Rule 1.15 (Multiplications (Rule [14])).

St,En ` e′ ⇒ (St′, 〈d′〉) St′, En ` e′′ ⇒ (St′′, 〈d′′〉) d′, d′′ ∈ I
St,En ` e′ ∗ e′′ ⇒ (St′′, 〈d′ × d′′〉) St,En ` e′ idiv e′′ ⇒ (St′′, 〈d′/d′′〉)

Rule 1.16 (Union (Rule [15])).

St,En ` e′ ⇒ (St′, v′) St′, En ` e′′ ⇒ (St′′, v′′) v′, v′′ ∈ V∗

St,En ` e′ | e′′ ⇒ (St′′,OrdSt′′(Set(v′) ∪ Set(v′′)))

Rule 1.17 (Axis Steps (Rule [16])). The semantics of a step consisting of an element
name s is that all element children of the context node (indicated in the envorment by x)
with name s are returned in document order. The semantics of the step consisting of the
wild-card * is the same except that all element children of the context node are returned.

xEn is defined

St,En ` . ⇒ (St, 〈xEn〉)
(n,xEn) ∈ ESt

St,En ` .. ⇒ (St, 〈n〉)
6 ∃n(n,xEn) ∈ ESt

St,En ` .. ⇒ (St, 〈〉)

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Ve ∧ νSt(n) = s}
St,En ` s ⇒ (St,OrdSt(W))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Va ∧ νSt(n) = s}
St,En ` @s ⇒ (St,OrdSt(W))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Ve}
St,En ` ∗ ⇒ (St,OrdSt(W))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Va}
St,En ` @∗ ⇒ (St,OrdSt(W))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Vt}
St,En ` text() ⇒ (St,OrdSt(W))

Rule 1.18 (Filter-expression (Rule [17])). The semantics of e′ [e′′] is that first e′

is evaluated, then for each item in the result of e′ the expression e′′ is evaluated with x
bound to this item, k to the position of the item in the result of e′ and m to the number
of items in the result of e′. The result of e′′ is a boolean or an integer, in which case it is
converted to true if this integer is equal to k and to false otherwise. Finally, the result
is the subsequence of the result of e′ that contains exactly all items for which e′′ evaluated
to true.

St,En ` e′ ⇒ (St0, 〈x1, . . . , xm〉) En′ = En[m 7→ m]
St0, En′[x 7→ x1][k 7→ 1] ` e′′ ⇒ (St1, 〈x′1〉) . . . Stm−1, En′[x 7→ xm][k 7→ m] ` e′′ ⇒ (Stm, 〈x′m〉)

x′1, . . . , x
′
m ∈ B ∪ I v = 〈xi|(x′i ∈ I ∧ x′i = i) ∨ (x′i ∈ B ∧ x′i)〉

St,En ` e′ [e′′] ⇒ (Stm, v)

17

Rule 1.19 (Path Expression (Rule [18])). The semantics of (e′ / e′′) is as follows.
First e′ is evaluated. Then for each item in its result we bind in the environment x to this
item, k to the position of x in the result of e′, and m to the number of items in the result
of e′, and with this environment we evaluate e′′. The results of all these evaluations are
concatenated and finally this sequence is sorted by document order and the duplicates are
removed. The result is only defined if all the evaluations of e′′ contain only nodes.

St,En ` e′ ⇒ (St0, 〈x1, . . . , xm〉) En′ = En[m 7→ m] St0, En′[x 7→ x1][k 7→ 1] ` e′′ ⇒ (St1, v1)
. . . Stm−1, En′[x 7→ xm][k 7→ m] ` e′′ ⇒ (Stm, vm) v1, . . . , vm ∈ V∗

St,En ` e′ / e′′ ⇒ (Stm,OrdStm
(∪1≤i≤mSet(vi)))

St,En ` e′ ⇒ (St0, 〈x1, . . . , xm〉) W1 = {x ∈ VSt0 |(x1, x) ∈ (ESt0)
∗}

. . . Wm = {x ∈ VSt0 |(xm, x) ∈ (ESt0)
∗} 〈x′1, . . . , x′m′〉 = OrdSt0(∪1≤i≤mWi)

En′ = En[m 7→ m′] St0, En′[x 7→ x′1][k 7→ 1] ` e′′ ⇒ (St1, v1)
. . . Stm′−1, En′[x 7→ x′m′][k 7→ m′] ` e′′ ⇒ (Stm′ , vm′) v1, . . . , vm′ ∈ V∗

St,En ` e′ // e′′ ⇒ (Stm′ ,OrdStm′ (∪1≤i≤m′Set(vi)))

Rule 1.20 (Literal (Rule [19])). The result of a literal is simply a sequence with one
element, viz., the atomic value the literal represents.

Rule 1.21 (Empty Sequence (Rule [20])).

St,En ` () ⇒ (St, 〈〉)

Rule 1.22 (Typeswitch-expression (Rules [22] and [23])). Let [[xs : boolean]] = B,
[[xs : integer]] = I, [[xs : string]] = S, [[document-node()]] = Vd, [[attribute()]] = Va,
[[text()]] = V t and [[element()]] = Ve.

St,En ` e ⇒ (St1, 〈x〉) (x ∈ [[tj]] ∨ j = m + 1) ∀1≤i<j(x 6∈ [[ti]]) St1, En ` ej ⇒ (St2, v)
St,En ` typeswitch(e) case t1 return e1 . . . case tm return em

default return em+1 ⇒ (St2, v)

Rule 1.23 (Function Call (Rule [24])). The semantics of f(e1, . . . , em) is that e1, . . . , em

are consecutively evaluated, and then the expression b(f) is evaluated with the variable
names of a(f) bound to the results of e1, . . . , em.

St,En ` e1 ⇒ (St1, v1) . . . Stm−1, En ` em ⇒ (Stm, vm) En = (a,b,v,x,k,m)
a(f) = 〈s1, . . . , sm〉 En′ = (a,b, {(s1, v1), . . . , (sm, vm)},⊥,⊥,⊥) Stm, En′ ` b(f) ⇒ (St′, v′)

St,En ` f(e1, . . . , em) ⇒ (St′, v′)

1.2.2 Construction in LiXQuery

As the goal of our work is to examine the expressive power of the node construction
using LiXQuery it is important to understand how the construction is formally defined for
LiXQuery. In LiXQuery you can write all the XQuery constructors using the computed
constructor syntax, except for the constructors of comment nodes, processing instructions
and namespace nodes.

18

Essential to the definitions of the semantics of the constructors is the notion of deep
equality. We introduced the notion for XQuery in Section 1.1.3. In [9] we can find the
following formal definition of deep equality in LiXQuery, which defines what it means for
two nodes in an XML store to represent the same XML fragment using the notion of
isomorphic trees.

Definition 1.24 (LiXQuery Deep Equal). Given the XML store St = (V, E,�, ν, σ, δ) and
two nodes n1 and n2 in St. n1 and n2 are said to be deep equal, denoted as DpEqSt(n1, n2),
if n1 and n2 refer to two isomorphic trees, i.e., there is a one-to-one function h : Cn1 → Cn2

with Cni
= {n|(ni, n) ∈ E∗} for i = 1, 2, such that for each n, n′ ∈ Cn1 it holds that (1) if

n ∈ Vd (Ve, Va, V t) then h(n) ∈ Vd (Ve, Va, V t), (2) if ν(n) = s then ν(h(n)) = s, (3) if
σ(n) = s′ then σ(h(n)) = s′, (4) (n, n′) ∈ E iff (h(n), h(n′)) ∈ E and (5) if n, n′ 6∈ Va then
n � n′ iff h(n) � h(n′).

This definition essentially says that deep equal nodes must have the same type of
children at the same positions (except for attributes) with the same names and same
values. The only thing that can differ between the nodes in the subtree of n1 and that of
n2 is the fact that they can have a different node identity.

With this notion the semantics of the element constructor (element{e′}{e′′}) is the
defined as follows. First e′ is evaluated and assumed to result in a single legal element
name (St, En ` e′ ⇒ (St1, 〈s〉) and s ∈ N). Then e′′ is evaluated (St1, En ` e′′ ⇒
(St2, 〈n1, . . . , nm〉)) and for the result (n1, . . . , nm ∈ V) we create a new store (St3) that
contains the new element (r ∈ Ve) with the result of e′ as its name (νSt3(r) = s) and
with contents that are deep-equivalent with the result of e′′ if we compare them item by
item (OrdSt3({n′|(r, n′) ∈ ESt3}) = 〈n′

1, . . . , n
′
m〉DpEqSt4(n1, n

′
1) . . .DpEqSt4(nm, n′

m)).
Finally we add St3 to the original store (St4 = St2 ∪ St3) and return the newly created
element node. During this the document order of the nodes in the original store St2 remains
unchanged in the new extended store St4 (∀ n, n′ ∈ V((n �St2 n′) ⇒ (n �St4 n′))). This
semantics is represented as a LiXQuery inference rule as follows:

Rule 1.25 (Element Constructor (Rule [21])).

St,En ` e′ ⇒ (St1, 〈s〉)
s ∈ N St1, En ` e′′ ⇒ (St2, 〈n1, . . . , nm〉) n1, . . . , nm ∈ V St4 = St2 ∪ St3

n ∈ VSt3 ⇒ (r, n) ∈ E∗
St3 r ∈ Ve νSt3(r) = s OrdSt3({n′|(r, n′) ∈ ESt3}) = 〈n′1, . . . , n′m〉

DpEqSt4(n1, n
′
1) . . . DpEqSt4(nm, n′m) ∀ n, n′ ∈ V((n �St2 n′) ⇒ (n �St4 n′))

St,En ` element{e′}{e′′} ⇒ (St4, 〈r〉)

Let us now compare this to the semantics of the element construction in XQuery as
described in Subsection 1.1.5. We omitted namespaces and typing in our discussion of
the XQuery semantics, but the LiXQuery semantics omits these too. It is straightfore-
ward to see that the basic evaluation syntax of the name expression corresponds. But as
we stated in Subsection 1.1.5 much of the semantics there is informally captured in the

19

fs:item-sequence-to-node-sequence() function call. First of all the semantics of LiX-
Query differs as it does not perform implicit ‘casts’ of atomic values with the evaluation of
the context expressions. This means that the content expression of the element construc-
tor may only evaluate to nodes (as stated clearly in the semantic rule). It is however not
fundamental that we should be able to have atomic values here. For example, in XQuery,
a string literal in the context expression would be converted implicitly to a new text node.
In LiXQuery this semantics must be stated explicitly using a text node constructor (which
now in LiXQuery consequently only allows for atomic string values to be in its context
expression, as can be seen in the following Rule 1.27). The LiXQuery constructor seman-
tics also misses the merging of adjacent text nodes, and document nodes are no longer
allowed in the context sequence, as there is no implicit conversion of a document node to
it’s children. This fact that no document nodes are allowed in the context sequence and the
fact that attribute nodes must appear together and first in the sequence, is not apparent
in the LiXQuery semantic rule. But these facts follows from the semantics of the store,
which does not allow document nodes to be the children of element nodes, or attributes
in the wrong place. It is important to note however that these restrictions of LiXQuery
with respect to XQuery are not essential. All these implicit semantics can still be achieved
explicitly in LiXQuery as demonstrated in Example refex:constrestr.

Example 1.5 Restricted Element Constructor

element {"new"}{"just a ","content string",doc("table.xml")}

must be written in LiXQuery as

element {"new"}{text{"just a content string"},doc("table.xml")/*}

Taking these restrictions in to account the semantics that remain to be compared are
the essential copying semantics. The XQuery semantics states that for each node returned
by an enclosed expression, a new copy is made of the given node and all nodes that have
the given node as an ancestor. Collectively each of these ‘copied’ nodes has a new node
identity while the parent, children, and attributes properties of the copied nodes are set
so as to preserve their inter-node relationships. As we can see in the LiXQuery semantics
this corresponds to the new nodes n′

1, . . . , n
′
m and their deep eqality to the nodes in the

context sequence (result sequence of expression e′′) as well as the statement that says the
document order must correspond (∀ n, n′ ∈ V((n �St2 n′) ⇒ (n �St4 n′))).

The XQuery semantics also states that for the topmost nodes (the node directly re-
turned by the enclosed expression), the parent property is set to the newly-constructed el-
ement node. This corresponds to the statement OrdSt3({n′|(r, n′) ∈ ESt3}) = 〈n′

1, . . . , n
′
m〉

in the LiXQuery semantics.
Essentially we can conclude that taking into account the restrictions, the semantics

correspond.

20

With the attribute constructor (attribute{e′}{e′′}) the expression e′ is evaluated first
and again assumed to result in a single legal element name (St, En ` e′ ⇒ (St1, 〈s〉)
and s ∈ N). Then e′′ is evaluated and assumed to result in a single legal string value
(St1, En ` e′′ ⇒ (St2, 〈s′〉) and s′ ∈ S). We then create a new store (St3) which contains
the new attribute (VSt3 = {r} and r ∈ Va) with the result of e′ as its name (νSt3(r) = s)
and the result of e′′ as its value (σSt3(r) = s′). Finally we add St3 to the original store
(St4 = St2 ∪ St3) and return the newly created attribute node. Again during this the
document order of the original store remains unchanged. Written as an inference rule:

Rule 1.26 (Attribute Constructor (Rule [21])).

St,En ` e′ ⇒ (St1, 〈s〉) s ∈ N St1, En ` e′′ ⇒ (St2, 〈s′〉) s′ ∈ S St4 = St2 ∪ St3
VSt3 = {r} r ∈ Va νSt3(r) = s σSt3(r) = s′ ∀ n, n′ ∈ V((n �St2 n′) ⇒ (n �St4 n′))

St,En ` attribute{e′}{e′′} ⇒ (St4, 〈r〉)

The text node constructor (text{e}) is similar to the attribute constructor. The only
expression e is evaluated and assumed to result in a stringvalue different from the empty
string (St, En ` e ⇒ (St1, 〈s〉) and s ∈ S −{“”}). A new store (St2) is created containing
the text node (VSt2 = {r} and r ∈ V t) that has the result of expression e as its value
(σSt2(r) = s). Again this store is added to the original store while preserving the document
order of the original store. As an inference rule we write:

Rule 1.27 (Text Node Constructor (Rule [21])).

St,En ` e ⇒ (St1, 〈s〉) s ∈ S − {“”} St3 = St1 ∪ St2
VSt2 = {r} r ∈ Vt σSt2(r) = s ∀ n, n′ ∈ V((n �St1 n′) ⇒ (n �St3 n′))

St,En ` text{e} ⇒ (St3, 〈r〉)

The document constructor (document{e}) also evaluates just one expression but this
time the expression (e) must evaluate to a single node (St, En ` e ⇒ (St1, 〈n1〉) and
n1 ∈ Ve). A new store (St2) is created containing a document node (r ∈ Vd), of which all
nodes in St2 are descendants (n ∈ VSt2 ⇒ (r, n) ∈ E∗

St2
), that has a node (n2) deep equal

to the result of expression e (DpEqSt3(n1, n2)) as its only child node ((r, n2) ∈ ESt2). In
the form of an inference rule we write:

Rule 1.28 (Document Constructor (Rule [21])).

St,En ` e ⇒ (St1, 〈n1〉) n1 ∈ Ve St3 = St1 ∪ St2 n ∈ VSt2 ⇒ (r, n) ∈ E∗
St2

r ∈ Vd (r, n2) ∈ ESt2 DpEqSt3(n1, n2) ∀ n, n′ ∈ V((n �St1 n′) ⇒ (n �St3 n′))
St,En ` document{e} ⇒ (St3, 〈r〉)

1.2.3 Types of Result Nodes

Based on this knowledge of node construction and the formal expression evaluation in
LiXQuery and XQuery, we can now formally define the different types of nodes that can
occur in the result sequence of an evaluated LiXQuery expression. These types of nodes
will allow us to later define specific properties of expressions.

21

Definition 1.29 (Result node types). We call a node in the result sequence of an expression
an original node if it is identical to some node in the initial XML store of the expression.
We call an it a new node if it is newly constructed in the expression (it was not present
in the initial XML store).
We call it a deep-equal node if it is deep-equal to some node in the initial XML store of
the expression.
We call it a copied node if it is a copy of some node in the initial XML store of the
expression.

ORIGINAL

DEEP−EQUAL NEW

COPIED

Figure 1.2: Result node types

In Figure 1.2 we see the relations between these types of nodes. It is straightforward to
see that the copied and original nodes are also deep-equal. The copied nodes are also new,
as they have a new node identity. But it is important to know that a portion of the new
nodes is also deep equal but was not created as a copy. These nodes are in fact coincidently
deep-equal to an original node. This coincidental deep equal nodes are made up of new
nodes and it is therefore possible that they are only deep equal in some evaluations of an
expression, as we will expand on later.

22

Chapter 2

Expressive Power of the Node
Construction

In this chapter we show that for certain expression that can contain node construction
there exists an expression without node construction yielding the same result. This result
gives us an indication on the expressive power of the node construction in LiXQuery.

Section 2.1 contains the definition of the theorem for the elimination of node con-
struction in expressions that have results that do not contain newly constructed nodes.
Section 2.2 gives an outline of the simulation that will be used to prove our theorem. Sec-
tion 2.3 and 2.4 define this simulation. In Section 2.6 we explain how this simulation can be
used to create a constructor-free expression. Finally in Section 2.5 we give an illustrative
example.

2.1 Eliminating Node Construction

The elimination of construction in an expression basically means that we will have to find
an other expression that simulates the expression but which does not use construction. It
is clear that an expression that returns new nodes cannot be simulated by an expression
without constructors. This is why we introduce the notion of node-conservative expression.

Definition 2.1. A node-conservative expression (NCE) is an expression e ∈ LQE such
that for all stores St and environments Env it holds that if St, Env ` e ⇒ St′, v then all
nodes in v are nodes in St.

Another restriction we make is that we only consider deterministic expressions. Node
creation is a source of nondeterminism in LiXQuery (and XQuery) because the fragment
that is created by a constructor is placed at an arbitrary position in document order
between the already existing trees in the store. Since node construction is the only source
of non-determinism in LiXQuery, it is clear that we cannot simulate that there are many
possible results without it. This is however not a fundamental feature of XQuery so we
ignore non-deterministic expressions.

23

DETERMINISTIC

NON−DETERMINISTIC NCE

Figure 2.1: NCE and determinism

Definition 2.2. An expression e ∈ LQE is said to be deterministic if for every store St
and environment Env it holds that if St, Env ` e ⇒ St′, v and St, Env ` e ⇒ St′′, w then
v = w.

Note that this is a very strict definition of determinism. These deterministic expressions
are in fact a subset of the node-conservative expressions as depicted in Figure 2.1. Note
that node-conservative expressions are possibly non-deterministic, an example of a non-
deterministic node-conservative expression is given in Example 2.1. In Example 0.1 we
considered a join and a projection of two XML documents in LiXQuery. This expression
is an example of a deterministic node-conservative expression.

Example 2.1 A Non-deterministic Expression

declare function eps:nondeterm() {

let $x := <a/>

let $y := <a/>

return

if $x << $y then true() else false()

};

if (eps:nondeterm()) then

doc("table.xml")/table/row[1]

else

doc("table2.xml")/table/row[2]

Using the input documents as defined in Example 0.1.

We could have allowed multiple results that were equivalent up to isomorphism over
the nodes, but this would make things unnecessarily complex.

24

Next to restricting the types of expressions we consider, we also allow a simulation to
differ in its semantics from the the original in two ways. The first is that a simulation may
have a defined result where the original does not. Note that we still require that whenever
an expression has a defined result then the simulation has the same defined result, but not
necessarily the reverse. We conjecture that the theorem also holds when we also require
the reverse but proving this would add a lot of overhead to this work without adding much
extra insight in the expressive power of node construction.

The second way in which the semantics of a simulation differs from that of the original
is that resulting stores are only the same up to garbage collection, i.e., after removing the
trees that are not reachable by the LiXQuery δ function (used in the fn:doc() function)
or contain nodes from the result sequence. If we denote the store that results from garbage
collection on a store St and a result sequence v as [St]v then this leads to the following
definition:

Definition 2.3. Given two expression e, e′ ∈ LQE we say that e′ is a simulation of
e if for all stores St and environments Env with undefined x, k and m it holds that if
St, Env ` St′, v then there exists a store St′′ such that St, Env ` St′′, v and [St′′]v = [St′]v.

With these definitions to define the following theorem, wich is the main result of this
work:

Theorem 2.4. For every deterministic node-conservative1 expression e there exists a sim-
ulation e′ ∈ LQE that does not contain constructors.

2.2 Outline of the simulation

Our goal is to create a construction free simulation of an expression. To simulate construc-
tion we will need to simulate the store, because it is there that the information concerning
the newly constructed nodes will reside. In short, the simulation performs the following
steps:

1. We use a few special variables in the environment to encode a part of the store. This
part will contain the newly created nodes but also parts of the old store that are
retrieved with the doc() function;

2. Whenever a doc() call occurs in the original expression, the simulation will add the
encoding of the document tree to the simulated store on the condition that it is not
already there;

3. Accessing nodes in the store is simulated by accessing the encoded store;

4. Nodes are simulated by node identifiers which are numbers that refer to the encoded
nodes in the store;

1Since every deterministic expression is also node-conservative we can strictly speaking drop the second
requirement.

25

5. In order to be able to distinguish encoded atomic values from node identifiers within
sequences, we let the normal atomic values be preceded by a 0 and the node identifiers
by a 1. Note that this means that in the simulation, a sequence will be twice as long
and every item that was at position i will now be at position 2i;

6. Finally, the simulation replaces the node identifiers with the corresponding nodes
from the store. If the original expression is indeed a deterministic node-conservative
expression, the result – and thus also the result of the simulation – will contain no
newly constructed nodes. Consequently, this last step is always possible if the original
expression is node-conservative.

The transformation of an expression to its simulation, is expressed by a transformation
function. A transformation function is a function ε : LQE → LQE. The commuting
diagram in Figure 2.2 illustrates what should hold for such a transformation function ε for
it to be correct. We show this by induction on the subexpressions e′′ of an expression e.

(St, Env)
τ−−−→ (Ŝt, Ênv)

e′′

y ε(e′′)

y
(St′, v)

τ ′
−−−→ (Ŝt, v̂)

Figure 2.2: Relations between the several components in the translation.

On the left-hand side we see that starting from a store St and an environment Env,
the evaluation of the expression e′′, which may add new nodes to St, will result in a new
store St′ ⊇ St and a result v. On the right-hand side we see that starting from a store
Ŝt and an environment Ênv, the evaluation of the transformed constructor-free expression
ε(e′′), which will not add new nodes to Ŝt, will result in the same store Ŝt and a result v̂.

At the top of the diagram we see the encoding τ which encodes a store St
dEnv ⊆ St into

sequences of atomic values that are bound to special variables in the environment Ênv.
Moreover, τ replaces the values of all variables in Env with sequences of atomic values
and the bodies of all functions are transformed by ε to constructor-free expressions. At
the bottom of the diagram we see the encoding τ ′ which encodes a store St

bv ⊆ St′ and the
value v as a sequence of atomic values v̂.

When we use this schema to show by induction that we can correctly transform an
expression e to a constructor-free expression ε(e) it will hold for the evaluation of the

subexpression e′′ that Ŝt is the store against which e is evaluated. Moreover, if during the
evaluation of e nodes where created before the evaluation of e′′ then (1) these nodes have
been added to St and (2) in the evaluation of ε(e) they were added to the encoded store in

Ênv. So it will hold that St = Ŝt∪St
dEnv. Obviously it has to be shown by induction that

this remains true after the evaluation of e′′ so it has to be shown that St′ = Ŝt ∪ St
bv. An

overview of all these relationships between the involved stores is illustrated in Figure 2.3.

26

St

StEnv

St St '

St v

Figure 2.3: The stores Ŝt, St
dEnv, St, St

bv and St′

2.3 Encoding the Store and Environment

Before we describe how to transform LiXQuery expressions into their constructor-less sim-
ulations, we first have to look into the encodings of the store and environment based on
their formal semantics.

We first describe how to encode a store in sequences of atomic values. We will define
this given an injective function id : V → N that provides the unique node identifier for
each node and which will be used to represent the nodes in the encoding.

Definition 2.5. Given an XML store St = (V, E,�, ν, σ, δ) and an injective function

id : V → N then we call a tuple of XML values (V̂ , Ê, δ̂) a store encoding of St under id if

– V̂ = 〈id(v1), t1, n1, s1〉 ◦ . . . ◦ 〈id(vk), tk, nk, xk〉
where (1) {v1, . . . , vk} = V , (2) v1 � . . . � vk, (3) ti equals "text", "doc", "attr"
or "elem" if vi is a text node, a document node, an attribute node or an element
node, respectively, (4) nk is ν(vk) if it is defined and "" otherwise, and (5) sk is σ(vk)
if it is defined and "" otherwise,

– Ê = 〈id(v1), id(v′
1)〉 ◦ . . . ◦ 〈id(vm), id(v′

m)〉
where {(v1, v

′
1), . . . , (vm, v′

m)} = E,

– δ̂ = 〈s1, id(v1)〉 ◦ . . . ◦ 〈sp, id(vp)〉
where δ = {(s1, v1), . . . , (sp, vp)}.

Note that a store encoding is not uniquely determined given St and id because we can
choose the order in Ê and δ̂.

We have to encode sequences of atomic values and nodes as sequences of atomic values
only. When we directly replace each node v with id(v) we cannot always tell if a number
represents itself or encodes a node identifier. Therefore we let atomic values that encode
themselves be preceded by 0 and atomic values that are node identifiers be preceded by 1.
For illustration consider the examples in Example 2.2.

27

Example 2.2 Encoded Values

Given a function id = {(v1, 5), (v2, 3)}:

value value encoding

〈5〉 〈0, 5〉
〈v1〉 〈1, 5〉
〈5, v1, "string", v2〉 〈0, 5, 1, 5, 0, "string", 1, 3〉

Definition 2.6. Given an XML value v = 〈x1, . . . , xk〉 over a store St = (V, E,�, ν, σ, δ)
and an injective function id : V → N, we call an XML value ṽ the value encoding of v
under id if ṽ = 〈m1, x̂1〉 ◦ . . . ◦ 〈mk, x̂k〉 where mi = 1 and x̂i = id(xk) if xk is a node and
mi = 0 and x̂i = xi otherwise.

Note that the encoding of value v is written as ṽ and not as v̂ to distinguish it from
the v̂ in the commuting diagram in Figure 2.2 which encodes both a store and a value.

We now proceed with formalizing the the τ relationship introduced in Figure 2.2. Recall
that the relations in this diagram hold by induction on the subexpressions e′′ of a simulated
expression e. The resulting store Ŝt is the store against which e is evaluated, because all
nodes that are created by e′′ are in ε(e′′) encoded in Ênv. We will refer to the part of

St encoded in Ênv as St
dEnv. Since St

dEnv describes the part of St that is retrieved or

created by preceding evaluations it holds that St = Ŝt ∪ St
dEnv where Ŝt ∩ St

dEnv contains
the documents that were retrieved with the doc() function before e′′ was evaluated (see
Figure 2.3).

Definition 2.7. Given a store St = (V, E,�, ν, σ, δ), an environment Env = (a, b, v, x, k, m)

over this store and a transformation function ε we call a pair (Ŝt, Ênv) with store Ŝt and

environment Ênv = (â, b̂, v̂, x̂, k̂, m̂) a store-environment encoding of St and Env under tr
if there is a store St

dEnv and an injective function id : V
dEnv → N such that

– St = Ŝt ∪ St
dEnv,

– all nodes in values of variables in Env are in St
dEnv

– â = a,

– b̂ = {(s, tr(y))|(s, y) ∈ b},

– in v̂ (1) all variable names s bound by v are bound to the value encoding of v(s) under

id, (2) the variables tau:E, tau:V and tau:delta contain V̂ , Ê and δ̂, respectively,

where (V̂ , Ê, δ̂) is the store encoding of St
dEnv under id and (3) the variables tau:x,

tau:k and tau:m contain value encodings of x, k and m, respectively, under id, and

– x̂, k̂ and m̂ are all undefined.

28

As described in Section 1.2 result of a LiXQuery expression is defined in terms of its
result sequence and the result store. This is also apparant from the LiXQuery the formal
semantics where each semantic rule has a conclusion of the form St, Env ` e ⇒ (St′, v).
Because of the language specifications of LiXQuery, in order to achieve similar behavior in
our simulation, we must encode this modified store in a result sequence only. Therefore we
define the τ ′ encoding in Figure 2.2. Here we refer to the part of the store that is encoded
in the environment as St

bv. Since St
bv describes the part of St that is retrieved or created

by preceding evaluations it must hold that St′ = Ŝt ∪ St
bv where Ŝt′ ∩ St

bv contains the
documents that were retrieved with the doc() function before or during e′′ was evaluated
(see Figure 2.3).

Definition 2.8. Given a store St′ = (V, E,�, ν, σ, δ) and a value v over this store then a

pair (Ŝt, v̂) with a store Ŝt and an XML value v̂ is called a store-value encoding of St and

v if there is a store St
bv and an injective function id : V

bv → N such that (1) St′ = Ŝt∪ St
bv,

(2) all nodes in v are in St
bv and (3) v̂ = 〈|V |〉 ◦ V̂ ◦ 〈|E|〉 ◦ Ê ◦ 〈|δ|〉 ◦ δ̂ ◦ ṽ where (V̂ , Ê, δ̂)

is the store encoding of St
bv under id, and ṽ is the value encoding of v under id.

Based on this input/output encoding we can give the formal meaning of the diagram
in Figure 2.2 and define when a transformation function defines a correct simulation.

Definition 2.9. A transformation function ε is said to be a correct transformation if it
holds for every store St and environment Env that if St, Env ` e ⇒ St′, v and (Ŝt, Ênv)

is store-environment encoding of St and Env under tr then it holds that Ŝt, Ênv ` ε(e) ⇒
Ŝt, v̂ where (Ŝt, v̂) is a store-value encoding of St′ and v.

The translated expression ε(e) will work on the encoded store and environment in Ênv

and may result in an encoded value v̂ The store Ŝt remain unchanged. Note that in order
to obtain an expression e′ as required by Theorem 2.4 we have to execute before ε(e) a
function that replaces the values of all the variables with the encoded values and if they
contain nodes then the connected parts of the store need to be encoded as well. Moreover,
after we have executed ε(e) we have to decode the resulting value. This will be explained
later in Section 2.6

2.4 A Correct Transformation Function

In this section we construct a transformation function ε : LQE → LQE and show that the
following theorem holds.

Theorem 2.10. The transformation function ε is a correct transformation function.

The result of ε(e) is defined by induction upon the structure of e. We will now define
the translations for all the types of LiXQuery expressions. Helper functions will be defined
in the eps namespace which is assumed to be distinct from all the used namespaces in e.

29

First we will define necessary helper functions eps:V(), eps:E(), eps:delta() and
eps:val() which respectively extract V̂ , Ê, δ̂, and ṽ from a store-value encoding. And for
computing the store-value encoding give V̂ , Ê, δ̂ and ṽ we declare a function eps:stValEnc()

with formal arguments $V, $E, $delta and $val.

Function 2.1 eps:V

declare function eps:V($stValEnc) {

for $i at $pos in $stValEnc

where (($pos > 1) and($pos <= ($stValEnc[1]*4+1)))

return

$i

};

Function 2.2 eps:E

declare function eps:E($stValEnc) {

for $i at $pos in $stValEnc

where (($pos > ($stValEnc[1]*4+2))

and ($pos <= ($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2)))

return

$i

};

2.4.1 Variables

In LiXQuery variables result in their value, in the simulation we must return a store value
encoding in order. In this way variables can uniformly be used together with results from
other expressions.

Definition 2.11 (variable).

ε($s) = eps:stValEnc($tau:V,$tau:E,$tau:delta,$s))

2.4.2 Built-in functions

LiXQuery has several built-in functions which correspond to the same functions in XQuery,
taking in account the omission of data types. Our simulation of these functions will make
heavy use of the above introduced helper functions to extract the necessary information
from the encodings.

30

Function 2.3 eps:delta

declare function eps:delta($stValEnc) {

for $i at $pos in $stValEnc

where

(($pos > (($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1))

and

($pos <=

(($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1)

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2)))

return

$i

};

Function 2.4 eps:val

declare function eps:val($stValEnc) {

for $i at $pos in $stValEnc

where

($pos >

(($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1)

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2))

return

$i

};

Function 2.5 eps:stValEnc

declare function eps:stValEnc($tau:V,$tau:E,$tau:delta,$v) {

(fn:count($tau:V) idiv 4, $tau:V,

fn:count($tau:E) idiv 2, $tau:E,

fn:count($tau:delta) idiv 2, $tau:delta,

$v)

};

31

doc-function

The doc() function loads new documents into our encoded store. The LiXQuery formal
semantics assumes that all the documents of the web are already loaded into the store. This
of course is not true in a real world application. Therefore documents must be loaded. In
our transformation this also means that they have to be encoded and added tot the encode
store. This is why the transformation of the doc() function is the most complex of the
built-in functions, and uses several specific helper functions.

Definition 2.12 (doc-function).

ε(doc(e)) = let $eps:res := ε(e)
return eps:doc($eps:res)

Here the function eps:doc() checks if the document is already in the encoded store by
comparing the URI’s tot the URI’s already present in δ̂. If this is the case it just returns
the associated simulated node id as found in δ̂, else the eps:doc() function compares the
real document node obtained with the given URI, to the real documents obtained via the
URI’s that are already present in δ̂. If this is the case, only a new entry is added to δ̂
linking the new URI to the node identifier of the encoded document. If the document is
not present in δ̂ the document is encoded. First a document node is added to the encoded
store and with the resulting node identifier a new entry is added in δ̂. Then, also using this
identifier, the nodes of the document are encoded and added after this document node in V̂
by calling the eps:encodeDesc() function given as Function 2.7. The eps:doc() function
finally returns a store-value encoding containing the (new) node identifier as the result
sequence and the (updated) store, environment and delta.

During this proces several helper functions are used which are given as Function 2.8
to 2.16. Most notably are the functions eps:addNode() and eps:addNodeAfter() that
perform the necessary encode store additions.

To be able to add nodes to the encoded store we define the helper functions eps:addNode
and eps:addNodeAfter.

name-function

The name() function returns the name of a node. The transformation is straightforward,
using the general helper functions.

Definition 2.13 (name-function).

ε(name(e′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:nu($eps:val[2], $tau:V))

32

Function 2.6 eps:doc

declare function eps:doc($eps:res) {

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

(: check if we already loaded document :)

let $docid := eps:docId($eps:val[2],$tau:delta)

return

if (not(empty($docid))) then

eps:stValEnc($tau:V,$tau:E,$tau:delta,$docid)

else

let $docid := eps:realDocId($eps:val[2],$tau:delta)

return

if (not(empty($docid))) then

(: update delta mapping :)

let $tau:delta := ($tau:delta,$eps:val[2],$docid[2])

return

eps:stValEnc($tau:V,$tau:E,$tau:delta,$docid)

else

(: load the document :)

(: add document node :)

let $eps:res2 := eps:addNode("document","","",

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $eps:val2 := eps:val($eps:res2)

(: add to delta :)

let $tau:delta := (eps:delta($eps:res2),$eps:val[2],$eps:val2[2])

(: encode document :)

let $eps:descendants :=

(fn:doc($eps:val[2])/descendant-or-self::node()

| fn:doc($eps:val[2])//@*)

let $eps:res3 := eps:encodeDesc($eps:descendants,2,$eps:val2[2],

($eps:val2[2]),$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res3)

let $tau:E := eps:E($eps:res3)

let $tau:delta := eps:delta($eps:res3)

return

eps:stValEnc($tau:V,$tau:E,$tau:delta,(1,$eps:val2[2]))

};

33

Function 2.7 eps:encodeDesc

declare function eps:encodeDesc($eps:descendants,$eps:item,$eps:nodeid,$eps:idseq,

$tau:V,$tau:E,$tau:delta) {

if (fn:count($eps:descendants) >= $eps:item) then

let $eps:desc := ($eps:descendants[$eps:item])

let $eps:v := (

typeswitch($eps:desc)

case element()

return ("element",fn:name($eps:desc),"")

case text()

return ("text","", fn:data($eps:desc))

case attribute()

return ("attribute",fn:name($eps:desc), fn:data($eps:desc))

default return ())

let $eps:res :=

eps:addNodeAfter($eps:nodeid,

eps:parentId($eps:desc,$eps:descendants,$eps:idseq),

$eps:v[1],$eps:v[2],$eps:v[3],$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return

eps:encodeDesc($eps:descendants,$eps:item+1,$eps:val[2],

($eps:idseq,$eps:val[2]),

$tau:V,$tau:E,$tau:delta)

else eps:stValEnc($tau:V,$tau:E,$tau:delta,(0,0))

};

Function 2.8 eps:parentId

declare function eps:parentId($eps:item, $eps:posparents,$eps:idseq) {

let $eps:parent := $eps:item/..

for $pp at $pos in $eps:posparents

where $pp is $eps:parent

return $eps:idseq[$pos]

};

34

Function 2.9 eps:docId

declare function eps:docId($URI_filename, $tau:delta) {

for $URI at $pos in $tau:delta

where (($pos mod 2 = 1)

and ($tau:delta[$pos]=$URI_filename))

return

(1,$tau:delta[$pos+1])

};

Function 2.10 eps:realDocId

declare function eps:realDocId($URI_filename, $tau:delta) {

for $URI at $pos in $tau:delta

where (($pos mod 2 = 1)

and (doc($tau:delta[$pos]) is doc($URI_filename)))

return

(1,$tau:delta[$pos+1])

};

Function 2.11 eps:newId

declare function eps:newId($tau:V) {

let $ids := (

for $id at $pos in $tau:V

where ($pos mod 4 = 1)

return

$id

)

return

fn:max($ids)+1

(: without max:

for $id in $ids

where every $id2 in $ids satisfies ($id2 <= $id)

return

$id + 1

:)

};

35

Function 2.12 eps:addNode

declare function eps:addNode($type,$name,$text,$tau:V,$tau:E,$tau:delta) {

let $eps:newid := eps:newId($tau:V)

let $tau:V := ($tau:V, $eps:newid, $type,$name,$text)

return

eps:stValEnc($tau:V,$tau:E,$tau:delta,(1,$eps:newid))

};

Function 2.13 eps:addNodeAfter

declare function eps:addNodeAfter($eps:nodeid,$eps:parentid,

$type,$name,$text,$tau:V,$tau:E,$tau:delta) {

(: in our implementation new nodes are always added at the end :)

(: assert $nodeid = nodeid of last node :)

let $eps:newid := eps:newId($tau:V)

let $tau:V := ($tau:V, $eps:newid, $type,$name,$text)

let $tau:E := ($tau:E,$eps:parentid, $eps:newid)

return

eps:stValEnc($tau:V,$tau:E,$tau:delta,(1,$eps:newid))

};

36

Function 2.14 tau:less

declare function tau:less

($node1_id, $node2_id, $tau:E) {

return

if ((

for $p at $posp in $tau:E

where ($posp mod 2 = 1)

return

if ($tau:E[$posp+1] = $node1_id) then

$p

else

()

)

=

(

for $p2 at $posp2 in $tau:E

where ($posp2 mod 2 = 1)

return

if ($tau:E[$posp2+1] = $node2_id) then

$p2

else

()

)

)

then

$node1_id < $node2_id

else

()

};

37

The function eps:nu() returns the name of the specified node using the information
encoded in V̂ , which it accesses using the node id. If the node is not an element or attribute
node, the empty sequence is returned.

Function 2.15 eps:nu

declare function eps:nu($eps:nodeId, $tau:V) {

let $eps:node := eps:getNode($eps:nodeId,$tau:V)

return

if (($eps:node[2] = "element")

or

($eps:node[2] = "attribute"))

then

(0,$eps:node[3])

else

()

};

Function 2.16 eps:getNode

declare function eps:getNode($eps:nodeId, $tau:V) {

for $ids at $pos in $tau:V

where (($pos mod 4 = 1) and ($ids = $eps:nodeId))

return ($tau:V[$pos],$tau:V[$pos+1],$tau:V[$pos+2],$tau:V[$pos+3])

};

string-function

The string() function returns the string value of a node or an atomic value. Our trans-
formation uses the function eps:sigma(), which returns the string value of the specified
node using the information encoded in V̂ , in a similar way to the name-function. This
time if it is not a text node or attribute node, the empty sequence is returned.

Definition 2.14 (string-function).

ε(string(e′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

38

let $eps:val := eps:val($eps:res)

return

if ($eps:val[1] = 1) then

eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:sigma($eps:val[2], $tau:V))

else

eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0,string($eps:val[2]))

Function 2.17 eps:sigma

declare function eps:sigma($eps:nodeId, $tau:V) {

let $eps:node := eps:getNode($eps:nodeId,$tau:V)

return

if (($eps:node[2] = "text")

or

($eps:node[2] = "attribute"))

then

(0,$eps:node[4])

else

()

};

xs:integer-function

The xs:integer() function converts stings to atomic values. We use a straightforward
transformation. Due to the nature of our encoding it is easy to decode (selecting the second
item in the sequence). We then apply the original function (xs:integer()), and encode
again (create a 〈0, integer〉 sequence).

Definition 2.15 (xs:integer-function).

ε(xs:integer(e′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0,xs:integer($eps:val[2])))

39

root-function

The root() function returns the root-node of a node. The transformation is achieved by
the recursive eps:root() function, which recursively walks op the encoded tree, selecting
the parent of the parent (using the eps:parent() function) until it can go no further.

Definition 2.16 (root-function).

ε(root(e′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:root($eps:val[2],$tau:E))

Function 2.18 eps:root

declare function eps:root($eps:nodeId, $tau:E) {

let $parentId := eps:parent($eps:nodeId, $tau:E)[2]

return

if (empty($parentId)) then

(1,$eps:nodeId)

else

eps:root($parentId,$tau:E)

};

Function 2.19 eps:parent

declare function eps:parent($eps:nodeId, $tau:E) {

for $pnid at $pos in $tau:E

where (($pos mod 2 = 0) and ($pnid = $eps:nodeId))

return (1,$tau:E[$pos - 1])

};

concat-function

The concat() function concatenates strings. The transformation is a straightforward
decoding, applying the original function and encoding again, similar to the xs:integer()

simulation.

40

Definition 2.17 (concat-function).

ε(concat(e′,e′′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := ε(e′′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val2 := eps:val($eps:res)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, concat($eps:val[2],$eps:val2[2])))

true-, false-, not- and count-function

The true() and false() functions return the true and false atomic values. The not()

function is the boolean not function and the count() function return the number of items
in the sequence.

Definition 2.18 (true- and false-function).

ε(true()) =

eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, true()))

ε(false()) =

eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, false()))

The transformation of the true() and false() functions simply returns the encoded
true and false atomic values.

Definition 2.19 (not-function).

ε(not(e′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, not($eps:val[2])))

41

The not() function transformation does a decode, an original function application, and
encoding.

Definition 2.20 (count-function).

ε(count(e′)) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, count($eps:val) idiv 2))

The count() function transformation does a decode. Then applies the original function.
Before encoding again it does a division by two due to the nature of our encoding.

position- and last-function

The position() function returns the position of the context item in the context sequence.
The last() function returns the size of the context sequence.

Definition 2.21 (position- and last-function).

ε(position()) =

eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, $tau:k))

ε(last()) =

eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, $tau:m))

The transformation of these functions simply return information which is available in
the encoded environment.

2.4.3 If-expressions

The if-expression is a very important expression in LiXQuery because it provides the
semantics of the where function which is not present in LiXQuery. The transformation
of it is simple, the condition of the if is changed to account for the encoding an the
transformation is recursively applied to the expressions within the body of the if-expression.

Definition 2.22 (If-expression).

42

ε(if e then e1 else e2) =

let $eps:res := ε(e)
let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

if ($eps:val[2] = true()) then

return ε(e1)

else

return ε(e2)

2.4.4 For-expressions

The for-expression is the most fundamental type of expression in LiXQuery. In it’s trans-
formation we assume a number x that is unique for each for-expression that has to be
transformed. This is used to define for every for-expression a unique function eps:forx().
The parameter varsx of this function represent all free variables in e′. Recursion is used
here to simulate the iteration over a sequence where the resulting store of the previous step
is passed on to the following step. The transformation of the for-expression is then defined
as follows.

Definition 2.23 (For-expression).

ε(for $s at $s′ in e return e′) =

let $eps:res := ε(e)
let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:forx(1, $eps:val, $tau:V, $tau:E,

$tau:delta, varsx)

with eps:forx() defined as follows:

declare function eps:forx($eps:pos, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx) {
if ($eps:pos <= (count($eps:seq) idiv 2)) then

let $s := ($eps:seq[$eps:pos*2-1], $eps:seq[$eps:pos*2])

let $s’ := $eps:pos

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

43

let $eps:res2 := eps:forx($eps:pos + 1, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

}

2.4.5 Let-expression

The let-expression provides us with a way to declare variables. The transformation eval-
uates the expression and extracts its value an binds it using a let-expression of which the
return clause is the transformation of the original return clause expression.

Definition 2.24 (Let-expression).

ε(let $s := e return e′) =

let $eps:res := ε(e)
let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $s := eps:val($eps:res)

return ε(e′)

2.4.6 Concatenation

The results of evaluations of expressions can be concatenated. The transformation of this
instruction is important, due to the specific encoding scheme we use. Both expressions are
evaluated, their values extracted from the encoding. Then the concatenation is applied
and this result is encoded back. It is important to note that the evaluation of the second
expression takes place in the changed environment and store of the first expression. This
is now achieved without recursion (unlike the for expression) because the defined number
of expressions is defined at the time we are applying the transformation.

Definition 2.25 (Concatenation).

ε(e′, e′′) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

44

let $tau:delta := eps:delta($eps:res)

let $eps:val1 := eps:val($eps:res)

let $eps:res2 := ε(e′′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val2 := eps:val($eps:res)

return stValEnc($tau:V,$tau:E,$tau:delta,($eps:val1,$eps:val2))

2.4.7 Boolean Operators

LiXQuery provides basic boolean operators which allow complex conditions in the other ex-
pressions. The transformation of these operators is straightforward and uses the decoding-
encoding approach.

Definition 2.26 (Boolean Operators).

ε(e′ and e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, $eps:val1[2] and $eps:val2[2]))

ε(e′ or e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

45

(0, $eps:val1[2] or $eps:val2[2]))

2.4.8 Atomic Value Comparison

The atomic value comparison operators provided in LiXQuery are the less and equal gen-
eral comparison operators of XQuery restricted to atomic values. In the translation both
epressions are evaluated and the extracted values are passed on to the helper functions
eps:atomicEqual() and eps:atomicLess(). These functions in turn, use the helper func-
tion eps:getAtomics() to tranform the sequence of encoded atomics in the corresponding
sequence of dencoded atomics, and apply the original LiXQuery less and equal operators
respectively. After this the result is encoded again.

Definition 2.27 (Atomic Value Comparison).

ε(e′ = e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:atomicEqual($eps:val1, $eps:val2))

ε(e′ < e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:atomicLess($eps:val1, $eps:val2))

46

Function 2.20 eps:atomicEqual

declare function eps:atomicEqual($eps:val1,$eps:val2) {

(0, (eps:getAtomics($eps:val1) = eps:getAtomics($eps:val2)))

};

Function 2.21 eps:atomicLess

declare function eps:atomicLess($eps:val1,$eps:val2) {

(0, (eps:getAtomics($eps:val1) < eps:getAtomics($eps:val2)))

};

2.4.9 Node Comparison

The LiXQuery node comparison operators are based on node id and document order.
The transformation of node comparison expressions is therefore done by extracting the
information of identity and position contained in the store-value encoding.

Definition 2.28 (Node Comparison).

ε(e′ is e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, $eps:val1[2] = $eps:val2[2]))

Function 2.22 eps:getAtomics

declare function eps:getAtomics($atomics) {

for $i at $pos in $atomics

where ($pos mod 2 = 0)

return $i

};

47

ε(e′ << e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, eps:pos($tau:val1[2], $tau:V) <

eps:pos($tau:val2[2], $tau:V)))

The function eps:pos($eps:nodeid, $tau:V) iterates over $tau:V and returns the
position of the node with id $eps:nodeid which reflects the document order.

Function 2.23 eps:pos

declare function eps:pos($eps:nodeid, $tau:V) {

for $node at $pos in $tau:V

where (($pos mod 4 = 1) and ($node = $eps:nodeid))

return ($pos -1) idiv 4 + 1

};

2.4.10 Arithmetic

LiXQuery provides the basic arithmetic for the numeric type it supports, integers. Here we
define how the addition is to be transformed. The subtraction, multiplication and division
are defined in a similar way. The transformation is again using decode-encode method
only.

Definition 2.29 (Addition).

ε(e′ + e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

48

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

(0, $eps:val1[2] + $eps:val2[2]))

2.4.11 Union

The union operator in LiXQuery creates the union of two expression results. It is however
important to know that this operator implicitly performs duplicate elimination and sorting
in document order, this is apparent form the LiXQuery semantics. Due to our encoding we
have to make these operations explicit in our transformation. The eps:docord function
provides these functionalities.

Definition 2.30 (Union).

ε(e′ | e′′)) =

let $eps:res1 := ε(e′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := ε(e′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:docord(($eps:val1, $eps:val2), $tau:V))

2.4.12 Axis Steps

A path expression in LiXQuery is made up of subsequent axis steps. The . and .. are
transformed using $tau:x and eps:parent() respectively which we already defined. The
other axis steps are transformed using the new eps:children() function, which extracts
the information from the encoding ($tau:E in particular) and applies the necessary filters
on type or name.

Definition 2.31 (Axis Steps).

– ε(.) = eps:stValEnc($tau:V,$tau:E,$tau:delta,$tau:x)

49

Function 2.24 eps:docord

declare function eps:docord($eps:sequence, $tau:V) {

declare function eps:docord($eps:sequence, $tau:V) {

let $eps:niseq := (

for $ni at $posi in $eps:sequence

where ($posi mod 2 = 0)

return $ni

)

for $vn at $posv in $tau:V

where (($posv mod 4 = 1) and ($vn = $eps:niseq))

return

(1,$vn)

};

– ε(..) = eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:parent($tau:x,$tau:E) (Function 2.19)

– For all strings s occurring as axis steps holds
ε(s) = eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children(s, "element", $tau:x,

$tau:V,$tau:E), $tau:V) (Function 2.25)

– For all strings s occurring as axis steps holds preceded by an “@” holds
ε(@s) = eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children(s, "attribute", $tau:x, $tau:V,$tau:E), $tau:V)

– ε(*) = eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children(*, "element", $tau:x,

$tau:V,$tau:E), $tau:V)

– ε(@*) = eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children(*, "attribute", $tau:x,

$tau:V,$tau:E), $tau:V)

– ε(text()) = eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children(*, "text", $tau:x, $tau:V,$tau:E), $tau:V)

50

Function 2.25 eps:children

declare function eps:children($s, $a_or_e,

$tau:x, $tau:V, $tau:E) {

for $c at $posc in $tau:E

where ($posc mod 2 = 0)

return

if (($tau:E[$posc - 1] = $tau:x[2])

and (eps:getNode($c,$tau:V)[2] = $a_or_e)

and (($s = "*") or eps:nu($c, $tau:V)[2] = $s))

then

(1,$c)

else

()

};

2.4.13 Filter-expression

As the semantics of the LiXQuery filter-expression is similar to that of the LiXQuery for
expression it is no suprise that the filter expression transformation is similar to that of the
for expressions. The difference is in its use of the the context item and context position
instead of user defined variables.

Definition 2.32 (Filter-expression).

ε(e′ [e′′]) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:filterx(1, $eps:val, $tau:V, $tau:E,

$tau:delta, varsx)

with eps:filterx() defined as follows:

declare function eps:filterx($tau:k, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx) {
let $tau:m := count($eps:seq) idiv 2

return

if (tau : k <=tau:m) then

let $tau:x := ($eps:seq[$tau:k*2-1], $eps:seq[$tau:k*2])

let $eps:res1 := ε(e′′)

51

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:filterx($tau:k+1, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return

typeswitch($eps:val1[2])

case xs:integer return

if ($eps:val1[2] = $tau:k)

then $eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else $eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val2))

case xs:boolean return

if ($eps:val1[2] = true())

then $eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else $eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val2))

default return

eps:stValEnc($tau:V, $tau:E, $tau:delta,$eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

}

2.4.14 Path-expressions

The transformation of path-expression also uses the technique of recursion in the same way
as the for- and filter-expression translation. This is because it also iterates over a sequence
where the resulting store of the previous step is passed on to the following step. The / and
the // transformation use the same basis, the eps:pathx() function. The // just applies
an extra preceding step where it gets all descendants with the eps:decendants-o-s()

function. This function uses recursion to extract the information from $tau:E.

Definition 2.33 (/ path-expression).

ε(e′ / e′′]) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

52

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := eps:pathx(1, $eps:val, $tau:V, $tau:E,

$tau:delta, varsx)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return $eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:docord($eps:val2, $tau:V))

with eps:pathx() defined as follows:

declare function eps:pathx($tau:k, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx) {
let $tau:m := count($eps:seq) idiv 2

return

if ($tau:k <= $tau:m) then

let $tau:x := ($eps:seq[$tau:k*2-1], $eps:seq[$tau:k*2])

let $eps:res1 := ε(e′′)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:pathx($tau:k+1, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

}

Definition 2.34 (// path-expression).

ε(e′ / e′′]) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

53

let $eps:res2 :=

eps:docord(eps:pathx(1, eps:descendants-o-s($eps:val),

$tau:V, $tau:E, $tau:delta, varsx))

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return $eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:docord($eps:val2))

with eps:pathx() defined in Definition 2.33, and eps:decendants-o-s() defined as
Function 2.26.

Function 2.26 eps:descendants-o-s

declare function eps:decendants-o-s($tau:E,$pps) {

let $can := (for $d at $posd in $tau:E

where (($posd mod 2 = 0) and ($tau:E[$posd - 1] = $pps)

and (not($d = $pps)))

return $d)

return

if (not(empty($can))) then

eps:decendants-o-s($tau:E,($pps,$can[1]))

else

for $nid in $pps

return (1,$nid)

};

2.4.15 Literals and the empty sequence

Literals return the atomic values they represent. In our simulation we must encode literals
in their special form and return a store-value encoding. For the empty sequence this is also
true.

Definition 2.35 (variable).

ε(literal) = eps:stValEnc($tau:V,$tau:E,$tau:delta,(0, literal)))

Definition 2.36 (empty sequence).

ε(()) = eps:stValEnc($tau:V,$tau:E,$tau:delta,()))

54

2.4.16 Constructors

The transformation of a construction operator extends the encoded store. This is a cru-
cial part of the simulation. As with the doc() function, we have to add nodes to the
store and therefore use the same functions eps:addNode() defined as Function 2.12 and
eps:addNodeAfer() defined as Function 2.13. The attribute and text node constructors
are straightforward. They evaluate the subexpressions to string values and with this in-
formation call the addNode() function. The element and the document constructor are
similar, they must both create deep equal copies of the node sequence returned by the
contents expression. The element constructor has one extra evaluation to determine its
name in the same way it is done in the attribute constructor. The copying is performed by
the function eps:addChildren($parEnc, $chEnc, $tau:V, $tau:E, $tau:delta). It
makes deep copies for all the nodes encoded in chEnc,adds these under the node encoded
in $parEnc and returns a store-value encoding with the new store and the parent node.
The function uses recursion in the same way as the transformation of the for-, filter- and
path-expressions, in order to be able to iterate with side-effects on the store.

Definition 2.37 (element constructor).

ε(element {e′}{e′′}) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := ε(e′′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:addElement($eps:val, $eps:val2,

$tau:V,$tau:E,$tau:delta)

with eps:addElement() declared as follows.

declare function eps:addElem($eps:nameEnc $eps:chEnc, $tau:V,

$tau:E, $tau:delta) {
let $eps:res1 := eps:addNode("element",$nameEnc[2],"",

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val := eps:val($eps:res1)

let $eps:res2 := eps:addChildren($eps:val1,$eps:chEnc,

55

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return $eps:stValEnc($tau:V, $tau:E, $tau:delta,

$eps:val1)

}

Function 2.27 eps:addChildren

declare function eps:addChildren($eps:parentEnc, $eps:chEnc,

$tau:V, $tau:E, $tau:delta) {

eps:copyAsChildren($eps:parentEnc[2],$eps:parentEnc[2],

$eps:chEnc,2,$tau:V,$tau:E,$tau:delta)

};

Definition 2.38 (attribute constructor).

ε(attribute {e′}{e′′}) =

let $eps:res := ε(e′)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := ε(e′′)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:addNode("attribute",$eps:val, $eps:val2,

$tau:V,$tau:E,$tau:delta)

Definition 2.39 (text node constructor).

ε(text {e}) =

let $eps:res := ε(e)
let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

56

Function 2.28 eps:copyAsChildren

declare function eps:copyAsChildren($eps:parentid,$eps:nodeid,

$eps:chEnc,$eps:child,$tau:V,$tau:E,$tau:delta){

if (fn:count($eps:chEnc) >= $eps:child) then

let $eps:childEnc :=

eps:getNode($eps:chEnc[$eps:child],$tau:V)

let $eps:res2 := eps:addNodeAfter($eps:nodeid,$eps:parentid,

$eps:childEnc[2],$eps:childEnc[3],$eps:childEnc[4],

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val := eps:val($eps:res2)

let $eps:desc := eps:decendants-o-s($tau:E, $eps:childEnc[1])

let $eps:res3 := eps:deep-copy($eps:desc,4,$eps:val[2],

($eps:val[2]),$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res3)

let $tau:E := eps:E($eps:res3)

let $tau:delta := eps:delta($eps:res3)

let $eps:val3 := eps:val($eps:res3)

return

eps:copyAsChildren($eps:parentid,$eps:val3[2],$eps:chEnc,

$eps:child+2,$tau:V,$tau:E,$tau:delta)

else eps:stValEnc($tau:V,$tau:E,$tau:delta,(0,0))

};

57

Function 2.29 eps:deep-copy

declare function eps:deep-copy($eps:seq,$eps:item,$eps:nodeId,

$eps:nodeIdSeq,$tau:V,$tau:E,$tau:delta) {

if (fn:count($eps:seq) >= $eps:item) then

let $eps:nodeId := $eps:seq[$eps:item]

let $eps:nodeEnc := eps:getNode($eps:nodeId,$tau:V)

let $eps:res := eps:addNodeAfter($eps:nodeId,

eps:copiedParentId($eps:nodeId,$eps:seq,

$eps:nodeIdSeq,$tau:E),

$eps:nodeEnc[2],$eps:nodeEnc[3],$eps:nodeEnc[4],

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return

eps:deep-copy($eps:seq,$eps:item+2,$eps:val[2],

($eps:nodeIdSeq,$eps:val[2]),$tau:V, $tau:E,$tau:delta)

else eps:stValEnc($tau:V,$tau:E,$tau:delta,(1,$eps:nodeId))

};

Function 2.30 eps:copiedParentId

declare function eps:copiedParentId($eps:nodeId, $eps:ppSeq,

$eps:idSeq, $tau:E) {

let $eps:parent := (

for $n at $npos in $tau:E

where (($npos mod 2 = 0) and ($n = $eps:nodeId))

return

$tau:E[$npos - 1]

)

for $pp at $pos in $eps:ppSeq

where (($pos mod 2 = 0) and ($pp = $eps:parent))

return $eps:idSeq[$pos idiv 2]

};

58

return eps:addNode("text","", $eps:val,$tau:V,$tau:E,$tau:delta)

Definition 2.40 (document node constructor).

ε(document {e}) =

let $eps:res := ε(e)
let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res1 := eps:addNode("document","","",

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:addChildren($eps:val1,$eps:val,

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return $eps:stValEnc($tau:V, $tau:E, $tau:delta,

$eps:val1)

2.4.17 Typeswitch-expression

The typeswitch-expression allows us to execute different expressions based on the type of
a variable. This variable can be a node or an atomic value. The transformed typeswitch-
expression will need to work on encoded nodes and atomic values, and we therefore need
to decode them. For the atomic values the cases in the body typeswitch can remain
unchanged. We just need to change the switch variable into the decoded atomic value (the
second component of the encoding). For a typeswitch on nodes we need to extract the
type information from the store first an can then translate the typeswitch into an if-else

using the type information.

Definition 2.41 (Typeswitch-expression).

ε(typeswitch (e) case t1
return e1 ... case tm return em default return em+1) =

let $eps:res := ε(e)
let $tau:V := eps:V($eps:res)

59

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return

if ($eps:val[1] = 0) then

typeswitch $eps:val[2]

case t1
return

ε(e1)
...

case tmreturn
ε(em)

default

return

ε(em+1)
else

let $eps:nodeId := $eps:val[2]

return

if ε(t1) then

return

ε(e1)
else

...

if ε(tm) then

return

ε(em)
else

return

ε(em+1)

where ε(ti) is defined as follows:
ε(document-node()) = (eps:getNode($eps:nodeId)[2] = "document")

ε(attribute()) = (eps:getNode($eps:nodeId)[2] = "attribute")

ε(text()) = (eps:getNode($eps:nodeId)[2] = "text")

ε(element()) = (eps:getNode($eps:nodeId)[2] = "element")

and for all other ti
ε(ti) = (fn:false())

60

2.4.18 Functions

The ability to define functions in LiXQuery (and XQuery) increases the usability. The fact
that these functions can be recursive adds a lot of possibilities. The transformation of the
function declaration adds the variables encoding the store to the formal parameters and
transforms the body.

Definition 2.42 (Function Declaration).

ε(f(s1,...,sm) { e };) =

declare function eps:f(s1,...,sm,$tau:V,$tau:E,$tau:delta) {
ε(e)

}

The transformation of the function call evaluates all actual parameters, each one in the
context (changed store) of the preceding. All the resulting values are passed as parameters
to the transformed function together with the variables encoding the result store of the
last parameter evaluation.

Definition 2.43 (Function Call).

ε(f(e1,...,em)) =

let $eps:res1 := ε(e1)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

...

let $eps:resm := ε(em)

let $tau:V := eps:V($eps:resm)

let $tau:E := eps:E($eps:resm)

let $tau:delta := eps:delta($eps:resm)

let $eps:valm := eps:val($eps:resm)

return

eps:f($eps:val1,...,$eps:valm,$tau:V,$tau:E,$tau:delta)

with eps:f(...) is the translated version of f(...).

2.5 An Illustrative Example

In this section we provide an example of what a simulated expression looks like. The
simple query in Example 2.3 is simulated by the expression in Exapmle 2.4. This is only
the expression itself, it is preceded by function declarations specificly generated for this
expression, given in Example 2.5 to 2.8, that provide the semantics for the path and for

61

expressions. In Example 2.4 we see that the doc() call is simulated and the simulation
of the path expression that follows it is called (eps:path 789456()). The result of this
is passed onto a function that simulates the for expression (eps:for 3423973). Exam-
ple 2.6 simulates the path expression on the doc function and applies the simulated table

axis step and the following path expression (eps:path 123654). This path expression is
implemented in Example 2.5 which in turn uses the simulated row axis step. The func-
tion that implements the for expression is given in Example 2.8 and contains a call to the
eps:path 456789() function which simulates the path expression on $row together with
the b axis step, given in Example 2.7.

Example 2.3 A Simple LiXQuery Query

for $row at $pos in doc("table.xml")/table/row

return $row/b

Example 2.4 A Simulated LiXQuery Query

let $eps:res := (

let $eps:res := (

let $eps:res := eps:stValEnc($tau:V, $tau:E, $tau:delta,(0,"table.xml"))

return eps:doc($eps:res)

)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := eps:path_789456(1, $eps:val, $tau:V, $tau:E,$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:docord($eps:val2, $tau:V))

)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

return eps:for_3423973(1, $eps:val, $tau:V, $tau:E,$tau:delta)

62

Example 2.5 Generated pathx expression

declare function eps:path_123654($tau:k, $eps:seq, $tau:V,

$tau:E, $tau:delta) {

let $tau:m := fn:count($eps:seq) idiv 2

return

if ($tau:k <= $tau:m) then

let $tau:x := ($eps:seq[$tau:k*2-1], $eps:seq[$tau:k*2])

let $eps:res1 := (

eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children("row", "element", $tau:x,

$tau:V,$tau:E), $tau:V))

)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:path_123654($tau:k + 1, $eps:seq, $tau:V,

$tau:E, $tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

};

63

Example 2.6 Generated pathx expression

declare function eps:path_789456($tau:k, $eps:seq, $tau:V,

$tau:E, $tau:delta) {

let $tau:m := count($eps:seq) idiv 2

return

if ($tau:k <= $tau:m) then

let $tau:x := ($eps:seq[$tau:k*2-1], $eps:seq[$tau:k*2])

let $eps:res1 := (

let $eps:res := (

(: table :)

eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children("table", "element", $tau:x,

$tau:V,$tau:E), $tau:V))

)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := eps:path_123654(1, $eps:val, $tau:V,

$tau:E, $tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:docord($eps:val2, $tau:V))

)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:path_789456($tau:k+1, $eps:seq,

$tau:V, $tau:E, $tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

};

64

Example 2.7 Generated pathx expression

declare function eps:path_456789($tau:k, $eps:seq,

$tau:V, $tau:E, $tau:delta) {

let $tau:m := fn:count($eps:seq) idiv 2

return

if ($tau:k <= $tau:m) then

let $tau:x := ($eps:seq[$tau:k*2-1], $eps:seq[$tau:k*2])

let $eps:res1 := (

eps:stValEnc($tau:V,$tau:E,$tau:delta,

eps:docord(eps:children("b", "element", $tau:x,

$tau:V,$tau:E), $tau:V))

)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:path_456789($tau:k+1, $eps:seq,

$tau:V, $tau:E, $tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

};

65

Example 2.8 Generated forx expression

declare function eps:for_3423973($eps:pos, $eps:seq, $tau:V,

$tau:E, $tau:delta) {

if ($eps:pos <= (fn:count($eps:seq) idiv 2)) then

let $pos := $eps:pos

let $row := ($eps:seq[($eps:pos * 2) - 1], $eps:seq[($eps:pos) *2])

let $eps:res1 := (

let $eps:res := eps:stValEnc($tau:V, $tau:E, $tau:delta,$row)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

let $eps:res2 := eps:path_456789(1, $eps:val, $tau:V, $tau:E,

$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

eps:docord($eps:val2, $tau:V))

)

let $tau:V := eps:V($eps:res1)

let $tau:E := eps:E($eps:res1)

let $tau:delta := eps:delta($eps:res1)

let $eps:val1 := eps:val($eps:res1)

let $eps:res2 := eps:for_3423973($eps:pos + 1, $eps:seq,

$tau:V, $tau:E, $tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $tau:delta := eps:delta($eps:res2)

let $eps:val2 := eps:val($eps:res2)

return eps:stValEnc($tau:V, $tau:E, $tau:delta,

($eps:val1, $eps:val2))

else eps:stValEnc($tau:V, $tau:E, $tau:delta,())

};

66

2.6 Creating a Constructor-Free Expression

We now sketch how to create constructor-free semi-equivalent expressions for deterministic
(node-conservative) ones, i.e., how to generate the expression e′ of Theorem 2.4, based
on ε(e), which is working on an encoding of (St, Env). We do so by showing how en-
coding (St, Env) and afterwards decoding results St′, v can be done for node-conservative
expressions.

The expression ε(e) will be evaluated against (St, Ênv), where Ênv contains the en-
coded store and environment. We construct St

dEnv in such a way that it contains exactly
all trees of St for which a node occurs in the variable bindings of Env. Assuming that we
can have a sequence that is the concatenation of all variable bindings in Env, we can write
an expression to create a new sequence $roots that, starting from the former sequence,
filters out the nodes, applies the root function to each node and finally sorts this result
by document order by applying a self-axis step. Since the roots of all trees that have to
be in St

dEnv are now in document order in $roots, we can write another expression that
creates the encoded store St

dEnv starting from an empty encoded store, by simply traversing

through the trees under the nodes in $roots and extending St
dEnv = (V̂ , Ê, δ̂), represented

by the variables $tau:V, $tau:E and $tau:delta in the environment Ênv). If this traver-
sal is done in depth-first, left-to-right manner, we visit all nodes of St that will be encoded
in St

dEnv in document order. Node identifiers can then be chosen in such a way that they
correspond to the position in St

dEnv. If we suppose the sequence of varbable bindings is
bound to $varBindings the code could look like this

let $tau:V := ()

let $tau:E := ()

let $tau:delta := ()

let $roots := (

for $var in $varBindings

return root($var)

)/.

return eps:encodeRoots($roots,1,$tau:V,$tau:E,$tau:delta)

Here eps:encodeRoots() is given in Function 2.31.

Starting from Env, we can now create the encoded environment Ênv by replacing
all expressions in b by the simulations ε(b), adding the variables for the encoded store
and environment to the function signatures in a, replacing all sequences in the variable
bindings with their encoded sequences, and finally, adding the variables $tau:V,$tau:E
and $tau:delta to v. Since all nodes that occur in Env are encoded in St

dEnv and node
identifiers were assigned based on the position of nodes within the forest under $roots,
we can easily obtain the encoded sequences for the variable bindings.

For all bounded variables $b we could write

let $b := eps:replaceBindings($b,$eps:roots,$tau:E)

67

Function 2.31 eps:encodeRoots

declare function eps:encodeRoots($eps:rootSequence,$eps:item,

$tau:V,$tau:E,$tau:delta){

if (fn:count($eps:rootSequence) >= $eps:item) then

let $root := $eps:rootSequence[$eps:item]

let $eps:res := eps:encodeRoot($root,$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

return eps:encodeRoots($eps:rootSequence,$eps:item+1,

$tau:V,$tau:E,$tau:delta)

else

eps:stValEnc($tau:V,$tau:E,$tau:delta,(0,0))

};

Here eps:replaceBindings() is given in Function 2.33.
The result of the evaluation of ε(e) is the store St and a store-value encoding St

bv.
Based on this we can create the result sequence the original expression returned if it was
a node-conservative expression. In that case the encoded result sequence will only contain
encoded nodes of which the real counterparts were available in the initial XML store St.
Therefore we can loop over encoded items in St

bv. Encodings of atomic values are simply
replaced by the atomic values itself. For every encoded node we first determine whether
it was originally in St

dEnv. This can be done by storing (during the encoding phase) all
nodes and their chosen node identifiers as pairs in a variable. If the node identifier occurs
in this variable then it is an original node and we can easily return the corresponding
node. If the root of the encoded node is an encoded document node that is associated to
a URI in the variable $tau:delta then we can obtain the original document root node
by a simple doc function call, else it is a newly created node and hence this expression is
not a node-conservative expression. By using the position of the encoded node relative to
the encoded root node, we can determine the position of the corresponding real node in
the document tree and hence we replace the encoded node by the real node in the result
sequence.

If we assume that $eps:finRes is the final result of the expression this could be coded
as

let $tau:V := eps:V($eps:finRes)

let $tau:E := eps:E($eps:finRes)

let $tau:delta := eps:delta($eps:finRes)

let $eps:finVal := eps:val($eps:finRes)

return eps:reverseReplaceBindings($eps:finVal,$eps:roots,

68

Function 2.32 eps:encodeRoot

declare function eps:encodeRoot($eps:node,

$tau:V,$tau:E,$tau:delta){

(: add node itself :)

let $eps:v := (

typeswitch($eps:node)

case document-node()

return ("document","","")

case element()

return ("element",fn:name($eps:node),"")

case text()

return ("text","", fn:data($eps:node))

case attribute()

return ("attribute",fn:name($eps:node), fn:data($eps:node))

default return ()

)

let $eps:res2 := eps:addNode($eps:v[1],$eps:v[2],$eps:v[3],

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res2)

let $tau:E := eps:E($eps:res2)

let $eps:val2 := eps:val($eps:res2)

(: if document-node add to delta :)

let $tau:delta := (

if ($eps:v[1] = "document") then

(eps:delta($eps:res2),

fn:document-uri($eps:node),

$eps:val2[2])

else

eps:delta($eps:res2)

)

(: encode descendants :)

let $eps:descendants :=

($eps:node/descendant-or-self::node()

| $eps:node//@*)

let $eps:res3 := eps:encodeDesc($eps:descendants,2,$eps:val2[2],

($eps:val2[2]),$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res3)

let $tau:E := eps:E($eps:res3)

let $tau:delta := eps:delta($eps:res3)

return

eps:stValEnc($tau:V,$tau:E,$tau:delta,(1,$eps:val2[2]))

};

69

Function 2.33 eps:replaceBindings

declare function eps:replaceBindings($eps:bindings,$eps:roots,

$tau:E) {

for $eps:binding in $eps:bindings

return eps:replaceBinding($eps:binding,$eps:roots, $tau:E)

};

Function 2.34 eps:replaceBinding

declare function eps:replaceBinding($eps:binding,$eps:roots,

$tau:E) {

let $eps:encRootIds := eps:getRootIds($tau:E)

let $eps:root := root($eps:binding)

let $eps:rootPos := (

for $r at $pos in $eps:roots

where $r is $eps:root

return $pos

)

let $eps:bindPos := (

for $b at $pos in ($eps:root/descendant-or-self::node()

| $eps:root//@*)

where $b is $eps:binding

return $pos

)

let $eps:encRootId := (

for $er at $pos in $eps:encRootIds

where $pos = $eps:rootPos

return $er

)

let $eps:encNodeId := (

let $eps:desc := eps:decendants-o-s($tau:E, $eps:encRootId)

for $en at $pos in $eps:desc

where ($pos mod 2 = 0) and (($pos idiv 2) = $eps:bindPos)

return $eps:desc[$pos]

)

return (1,$eps:encNodeId)

};

70

$tau:E,$tau:delta)

Here eps:reverseReplaceBindings() is given in Function 2.35.

Function 2.35 eps:reverseReplaceBindings

declare function eps:reverseReplaceBindings($eps:bindings,$eps:roots,

$tau:E,$tau:delta) {

for $eps:binding in $eps:bindings

return eps:reverseReplaceBinding($eps:binding,$eps:roots,

$tau:E,$tau:delta)

};

2.7 Beyond node-conservatism

Because it is clear we cannot simulate an expression which returns new nodes by an ex-
pression that has no node construction, we restricted ourselves to the node-conservative
expressions. But what if we changed our notion of a simulation a little. We could demand
that a simulation must return a result sequence that is deep-equal to the result sequence
of the original expression. We therefore formally define the notion of deep equallity similar
to the one given in Definition 1.24 but now defined with different stores for the deep equal
nodes:

Definition 2.44 (Different Store Deep Equal). Given the XML stores St1 = (V1, E1,�1

, ν1, σ1, δ1) and St2 = (V2, E2,�2, ν2, σ2, δ2) and the two nodes n1 and n2 in St1 and St2
respectively. n1 and n2 are said to be deep equal, denoted as DpEqSt1,St2(n1, n2), if n1

and n2 refer to two isomorphic trees, i.e., there is a one-to-one function h : Cn1 → Cn2

with Cni
= {n|(ni, n) ∈ E∗

i } for i = 1, 2, such that for each n, n′ ∈ Cn1 it holds that (1) if
n ∈ Vd

1 (Ve
1 , Va

1 , V t
1) then h(n) ∈ Vd

2 (Ve
2 , Va

2 , V t
2), (2) if ν1(n) = s then ν2(h(n)) = s, (3) if

σ1(n) = s′ then σ2(h(n)) = s′, (4) (n, n′) ∈ E1 iff (h(n), h(n′)) ∈ E2 and (5) if n, n′ 6∈ Va
1

then n �1 n′ iff h(n) �2 h(n′).

With this new deep equality notion we can now define the new kind of simulation
formally:

Definition 2.45. Given two expression e, e′ ∈ LQE we say that e′ is a semi-simulation
of e if for all stores St and environments Env with undefined x, k and m it holds that if
St, Env ` St′, v then there exists a store St′′ and sequence w such that St, Env ` St′′, w
and DpEqSt′,St′′(v, w).

This creates some interesting possibilities. Let us first look into a slightly more broader
class of expressions, namely those expressions that do not only have original nodes in

71

Function 2.36 eps:reverseReplaceBinding

declare function eps:reverseReplaceBinding($eps:binding,

$eps:roots, $tau:E,$tau:delta) {

let $eps:encRootIds := eps:getRootIds($tau:E)

let $eps:encRoot := eps:root($eps:binding[2],$tau:E)

let $eps:encRootPos := (

for $r at $pos in $eps:encRootIds

where ($r = $eps:encRoot[2])

return $pos

)

let $eps:encBindPos := (

for $b at $pos in eps:decendants-o-s($tau:E, $eps:encRoot[2])

where ($pos mod 2 = 0) and ($b = $eps:binding[2])

return $pos idiv 2

)

return

let $eps:root := (

if ($eps:encRootPos <= count($eps:roots)) then

(: the node was originally in the store :)

for $er at $pos in $eps:roots

where $pos = $eps:encRootPos

return $er

else

(: the node was not in the original store, it must be

a node from a loaded document, otherwise the expr

is not node concervative :)

let $eps:rootDocURI := eps:doc-uri($eps:encRoot[2],

$tau:delta)

return doc($eps:rootDocURI)

)

let $eps:node := (

let $eps:desc := ($eps:root/descendant-or-self::node()

| $eps:root//@*)

for $en at $pos in $eps:desc

where ($pos = ($eps:encBindPos))

return $eps:desc[$pos]

)

return ($eps:node)

};

72

their result sequence but can have copied nodes, as defined in Section 1.2.3, too. These
expressions mainly will be using construction for intermediate restructuring (e.g. joins),
we will call these node-restructuring expressions (NREs).

Definition 2.46. A node-restructuring expression (NRE) is an expression e ∈ LQE such
that for all stores St and environments Env it holds that if St, Env ` e ⇒ St′, v then all
nodes in v are nodes in St or copies of nodes in St.

We will want to prove that for node-restructuring expression there also exists a equiva-
lent expression that does not contain constructors. Again we will have to restrict ourselves
to deterministic expressions, as non-determinism will not be possible in LiXQuery with-
out the constructors. The definition of determinism introduced in Section 2.1 is much to
strict, as it only allows for node-conservative expressions. We therefore introduce a looser
definition of determinism:

Definition 2.47. An expression e ∈ LQE is said to be semi-deterministic if for every store
St and environment Env it holds that if St, Env ` e ⇒ St′, v and St, Env ` e ⇒ St′′, w
then (St′′, w) is isomorphic to (St′, v), i.e., there exists a one-to-one function f : V ′ → V ′′,
with V ′ and V ′′ the nodes of St′ and St′′ respectively, such that if each occurrence of node
n ∈ St′ in (St′, v) is replaced by f(n) we obtain (St′′, w).

With this we can now formally define the theorem we will want to prove:

Theorem 2.48. For every semi-deterministic node-restructuring expression e ∈ LQE,
there exists a semi-simulation e′ ∈ LQE that does not contain constructors.

To be able to prove this we construct such a simulation. We will do this by extending
the simulation used for the node-conservative expressions.

The first thing we have to do is add an extra special variable to the store encoding.
This special variable, which we will refer to as Ĉ, will be structured like Ê (which encodes
pairs of node id’s), but instead of encoding the parent-child relationship, it will encode
the original-copy relationship. It must be passed onto and from every expression, like the
other elements encoding the store, so we must also modify the store-value encoding to
incorporate it.

Definition 2.49. Given an XML store St = (V, E,�, ν, σ, δ) and an injective function

id : V → N then we call a tuple of XML values (V̂ , Ê, δ̂, Ĉ) a store encoding of St under
id if

– V̂ , Ê are as defined in Definition 2.5,

– Ĉ = 〈id(v1), id(v′
1)〉 ◦ . . . ◦ 〈id(vm), id(v′

m)〉
where each v′

i is a copy of v1

73

Definition 2.50. Given a store St′ = (V, E,�, ν, σ, δ) and a value v over this store then a

pair (Ŝt, v̂) with a store Ŝt and an XML value v̂ is called a store-value encoding of St and

v if there is a store St
bv and an injective function id : V

bv → N such that (1) St′ = Ŝt∪ St
bv,

(2) all nodes in v are in St
bv and (3) v̂ = 〈|V |〉 ◦ V̂ ◦ 〈|E|〉 ◦ Ê ◦ 〈|δ|〉 ◦ δ̂ ◦ 〈|Ĉ|〉 ◦ Ĉ ◦ ṽ where

(V̂ , Ê, δ̂, Ĉ) is the store encoding of St
bv under id, and ṽ is the value encoding of v under

id.

Secondly, the transformation function of all the expressions must be altered to pass
through this new variable. This will be done using altered helper functions. The func-
tions eps:V(), eps:E() and eps:delta() remain unchanged. We add a new helper
function eps:C() given as Function 2.37, eps:val() is altered into Function 2.38 and
eps:stValEnc() is altered into Function 2.39

Function 2.37 eps:C

declare function eps:C($stValEnc) {

for $i at $pos in $stValEnc

where

($pos >

(($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2) + 1)

and

($pos <=

(($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2)

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2) + 1]*2)

))

return

$i

};

Most of the transformation functions will remain relatively the same. They will be ex-
tended to pass on $tau:C, by adding an extra parameter in the function calls and decoding
steps with eps:C(). We will not show it in code here as it is straightforward.

The transformation of the element and document constructor must be extended to add

74

Function 2.38 eps:val

declare function eps:val($stValEnc) {

for $i at $pos in $stValEnc

where

($pos >

(($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2)

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1

+ ($stValEnc[($stValEnc[1]*4+2)

+ ($stValEnc[$stValEnc[1]*4+2]*2) + 1]*2) + 1]*2)

))

return

$i

};

Function 2.39 eps:stValEnc

declare function eps:stValEnc($tau:V,$tau:E,$tau:delta,$tau:C,$v) {

(fn:count($tau:V) idiv 4, $tau:V,

fn:count($tau:E) idiv 2, $tau:E,

fn:count($tau:delta) idiv 2, $tau:delta,

fn:count($tau:C) idiv 2, $tau:C,

$v)

};

75

the functionality to add the appropriate information to the Ĉ encoding, this comes down
to an addition to the eps:deep-copy() function which they both use to copy the nodes.

Function 2.40 eps:deep-copy

declare function eps:deep-copy($eps:seq,$eps:item,$eps:nodeId,

$eps:nodeIdSeq,$tau:V,$tau:E,$tau:delta,$tau:C) {

if (fn:count($eps:seq) >= $eps:item) then

let $eps:nodeId := $eps:seq[$eps:item]

let $eps:nodeEnc := eps:getNode($eps:nodeId,$tau:V)

let $eps:res := eps:addNodeAfter($eps:nodeId,

eps:copiedParentId($eps:nodeId,$eps:seq,

$eps:nodeIdSeq,$tau:E),

$eps:nodeEnc[2],$eps:nodeEnc[3],$eps:nodeEnc[4],

$tau:V,$tau:E,$tau:delta)

let $tau:V := eps:V($eps:res)

let $tau:E := eps:E($eps:res)

let $tau:delta := eps:delta($eps:res)

let $eps:val := eps:val($eps:res)

(: addition of the original and copied node id :)

let $tau:C := (eps:C($eps:res),$eps:nodeId, $eps:val[2])

return

eps:deep-copy($eps:seq,$eps:item+2,$eps:val[2],

($eps:nodeIdSeq,$eps:val[2]),$tau:V, $tau:E,$tau:delta, $tau:C)

else eps:stValEnc($tau:V,$tau:E,$tau:delta,$tau:C,(1,$eps:nodeId))

};

Thirdly, the post-processing step discussed in Section 2.6 must be extended. With
node-conservative expressions it was the case that only original nodes where to be found
in the result sequence, and so the decoding was fairly straightforward. Garbage collection
applied to the result store of the original expression would have removed all the newly
created nodes from that store. All the nodes in our result sequence could be linked to
a real node in a document immediately or after the loading of the associated document.
With node-restructuring expressions the result sequence can also contain copied nodes,
and as a consequence there will also still be copied nodes in the result store of the original
expression after garbage collection. Our simulation on the other hand has not touched the
store and it is still the initial store of our original expression. But as our original expression
was node-restructuring all the nodes in the result sequence are original or copied nodes.

What we are going to do is replace the copied nodes in the result sequence by the original
node from which they were copied. An encoded node can be recognized as a copied node
if its node id appears in Ĉ. We can then obtain the node id of its originating node using
the information in Ĉ. We must be careful here however, because this originating node is

76

not necessarily an original node, it can be a copy too. In generally we apply on this node
the same test as if we would have found it in the result sequence. If it is an original node
id, it will be replaced (possibly after loading it) by the original node, if it is again a copy,
its originating node will be searched for and the process repeats itself until it stops with
a final original node (if this is not the case it would have been a newly created node and
the expression would not have been node-restructuring). As a result we obtain a result
sequence with only original nodes which will be deep-equal to the result sequence of the
original expression.

The changes that must be made are to the eps:reverseReplaceBinding() function,
using a new helper function eps:getOriginal().

Function 2.41 eps:getOriginal

declare function eps:getOriginal($eps:copyId,$tau:C) {

for $eps:cid at $eps:posC in $tau:C

where ($eps:posC mod 2 = 0) and $eps:cid = $eps:copyId)

return (1,$tau:C[$eps:posC -1])

};

Function 2.42 eps:getNodeFromRoot

declare function eps:getNodeFromRoot($eps:root,$eps:encBindPos) {

let $eps:node := (

let $eps:desc := ($eps:root/descendant-or-self::node()

| $eps:root//@*)

for $en at $pos in $eps:desc

where ($pos = ($eps:encBindPos))

return $eps:desc[$pos]

)

return ($eps:node)

};

It is clear hover that the result stores of the two expressions are not isomorphic as the
result store of the original expression contains the created copies which are referenced in
the result. They will therefore not be removed during garbage collection. The result store
of the semi-simulation is still the original store without the copies.

We must however stress the difference between a simulation and a semi-simulation.
Any further expression evaluation on the result sequence returned by the semi-simulation
will possibly return different results than the same expression evaluation applied to the

77

Function 2.43 eps:reverseReplaceBinding

declare function eps:reverseReplaceBinding($eps:binding,

$eps:roots, $tau:E,$tau:delta, $tau:C) {

let $eps:encRootIds := eps:getRootIds($tau:E)

let $eps:encRoot := eps:root($eps:binding[2],$tau:E)

let $eps:encRootPos := (

for $r at $pos in $eps:encRootIds

where ($r = $eps:encRoot[2])

return $pos

)

let $eps:encBindPos := (

for $b at $pos in eps:decendants-o-s($tau:E, $eps:encRoot[2])

where ($pos mod 2 = 0) and ($b = $eps:binding[2])

return $pos idiv 2

)

return

if ($eps:encRootPos <= count($eps:roots)) then

(: the node was originally in the store :)

let $eps:root := (

for $er at $pos in $eps:roots

where $pos = $eps:encRootPos

return $er

)

return eps:getNodeFromRoot($eps:root,$eps:encBindPos)

else

let $eps:original := eps:getOriginal($eps:binding[2],$tau:C)

if ($eps:original) then

(: the node was copied :)

eps:reverseReplaceBinding($eps:original,$eps:roots,

$tau:E,$tau:delta, $tau:C)

else

(: the node was loaded from a document

otherwise the expr is not node concervative :)

let $eps:root := (

let $eps:rootDocURI := eps:doc-uri($eps:encRoot[2],

$tau:delta)

return doc($eps:rootDocURI)

)

return eps:getNodeFromRoot($eps:root,$eps:encBindPos)

};

78

ORIGINAL

COPIED OR ORIGINAL

DEEP−EQUAL

Figure 2.4: Subdivision of deep equal result nodes

result of the original expression. A node in the result sequence of the semi-simulation is
only guaranteed to be deep-equal to the node at the same position in the original result
sequence. For example this means that they may differ in their parent. So any application
of the a parent axis step on this sequence will possibly return different results. If we want
to use this extended result of our theorem we must be aware of this limitation.

An other use of this technique however could be the postponing of node construction.
Instead of replacing the nodes in the result with the original nodes in the post-processing
step we could as yet perform a construction and copy the nodes (taking into account the
context, which would have to be recorded). This would then yield an identical result (under
the condition of deterministic expressions).

Now the question rises if we can extend our results even further. Node-restructuring
expressions only allow for original and copied nodes to occur in their result sequence.
Original and copied nodes are both part of a broader class of nodes in the result sequence
of a LiXQuery expression we defined as deep equal nodes in Section 1.2.3. This is illustrated
in Figure 2.4.

Nodes that are deep equal but were not copied, are created with the use of another
mechanism. A simple example of such a mechanism is given in Example 2.9. Here a deep-
equal copy of the node e is made without e itself being copied, only its attributes, element
and text children.

This is just one of many ways to create such non-copied deep equal nodes, and many
of them will not have such direct links with the node to which they are deep equal. This
is where the problem lies if we want to replace them in a post-processing step with their
deep equal original variants like we did with node-restructuring expressions. If we cannot

79

Example 2.9 A Deep-Equally Constructed node

element {name($e)}{$e/@*, $e/(* | text())

make the link when they are created, an exhaustive search must be performed in the post-
processing step. Of course this search can be limited to the nodes already in the store
when the evaluation started and the documents loaded during the evaluation, making the
it not impossible (looking at all the document in the web would be impossible), but rather
highly impractical.

We call these type of expression node-crafting expressions (NCrE), after their ability
to craft deep-equal nodes without copying them directly.

Definition 2.51. A node-crafting expression (NCrE) is an expression e ∈ LQE such that
for all stores St and environments Env it holds that if St, Env ` e ⇒ St′, v then all nodes
in v are deep-equal with nodes in St.

We can now state the following theorem:

Theorem 2.52. For every semi-deterministic node-crafting expression e ∈ LQE, there
exists a semi-simulation e′ ∈ LQE that does not contain constructors.

As said this semi-simulation can be created by starting of from the simulation created
for node-restructuring expressions and extending its post-processing step. If eventually we
come to a node in the result sequence which is not a copy of another node we perform an
exhaustive search trough the encoded store for another node to which this node is deep
equal (if such a node was not found the original expression was not node-crafting). We
then replace our node with this node and perform on it the normal routine to see if its is
an original or copied node. If it again seems to be deep equal we must take care not to
consider the replaced node in our search otherwise we could go in a loop if two deep equal
non-copied nodes existed.

The required adaption of the transformation are concentrated in
eps:reverseReplaceBinding() given in Function 2.44.

Again this technique could also be used to postpone the node construction.

80

Function 2.44 eps:reverseReplaceBinding

declare function eps:reverseReplaceBinding($eps:binding,

$eps:roots, $tau:E,$tau:delta, $tau:C, $tau:V) {

let $eps:encRootIds := eps:getRootIds($tau:E)

let $eps:encRoot := eps:root($eps:binding[2],$tau:E)

let $eps:encRootPos := (

for $r at $pos in $eps:encRootIds

where ($r = $eps:encRoot[2])

return $pos

)

let $eps:encBindPos := (

for $b at $pos in eps:decendants-o-s($tau:E, $eps:encRoot[2])

where ($pos mod 2 = 0) and ($b = $eps:binding[2])

return $pos idiv 2

)

return

if ($eps:encRootPos <= count($eps:roots)) then

(: the node was originally in the store :)

let $eps:root := (

for $er at $pos in $eps:roots

where $pos = $eps:encRootPos

return $er

)

return eps:getNodeFromRoot($eps:root,$eps:encBindPos)

else

(: the node was not in the original store :)

let $eps:original := eps:getOriginal($eps:binding[2],$tau:C)

if ($eps:original) then

(: the node was copied :)

eps:reverseReplaceBinding($eps:original,$eps:roots,

$tau:E,$tau:delta, $tau:C, $tau:V)

else

let $eps:rootDocURI := eps:doc-uri($eps:encRoot[2],$tau:delta)

return

if ($eps:rootDocURI) then

(: the node was loaded from a document :)

let $eps:root := (

let $eps:rootDocURI := eps:doc-uri($eps:encRoot[2], $tau:delta)

return doc($eps:rootDocURI)

)

return eps:getNodeFromRoot($eps:root,$eps:encBindPos)

else

(: the node must be deep-equal to some node in the original store

otherwise the expression is not node-crafting :)

(: exhaustive search :)

return eps:getDE($eps:binding, $eps:roots, $tau:E,

$tau:delta, $tau:C, $tau:V)

};

81

Chapter 3

Conclusion

In this work, we showed that deterministic XQuery expressions, always yielding a result
with nodes nodes from, copies of nodes from or nodes deep-equal to nodes from the initial
store, can be rewritten to (semi-)equivalent expressions that do not contain node construc-
tors.

In our approach we first restricted ourselves to an expressive fragment of XQuery called
LiXQuery. LiXQuery is a fully downwards compatible sublanguage of XQuery and has al-
most the same expressive power as XQuery. It also has a compact and well defined syntax
and formal semantics, which allows us to make precise an formal statments. It semantics
included a store, which contained all the documents from the web (initial store) and frag-
ments of xml which were created during the expression. With this formal semantics we
defined the notion of a node-conservative expression, this type of expression always yields a
result with only nodes from the initial store. Because our goal is to eliminate construction
we had to restrict our types of expressions even further. A consequence of construction
in LiXQuery is non-determinism, as the fragment that is created by a constructor can be
placed at an arbitrary position in document order between the already existing trees in the
store. Because this is not an fundamental XQuery feature we excluded non-deterministic
expression. We then introduced the notion of a simulation. The semantics of our type
of simulation differs in two ways from the semantics of the original expression. First our
simulation may have a result when the original does not, and second, the result store of
our simulation and that of the original are only the same up to garbage collection.

We then proved the following theorem: For every deterministic node-conservative ex-
pression e ∈ LQE there exists a simulation e′ ∈ LQE that does not contain construc-
tors. We did this by defining such a simulation based on a transformation function that
transforms all LiXQuery expressions, and additional pre- and post-processing steps which
encoded/decoded the store and environment into/from their simulated form.

We then extended this theorem to apply to node-restructuring expressions, which can
contain copies of nodes of the original store next to these nodes themselves. This is done
by defining semi-simulation of an expression. The result store can differ and the result
sequence must only be deep-equal to that of the original expression. With an adaption of
determinism to be less strict, in essense only ismorphism of the result is required, we can

82

formulate this new theorem as For every semi-deterministic node-restructuring expression
e ∈ LQE there exists a semi-simulation e′ ∈ LQE that does not contain constructors. The
proof is given by extending the transformation and encoding defined for node-conservative
expressions, taking into account the now allowed copies.

We then extended the theorem even further and stated that For every semi-deterministic
node-crafting expression e ∈ LQE there exists a semi-simulation e′ ∈ LQE that does not
contain constructors. We defined node-crafting expressions as expressions that can also
have newly created nodes in their result sequece, but with the restriction that these nodes
are deep-equal with some node in the original store.

3.1 Future Work

In our approach these generated equivalent expression make extensive use of recursive func-
tions. First of all to evaluate path-, for- and filter-expressions but also during the document
call, where a document is encoded into our encoded store by traversing it recursively. For
a practically usable approach this may not be feasible. The many recursive function calls
make the execution of the simulated expression very slow. It is thus important from a
practical but also from a theoretical perspective that further research investigates whether
a similar result can also be obtained for non-recursive XQuery.

Furthermore, as mentioned in Section 2.7 our result can possibly be used for removing
or postponing node creations in query evaluation plans. This can be a form of query
optimization and further research can investigate what the applications are in this area.

83

Bibliography

[1] Extensible markup language (XML). http://www.w3.org/XML/.

[2] XML query (XQuery). http://www.w3.org/TR/2005/WD-xquery-20050404/.

[3] Xquery 1.0 and xpath 2.0 data model, w3c working draft 23 july 2004.
http://www.w3.org/tr/2004/wd-xpath-datamodel-20040723/.

[4] Xquery 1.0 and xpath 2.0 formal semantics, w3c working draft 20 february 2004.
http://www.w3.org/tr/2004/wd-xquery-semantics-20040220/.

[5] Serge Abiteboul and Paris C. Kanellakis. Object identity as a query language primi-
tive. Journal of the ACM, 45:798–842, September 1998.

[6] Michael Brundage. XQuery: The XML Query Language. Addison-Wesley, 2004.

[7] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL hosts. In Proceedings of
the 30th Int’l Conference on Very Large Databases (VLDB 2004), August/September
2004 2004.

[8] Jan Hidders, Jan Paredaens, Philippe Michiels, and Roel Vercammen. LiXQuery: A
formal foundation for XQuery research. SIGMOD Record, September 2005.

[9] Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A light but formal
introduction to XQuery. In Proceedings of the Second International XML Database
Symposium (XSym 2004), Toronto, Canada, 2004. Springer.

[10] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie, M. Rys,
J. Simeon, J. Tivy, and P. Wadler, editors. XQuery from the Experts: A Guide
to the W3C XML Query Language. Addison-Wesley, 2004.

[11] Jan Paredaens and Dirk Van Gucht. Converting nested algebra expressions into flat
algebra expressions. ACM Transactions on Database Systems (TODS), 17:65–93, 1992.

[12] Jan Van den Bussche. Simulation of the nested relational algebra by the flat rela-
tional algebra, with an application to the complexity of evaluating powerset algebra
expressions. Theoretical Computer Science, 254:363–377, 2001.

84

http://www.w3.org/XML/
http://www.w3.org/TR/2005/WD-xquery-20050404/

[13] Jan Van den Bussche, Dirk Van Gucht, Marc Andries, and Marc Gyssens. On the
completeness of object-creating database transformation languages. Journal of the
ACM, 44:272–319, March 1997.

85

	Introduction
	Construction in (Li)XQuery
	XQuery Construction and Formal Semantics
	Constructors
	Node Identity
	Deep equality
	Copying
	XQuery Formal Semantics

	LiXQuery Construction, Syntax and Semantics
	Formal Semantics of LiXQuery Expressions
	Construction in LiXQuery
	Types of Result Nodes

	Expressive Power of the Node Construction
	Eliminating Node Construction
	Outline of the simulation
	Encoding the Store and Environment
	A Correct Transformation Function
	Variables
	Built-in functions
	If-expressions
	For-expressions
	Let-expression
	Concatenation
	Boolean Operators
	Atomic Value Comparison
	Node Comparison
	Arithmetic
	Union
	Axis Steps
	Filter-expression
	Path-expressions
	Literals and the empty sequence
	Constructors
	Typeswitch-expression
	Functions

	An Illustrative Example
	Creating a Constructor-Free Expression
	Beyond node-conservatism

	Conclusion
	Future Work

