
Mining Train Delays

Boris Cule1, Bart Goethals1, Sven Tassenoy2, and Sabine Verboven2,1

1 University of Antwerp, Department of Mathematics and Computer Science,
Middelheimlaan 1, 2020 Antwerp, Belgium

2 INFRABEL - Network, Department of Innovation, Barastraat 110, 1070 Brussels,
Belgium

Abstract. The Belgian railway network has a high traffic density with
Brussels as its gravity center. The star-shape of the network implies
heavily loaded bifurcations in which knock-on delays are likely to occur.
Knock-on delays should be minimized to improve the total punctuality
in the network. Based on experience, the most critical junctions in the
traffic flow are known, but others might be hidden. To reveal the hidden
patterns of trains passing delays to each other, we study, adapt and
apply the state-of-the-art techniques for mining frequent episodes to this
specific problem.

1 Introduction

The Belgian railway network, as shown in Figure 1, is very complex because of the
numerous bifurcations and stations at relatively short distances. It belongs to the
group of the most dense railway networks in the world. Moreover, its star-shaped
structure creates a huge bottleneck in its center, Brussels, as approximately 40%
of the daily trains pass through the Brussels North-South junction.

During the past five years, the punctuality of the Belgian trains has gradually
decreased towards a worrisome level. Meanwhile, the number of passengers, and
therefore also the number of trains necessary to transport those passengers, has
increased. Even though the infrastructure capacity is also slightly increasing by
doubling the number of tracks on the main lines around Brussels, the punctuality
is still decreasing. To solve the decreasing punctuality problem, its main causes
should be discovered, but because of the complexity of the network, it is hard
to trace their true origin. It may happen that a structural delay in a particular
part of the network seems to be caused by busy traffic, although in reality this
might be caused by a traffic operator in a seemingly unrelated place, who makes
a bad decision every day, unaware of the consequences of his decision.

We study the application of data mining techniques in order to discover re-
lated train delays in this data. In a related work, Flier et al. [2] try to discover
dependencies in the underlying causes of the delays, but we search for patterns
in the delays themselves. Mirabadi and Sharafian [6] use association mining to
analyse the causes in accident data sets, while we consider frequent pattern min-
ing methods. More specifically, we analyse a dataset consisting of a sequence of
delayed trains using a recently developed frequent episode mining technique [8].

Fig. 1. The Belgian Railway Network

An episode in a sequence is usually considered to be a set of events that reoccurs
in the sequence within a window of specified length [5]. The order in which the
events occur is also considered important. The order restrictions of an episode
are typically described by a directed acyclic graph.

We use a database provided by Infrabel, the Belgian railway maintenance
company, containing the times of trains passing through characteristic points in
the railway network. In order to discover hidden patterns of trains passing delays
to each other, our first goal is to find frequently occurring sets of train delays.
More precisely, we try to find all delays that frequently occur within a certain
time window, counted over several days or months of data, and interdependencies
among them. For example, we consider episodes such as: Trains A, B, and C, with
C departing before A and B, are often delayed at a specific location, approximately
at the same time.

Computing such episodes, however, is intractable in practice as the number
of such potentially interesting episodes grows exponentially with the number
of trains [4]. Fortunately, efficient episode mining techniques have recently been
developed, making the discovery of such episodes possible. A remaining challenge
is still to distinguish the interesting episodes from the irrelevant ones. Typically,
a frequent episode mining algorithm will find an enormous amount of episodes
amongst which many can be ruled out by irrelevance. For example, two local
trains which have no common characteristic points in their route could, however,
appear as a pattern if they are both frequently delayed, and their common
occurrence can be explained already by statistical independence.

In the next Section, we give a detailed description of the dataset, and in
Section 3, we discuss various patterns and describe the method we used. In

Section 4, we discuss how we preprocessed the collected data, give a concrete
case study at one particular geographical location, and report on preliminary
experiments showing promising results. Finally, We conclude the paper with
suggestions for future work in Section 5.

2 The Dataset

The Belgian railway network contains approximately 1800 characteristic geo-
graphic reference points — stations, bifurcations, unmanned stops, and country
borders. At each of these points, timestamps of passing trains are being recorded.
As such, a train trajectory can be reconstructed using these measurements along
its route. In practice, however, the true timestamps are not taken at the actual
characteristic points, but at enclosing signals.

The timestamp ta,i for arrival in characteristic point i is approximated using
the times recorded at the origin So,i, and the destination Sd,i of the train passing
i as follows:

ta,i = tSo,i
+
do,i
vi

(1)

where do,i is the distance from So,i to the characteristic point i and the velocity
vi is the maximal permitted speed at Sd,i. To calculate the timestamp td,i for
departure in characteristic point i we use

td,i = tSd,i
− dd,i

vi
. (2)

where dd,i is the distance from Sd,i to the characteristic point i. Hence, based
on these timestamps, delays can be computed by comparing ta,i and td,i to the
scheduled arrival and departure times.

Table 1 gives a small fictional example of the relevant part of the provided
data (irrelevant columns were omitted). We now describe this dataset column
per column. The first two columns are self-explanatory and contain the date and
the Train ID respectively. The third column, PTCar, contains the geographical
measurement points (the characteristic points referred to above), and is followed
by arrival and departure times of the train in that point (computed using the
approximation method described above). Finally, the sixth and seventh column
contain the arrival and departure delay respectively, computed by comparing the
actual and scheduled arrival and departure times. The actual dataset we worked
with contained the complete information about all departures and arrivals of all
trains in characteristic points in Belgium in January 2010.

3 Frequent Episodes

Before we present our chosen method of mining frequent episodes in the Infrabel
dataset, we start off with a short discussion of why we opted not to use simpler
patterns, such as frequent itemsets or sequences.

Date Train ID PTCar Arrival Time Departure Time Arr. Delay Dep. Delay

. . .
15/02/2010 100 1255 - 06:07:23 - 23
15/02/2010 100 941 06:14:18 06:17:57 18 117
15/02/2010 100 169 06:37:25 06:38:30 205 210
. . .
15/02/2010 100 445 07:28:03 - 183 -
15/02/2010 123 114 - 06:11:58 - -2
15/02/2010 123 621 06:24:22 06:26:10 82 70
15/02/2010 123 169 06:31:51 06:33:49 231 229
. . .
15/02/2010 123 541 07:10:37 - 97 -
. . .

Table 1. An excerpt from a fictional train delay database.

3.1 Itemsets

The simplest possible pattern are itemsets [3]. Typically, we look for items (or
events) that often occur together, where the user, by setting a frequency thresh-
old, decides what is meant by ‘often’. In this setting, the data is usually organised
in a transaction database, and we consider an event (or a set of events) frequent
if the number of transactions in which it can be found (or its support) is greater
than or equal to a user-defined support threshold.

In order to mine frequent itemsets in the traditional way, the Infrabel data
would need to be transformed. In principle, a transaction database could be
created, such that each transaction would consist of train IDs of trains that
were late within a given period of time. Each transaction would represent one
such period. Mining frequent itemsets would then result in obtaining sets of train
IDs that are often late ‘together’.

Clearly, though, the frequent itemset method is neither intuitive nor suitable
for tackling our problem. It would require a lot of preprocessing work in order to
transform the data into the necessary format, and the resulting database would
contain many empty or identical transactions. Assume we look at time windows
of five minutes. As our time stamps are expressed in seconds, each second would
represent a starting point of such a window. It is easy to see that many con-
secutive windows would contain exactly the same train IDs. Most importantly,
though, frequent itemsets are simply too limited to extract all the useful in-
formation from the Infrabel database, as they contain no temporal information
whatsoever.

3.2 Sequences

The Infrabel database is, by its nature, sequential, and it would be natural to try
to generate patterns taking the order of events into account, too. Typically, when

searching for sequential patterns, the database consists of a set of sequences, and
the goal is to find frequent subsequences, i.e., sequences that can be found in
many of the sequences in the database [9,1].

Again, in order to mine frequent sequences in the traditional way, the Infrabel
data would need to be transformed. We could approach this in a way similar to
the one described above for itemsets — namely, we could create a sequence for
each time window of a certain length. Each such sequence would then contain
the train IDs of trains that were late within that window, only this time the
train IDs in each sequence would be ordered according to the time at which they
were late (the actual, rather than the scheduled, time of arrival or departure).
Now, instead of only finding which trains were late together, we can also identify
the order in which these trains were late.

This method, though clearly superior to the frequent itemset technique, still
suffers from the same problems in terms of preprocessing and redundancy of
the resulting dataset, and still does not allow us to generate patterns that we
wish to find. In this setting, we are only capable of discovering patterns with a
total order. If, for example, we have a situation in which trains A and B, when
both delayed, cause train C to also be delayed, but the order in which A and B
come into the station does not matter, this method will fail to discover this as
a pattern (assuming that the supports of sequences ABC and BAC are below
the desired threshold).

3.3 Episodes

One step further from both itemsets and sequences are episodes [5]. An episode is
a temporal pattern that can be represented as a directed acyclic graph, or DAG.
In such a graph, each node represents an event (an item, or a symbol), and each
directed edge from event x to event y implies that x must take place before y.
If such a graph contained cycles, this would be contradictory, and could never
occur in a database. Note that both itemsets and sequences can be represented
as DAGs. An itemset is simply a DAG with no edges (events can then occur
in any order), and a sequence is a DAG where the events are fully ordered (for
example, a sequence s1s2 · · · sk corresponds to graph (s1 → s2 → · · · → sk)).
However, episodes allow us to find more general patterns, such as the one given
in Figure 2. The pattern depicted here tells us that a occurs before b and c, while
b and c both occur before d, but the order in which b and c occur may vary.

a c

b

d

Fig. 2. A general episode.

Formally, an event is a couple (si, ti) consisting of a symbol s from an alphabet
Σ and a time stamp t, where t ∈ N. A sequence s is an ordered set of events,
i.e., ti ≤ tj if i < j. An episode G is represented by a directed acyclic graph with
labelled nodes, that is, G = (V,E, lab), where V = v1 · · · vK is the set of nodes,
E is the set of directed edges, and lab is the labelling function lab : V → Σ,
mapping each node vi to its label.

Given a sequence s and an episode G we say that G occurs in s if there exists
an injective map f mapping each node vi to a valid index such that the node vi
in G and the corresponding sequence element (sf(vi), tf(vi)) have the same label,
i.e., sf(vi) = lab(vi), and that if there is an edge (vi, vj) in G, then we must have
f(vi) < f(vj). In other words, the parents of vj must occur in s before vj .

The database typically consists of one long sequence of events coupled with
time stamps, and we want to judge how often an episode occurs within this
sequence. We do this by sliding a time window (of chosen length t) over the
sequence and counting in how many windows the episode occurs. Note that
each such window represents a sequence — a subsequence of the original long
sequence s. Given two time stamps, ti and tj , with ti < tj , we denote s[ti, tj [the
subsequence of s found in the window [ti, tj [, i.e., those events in s that occur
in the time period [ti, tj [. The support of a given episode G is defined as the
number of windows in which G occurs, or

sup(G) = |{(ti, tj)|ti ∈ [t1 − t, tn], tj = ti + t and G occurs in s[ti, tj [}|.

The Infrabel dataset corresponds almost exactly to this problem setting. For
each late train, we have its train ID, and a time stamp at which the lateness
was established. Therefore, if we convert the dataset to a sequence consisting of
train IDs and time stamps, we can easily apply the above method.

3.4 Closed Episodes

Another problem that we have already touched upon is the size of the output.
Often, much of the output can be left out, as a lot of patterns can be inferred
from a certain smaller set of patterns. It is inherent in the nature of the support
measure that for each discovered frequent pattern, we also know that all its sub-
patterns must be frequent. However, should we leave out all these subepisodes,
the only thing we would know about them is that they are frequent, but we
would be unable to tell how frequent. If we wish to rank episodes, and we do,
we cannot remove any information about the frequency from the output.

Another way to reduce the output is to generate only closed patterns [7]. In
general, a pattern is considered closed, if it has no superpattern with the same
support. This holds for episodes, too.

Formally, we first have to define what we mean by a superepisode. We say
that episode H is a superepisode of episode G if V (G) ⊆ V (H), E(G) ⊆ E(H)
and labG(v) = labH(v) for all v ∈ G, where labG is the labelling function of G
and labH is the labelling function of H. We say that G is a subepisode of H, and
denote G ⊆ H. We say an episode is closed if there exists no episode H, such
that G ⊆ H and sup(G) = sup(H).

As an example, consider a sequence of delayed trains ABCXY ZABC. For
simplicity, assume the time stamps to be consecutive minutes. Given a sliding
window size of 3 minutes, and a support threshold of 2, we find that episode
(A → B → C), meaning that train A is delayed before B, and B before C,
has frequency 2, but so do all of its subepisodes of size 3, such as (A → B,C),
(A,B → C) or (A,B,C). These episodes can thus safely be left out of the output,
without any loss of information.

Thus, if episode (A → B) is in the output, and episode (A,B) is not, we
can safely conclude that the support of episode (A,B) is equal to the support
of episode (A → B). Furthermore, we can conclude that if these two trains are
both late, then A will always depart/arrive first. If, however, episode (A,B) can
be found in the output, and neither (A → B) nor (B → A) are frequent, we
can conclude that these two trains are often late together, but not necessarily in
any particular order. If both (A,B) and (A→ B) are found in the output, and
(B → A) is not, then the support of (A,B) must be higher than the support of
(A → B), and we can conclude that the two trains are often late together, and
A mostly arrives/departs earlier than B.

In our experiments, we have used the latest implementation of the ClosEpi
algorithm for generating closed episodes [8]. In this work, the authors actually
mine only strict episodes, whereby they insist that an episode containing two
nodes with the same label must have an edge between them, but this restriction
is not relevant here, as we never find such episodes. For an episode to contain
two nodes with the same label, it would need to contain the same train ID twice,
and, in our dataset, no train ID is used twice on the same day.

4 Experiments

In this section we first describe the preprocessing steps that we had to take in
order to transform the provided database into a valid input for the ClosEpi
algorithm. We then present a case study consisting of a detailed analysis of
patterns found in one particular train station in Belgium.

4.1 Data Preprocessing

The preprocessing of the Infrabel dataset consisted of two main steps. First, we
noted that if we look at all data in the Infrabel database as one long sequence of
late trains coupled with time stamps, we will find patterns consisting of trains
that never even cross paths. To avoid this, we split the database into smaller
datasets, each of which contained only information about delays in one particular
spatial reference point. Further, to avoid mixing apples and pears, we split each
spatial point into two datasets — one containing departure information, and the
other arrival data. In this way, we could find episodes containing trains that are
late at, for example, arrival, at approximately the same time, in the same place.

Second, we needed to eliminate unnecessary columns and get the data into
the desired input format for the ClosEpi algorithm. In other words, our dataset

needed to consist only of a time stamp and a train ID. Clearly, we first needed to
discard all rows from the database that contained trains that were not delayed
at all (depending on the application, these were the trains that were delayed
less than either 3 or 6 minutes). Once this was done, the actual delay became
irrelevant, and could also be discarded. Obviously, in the arrival dataset, all
information about departures could also be removed, and vice versa, and as
the spatial point was clear from the dataset we used, we could also remove it
from the actual content of the dataset. Finally, we merged the date and time
columns to create one single time stamp, and ordered each dataset on this new
merged column. Starting from the fictional example given in Table 1, assuming
we consider trains with a delay of 3 or more minutes at arrival as delayed,
for characteristic spatial point 169 we would obtain the input dataset given in
Table 2.

Time stamp Train ID

. . .
06:31:51 15/02/2010 123

. . .
06:37:25 15/02/2010 100

. . .

Table 2. The data from Table 1 after preprocessing for arrivals at spatial point 169.

4.2 Example

The Belgian railways recognise two types of delays, those of 3 or more minutes
(the blocking time) and those of 6 or more minutes (the official threshold for a
train to be considered delayed), so we ran experiments for both of these param-
eters. We have chosen a window size of 30 minutes (or 1800 seconds) — if two
trains are delayed more than half an hour apart, they can hardly form a pattern.

We tested the algorithm on data collected in Zottegem, a medium-sized sta-
tion in the south-west of Belgium. Zottegem was chosen as it has an intelligible
infrastructure, as shown in Figure 3. The total number of trains leaving Zottegem
in the month of January 2010 was 4412. There were 696 trains with a departure
delay at Zottegem of 3 minutes or more, of which 285 had a delay at departure
larger than or equal to 6 minutes. The delays are mainly situated during peak
hours. As the number of delayed trains passing through Zottegem is relatively
small, the output can be manually evaluated. As can be seen in Figure 3, the two
railway lines intersecting at Zottegem are line 89, connecting Denderleeuw with
Kortrijk, and line 122, connecting Ghent-Sint-Pieters and Geraardsbergen. Line
89 is situated horizontally on the scheme and line 122 goes diagonally from the
upper right corner to the lower left corner. This intersection creates potential
conflict situations which adds to the station’s complexity. Moreover, the station

must also handle many connections, which can also cause the transmission of
delays. For example, Figure 4 shows the occupation of the tracks in the station in
the peak period between 17:35 and 17:50 on a typical weekday. We will analyse
some of the patterns discovered in this period later in this section.

Fig. 3. The schematic station layout of Zottegem.

Fig. 4. Occupation of the tracks during evening peak hour at Zottegem.

The trains passing through Zottegem are categorized as local trains (num-
bered as the 16-series and the 18-series), cityrail (22-series) going to and coming
from Brussels, intercity connections (23-series) with fewer stops than a cityrail
or a local train, and the peak hour trains (89-series).

The output of the ClosEpi algorithm is a rough text file of closed episodes
with a support larger than the predefined threshold. An episode is represented

by a graph of size (n, k) where n is the number of nodes and k the number
of edges. Note that a graph of size (n,0) is an itemset. We aimed to discover
the top 20 episodes of size 1 and 2, and the top 5 episodes of size 3 and 4, so
we varied the support threshold accordingly. All experiments lasted less than a
minute. In Tables 3–6 some of the episodes which were detected in the top 20
most frequently appearing patterns are listed. For example, the local train no.
1867 from Zottegem to Kortrijk is discovered as being 3 or more minutes late at
departure on 15 days, and 6 or more minutes on 8 days in the month of January
2010.

Train ID Route Support
Delay ≥ 3’ Delay ≥ 6’

1867 Zottegem – Kortrijk 27000 14400
8904 Schaarbeek – Oudenaarde 28800 18000
8905 Schaarbeek – Kortrijk 27000 14400
8963 Ghent-Sint-Pieters – Geraardsbergen 25200 12600

Table 3. Episodes of size (1,0) representing the delay at departure in station Zottegem
during evening peak hour (16h – 19h) for January 2010.

A paired pattern can be a graph of size (2,0), meaning the trains appear
together but without a specific order, or of size (2,1), where there is an order of
appearance for the two trains. For example, train no. 1867 and train no. 8904
appear together as being 3 or more minutes late in 15079 windows in January
2010. The pattern trains no. 8904 and 1867 have a delay at departure of 3 or
more minutes, and train no. 8904 leaves before 1867 appears in 13557 such
windows. Among the top 20 patterns with pairs of trains (Table 4), it can be
noticed that the pattern 1867→ 8963 was only discovered in the search for 6 or
more minutes delay at departure. The pattern also appeared while searching for
delays of 3 or more minutes, but its support was not high enough to appear in
the top 20.

The patterns which include lots of information are to be found in the output
of episodes of size 3 and up, as can be seen in Tables 5 and 6. Some episodes
shown here occurred quite often, but to discover the desired number of episodes
of sizes (3,k) and (4,k) the threshold had to be lowered to 5500 which corresponds
to a minimal appearance of the pattern on 4 days. The question remains if these
really are interesting patterns.

Let us now return to the peak trains shown in Figure 4. In the example,
the peak-hour train no. 8904 often departs from the station with a delay of 3
minutes with a support of 28800 and a support of 18000 for a delay of 6 minutes
(see Table 3). In real-time the peak-hour train no. 8905 follows train no. 8904 on
the same trajectory, 4 minutes later. This can also be detected by looking at the
occupation of the tracks in Figure 4. It is, therefore, obvious that whenever no.
8904 has a delay, the 8905 will also have a delay. It is therefore not surprising
that this episode can be found in the output given in Table 4. Trains no. 1867

Episode Support
Train ID Relation Train ID Delay ≥ 3’ Delay ≥ 6’

1867 8904 15079 -
1867 ← 8904 13557 -
1867 8905 18341 -
1867 ← 8905 12995 -
1867 8963 18828 8888
1867 → 8963 - 5327

8904 → 8905 18608 9506
8904 8963 18410 10391
8904 → 8963 16838 8819

8905 8963 20580 10608
8905 → 8963 13325 5078
8905 ← 8963 - 5530

Table 4. Episodes of size (2,k) representing the delay at departure in station Zottegem
during evening peak hour (16h – 19h) for January 2010.

Episode Support
Train ID Relation Train ID Delay ≥ 3’ Delay ≥ 6’

8904 → 8905 14358 7510
↘ 8963

8904 8905 11069 -
↓
8963

8904 → 8905 15804 8956
8963

Table 5. Episodes of size (3,k) representing the delay at departure in station Zottegem
during evening peak hour (16h – 19h) for January 2010.

and no. 8963 both offer connections to trains no. 8904 and no. 8905. So, if train
8904 has a delay, it will be transmitted to trains 1867 and 8963. This is also
stated in Table 6, which shows an episode of size four, found by the ClosEpi
algorithm, where trains no. 8904, 1867, 8905, and 8963 are all late at departure,
and 8904 departs before the other three trains.

5 Conclusion and Outlook

We have studied the possibility of applying state-of-the-art pattern mining tech-
niques to discover knock-on train delays in the Belgian railway network using an
Infrabel database containing the times of trains passing through characteristic
points in the network. Our experiments show that the ClosEpi algorithm is use-
ful for detecting interesting patterns in the Infrabel data. There are still many
opportunities for improvement, however. For example, a good visualization of

Episode Support
Train ID Relation Train ID Delay ≥ 3’ Delay ≥ 6’

↗ 1867 10024 6104
8904 → 8905

↘ 8963

Table 6. Episode of size (4,k) representing the delay at departure in station Zottegem
during evening peak hour (16h – 19h) for January 2010.

the discovered episodes would certainly help in identifying the most interesting
patterns in the data more easily. In order to avoid finding too many patterns
consisting of trains that never even cross paths, we only considered trains pass-
ing in a single spatial reference point. As a result, we can not discover knock-on
delays over the whole network. In order to tackle this problem, the notion of a
pattern needs to be redefined. Interestingness measures other than support, or
other data preprocessing techniques, could also be investigated.

Acknowledgments

The authors would like to thank Nikolaj Tatti for providing us with his imple-
mentation of the ClosEpi algorithm.

References

1. Agrawal, R., and Srikant, R., “Mining sequential patterns”, Proc. of the 11th In-
ternational Conference on Data Engineering, vol. 0, 3–14, 1995.

2. Flier, H., Gelashivili, R., Graffagnino, T., and Nunkesser, M., “Mining Railway
Delay Dependencies in Large-Scale Real-World Delay Data”, Robust and Online
Large-Scale Optimization, Lecture Notes in Computer Science, vol. 5868, 354–36,
2009.

3. Goethals, B., “Frequent Set Mining”, The Data Mining and Knowledge Discovery
Handbook, chap. 17, 377–397, Springer, 2005.

4. Gunopulis, D., Khardon, R., Labbuka, H., Saluja, S., Toivonen, H., and Sharma,
R.S., “ Discovering all most specific sentences”, ACM Transactions on Database
Systems, vol. 28(2), pp. 140–174, 2003.

5. Mannila, H., Toivonen, H., and Verkamo, A.I., “Discovery of Frequent Episodes in
Event Sequences”, Data Mining and Knowledge Discovery, vol. 1, 259–298, 1997.

6. Mirabadi, A. and Sharifian, S., “Application of Association rules in Iranian Rail-
ways (RAI) accident data analysis”, Safety Science, vol. 48, 1427–1435, 2010.

7. Tan, P.-N., Steinbach, M., and Kumar, V., Introduction to Data Mining, Pearson
Addison Wesley, 2006.

8. Tatti, N., and Cule, B., “Mining Closed Strict Episodes”, Proc. of the IEEE In-
ternational Conference on Data Mining, 2010.

9. Wang, J. T.-L., Chirn, G.-W., Marr, T.G., Shapiro, B., Shasha, D., and Zhang,
K., “Combinatorial pattern discovery for scientific data: some preliminary results”,
ACM SIGMOD Record, vol. 23, 115–125, 1994.

	Mining Train Delays

