Mining Top-k£ Quantile-based Cohesive Sequential Patterns

Len Feremans* Boris

Abstract

Finding patterns in long event sequences is an important
data mining task. Two decades ago research focused on
finding all frequent patterns, where the anti-monotonic
property of support was used to design efficient algorithms.
Recent research focuses on producing a smaller output
containing only the most interesting patterns. To achieve
this goal, we introduce a new interestingness measure by
computing the proportion of the occurrences of a pattern
that are cohesive. This measure is robust to outliers, and is
applicable to sequential patterns. We implement an efficient
algorithm based on constrained prefix-projected pattern
growth and pruning based on an upper bound to uncover the
set of top-k quantile-based cohesive sequential patterns. We
run experiments to compare our method with existing state-
of-the-art methods for sequential pattern mining and show
that our algorithm is efficient and produces qualitatively
interesting patterns on large event sequences.

1 Introduction

Pattern discovery in sequential data is an established
field in data mining. The earliest research focused on
the setting where data consisted of many sequences,
where a pattern was defined as a sequence that re-
occurred in a high enough number of such input se-
quences. Among the algorithms that produce a rank-
ing of the most frequent sequential patterns, given a
large database of typically short sequences, are GSP [2]
and PREFIXSPAN [8]. For mining patterns in a single
long sequence, the first method was proposed by Man-
nila et al. [11]. Their WINEPI method uses a sliding
window of a fixed length to traverse the sequence, and
a pattern is then considered frequent if it occurs in a
high enough number of these sliding windows. Laxman
et al. [10] reformulate frequency as the maximal num-
ber of non-intersecting minimal windows of the pattern
in the sequence. In this context, a minimal window
of the pattern in the sequence is defined as a subse-
quence of the input sequence that contains the pattern,
such that no smaller subsequence also contains the pat-
tern. All of the above algorithms are able to generate all
frequent patterns, by leveraging the so-called APRIORI
property [1]. This property implies that the frequency
of a pattern is never smaller than the frequency of any
of its super-patterns. In other words, frequency is an
anti-monotonic quality measure. While this property

University of Antwerp, Belgium.
TMonash University, Melbourne, Australia

Cule* Bart Goethals*!

is computationally very practical, since large candidate
patterns can be generated from smaller patterns, the
undesirable side-effect is that single items, and small
patterns in general, will always be ranked higher than
their super-patterns. Another argument against classi-
cal frequency-based techniques is that they report sets
or sequences of items where items occur frequently to-
gether in a window, but do not account for all indi-
vidual occurrences of these items. If two items occur
frequently, and through pure randomness often occur
near each other, they will together form a top-ranked
pattern, even though they are not correlated.

Recent research, however, stepped away from min-
ing all frequent patterns. Some authors reduce the num-
ber of patterns, for example, using information theoretic
approaches such as Minimal Description Length [7],
thereby producing a smaller set of patterns that cov-
ers the sequence best [9, 17, 6]. Other authors propose
different measures of interestingness, that do not bene-
fit from an anti-monotonic quality measure to prune the
search space of candidate patterns, but produce a more
interesting ranking of patterns [3, 13, 15].

Cule et al. [3, 4] introduced a new interestingness
measure called cohesion, defined as a measure of how
near each other the items making up an interesting item-
set occur on average. However, just like frequency-based
methods, cohesion has its drawbacks. For example, sup-
pose items a and b occur very frequently next to each
other in the input sequence. Now suppose that one oc-
currence of b is very far from the nearest a. Since cohe-
sion is inversely proportional to the mean of all minimal
windows, itemset {a,b} would score low on cohesion.
Furthermore, cohesion is only defined for itemsets and
is not a suitable measure for sequential patterns.

In this work, we tackle this problem by measuring
the proportion of a pattern’s occurrences that are
cohesive, where we consider an occurrence to be cohesive
if the minimal window length is small relative to the size
of the pattern. We call this measure the quantile-based
cohesion of the pattern. This is a more robust measure
that is not susceptible to random outliers. While we
concentrate on sequential patterns, the work presented
here can directly be applied to other pattern types, such
as itemsets, too. In the example above, itemset {a,b}
would, evaluated by our new measure, score very highly.

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Receiving the top-maul from Starbuck, he advanced towards the main-mast with the hammer uplifted in one hand, exhibiting the gold with the other,
and with a high raised voice exclaiming: Whosoever of ye raises me a whitg-headed whalg with a wrinkled brow and a crooked jaw; whosoever of ye
raises me that white-headed whalg, with three holes punctured in his starboard fluke - look ye, whosoever of ye raises me that same white whalg, he

shall have this gold ounce, my boys!

"Huzza! huzza!" cried the seamen, as with swinging tarpaulins they hailed the act of nailing the gold to the mast.

It's a white whalg," I say, resumed Ahab, as he threw down the top-maul; a whitg whalg. "Skin your eyes for him, men; look sharp for whitg water; if

ye see but a bubble, sing out."

All this while Tashtego, Daggoo, and Queequeg had looked on with even more intense interest and surprise than the rest, and at the mention of the
wrinkled brow and crooked jaw they had started as if each was separately touched by some specific recollection.

"Captain Ahab," said Tashtego, "that whitg whalg must be the same that some call Moby Dick."

"Moby Dick?" shouted Ahab. "Do ye know the whitg whalg then, Tash?"

"Does he fan-tail a little curious, sir, before he goes down?" said the Gay-Header deliberately.

"And has he a curious spout, too," said Daggoo, "very bushy, even for a parmacetty, and mighty quick, Captain Ahab?"

"And he have one, two, tree - oh! good many iron in him hide, too, Captain," cried Queequeg disjointedly, "all twiske-tee betwisk, like him - him - "
faltering hard for a word, and screwing his hand round and round as though uncorking a bottle - "like him - him - "

"Corkscrew!" cried Ahab, "aye, Queequeg, the harpoons lie all twisted and wrenched in him; aye, Daggoo, his spout is a big one, like a whole shock
of wheat, and whitg as a pile of our Nantucket wool after the great annual sheep-shearing; aye, Tashtego, and he fan-tails like a split jib in a squall.
Death and devils! men, it is Moby Dick ye have seen - Moby Dick - Moby Dick!"

Figure 1: Fragment of the novel Moby Dick written by Herman Melville.

We illustrate the various interestingness measures in
Figure 1. Here, we show a fragment of the novel Moby
Dick written by Herman Melville with four sequential
patterns highlighted. These four patterns are all ranked
in the top-10 using quantile-based cohesion. Frequency
defined as the number of minimal non-overlapping win-
dows, as proposed by Laxman et. al, would report
(white, whale), (Captain, Ahab) and (Moby, Dick) in
the top-10, but not (wrinkled, brow, crooked, jaw) be-
cause this pattern does not occur frequently enough. We
also remark that other patterns, such as (Ahab, Dick),
are ranked highly using frequency alone, despite not be-
ing correlated. The cohesion-based FCI algorithm [3]
does not rank (Captain, Ahab) high, due to fact that
the two items, though correlated, also occasionally ap-
pear far from each other, resulting in a relatively large
mean of minimal window lengths.

Since quantile-based cohesion is not anti-
monotonic, designing an efficient algorithm to exactly
find all sequential patterns is not trivial. To facilitate
our search, we define an upper bound that computes the
maximal quantile-based cohesion for any super-pattern
of the current candidate sequential pattern that could
still be generated to prune candidate patterns. Our
algorithm wuses constrained prefix-projected pattern
growth to generate all candidates, and uses this upper
bound for additional pruning. Computation of all min-
imal windows and generation of candidates becomes
more efficient as the projected input sequence becomes

smaller ensuring our algorithm is also efficient on larger
event sequences with many items. We perform several
experiments to validate that these algorithms perform
well on artificial and text datasets from a qualitative
and performance perspective.

The remainder of this paper is organized as follows.
In Section 2 we formally describe the problem setting
and define the patterns we aim to discover. Section 3
provides a detailed description of our algorithm and
upper bound. In Section 4 we present an experimental
evaluation of our method, and compare with a number
of related state-of-the-art methods. We present an
overview of the most relevant related work in Section 5
and conclude our work in Section 6.

2 Problem Setting

The input dataset consists of a single sequence of items
(or events), that is S = ({i1,t1),...,{in,tn)), where
ix € Q is an item coming from a finite domain) of all
possible items, and tj is a timestamp. The sequence is
ordered chronologically so for any 1 < k < n, it holds
that t—1 < tg. A window S[ts,tp] is a subsequence
of & between timestamps t, and tp, that is S[ts,tp]
contains all (ig,tx) € S for which ¢, < t < t,. We
define the window length as |S[ta,tp]| = t» — t4. For
simplicity we omit the timestamps from our examples
and write a sequence as (i, ...,4,) thereby assuming
the timestamps are consecutive integers.

A sequential pattern is denoted as Xy =

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

(s1,.-.,8m), representing a pattern that consists of
items s; until s, in that order, where s, € Q. We
do not require each item s; to be unique, that is se-
quential patterns can contain repeating items. Unlike
windows, a sequential pattern occurrence allows gaps
between items. We say that a sequential pattern X
occurs in a window S[t,,tp] if all items in X occur in
the specified order in the window, that is,

Xs = (51,--+38m) < S[ta, ts] <

51,810,y (St € Sltas ty] -
VZ,jE{l,,m}Z<‘73tl <tj.

To evaluate a pattern, we make use of minimal windows.
For every distinct item ¢ € X and every timestamp ¢
where (i,t) € S, we need to find the shortest window
around t that contains an occurrence of X,. Formally,
we define the minimal window at timestamp t as

Wi(Xs,S) =
o if BS[tart] i ta <t <ty A Xs < Slta,ty]

min {|S[ta,ts]| | ta <t <tp A Xs < S[ta,ts]}
S[tu,tb]
otherwise.

Note that a sequential pattern is sometimes not covered
by any window at timestamp t. For example, given
the sequential pattern X = (a,b) and the sequence
S = (...,b,a), for the last a there is no window that
would cover X;. In this case we say the minimal window
has a length of c0. Since we measure the proportion of
occurrences that are cohesive, this is not a problem, as
large minimal windows are discarded anyway. Finally,
we denote the set of occurrences of the pattern as
cover(X,,S) = {t | (i,ty € S ni € X}, and define
its support as support(Xs,S) = |cover(X,, S)|.

We are now ready to define quantile-based cohesion.
This measure tackles the problems of both frequency-
based and cohesion-based methods, as illustrated in Sec-
tion 1. Given a cohesion threshold «, that determines,
relative to the pattern size, if a pattern occurrence is
cohesive enough, we compute the proportion of the oc-
currences that are cohesive. Formally, given a set of
minimal windows for each occurrence of a pattern, we
define the quantile-based cohesion for a sequential pat-
tern X, in sequence S as

_|{t] t € cover(X,) A Wi(X,) < a- | X}

uan XS
Cquan(X) support(Xs)

where we omit the & argument if it is clear from the
context. Finally, we remark that, given a frequency
threshold 6, we ignore all infrequent items, that is if

support(i) < 6, we do not use item ¢ € € in the
generation of candidate patterns.

Our goal is to solve the following problem: Given
a single sequence of items S, a cohesion threshold
a, a frequency threshold 0, a size limit maxsize, and
the number of desired patterns k, find each sequential
pattern X, where |Xs| < maxsize, for each i €
X, support(i) = 0, and X is ranked in the top-k set of
patterns according to Cgyan(Xs) w.r.t a.

3 Algorithm

In this section, we present a detailed description of
our algorithm for mining sequential patterns. We first
show how we generate candidates using prefix-projected
pattern growth. We then discuss how we can prune
large numbers of potential candidates by computing an
upper bound on quantile-based cohesion. Parameters
for controlling our algorithm include k, o and mazsize.

3.1 Prefixed-projected pattern growth Our al-
gorithm combines ideas from two different methods. At
its core, our algorithm is similar to the depth-first search
by Cule et al. for mining cohesive itemsets [3]. We first
generate candidates in a depth-first way. For each can-
didate, we compute the set of minimal windows, and
prune a candidate and associated super-patterns based
on an upper bound of quantile-based cohesion. There
are two bottlenecks in this baseline algorithm. First, we
would have to compute the set of minimal windows for
each candidate, which requires visiting all occurrences
of items in the current candidate X,. Second a naive ap-
proach would generate new candidate patterns by com-
bining the current candidate with all items in Q. In
order to address both bottlenecks, we integrate this ap-
proach with the strategy of recursively projecting the in-
put sequence, similar to prefix-projected pattern growth
first used in PREFIXSPAN [8].

3.1.1 Definitions During the depth-first search we
generate candidate super-sequences Zs by adding items
from the set Y at the end of the current candidate

sequence X, that is, given Xg = (s1,...,8,) and
Y = {ylv"'7yl}7
Z(Xs,Y) ={Zs|Zs = (S1,--+5n, Znt1s---s2m)

AN Zs| < maxsize AVi€ [n+1,m]:z €Y}

We initialize Y as 2 at depth 0. Y can also be computed
based on the projection of S on X defined as

Px.(S) = {S[ta, tv]|(s1,tay € S A X5 < S[ta,]},

with t, = t, + a - maxsize. Note that we restrict the
length of the projected windows to « - mazxsize. We

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

define the suffiz of a window given a sequential pattern
X, as the subsequence after the first occurrence of X,

suffie(S[ta, tp], Xs) =S[t + €,tp] | ta <t < tpn
Xo < S[ta,t] At -t <t A X, < S[ta, 1],

where € denotes the smallest possible period of time
between two non-simultaneous events. Finally, given
the projection on X, of § we can define the multiset of
all possible candidate items YT as

U v

S[ta,tb]e’l?xs SkESuﬁqw(S[ta,tb],Xs)

Yt = {sk} |,

where we use a multiset-union 4, which allows us to
bound the number of possible repetitions allowed for
each item z; in candidate super-sequences Z,. A similar
definition based on the set-union is used to compute Y.

We now discuss the intuition behind these defini-
tions. We first observe that we are only interested in
computing the number of minimal windows that are
smaller than « - |X|. Therefore, it is not necessary
to compute all minimal windows. A second observa-
tion is that given pattern X, = (s1) we can guaran-
tee that for any super-sequence, each interesting min-
imal window will start with an occurrence of s; and
must be smaller than « - maxsize. Therefore, we can
compute the set of minimal windows based on the pro-
jection of (s1) induced on S for every super-sequence
that starts with (s1). On the first level, the set of pro-
jected windows might not be much smaller than |S|, but
as the pattern becomes longer, the projection will be-
come much smaller. For instance, given Z; = (s1, 82)
each window S[tq,ty] € P(s,) can be removed from
Plsy,ss) if (51,52) K Slta,tp]. Furthermore, each in-
dividual window in the projection will shrink based on
suffir(S[ta,tp], Xs). Thus by computing the projected
windows, two bottlenecks of the depth-first search in
this settings are resolved: first, minimal windows for
a candidate Zs = (s1,...,Sk+1) can be computed in-
crementally on the monotonically decreasing projection
induced by X; = (s1,...,8%), and, second, candidate
items si11 for generating candidates at each next level,
are not selected from the full set {2 but must occur in
Y*. Finally, an additional benefit of applying prefix-
projected pattern growth is that our upper bound be-
comes tighter, as discussed in Section 3.2.

3.1.2 Implementation The main algorithm for
mining quantile-based cohesive sequential patterns
(QCSP) is shown in Algorithm 1. We maintain a stack
for performing the recursive prefix-projected search.
During the recursion we maintain three variables: the

Algorithm 1: QCSP(S,k,«, mazxsize) finds
top-k quantile-cohesive sequential patterns in S

1 stack — [{F, S, D)];

2 heap < make_heap(k);

3 min_coh < 0.0;

4 while stack # & do

5 (Xs,Px.,Y) « stack.pop();

6 if Y = ¢ then

7 if | Xs| > 1 A Cyuan(Xs) > min_coh then
8 heap.push({Xs, Cquan(Xs)));

9 if heap.size() = k then

10 heap.pop();

11 min_coh < heap.min()

12 end

13 end

14 end

15 else

16 if XsnY =g Amingap(Xs) + | Zmaz| >

a- (| Xs| + | Zmaz|) then continue ;
17 if Crazquan(Xs,Y) < min_coh then
continue ;

18 Spt1 < first(Y);

19 stack.push({Xs, Px., Y\{sk+1}));
20 if | X,| = mazsize then continue ;
21 Zs — (Xswsk-#—l);
22 Pz. < PROJECT(S, Zs, Px., o, mazxsize);
23 Y, < PROJ_CANDIDATES(S, Zs, Pz,);
24 stack.push({Zs,Pz.,Yz.));
25 end
26 end

27 return heap;

current candidate sequential pattern X, the projection
on X, of the sequence and a set of candidate items
for generating super-sequences Z; where X, is a pre-
fix of Zs;. We initialize this stack by setting X, to the
empty sequence, the projection is S itself, and the set
of all candidate items is Q (line 1). Next, we initial-
ize an empty heap that contains at most k patterns
sorted on quantile-based cohesion (line 2). This top-
k of most quantile-based cohesive patterns is also re-
turned after the main prefix-projected search loop has
finished (lines 4-26). In the main loop we first pop the
current node from the stack (line 5). We investigate if
this is a leaf, that is, an unpruned sequential pattern,
with no more super-sequences to enumerate. We add
the candidate to the heap of top-k most cohesive pat-
terns if its quantile-based cohesion is higher than the
current worst candidate pattern in the heap (line 7).
Note that the first k£ candidates will be added without
any condition, but the minimal quantile-based cohesion

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

will increase as more and more candidates are uncov-
ered, which in turn affects the pruning. If the candidate
is not a leaf we evaluate the mingap and upper bound
function Criazquan(Xs,Y) which are explained in the
next subsection (line 16-17). If the current candidate,
and all its super-sequences cannot be pruned, we gen-
erate a super-sequence Zs; = (X, Sp41) using the first
item in Y (line 21), the set of possible items to gen-
erate candidates of length | X | + 1. We compute the
projection of Z; induced on S by calling the function
PROJECT (line 22). The details of the auxiliary func-
tions PROJECT, which computes the projection Pz_(S)
incrementally based on the projection of Px_(S) and
PRrOJ_CANDIDATES, which computes the set of possible
candidate items Y, are provided in the Appendix!.

We use an example, shown in Figure 2, to illustrate
the runtime behavior of our algorithm. We show the
trace on the example sequence (a,b,c,_,_,_, b, a,c)
with parameters o = 2, mazsize = 3 and k = 2. In
theory, there are |Q[> + |Q|* candidates possible. The
first candidate generated is Xs = (a). The projected
window size is at most « - mazxsize = 6, and there
are two windows in P(,). After the projection, we find
that only b and c¢ are left in Y, the set of remaining
items to form candidates that start with a. As ¢ occurs
twice and b only once, c¢ is visited first, and our next
candidate is X, = (a,c). Since the suffix of P,
does not contain any more items, it becomes a leaf,
and we add sequential pattern (a,c) to the heap with
a quantile-based cohesion of 1. Next we project on
Xs = (a,b) and remove one window in the projection.
The only possible suffix left is ¢. We then generate
X = (a,b,c). This candidate pattern is a leaf node, and
is added to the heap with a quantile-based cohesion of
0.5. Next, X = (a,b) is visited again as a leaf, but not
added to the heap, because its quantile-based cohesion
of 0.5 is not strictly higher than the minimal score of
Cyuan((a,b,¢)) = 0.5 of the top-2 patterns currently
in the heap. Next, X, = (b) is generated, and then
Xs = (b,¢). The quantile-based cohesion of X = (b, ¢)
is 1 and it is added to the heap, replacing the previously
lowest-scoring element (a,b,c¢). Then, Xs; = (b,a) is
generated. The maximal cohesion of (b, a), with Y = {c}
given by Crnazquan((b,a), {c}) = 4 (see Section 3.2) is
less than the the current minimal score of 1, so we can
prune this branch. Finally, candidates X, = (¢) and
Xs = (¢,b) are generated, with cohesion 0.0 since no
window is smaller than « - 2. The final top-k heap
contains (b, ¢) and (a,c) both with a cohesion of 1.

Thttp://win.ua.ac.be/~adrem/bibrem/pubs/

feremans18topk.pdf

Xs Y Px, a:2 maxsize: 3 top-k: 2
v [l | |
v (o [b [lc 1] | I
Heap:
v SRS | (&l
- e | | =
Cauonl(@b)) = 0.5 < heap.min() Heap:
- Ll I |
- L] | S
Heap:
- Bl |BRlEn]lc |
XK Croaxauanl (0,0)) = 0.66 < heap.min() ‘
- (&l |
- O Wk &)

Cavan((€/b)) =0.0

Figure 2: Example to illustrate prefix-projected pattern
growth algorithm QCSP. The final top-2 quantile-
based cohesive sequential patterns are (b, c) and (a,c).

3.2 Pruning At any node in the search tree, let X,
denote the current candidate sequential pattern, while
Y denotes all items that can still be added to X to form
super-sequences. If we can compute an upper bound
on the quantile-based cohesion for all candidates Z, €
Z(Xs,Y), and this maximal score is lower than min_coh
we can prune the branch, where min_coh corresponds to
the current minimum score of any pattern in the heap,
or, if the heap is not full, it is set to 0. In this section,
we derive this upper bound.

3.2.1 Upper bound based on mingap Our first
upper bound comes from the observation that in some
cases not a single occurrence of two items is cohesive.
Intuitively, if the minimal gap, that is the minimal
window length of any occurrence of (a, b) is already too
high, the likelihood that (a,b) or any superpattern is
cohesive is small. We define the minimal gap as
min

t € cover(X,)

mingap(Xs) = Wt(Xs)

THEOREM 3.1. Let X, be a candidate pattern andY the
set of items that can still be added to Xs. Then, for each
Zs € Z2(Xs,Y) generated as candidate by Algorithm 1,

Couan(Zs) = Cquan(Xs) =0
if mingap(Xs) + | Zmaz| > o (| Xs| + | Zmaz|)
and XsnY =&,
|suffir(S[ta, ts], Xs)|-

max

where | Zmaz| =
S[ta ,tb]GPXS

Proof. The proof is given in the Appendix.

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Consider the following set of projected windows on Xy =
(a,b): Px, {(a,,,,b,d, f,),(a,_,_,_b,ecd,),
(a,, ., ., b,_,c,e)}. The set of remaining items is ¥ =
{c,d,e, f}. Note that X; nY = . Z(X,,Y) can
contain super-patterns such as (a,b, f), (a,b,d, f) or
(a,b,c,c). Here, mingap(X;) is 5 and |Zaq| is 2 (ig-
noring gaps). The longest possible pattern has length
| Xs| 4+ | Zimaz| = 2+ 2. If we assume a = 1 than we can
prune since 5+2 > 1- (2 +2).

3.2.2 Upper bound on quantile-based cohesion
We now present a bound on the number of remaining
cohesive minimal windows of any candidate super-
sequence Zs € Z(X;,Y), even if repeating items are
possible (that is X;nY # ¢F). We can prune X, and all
super-sequences, if the maximal value for quantile-based
cohesion is lower than the current value of min_coh.

THEOREM 3.2. Let X, be a candidate pattern andY the
set of items that can still be added to Xs. Then for each
Zs € Z(Xs,Y) generated as candidate by Algorithm 1,

Cquan(Zs) < Crazquan(Xs,Y'), where
Crazquan(Xs,Y) = 1.0—
[{t| t e BAWHUXS) = a[Z)4.l}]
support(Z!, ...
|Z! el = min(mazsize, | X,| + |Y 1)),

2

i€ X;uY
B={t|,t)eSAn ie X, A }jtheS:jeY}.

)

maz) = support(i),

support(Z!

Proof. The proof is given in the Appendix.

We illustrate this bound using an example. Sup-
pose X; = (a,b) occurs 10 times and ¥ = (c)
occurs 2 times. The minimal windows of X, are
{2,2,2,30,30,30,30,30,00,00}. Let us further assume
that min_coh = 0.5 and alpha = 2. There is only one
non-repeating candidate item in Y™ = {c}, thus only
Zs = Z!...(X) = (a,b,c) is possible. The maximal

window length possible is -3 = 6. There are seven win-
dows of X that are larger than 6. support(Z],..) = 12,
thus Crazquan(Xs,Y) = 1 — % = % which is lower

than min_coh so we can prune this branch. We remark
that, unlike pruning based on mingap, when X and
Y are not disjoint, we can still count windows for non-
overlapping items in X, for example given X = (a, b, ¢)
and Y = {¢, d}, we can compute all windows of (a, b, ¢)
for all occurrences of items in X,\Y = {a, b}.

4 Experiments

In our experiments, we use one synthetic dataset and
three text datasets for easy interpretation of patterns.

We compare QCSP with three state-of-the-art methods
both in terms of performance and the quality of output.
FCI [3] finds all cohesive itemsets, SKOPUS [13] finds
the top-k sequential patterns with the highest leverage,
and GOKRIMP [9] finds a set of patterns that best
compresses the input. For all three methods, we
used publicly available implementations developed in
Java?34. Our QCSP implementation and the used
datasets are publicly available, too®. Since we compare
our method with state-of-the-art algorithms for both the
single sequence and the multiple sequences setting, we
use two versions of each dataset, one for each setting.

4.1 Datasets The Synthetic dataset is created by
generating a single sequence of 2000 items randomly se-
lected between 6 and 50. Next, we insert the sequential
pattern (1,2,3,4,5) with at most 5 gaps at 40 random
non-overlapping locations. We transform this sequence
S into a set of sequences S’ by using a sliding win-
dow of size 20. The Moby dataset consists of all words
in the novel Moby Dick written by Herman MelvilleS.
We preprocessed the text using the Porter Stemmer,
and removed the stopwords. We transformed the sin-
gle sequence S into a set of sequences S’ by creating a
separate sequence for each sentence. JMLR consists of
abstracts of papers from the Journal of Machine Learn-
ing Research”, where each abstract is preprocessed as in
Moby. Each abstract is considered a separate sequence.
Since our method requires a single sequence, we trans-
form this dataset by concatenating the abstracts, adding
a- maxsize time stamps between any two abstracts, thus
avoiding generating patterns that span over two differ-
ent abstracts. Finally, Trump consists of tweets of presi-
dent Trump from 1 January 2016 until 2 October 20178,
We removed all re-tweets and preprocessed the tweet
texts as in Moby, and converted into a single sequence
as in JMLR. Table 1 shows the basic characteristics of
each dataset, where || denotes the number of distinct
items in the dataset and u(S’) the average length of a
sequence in the multiple sequences setting.

4.2 Performance comparison between methods
We begin by remarking that it is not possible to
compare the runtime of all algorithms directly for
several reasons. First of all, the runtime depends on
the chosen parameters and input representation (single

Zhttps://bitbucket.org/len_feremans/
sequencepatternmining_public/
Shttps://github.com/fpetitjean/Skopus
4http://www.philippe-fournier-viger.com/spmnf/
Shttps://bitbucket.org/len_feremans/qcsp_public
Shttp://www.gutenberg. org/ebooks/2701
Thttp://www.jmlr.org/papers
Shttp://www.trumptwitterarchive.com/

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Characteristics of the used datasets.

Dataset |S] 1€ IS w(S")
Synthetic 2000 50 2000 20.0
Moby 113264 2059 10066 11.2
JMLR 75515 3846 787 96.0
Trump 57518 1069 5670 17.9

Table 2: Runtimes on the different datasets.

Dataset FCI SkOPUS GoKriMp QCSP
Synthetic ~ 44.2s 19.8s 1.0s 1.7s
Moby 126.0s 47.8s 2.0s 18.4s
JMLR 255.4s 40.6s 2.0s 25.9s
Trump 196.9s 2.5s 5.0s 8.1s

sequence or many sequences), which are different for
each method. Second, FCI solves a different problem
since it mines itemsets, and QCSP allows sequential
patterns to contain repeating items, which is not the
case for SKOPUS or GOKRIMP. However, despite these
restrictions, we include this experiment to get an idea
of the overall runtime required for each method. For
QCSP and SKOPUS we set mazsize = 5 and k = 50.
For FCI we set maxsize = 5, and for QCSP we set a to
2. For all experiments, we used 6 = 10, and we filtered
out the infrequent items in a pre-processing step. Since
we cannot directly control the number of patterns in
FCI, we report the runtime for the run with the highest
cohesion threshold that leads to discovering at least k
patterns. Finally, GOKRIMP has no parameters to tune.
Table 2 shows the runtimes on all datasets. We note
that FCI is notably slower than other methods, while
GOKRIMP is notably faster. However, GOKRIMP is
different in nature, since it does not attempt to generate
all candidates and employs heuristics to perform greedy
search. Furthermore, GOKRIMP always produced fewer
than 50 patterns. Overall, we can conclude that the
runtime of QCSP is both acceptable and competitive.

We also analyzed the impact on performance of
pruning based on mingap and based on an upper bound
on quantile-based cohesion. We provide a detailed
report of these experiments in the Appendix. In short,
we can conclude that pruning reduces the number of
candidates by an order of magnitude, and also improves
runtime performance for higher values of maxsize. We
also conclude that the effect of a higher £ on runtime
behavior is not very large. The effect of varying maxsize
is clear — if maxsize increases, the total runtime
grows rapidly, since the number of possible candidate
patterns increases exponentially. Even so, on Moby,
our largest dataset, with a length of over 100 000 items
(see Table 1), finding the top-20 quantile-based cohesive

sequential patterns up to a maximal size of 10 took only
39 minutes.

4.3 Quality comparison between methods In
our final set of experiments we compare the quality of
the patterns found by the different methods. We use the
same parameters as in the previous section and increase
k to 250. Table 3 shows the top-5 sequential patterns
discovered by the various methods on all four datasets,
with patterns found only by a single method shown
in bold (we provide the top-20 for all methods in the
Appendix). On the Synthetic dataset, we see that both
GOKRiMP and QCSP rank the desired pattern first.
FCI ranks the pattern in the 9th position because, due
to the randomness of gaps in our generator, for some
subsequences (but not all) the ratio between pattern
length and average minimal window length is larger.
SKOPUS surprisingly does not report the sequence in
the top-500. It seems that the definition of expected
support seems to be biased towards shorter sequential
patterns. For the text datasets, we have omitted the
results for FCI for the sake of brevity. SKOPUS,
GOKRIMP and QCSP all seem to report interesting
patterns. The main difference between the patterns
produced by QCSP and GOKRIMP is that the former
ranks on Cyuan and only considers the proportion of
cohesive occurrences. As such, a sequential pattern that
occurs cohesively in 2 out of a total of 2 occurrences,
ranks as highly as a sequence that occurs cohesively in
100 out of a total of 100 instances. By sorting the top-
250 quantile-based cohesive patterns on support rather
than Cyyqn, We get a ranking very close to GOKRIMP. In
other words, most of the patterns found by GOKRIMP
are ranked relatively highly by QCSP, but, crucially,
not vice versa — many interesting patterns discovered
by QCSP are not found at all by GOKRIMP.

SKOPUS mostly reports short patterns, and its
top-250 for Trump consists only of patterns of length 2.
There is little overlap between the output of SKOPUS
and QCSP. For instance, in JMLR, 59 patterns found
in the top-250 by SKOPUS start with paper, and 44
end with result, while the top-250 produced by QCSP
contains no patterns starting with paper, and only one
pattern ends with result, namely (experi,result).

Unlike other methods, QCSP ranks many long
patterns in the top-250. Patterns such as (crooked,
hillary, clinton) and (repeal, replace, obamacare) in the
Trump dataset, or (reproduce, kernel, hilbert, space) and
(markov, chain, monte, carlo) in the JMLR dataset
are not found in the top-250 of the other methods
at all. Less frequent patterns with high quantile-
based cohesion, such as (las,vegas), (mrs,hussey), (near-
est,neighbor), (cross,validation) or (bayesian, network)

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Table 3: Top-5 patterns for each method.

FCI SKOPUS GOKRIMP QCSP
{1,2} 3,4,5 1,2,3,4,5 1,2,3,4,5
{3,4} 2,3,4 3,4,5 2,3,4,5
{4,5} 1,2,3 1,2,3 3,4,5
{3,4,5} 2,3,5 4,5 4,5
{1,2,3} 2,4,5 1,2 3,4

a) Synthetic dataset
SKOPUS GOKRIMP QCSP
sperm, whale sperm, whale moby, dick
white, whale moby, dick mrs, hussey

though, yet white, whale ii, octavo
old, man mast, head crow, nest
moby, dick old, man iii, duodec-
imo
(b) Moby dataset
SKOPUS GOKRIMP QCSP
paper, show support, vector, mont, carlo
machin
paper, result real, world nearest,
neighbor
paper, experi machin, learn support, vector
paper, state, art http, www
algorithm
support, vector reproduc, cross, valid

hilbert, space

(¢) JMLR dataset

SKOPUS

GoKRIMP

QCSP

make, america

make, great
crooked, hillary

hillary, clinton
america, great

make, america,
great, again
U,S

crooked, hillary

fake, news
ted, cruz

(d) Trump dataset

puerto, rico

witch, hunt
elizabeth,
warren

las, vega
goofy, elizabeth

are not reported at all in the top-250 of SKOPUS or the
limited pattern set of GOKRIMP, despite the fact that,
for example, 46 out of 47 occurrences of (puerto,rico)
are cohesive in Trump tweets, which clearly makes it an
important pattern. We conclude that QCSP is capable
of finding interesting patterns that other methods fail to
discover, while not missing out on interesting patterns
that other methods do find.

5 Related Work

We have examined the most important related work in
Section 1, and experimentally compared our work with

the existing state-of-the-art methods in Section 4. Here,
we place our work into the wider context of sequen-
tial pattern mining. In a single long input sequence,
WINEPI [11], LAXMAN [10] and MARBLES [5] mine all
frequent episodes, where frequency is defined using slid-
ing windows, minimal windows and weighted minimal
windows, respectively. It has been experimentally val-
idated in recent research that the top-k most frequent
patterns are often not very interesting [3, 13, 6].

SKOPUS [13] and EPIRANK [15] are two ap-
proaches that rank sequential patterns and general
episodes, respectively, based on an elaborate definition
of leverage. We have compared our method with SKO-
PUS and found that we typically rank longer patterns
higher. EPIRANK ranks episodes based on the output
of an existing frequent sequential pattern miner [16]. As
such, it is unlikely that less frequent and/or longer, but
strongly quantile-based cohesive, sequential patterns re-
ported by QCSP would be uncovered by this method.
Theoretically, we could mine a very large set of candi-
date sequential patterns by setting the support thresh-
old very low, but this would result in pattern explosion,
especially for enumerating longer patterns.

Related to EPIRANK, Tatti also proposed a way to
measure the mean and variance of minimal windows of
episode occurrences, and rank episodes by comparing
these values with the expected length according to the
independence model [14]. Like EPTRANK, this method
also requires as input the output of an existing frequency
based episode miner, making it, too, either unlikely or
inefficient to produce less frequent or longer cohesive
candidates than our direct approach.

Pattern reduction based on Minimal Description
Length produces a smaller set of patterns that covers the
sequence best. We have compared with GOKRIMP [9],
which is related to other MDL-based algorithms such as
SQS[17] and ISM[6]. All these methods take multiple
sequences as input, which is different from our approach.
Another difference is that rather than enumerating as
few candidates as possible and then selecting the best
candidates according to an interestingness measure,
they employ heuristic search to incrementally build
a set of non-redundant patterns. Applying heuristic
search to finding top quantile-based cohesive patterns is
also feasible, but we would lose the guarantee that our
output contains the exact set of top-k most quantile-
based cohesive patterns.

QCSP is also related to research in constraint
pattern mining. PG by Pei et al. [12] defines a generic
sequential pattern algorithm, based on pattern-growth,
that can handle a variety of constraints. We use a length
constraint induced by maxsize and a gap constraint
induced by a - mazsize.

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

As mentioned in Section 1, our definition of
quantile-based cohesion for sequential patterns is based
on the existing definition of cohesion for itemsets [3].
We note that our work (both the definition and the al-
gorithm) could easily be adapted for mining quantile-
based cohesive itemsets or episodes efficiently.

6 Conclusions and future work

In this paper, we present a novel method for finding in-
teresting sequential patterns in event sequences. Com-
pared to other interestingness measures, our quantile-
based cohesion is not biased towards shorter patterns
or patterns consisting of very frequent items. Further-
more, our measure is robust in the presence of outliers,
and flexible, since we do not use a sliding window of
fixed length, as is common in existing methods. We
define quantile-based cohesion as the proportion of oc-
currences of the pattern that are cohesive, i.e., where
the minimal window is small. This measure is easy to
interpret, and reports both frequent and less frequent,
but always strongly correlated, sequential patterns, that
other methods often fail to find. Since quantile-based
cohesion is not an anti-monotonic measure, we rely on
an upper bound to prune candidate patterns and their
supersequences. We include this pruning function in
a variant of constraint-based sequential pattern mining
based on pattern growth, and show both theoretically
and empirically that our algorithm works efficiently.

In future work, we intend to investigate adapting
our algorithm for the anytime setting, by prioritizing
more likely candidates in order to find the most in-
teresting patterns quickly, rather than waiting for the
entire output. Additionally, we are interested in ap-
plications where pattern mining is not the end goal in
itself. For example, quantile-based cohesive sequential
patterns could be used in tasks such as prediction, clas-
sification or anomaly detection within temporal data.

7 Acknowledgements

The authors would like to thank the VLAIO SBO
HYMOP project for funding this research.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast al-
gorithms for mining association rules. In International
Conference on Very Large Data Bases, pages 487—499,
1994.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. International Conference on Data
Engineering, 0:3-14, 1995.

[3] Boris Cule, Len Feremans, and Bart Goethals. Effi-
cient discovery of sets of co-occurring items in event

(4]

(5]

(6]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

sequences. In Joint Furopean Conference on Machine
Learning and Knowledge Discovery in Databases, pages
361-377. Springer, 2016.

Boris Cule, Bart Goethals, and Céline Robardet. A
new constraint for mining sets in sequences. In SIAM
International Conference on Data Mining, pages 317—
328, 2009.

Boris Cule, Nikolaj Tatti, and Bart Goethals. Marbles:
Mining association rules buried in long event sequences.
Statistical Analysis and Data Mining, 7(2):93-110,
2014.

Jaroslav Fowkes and Charles Sutton. A subse-
quence interleaving model for sequential pattern min-
ing. arXiv preprint arXiv:1602.05012, 2016.

Peter D Griinwald. The minimum description length
principle. MIT press, 2007.

Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen
Pinto, Qiming Chen, Umeshwar Dayal, and MC Hsu.
Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In proceedings of
the 17th international conference on data engineering,
pages 215-224, 2001.

Hoang Thanh Lam, Fabian M&rchen, Dmitriy Fradkin,
and Toon Calders. Mining compressing sequential
patterns. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 7(1):34-52, 2014.
Srivatsan Laxman, P. S. Sastry, and K.P. Unnikrish-
nan. A fast algorithm for finding frequent episodes
in event streams. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 410-419,
2007.

Heikki Mannila, Hannu Toivonen, and A Inkeri
Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery,
1(3):259-289, 1997.

Jian Pei, Jiawei Han, and Wei Wang. Constraint-
based sequential pattern mining: the pattern-growth
methods. Journal of Intelligent Information Systems,
28(2):133-160, 2007.

Francois Petitjean, Tao Li, Nikolaj Tatti, and Geof-
frey I Webb. Skopus: Mining top-k sequential patterns
under leverage. Data Mining and Knowledge Discov-
ery, 30(5):1086-1111, 2016.

Nikolaj Tatti. Discovering episodes with compact min-
imal windows. Data Mining and Knowledge Discovery,
28(4):1046-1077, 2014.

Nikolaj Tatti. Ranking episodes using a parti-
tion model. Data Mining and Knowledge Discovery,
29(5):1312-1342, 2015.

Nikolaj Tatti and Boris Cule. Mining closed strict
episodes. Data Mining and Knowledge Discovery,
25(1):34-66, 2012.

Nikolaj Tatti and Jilles Vreeken. The long and the
short of it: summarising event sequences with serial
episodes. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 462-470. ACM, 2012.

Copyright (© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Appendix
A Auxiliary Functions used by QSCP

In this section we discuss in detail the implementation
of two auxiliary functions used by QCSP.

Algorithm 2 shows the pseudo code for computing
the projection of Z; = (s1,..., Sk, Sk+1) incrementally.
If £k =0,ie., if X, = J, we create a window of size
a-mazxsize at every occurrence of (si11,ty € S. If k > 0,
we check for each window in the previous projection if
Zs occurs, and, if it occurs, we take the suffix. We
also maintain the original timestamp ¢ at which each
window starts. Note that the suffix starts with the first
event after time stamp ¢, whereby we use € to denote
the smallest possible period of time between two non-
simultaneous events.

Algorithm 2: PROJECT(S, Zs, Px., o, maxsize)
computes projection of Zg = (s1,..., Sk, Sk+1) on
S based on projection Px, on X5 = (s1,...,Sk)

1 P — &

2 if | X;| = 0 then

3 mazwin — |« - maxsizel;

4 fort — 1 to|S| do

5 if S[t] = sk+1 then

6 to — T+ €

7 ty «— t + mazwin;

8 P — P U t,S[tas ts]);

9 end
10 end

11 end

12 else

13 for {t,S[ta,ts]> in Px, do

14 if sgy1 € S[ta,tp] then

15 tq' < first occurrence of sj,q in

S[tm tb];

16 P —P Ut St + €t
17 end

18 end

19 end

20 return P’;

After the projection is computed we can traverse
it to enumerate all possible items to form super-
sequences, which is the main goal of the function
PrOJ_CANDIDATES. Algorithm 3 shows the pseudo
code for computing candidate items for forming a super-
sequence of length k£ + 1 based on the projection of its
prefix X,. The function consists of taking the union
of all items found in the suffix of each projected subse-
quence. In order to compute Y+ for Cpazquan @ variant
of this function is defined. This is omitted from the

pseudo code but is trivial to compute.

Algorithm 3: PROJ_CANDIDATES(S, X, Px.)
computes set of possible items s;+1 € Y to gener-

ate Zs = (s1,..., Sk, Sg+1) based on projection of
Xs=(81,-,8k)-

1Y «— &

2 for (t,S[tq, ts]) in Px, do

3 | Y <Y US[tate];

4 end

5 sort Y on descending support in Px_;

6 return Y

B Proof pruning based on mingap

THEOREM 7.1. Let X, be a candidate pattern andY the
set of items that can still be added to Xs. Then, for each
Zs € Z(Xs,Y) generated as candidate by Algorithm 1,

Cquan(Zs) = Cquan(Xs) =0
if mingap(Xs) + | Zmaz| > a - (| Xs| + | Zmaz|)
and XsnY = &,

max_ |suffie(S[ta, ts], Xs)|.

where | Zmaz| =
Slta ,tb]epxs

Proof. We know that for any window of any super-
sequence Zs € Z(X,,Y), where X, nY = ¢F it holds
that

YV t € cover(Zs) : Wi(Zs) + (| Zs| — | Xs]) = Wi(Xs).
Furthermore we know, by definition, that
V t € cover(Xs) : We(Xs) = mingap(Xs).
Formally we want to prove that, VZ, € Z(X,,Y),

Cquan(Zs) =0

[{t| t € cover(Zs) n Wi(Z,) < o+ |Zs|}|
support(Zs) B

— Pt e cover(Z,) : Wi(Z,) < a-|Z4|.

0

From previous equations, if follows that the smallest
minimal window of Z, is bounded by

min = Wi(Zs) = mingap(Xs) + (|Zs| — | Xs]),

tecover(Zs)
and we can deduce that
Cquan(Zs) =0

= mingap(Xs) + (|Zs| — | Xs]) = a - |Z|.

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

What remains to be proven is that no pattern
Zs € Z(X,,Y) generated as candidate by Algorithm 1
can be longer than |X| + | Zpqz|. In each recursive call,
the algorithm adds ezactly one item to the candidate
sequence, and removes at least one item from each
window in the projection. Therefore, X, can at most
grow by the number of items in the largest suffix, and it
directly follows that, for each generated candidate Zj,

‘ZS| < |XS| + |Zmaz|-

Finally, we can derive that we can prune a candidate
pattern X and any super-sequence Z, if

mingap(Xs) + [Zmaz| = - (| Xs| + [Zmazl),

because the inequality becomes tighter proportionally
to (1 — @) + | Zs|, which is maximized by |Z,4.|. This
concludes the proof.

Note that the restriction X, n'Y = (& remains nec-
essary, because otherwise the previous inequality be-
tween minimal window length W3 (X;) and its extension
Wi(Zs) does not hold. This mingap bound is thus only
applicable to prune candidates when no repeating ele-
ments are in any suffix of the current projection, that is
X;nY =g

We illustrate this upper bound with an example.
Assume X; = (a,b) and we have the following set of
projected windows:

P(a,b) = {(a7 b7 da da C), (aa - b7 d7 C, 6)7 (a7 - = b7 & 6)}

The union of the remaining items in the suffixes is
Y = {¢,d} v {c,d} U {c,e} = {c,d,e}. However, we
want to count all occurrences of the repeating cs and ds,
because Z(X,,Y) can contain patterns such as (a, b, ¢, ¢)
or (a,b,d,d). We therefore take the multiset-union and
compute Y = {c,c,d,d,e}. Using this definition the
longest possible pattern would be bound by |[Y | = 5.
However, we can further lower this upper bound, by
considering each window separately. Since the longest
suffix in our example has size 3, we will never be able
to add more than 3 items to X, which is why we define
| Zmaz| as
|Zmax| =

max_ | suffir(S[ta, ts], Xs)|-

Slta ,tb]epxs

C Proof pruning based on upper bound

quantile-based cohesion

THEOREM 7.2. Let X be a candidate pattern andY the
set of items that can still be added to Xs. Then for each

Zs € Z(Xs,Y) generated as candidate by Algorithm 1,

Couan(Zs) < Crazquan(Xs,Y), where
Crazquan(Xs, Y) = 1.0—
{tl te B AWHXS) = o |Z500]}]
support(Z},qz) ’
|Z! wecl = min(mazsize, | X| + |Y 1)),
i€ ;SUY
B=A{t|G,t)eSA ie X, Al t)eS:jeY}.

az) = support(i),

support(Z!

Proof. For any pattern Zs we define support using
support(Zs,S) = |{t | (i,tye S A i€ Z }|.

We can partition all items in Z; in two disjoint sets. Let
Zs = (X4, Ys), then the items in Z, are either in X \Ys,
orin Yy = (Y,\X;) u (X5 nY;). We can rewrite the
previous equation as:

support(Zs,S) = |{t | (i,t) e S nie X \Ys}u
{t |G, t)eS nieYs}

This is important: as we allow for repetitions, the
set X5 N Yy might not be empty. For example, given
Xs; = (a,b) and Z; = (a,b,a) an occurrence of item
{a,ty might have a minimal window as first item in Zj
or as third item in Z;. This complicates matters since
we cannot state that the minimal window at t of X is
smaller or equal than that of Z,.

Another issue is caused since we allow multiple
items to occur at the same timestamp t. We want to
exclude timestamps of items in X \Y; also in Y and
we refine the previous equation to define the following
disjoint partition of timepoints:

support(Zs,S) =|{t | te By u{t]|te}
=|{t|te B} + |{t|te~}, where
Bz, =1{t |G, t)eSrnie X, AP, t)eS jeY,},
vz, ={t| {,t)e S nie Y}

We now use this partition to bound the maximal
number of minimal windows for any super-sequence.
For any Z; € Z(X,,Y) it holds that

Vite Bz, : Wi(Zs) = Wi(Xs). (1)
In other words, the minimal window length of any super-
pattern Zg is at least as high as the minimal window
length of X at a timestamp ¢ where an item i € X
occurs, but no items from Yy occur.

Given the current value of min_coh (the quantile-
based cohesion of the kth pattern in the current top-
k, or 0 if we have found fewer than k patterns), we

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

only want to enumerate candidates Z, where Cyyqan(Zs)
could turn out to be higher than or equal to min_coh.
We now derive:

_ {tlt € cover(Zs) n Wi(Zs) < a- | Z}]

uan ZS
Cguan(Zs) support(Zs)

= support(Z,)~'
([t te Bz, n WilZs) < - |Zs[}H+
{tl t € vz, A Wi(Zs) < a-|Zl}])
= 1.0 — support(Z,)~*-
({tl te Bz, A Wi(Zs) = a-|Zs|}+
{tl t € vz, A Wi(Zs) = a-|Zs|}]).
< 1.0 — support(Z,) -

([t te Bz, A Wi(Zs) 2 a-|Zs[}). (2)

We finalize the proof by producing bounds for the
main three elements of the above equation. For every
candidate Z; generated by Algorithm 1, we can bound
the size of Zg, the size of fz,, and the support of Z;.
First of all, given that Algorithm 1 produces candidates
by adding items in Y+ to X,, until there are either
no more items left to add or we have reached the size
threshold mazxsize, it directly follows that, for every
candidate Z5 generated by Algorithm 1,

12,] < min(magsize, |X,| + [Y*]) = |2,

ma:v"

(3)
Second, note that § < Bz, and, therefore
{tl t € Bz, A Wi(Zs) = - | Zs[}]
> |{t| te BAWUZs) = a-|Z} (4)
Since 8 < Bz., from Equation 1 it follows that
VitepB:Wi(Zs) = Wi(Xs),

and, therefore,

Htlte B AWZs) = a-|Zsl}

> [{t] te B A Wi(X,) > a- |Z,]} (5)

From Equation 3, it follows that

{tlte B AWi(Xs) 2 a-|Zl}

> [{tl te BAWHXs) = a[Z),[, (6)

and, by combining Equations 4, 5 and 6, we obtain

{tl t € Bz, n Wi(Zs) 2 a-|Z|}]

> |{tl te BAWUXs) = a[Z).[}- (7)

Finally, since any candidate pattern Z, can only contain
items from X, and Y, it follows that

support(Zs) < Z support(i) = support(Z,. ..). (8)
iEXsUY

From Equations 2, 7 and 8, it now directly follows that

Cquan(Zs)
< 1.0 — support(Zy)

(el teBAWXs) = a-]Z,.,[}H)
< 1.0 — support(Zh,4.) "

([{tlte B AWHXs) = a|Z]..[})
= Cmaa:quan(XsaY)~

This concludes the proof.

D Additional Performance Experiments

To evaluate the performance of our pruning technique,
we run our algorithm on the Synthetic and Moby
datasets, while varying mazsize, and mine the top-
k sequential patterns using prefix-projected pattern
growth, with and without pruning. In this experiment,
« is set to 2.0 and k is set to 20.

10% [topk
@ @ no pruning o

10°

107

10°

10°

#candidates (log scale)

10*

1 2 3 4 5 6 7 8 9 10 11
maxsize

Figure 3: Number of candidates with and without
pruning on Synthetic.

In Figures 3 and 4 we show the the number of candi-
dates (in log scale) on the Synthetic and Moby datasets,
with and without pruning. We vary mazsize between 2
and 11. From these results we conclude that pruning
has a significant impact on the number of candidates,
which are reduced by an order of magnitude for pat-
terns of larger sizes, thereby also reducing memory con-
sumption. Concerning performance, the number of can-
didates (and runtime) grows almost exponentially with
the maximal pattern length, witch follows from the fact
that the number of possible candidate patterns also in-
creases exponentially with O(Qmazize),

We do not include runtime plots, but for the
Synthetic dataset the gain in runtime is marginal, taking
2026 seconds without pruning and 1880 seconds with
pruning for mazxsize = 11. For the Moby dataset the

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

10 o
10 ~ top k

— © @ no pruning @

L]

T 10°

V]

"

o

L2 00

w

L]

©

- 107

5

c

S 106

e 10

1 2 3 4 5 6 7 8 9 10 11
maxsize

Figure 4: Number of candidates with and without
pruning on Moby.

gain in runtime is high when mazsize is high, taking
196 minutes without pruning and 113 minutes with
pruning for maxsize = 11. The moderate gain in
runtime on the Synthetic dataset, and lower values of
mazxsize on the Moby dataset, is due to the fact that
during each iteration we must compute the pruning
functions, thereby computing the number of minimal
windows of X based on Px_, which generates overhead.
Overall, we conclude that pruning on a larger search
space seems to have a large effect on runtime, while
for smaller search space, the effect is marginal. We
remark that in future work it would be interesting
to investigate approximations based on the current
bounds, that potentially prune slightly less candidates,
but are faster to compute in any setting.

We also ran QCSP for varying the value of k
between 10 and 10000 on Moby using a fixed maxsize
of 5. The effect of a higher k£ on runtime behavior is not
very large, resulting in a runtime of 5s for top-10 and
slightly increasing to 25s for top-10 000.

Finally, we conclude that on the real-world Moby
dataset where the number of items is 2 = 2059 and
the total sequence length exceeds 100000, finding the
top-k quantile-based cohesive sequential patterns up to
a maximal size of 10 under one hour is acceptable. Our
pruning functions reduce the number of candidates with
an order of magnitude, and there is a clear effect on
runtimes under the assumption that search space of
possible candidates is relatively large.

E Top-20 patterns

Tables 4 and 5 show the top-20 patterns for the text
datasets. Patterns not found either exactly or as sub-
patterns in the top-250 of other methods are shown

in bold. We see that QCSP finds many interesting
patterns that other methods fail to rank highly. On
the other hand, the patterns SKOPUS ranks highly and
other methods do not are typically combinations of very
frequent items. GOKRIMP, in general, produces few
patterns, and misses out on many interesting patterns
altogether.

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Table 4: Top-20 patterns Moby.

QCSP mobi, dick um, um sperm, whale ginger, ginger
mrs, hussey seven, seventi town, ho ha, ha
ii, octavo cape, horn ii, iii jack, knife
crow, nest o, clock dough, boy mast, head
iii, duodecimo hither, thither beef, bread inclin, plane

SKOPUS sperm, whale mobi, dick said, 1 d, ye
white, whale captain, ahab whale, him ye, see
though, yet right, whale look, like quarter, deck
old, man whale, head cri, ahab ahab, him
mast, head whale, ship one, side now, whale

GOKRIMP mobi, dick captain, ahab cri, ahab
sperm, whale said, i
mast, head right, whale
white, whale quarter, deck
old, man d, ye

Table 5: Top-20 patterns JMLR.

QCSP mont, carlo reproduc, hilbert support, machin bayesian, network
nearest, neighbor real, world state, art high, dimens
support, vector belief, propag vector, machin collabor, filter
http, www support, vector, messag, pass naiv, bay

machin
cross, valid plai, role data, set learn, algorithm

SkKOPUS paper, show base, result paper, propo paper, set
paper, result paper, method vector, machin support, machin
paper, experi learn, result paper, new learn, data
paper, algorithm problem, experi algorithm, result problem, result
support, vector learn, experi paper, base algorithm, experi

GOKRIMP support, vector, high, dimens well, known
machin
real, world neural, network hilbert, space
machin, learn compon, analysi experi, result
state, art supervi, learn
reproduc, hilbert, support, vector
space

Table 6: Top-20 patterns Trump.
QCSP puerto, rico goofi, elizabeth, luther, strang https, co
warren
witch, hunt prime, minist stock, market fake, news
elizabeth, warren goofi, warren self, fund novemb, 8th
las, vega radic, islam suprem, court white, hous
goofi, elizabeth e, mail mitt, romney common, core

SKOPUS make, america america, again thank, trump2016 crook, clinton
make, great great, again thank, makeamer- donald, trump

icagreatagain
crook, hillari make, again fake, news last, night
hillari, clinton thank, you 2016, fals thank, co
america, great https, co ted, cruz interview, enjoy

GOKRIMP make, america, great, thank, you trump2016http, co north, carolina
again
https, co last, night 00, m north, korea
crook, hillari hillari, clinton new, york make, america, great
fake, news 2016, fals donald, trump white, hous
ted, cruz look, forward south, carolina work, hard

Copyright (© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

