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ABSTRACT
In this paper we present a cohesive structural itemset miner
aiming to discover interesting patterns in a set of data ob-
jects within a multidimensional spatial structure by com-
bining the cohesion and the support of the pattern. The
usefulness of this algorithm is demonstrated by applying it
to find interesting patterns of amino acids in spatial proxim-
ity within a set of proteins based on their atomic coordinates
in the protein molecular structure. The experiments show
that several patterns found by the cohesive structural item-
set miner contain amino acids that frequently co-occur in
the spatial structure, even if they are distant in the primary
protein sequence and only brought together by protein fold-
ing. Further various indications were found that some of
the discovered patterns seem to represent common underly-
ing support structures within the proteins.

Keywords
itemset mining, multidimensional data, cohesion, protein
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1. INTRODUCTION
Pattern discovery in sequences is a popular data mining

task. Usually, a pattern is evaluated based on how close
to each other its elements occur (cohesion), and how often
the pattern itself occurs (support). Recently, attempts have
been made to mine interesting patterns in sequences by com-
bining cohesion and support [6]. Here we extend this method
into data objects with a multidimensional structure and ex-
plore its potential to find interesting amino acid patterns
within a set of proteins based on their atomic coordinates
and molecular structure information.

Proteins are linear chains composed of twenty different
amino acids (often referred to as ‘residues’). In living cells
these chains fold into specific three-dimensional structures
that perform a great variety of biological functions. In the
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structure of a single protein we distinguish the primary struc-
ture, which corresponds to the sequence of the amino acids
as they occur along the protein chain; the secondary struc-
ture, which is a local shape, such as α-helices or β-sheets,
adopted by small segments of consecutive amino acids; the
tertiary structure, which is the complete three-dimensional
structure of the protein; and the quaternary structure, which
corresponds to intermolecular interactions that proteins un-
dergo. There is a vast amount of molecular structure data
publicly available in biological databases. The RCSB Pro-
tein Data Bank (PDB), which is the single worldwide repos-
itory of molecular structures of large biological molecules
currently contains the three-dimensional atomic coordinates
of more than 90 000 structures [12]. Although the discov-
ery of conserved structural motifs in proteins is a widely
explored field in bioinformatics, the majority of protein pat-
tern mining algorithms focus on the sequence dimension and
do not consider the other spatial dimensions. The extraction
of spatial patterns can potentially reveal significant biologi-
cal insights into the properties of different proteins classes.
The discovery of patterns within the tertiary structure of
proteins unavoidably requires advanced computational al-
gorithms due to its dimensionality. Here we explore the
concept of cohesion for high dimensional itemset mining to
extract sets of amino acids that frequently spatially co-occur
in a given set of three-dimensional protein structures.

The concept of finding amino acids that are in close prox-
imity to each other within a protein structure is somewhat
similar to the purpose of protein contact maps. These maps
are two-dimensional matrices detailing the pairwise inter-
residue contacts of a protein, where a contact between two
amino acids is defined if the distance between them is lower
than a given threshold. The construction of such a contact
map is a common step in the ab initio prediction of the
full molecular structure of a protein from its sequence [19].
While itemset mining techniques have been successfully ap-
plied to such protein contact maps, the primary goal of
these studies remained the improvement of ab initio pre-
diction [10].

The goal of this paper is to explore whether cohesive
structural itemset mining can reveal potentially interesting
biological relationships. The type of interaction explored
differs greatly from those contained within contact maps.
Firstly, the presented algorithm directly mines the three-
dimensional co-ordinates of the amino acids and thus suf-
fers no loss of information due to a conversion to a two-
dimensional space. Secondly, the recent development of the



cohesion concept allows the algorithm to mine the data with-
out setting a cut-off on the maximum distance in which re-
lationships between amino acids can occur. This potentially
allows the discovery of relationships where the amino acids
are not in direct contact, such as, for example, residues form-
ing a metal-binding site. Thirdly the application of itemset
mining on the protein structure itself allows discovery of
patterns that concern several amino acids, instead of the
pairwise combinations of amino acids.

2. PROBLEM SETTING
We consider a data object with an n-dimensional structure

as a list of points where a point v is a pair (a, c) consisting
of an item a ∈ I and a n-dimensional coordinate c ∈ R

n,
where I is the set of all possible items and n ≥ 1. Clearly,
two points can never occur at the same position, i.e. with
the same coordinate. On the other hand, an item ai may
occur many times at different positions in a data object dg.
Thus there may be many points containing ai in dg and we
denote such points as Vgi. Here, we denote a data object by
d = {v1, . . . , vl}, where l is the number of points in the data
object. A database DB is a set of data objects. The set of
all data objects in DB is denoted by D.

The patterns considered in this paper are itemsets, or sets
of items coming from the set I . The support count of an
itemset is defined as the number of different data objects in
which the itemset occurs, regardless of how many times the
itemset occurs in any single data object. In other words,
when looking for the support count of a single itemset, we
can stop looking at a data object as soon as we have en-
countered the first occurrence of the itemset in that data
object.

To determine the interestingness of an itemset, however,
it is not enough to know how many times the items mak-
ing up the itemset occur. In this paper, we are specifically
investigating patterns of items occurring spatially in close
proximity. To do this, we will define interesting itemsets in
terms of both support and cohesion.

2.1 Support
For a given itemset X, we denote the set of data ob-

jects that contain all items of X as N(X) = {d ∈ D|∀a ∈
X,∃(a, c) ∈ d}. The support of X in all data objects D can
now be defined as

S(X) =
|N(X)|

|D|
. (1)

2.2 Cohesive Radius
Given a set of points V = v1, · · · , vq, let MB(V ) denote

the ball with the smallest radius that contains V , namely
the smallest enclosing ball. It has been shown that MB(V )
always exists and is unique [8]. Intuitively, we consider the
points V in n-dimensional space cohesive if the radius of
MB(V ) is small enough.

Given an itemset X = {a1, . . . , am}, assume that each
item ai occurs ni times in a given data object dg ∈ N(X).
If we wish to find the exact smallest enclosing ball of X in

dg, there are
m∏

i=1

ni combinations for each of which we need

to find a smallest enclosing ball, and then find the one with
the minimal radius. This process is time consuming. Here,
we approximate this process as following:

1. select an item a1 from X, and for each point vj ∈
Vg1, j = 1, 2, . . . , n1, we find a nearest point in each set of
points of other items in X, namely Vg2, . . . , Vgm. We thus
obtain the set of nearest points

NVj = {v|v = argmin
w∈Vgi

D(w, vj), i = 2, 3, . . . ,m}, (2)

where D(w, vj) is the Euclidean distance between point w

and point vj .
2. we get n1 sets of m points from step 1. We denote

Bj = {vj} ∪NVj and B = {Bj |j = 1, 2, . . . , n1}.
3. for each set Bj ∈ B, find MB(Bj) and get its radius

R(X, vj).
4. denote the smallest radius in a given data object dg ∈

N(X) as

Rg(X) = min
j={1,...,n1}

R(X, vj). (3)

There are only n1 smallest enclosing balls to find in each
data object dg, much fewer than if we tried to find the the
exact smallest enclosing ball of X in dg, resulting in a con-
siderable reduction in time complexity.

In the worst case, the smallest radius we find could be
nearly twice as large as the exact radius of the smallest en-
closing ball containing items of an itemset X, as illustrated
in Figure 1. In this simple two-dimensional example, assume
we are evaluating itemset abc, and we picked item a as the
starting point. We look for the nearest b and the nearest
c, and find the only b, and c1, which is closer to a than c2,
resulting in the ball drawn with a dashed line. However, the
smallest possible ball containing a, b and c is much smaller,
and is depicted using a solid line.

Figure 1: An example of the approximate computa-
tion of the smallest enclosing ball.

To evaluate the cohesion of an itemset X in the whole
dataset, we need to compute the smallest radius Rg(X) in
each data object dg that contains X. We define the cohesive
radius of X in D as

R(X) =

∑
dg∈N(X) Rg(X)

|N(X)|
. (4)

Since we are using an average over a large number of data
objects, the effect of the approximation will be amortised.
For an itemset of size 2, we will always find the exact small-
est ball, and for itemsets of size 3 or bigger, the chance of the
worst-case error occurring (as described above) decreases as
the size of the itemset grows. On one of the small datasets
(Winged) we used in our experiments (see Section 4 for more
details), it was possible to compute the exact smallest en-
closing balls. We set the minimum support threshold to



0.8 and the maximum cohesive radius threshold to 4. Ta-
ble 1 shows the average error made by our algorithm. The
reported average was obtained by dividing the sum of all rel-
ative errors with the total number of the computed smallest
balls. As can be seen in the run-times reported in Table 1,
the complexity of the exact algorithm is prohibitive on large
datasets, while the average error of the approximate algo-
rithm is kept within reasonable limits. In this small example,
we can see that we miss out on less than 4% of the patterns
we would discover using the exact method, which would take
nearly 5 000 times longer to complete the search.

Table 1: The comparison of our approximate
method with the exact computation of the smallest
enclosing ball on a small dataset.
Method Output size Runtime Average error
Approximate 158 1.160s 0.01855
Exact 164 5755.443s 0

2.3 Interesting Itemset
Given a minimum support threshold min sup and a maxi-

mum cohesive radius threshold max rad, X is an interesting

itemset if S(X) ≥ min sup (X is frequent) and R(X) ≤
max rad (X is cohesive). Note that the smaller the radius
R(X) the higher the cohesion of X.

3. GENERATING THE COMPLETE SET OF
INTERESTING ITEMSETS

In this section we present an algorithm for mining interest-
ing itemsets in a database consisting of data objects, each
of which containing a number of multidimensional points.
Note that the cohesive radius of an itemset is not a mono-
tonic measure. In other words, in rare cases, it is possible for
the cohesive radius of a smaller itemset to be greater than
the cohesive radius of one of its supersets. Consider the fol-
lowing simple example. Assume that the dataset consists of
just three data objects, d1 and d2, containing items a, b and
c, and d3, containing only items a and b. It is perfectly possi-
ble that the radii of the smallest balls containing itemset abc
in both d1 and d2 are smaller than the radius of the smallest
ball containing itemset ab in d3. In this case, R(abc) (the
cohesive radius of itemset abc, as defined in Equation 4) will
be smaller than R(ab), even though ab is a subset of abc.

Although the cohesive radius of an itemset is not mono-
tonic, we can still use it for prunning certain candidates
from the search space. Our pruning method is based on two
observations:

1. If itemset X is a subset of itemset Y , and they both
occur in a data object di, then Ri(X) ≤ Ri(Y ).

2. Given a minimum support threshold min sup, an item-
set must occur in at least ⌈min sup ×|D|⌉ data objects to be
frequent. Assume that itemset X occurs in k data objects,
with k ≥ ⌈min sup ×|D|⌉, and sort these data objects such
that R1(X) ≤ . . . ≤ Rk(X). For any frequent itemset Y

that is a superset of X, it holds that

R(Y ) ≥

∑
i=1,...,⌈min sup×|D|⌉ Ri(X)

⌈min sup× |D|⌉
= LBR(X).

In other words, LBR(X) as defined above, can serve as a
lower bound for the cohesive radius of all frequent supersets

of X. As a result, if X is frequent, but its cohesive radius is
large enough, we can be sure that none of its supersets can
be both frequent and cohesive.

Therefore, our algorithm generates all interesting item-
sets in two steps. In the first step, we use an Apriori-like
algorithm to find the frequent itemsets. In the second step,
we determine which of the frequent itemsets are actually
spatially cohesive and utilise the two observations above to
prune the itemsets that cannot be both frequent and cohe-
sive.

Let n-itemset denote an itemset of size n. Let Fn denote
the set of frequent n-itemsets. Let Cn be the set of candi-
date n-itemsets and Tn be the set of interesting n-itemsets.
The algorithm for generating the complete set of interesting
itemsets in a given set of data objects D is shown in Algo-
rithm 1. Two optional parameters, min size and max size,
can be used to limit the output only to interesting itemsets
with a size bigger than or equal to min size and smaller
than or equal to max size.

Algorithm 1: GeneratingItemsets. An algorithm for
generating all interesting itemsets in a dataset D.

input : dataset D, minimum support threshold
min sup, maximum cohesive radius threshold
max rad, minimum size constraint min size

and maximum size constraint max size

output: all interesting itemsets T
1 C1 = {a|a ∈ I}, I is the set of all items occurring in D;
2 F1 = {f |f ∈ C1, S(f) ≥ min sup};
3 if 1 ≥ min size then
4 T1 = F1 ;

5 C1 = F1;
6 n = 2;
7 while Cn−1 6= ∅ and n ≤ max size do
8 Tn = ∅;
9 Cn = candidateGen(Cn−1);

10 Fn = {f |f ∈ Cn, S(f) ≥ min sup};
11 Cn = ∅;
12 foreach frequent itemset f in Fn do
13 if LBR(f) ≤ max rad then
14 Cn = Cn ∪ {f} ;
15 if n ≥ min size and R(f) ≤ max rad then
16 Tn = Tn ∪ {f} ;

17 n++;

18 T =
n−1⋃

i=1

Ti;

19 return T ;

Lines 1-4 count the supports of all the items to determine
the interesting 1-itemsets. Lines 6-19 discover all interesting
itemsets of different sizes n (max size ≥ n ≥ 2). First, the
already discovered candidates of size n−1 (Cn−1) are used to
generate the candidate itemsets Cn using the candidateGen
function (line 9). The candidateGen function is similar to
the function Apriori-gen in the Apriori algorithm [1]. In line
10, we store the frequent itemsets from Cn into Fn. In lines
13-14, we prune the candidates that cannot be both frequent
and cohesive, while in lines 15-16, we store the interesting
itemsets (as defined in Section 2) from Fn into Tn. The
final set of all interesting itemsets in D is stored in T and



produced as output.
The two most time consuming steps are the candidate gen-

eration and the evaluation of the cohesive radius. For these
two steps we use the Apriori algorithm [1] to generate can-
didates, and an existing implementation1 of the algorithm
for computing the smallest enclosing ball [8], respectively.
The time complexity of these algorithms has been exten-
sively analysed in the papers that originally proposed them.
Since the smallest enclosing ball must be computed only for
itemsets that have been found to be frequent, the runtime
will be proportional to the number of generated candidate
itemsets.

4. EXPERIMENTS
The cohesive structural itemset miner was applied to ex-

tract patterns from a real biological dataset, namely protein
molecular structures. The structural information on these
proteins was extracted from the PDB public archive [12].
PDB contains the atomic coordinates and molecular struc-
ture information for various proteins and other biological
macromolecules. The relative locations of the atoms to each
other within these molecules were determined by a variety of
methods, such as X-ray crystallography, NMR spectroscopy
and cryo-electron microscopy. These three-dimensional co-
ordinates of the amino acids of a set of related proteins will
make up the backbone of our analysis.

For the purposes of applying the methodology on a wide
range of data, four sets of proteins were collected. Two
smaller datasets consisted of the proteins annotated by SCOP
as containing respectively ‘winged helix DNA-binding do-
main’ (Winged) or a ‘lambda repressor-like DNA-binding
domain’ (Lambda) [2]. As an additional constraint on this
smaller dataset, only structures reporting both the protein
and the DNA structure were utilised. Thus only proteins
known to be in their active and bound state are considered
during the rule mining as the free-floating potential inac-
tive state may display considerable differences in its con-
formation. This approach guarantees the uniformity of the
structures to evaluate in these datasets. Two larger sets
were based on the molecular function of the protein. To
this end, using their gene ontology molecular function anno-
tations, one set of proteins with ‘kinase activity’ (Kinase)
and another set with ‘peptidase activity’ (Peptidase) were
collected [4]. These datasets therefore represent a wide di-
versity of proteins that each share a common molecular func-
tion. In cases where multiple macromolecules were present
in the same PDB entry, only one protein was presented to
the algorithm, i.e., the one with a description matching cer-
tain keywords (e.g., trypsin or protease for the peptidase set)
or the protein with a description similar to the title of the
stored structure. In cases of ambiguity (e.g., for k-mer pro-
teins), the first reported protein matching the above criteria
was selected.

From the reported protein molecular structure only the
position of the α-carbon atom of the amino acid was con-
sidered. This atom is present in every amino acid and is
the carrier of the side chain unique to each type of amino
acid. Each Cα was then labelled with the three-letter name
of the corresponding amino acid. This label was further
extended with the secondary structure information, which
is also included in most PDB structures. The secondary

1http://www.inf.ethz.ch/personal/gaertner/miniball.html

structure concerns the local shape of the amino acids, and
a collection of residues within a single protein can form an
α-helix (denoted in the itemsets as XH), a β-sheet (XB) or
a loop of unstructured amino acids (XU). The input data
thus consisted of the (x, y, z) coordinates of the Cα atom
labelled by the corresponding amino acid and the secondary
structure. In this manner, a protein is converted to a list of
points where a point v is a pair (a, c) consisting of the label
a ∈ I and a three-dimensional coordinate c ∈ R

3, where I is
the set of all possible labels (in our case, amino acids). The
algorithm as presented in Section 3 was then used to gener-
ate the interesting itemsets found across these proteins, with
each itemset representing a pattern of spatially co-occurring
amino acids.

Table 2 shows the run-times of our algorithm on the four
datasets with min sup fixed at 0.8, max rad fixed at 4,
min size set to 1 and max size unlimited. All experiments
are performed on a laptop computer with Intel i7 (2 CPUs
2.7GHz), 4GB memory and Windows 7 Professional. From
the table, we can see that the run-time largely depends on
the number of proteins in the dataset and the number of can-
didate itemsets. This matches the conclusions of the time
complexity analysis performed in Section 3.

Table 2: Run-times of the algorithm on 4 datasets.
The second column contains the number of proteins
in the datasets, while |C| denotes the number of gen-
erated candidates.

Dataset Num of proteins |C| Runtime
Lambda 47 569 2.924s
Winged 62 235 1.160s
Kinase 2749 766 249.892s
Peptidase 2558 415 96.715s

4.1 Lambda Repressor-like Proteins
The first small dataset the algorithm was applied to con-

sists of 47 proteins annotated with a lambda repressor-like
DNA-binding domain. This set therefore consists mostly of
transcription factors, which are DNA-binding proteins that
regulate the expression of downstream genes. The archetyp-
ical protein for this type of domain is the bacteriophage
lambda C1 repressor, which is a viral regulator [5]. Sev-
eral proteins containing a lambda repressor-like domain are
of great biological importance and the mechanism by which
such proteins interact with the DNA molecule are well un-
derstood. For example, the lactose repressor (LacI) is com-
monly used as a model for transcriptional regulation and the
interaction between LacI and its binding sites has been the
subject of intensive study over the past several decades [11].
The typical lambda repressor-like domain consists of four α-
helices in a closed leaf motif. This protein dataset is there-
fore an ideal case study to evaluate if the patterns uncovered
through the presented methodology can be related to known
biological significance.

The cohesive structural itemset miner was applied to these
protein structures to find amino acids that were consistently
grouped in close proximity across a large fraction of the pro-
teins. The reported patterns were filtered based on their
uniqueness to a specific dataset at a support cut-off of 80%.
The cohesive radius threshold was set to 4, min size to 3,
and max size to 6. The most cohesive patterns specific for
the lambda repressor-like proteins can be found in Table 3.



A total of 171 patterns were found within the set thresh-
olds, of which 160 were itemsets containing three amino
acids, whie the other 11 contained four amino acids. No
itemsets of size 5 or more were found. This is likely due to
the trade-off between adding additional amino acids to the
itemset and a resulting decrease in cohesion and frequency
of the pattern. Indeed, due to the steric constraints of amino
acid placement, one can expect that adding a single amino
acid would have a great effect on the cohesive radius of any
pattern.

It is apparent from the labels of the extracted itemsets
that most describe amino acids in α-helices. This can be ex-
pected as the annotated domain used to create this dataset
consisted mostly of α-helices. Also amino acids within a sin-
gle α-helix can be expected to be frequently co-occurring.
However, a comparison between the itemsets and an align-
ment of the sequences reveals that not all patterns are lim-
ited to the conserved region between these proteins. In the
next step, the locations of the itemsets within the protein
structure are visualised to give an overview of their distri-
bution throughout the structure.

Table 3: The 30 most cohesive patterns out of 171
total patterns extracted with the cohesive struc-
tural miner from the molecular structures of the
proteins annotated with a lambda repressor-like do-
main. Each itemset consists of a set of amino acids
found to be in close proximity of each other in high
frequency within the group of studied proteins. Pro-
vided are the cohesion radius in angstrom and the
itemset frequency in the dataset.

Itemset Cohesion radius Frequency
ARGH GLUH ILEH 2.81 0.8
ALAH GLUH VALH 2.87 0.93
ARGH ALAH PHEH 2.88 0.82
METH ALAH LEUH 2.88 0.93
ALAH GLUH LYSH 2.89 0.93
ALAH GLUH ASPH 2.91 0.93
ARGH GLUH LYSH 2.92 0.93
GLUH LYSH VALH 2.92 0.93
ALAH LYSH VALH 2.92 0.93
ARGH ALAH LYSH 2.93 0.97
ARGH ALAH GLUH 2.95 0.93
ALAH LEUH GLUH 2.96 0.93
ALAH LEUH GLYH 2.99 0.93
ALAH LEUH VALH 3.02 0.93
ALAH GLUH ILEH 3.04 0.8
ARGH ASNH VALH 3.05 0.91
ARGH VALH SERH 3.07 0.93
ARGH ALAH VALH 3.08 0.93
ALAH VALH ILEH 3.11 0.8
ARGH ALAH LEUH 3.12 0.97
ARGH GLUH THRH 3.13 0.91
ALAH LEUH PHEH 3.14 0.82
ALAH LYSH ILEH 3.17 0.85
ALAH VALH ASPH 3.17 0.93
ALAH LEUH TYRH 3.19 0.93
GLUH VALH ILEH 3.19 0.8
ARGH LEUH ILEH 3.2 0.85
ALAH GLUH THRH 3.24 0.91
ALAH VALH SERH 3.24 0.93
ARGH ALAH GLNH 3.27 0.97

Figure 2: The molecular structure of the E. coli

PurR transcription factor (as reported by PDB
1PNR) plotted using the open source version of
Pymol. Note that the reported structure in the
PDB file only contained one side of the symmetrical
protein-DNA complex and thus only features one
protein within the protein complex and one DNA
strand of the DNA-helix. The atoms of the protein
are presented in the stick representation while those
of the DNA molecule are reduced to a cartoon rep-
resentation. The amino acids matching the patterns
extracted for the lambda repressor-like domain pro-
teins are provided in a colour corresponding to the
amino acid content of the pattern, while amino acids
not part of any pattern are given in grey.

Figure 2 shows the protein structure of the Escherichia

coli PurR repressor (from PDB 1PNR) where the amino
acids matching the discovered 171 patterns are marked. This
protein is a bacterial regulator of purine metabolism and is
part of the LacI-GalR protein family. This transcription
factor is annotated as containing a similar DNA-binding do-
main as the Lambda C1 repressor on the N-terminal domain,
except that it is missing the first α-helix. It also displays
a C-terminal domain with a ligand-binding and dimerisa-
tion motif similar to the ligand binding sites of periplas-
mic sugar-binding proteins. The two domains are connected
with a hinge sequence that also contains several functional
residues for DNA-binding. For example, the leucine present
at position 54 in the hinge helix is known to intercalate
into the DNA molecule during complex formation causing
the induction of a DNA bend [3]. As can be seen in Fig-
ure 2, several patterns match amino acids that form the
DNA-binding domain. Additionally there are other patterns
that are present in the C-terminal domain of the protein or
as part of the hinge helix. Inside the hinge helix, most of
the amino acids matched up to one or more of the discovered
patterns. Several of these patterns include the intercalating



leucine residue, such as the pattern ARGH, ALAH, LEUH

and VALH (i.e. the combination of arginine, alanine, leucine
and valine in a helix conformation). As not all lambda
repressor-like proteins contain the hinge helix, it is interest-
ing that so many patterns are still found within this segment.
Within the DNA-binding domain, there is a notable lack of
the central threonine (THR16) residue in any pattern, most
likely because this amino acid is missing in several members
of the LacI-GalR family. The presence or the absence of
threonine at this position in the protein has been shown to
confer differential specificity between LacI-GalR proteins to
their DNA targets [14]. Similar findings could be observed
for the other proteins within this dataset. Most patterns
do not match the amino acids specific for a single protein,
which, for example, confer the DNA-binding specificity, but
instead match ‘supporting’ amino acids which seem to be
necessary for the overall protein structure and the presenta-
tion of the specific residues to the ligands that can be bound
by the protein.

4.2 Winged Helix Proteins
The second small dataset contains 62 proteins annotated

with a winged-helix DNA-binding domain. The winged-
helix domains typically consist of three α-helices, three β-
strands forming a twisted antiparallel β-sheet and two large
loops or ‘wings’ [7]. While most proteins present in this set
are transcription factors, this set also includes DNA repli-
cation initiation proteins (e.g., the F plasmid RepE: PDB
2Z9O), helicases (e.g., Archaeoglobus fulgidus Hel308: PDB
2P6R) and endonucleases (e.g., Planomicrobium okeanokoites

FokI: PDB 1FOK). Thus while these proteins share signif-
icant structural similarity, their molecular function is very
divergent. In this experiment, the support threshold was set
to 80%, max rad to 5, min size to 3, and max size to 6. The
application of the presented algorithm to this dataset then
resulted in 133 patterns, of which all but five consisted of
three amino acids and the remainder of four amino acids.
The most cohesive patterns for this dataset can be found in
Table 4. As was reported for the lambda repressor-like pro-
teins, many of the patterns include amino acids contained
within α-helices. Comparison with sequence alignment of
the proteins reveals that while several patterns are derived
from the the α-helices present in the winged-helix domain,
the majority of the patterns occur in other segments of the
protein.

Figure 3 shows the molecular structure of the E. coli CRP
protein, a transcription factor with a winged helix domain
present in the training data. The CRP transcription factor
usually binds DNA as a protein complex with two copies of
the CRP protein and is known to regulate more than 180
genes, mostly those associated with the carbon metabolism,
in E. coli. The CRP protein consists of a C-terminal DNA-
binding domain containing the winged helix motif and an
N-terminal dimerisation domain consisting of β-sheets and
a long α-helix. This α-helix is critical for the conformational
changes resulting in the activation of CRP induced upon the
binding of its ligand, cAMP [18]. The patterns extracted for
the entire winged helix protein set concern the amino acids
that make up the DNA-binding domain and those contained
within the long α-helix directed towards the dimerisation
interaction region.

The results for the winged helix proteins with different
molecular functions are very similar to those reported above

Table 4: The 30 most cohesive patterns out of the
133 patterns extracted with the cohesive structural
itemset miner form the molecular structure of the
proteins annotated to contain a winged-helix do-
main. Each pattern consists of a set of amino acids
found to be in close proximity in high frequency
within the studied proteins. Provided are the cohe-
sion radius in angstrom and the itemset frequency
in the dataset.

Itemset Cohesion radius Frequency
LEUH ARGH ILEH 3.27 0.88
LEUH ARGH SERH 3.52 0.98
LEUH ALAH ARGH 3.57 0.98
LEUH ALAH SERH 3.63 0.96
LEUH ALAH ILEH 3.72 0.87
LEUH VALH ARGH 3.75 0.93
LEUH GLUH ILEH 3.78 0.88
LEUH LYSH ARGH 3.84 1
ALAH ARGH ILEH 3.86 0.87
LEUH VALH SERH 3.86 0.93
LEUH VALH ALAH 3.88 0.91
LEUH ARGH TYRH 3.89 0.87
LEUH ARGH ASNH 3.89 0.9
LEUH VALH ILEH 3.89 0.82
LEUH GLNH GLUH 3.9 0.96
LEUH PHEH LYSH 3.92 0.85
LEUH VALH LYSH 3.93 0.93
LEUH ALAH LYSH 3.97 0.98
LEUH ALAH ASNH 3.98 0.88
LEUH LYSH GLYH 3.99 0.85
LEUH PHEH GLUH 4 0.85
LEUH VALH ASNH 4 0.83
LEUH THRH ILEH 4.02 0.85
LEUH THRH ARGH 4.03 0.91
ALAH ARGH SERH 4.04 0.96
GLUH VALH LYSH 4.05 0.93
LEUH GLUH VALH 4.06 0.93
LEUH PHEH ALAH 4.07 0.85
LEUH THRH ALAH 4.1 0.9
LEUH GLUH SERH 4.13 0.98

for the CRP protein. The RepE protein involved in the
replication initiation of the F plasmid, is known to contain
two winged helix domains: one at the N-terminal side of the
protein and the other at the C-terminal side. These two do-
mains are separated by a linker region, which accepts a con-
formational change necessary for dimerisation of RepE [15].
Amino acids present in the winged helix domain and the
linker domains match various patterns found in the entire
dataset. Several of these patterns, such as ARGH LEUH

LYSH (i.e., Arginine, Leucine and Lysine in α-helix confor-
mation), match the LEU39 residue of the RepE which is not
part of the dimerisation interface but has been postulated to
aid in the correct placement of an α-helix necessary to sta-
bilise the protein dimer [15]. As can be seen in Table 4, the
majority of the patterns found for the winged helix proteins
contain a leucine amino acid. Given that several leucine
residues in RepE act as ‘scaffold’ amino acids to stabilise
the dimer conformation, it seems likely that at least some of
the leucine residues within these itemsets perform a similar
function in a number of the winged helix domain proteins.



Figure 3: The molecular structure of the E. coli

CRP transcription factor bound to its operator site
(as reported by PDB 1O3T) plotted using the open
source version of Pymol. Only one of the two copies
forming the protein complex was presented to the
cohesive structural itemset miner, namely the one
to the left in this figure. The atoms of the pro-
tein are presented in the stick representation while
those of the DNA molecule are reduced to a cartoon
representation. The amino acids matching the pat-
terns extracted for the winged helix domain proteins
are provided in a colour corresponding to the amino
acid content of the itemset, while amino acids that
do not match any pattern are given in light grey.
The protein for which no patterns were extracted is
presented in white.

Indeed, this corresponds to the results for the CRP protein
where the occurrences of the pattern seemed to concern the
amino acids responsible for the stabilisation of the dimer
structure.

4.3 Kinase Proteins
The first of the larger datasets consists of 2749 proteins

displaying kinase activity. These are proteins that catal-
yse a chemical reaction that transfers a phosphate group
to a substrate, a process termed phosphorylation. This
substrate is most commonly another protein and phospho-
rylation may cause conformation change in the substrate
protein, for example, causing it to switch from an inactive
to an active state. Based on their protein structures and
substrates specificity, kinases are divided into the ‘protein
kinase-like superfamily’ and then a set of ‘atypical kinases’
whose structures greatly differ and can be further subdivided
according to common domains [17]. The typical protein ki-
nases share a common catalytic segment consisting of an
N-terminal subdomain of mostly β-sheets and a C-terminal

subdomain with mostly α-helices. Using a support thresh-
old of 80%, max rad equal to 4, min size equal to 3, and
max size equal to 6, the cohesion-based structural miner re-
sulted in a set of 60 patterns consisting of three amino acids
in close proximity. The majority of the patterns consist of
residues within α-helices. Furthermore, in several proteins,
these patterns could be directly related to the catalytic re-
gions of the kinase.

An example of a typical protein kinase within our dataset
is the Saccharomyces cerevisiae MAP kinase, Fus3, which
forms an essential part of the mating signalling pathway
in yeast. The protein structure contains a C-terminal and
an N-terminal region connected by a short hinge section.
The catalytic loop containing the functional amino acids for
the phosphorylation is contained within the N-terminal re-
gion [16]. Several patterns were found to describe residues
within the catalytic loop of Fus3. These include a pattern
describing the amino acids SER141 and LYS139 within the
catalytic loop, and LEU100, which is part of a neighbouring
α-helix. The SER141 and LEU100 residues occur together in
these patterns as the spatial distance between their Cα only
spanned 5.8 angstroms (according to the structure contained
within PDB 2F49) which is found to be sufficiently cohesive
by our algorithm (note that a distance of 5.8 angstroms eas-
ily fits into a ball with a radius smaller than 4).

4.4 Peptidase Proteins
A set of 2558 proteins with peptidase activity makes up

the final dataset for this analysis. These proteins catalyse a
reaction to break up the covalent bonds between peptides.
Many of these proteins are therefore involved in the degra-
dation of cellular proteins. There is a great deal of variety in
the molecular structure of these proteins as many types of
enzymes display peptidase activity. Using a support thresh-
old of 80%, max rad equal to 4.5, min size equal to 3, and
max size equal to 6, a total of 144 patterns were discovered
in this dataset and each of these consists of three amino
acids. However, in contrast to the previous analyses, the
patterns mostly concern amino acids in unstructured regions
of the proteins. This is not unsurprising as α-helices are
not as prevalent in peptidase proteins as they are in DNA-
binding proteins or kinases. Due to the intrinsic diversity of
the peptidase dataset, the same patterns are derived from
amino acids present in very different domains in different
proteins.

An example of a peptidase from this dataset, the E. coli

PepP is shown in Figure 4. The PepP protein is an exopepti-
dase that cleaves the N-terminal residue from polypeptides.
The centre of the protein contains two metal-binding sites,
which catalyse the cleavage reaction [13]. Within the PepP
protein, five amino acids are known to function as metal-
binding residues and two histidine residues are known to be
essential for the catalytic activity [9]. Interestingly, several
of the peptidase patterns were found in the neighbourhood
of the catalytic site. Similar to the findings in the previ-
ous analysis, the patterns do not always contain the known
functional residues themselves but instead match the amino
acids that make up the strand carrying the residue. This in-
dicates that the cohesive patterns do not consist of the amino
acids that provide the target specificity but instead corre-
spond to the common residues that stabilise their location.
Indeed, several itemsets are found to span different strands
that form the metal-binding region. For example, the amino



Figure 4: The molecular structure of the E. coli

PepP aminopeptidase in monomer form (as reported
by PDB 1A16) plotted using the open source version
of Pymol. The amino acids matching the patterns
extracted for the peptidase proteins are provided in
a colour corresponding to the amino acid content of
the itemset, while amino acids not included in any
pattern are given in grey.

acids within the rule SERU ALAU GLYU (i.e., Serine, Ala-
nine and Glycine in unstructured regions) match residues
228, 269 and 270 respectively. This is a distance of more
than 40 residues within the sequence, but the protein folding
has brought the αC of these residues to within 5 angstroms.
Indeed both these strands form a loop along the centre of
the metal-binding site. Furthermore, the strand containing
ALA269 and GLY270 also contains the metal-binding residue
ASP272.

5. CONCLUSIONS
In this paper, we have presented a novel method to mine

frequent cohesive itemsets in multidimensional data. This
algorithm was applied to datasets containing the full atomic
coordinates of various proteins. We were able to success-
fully identify sets of amino acids that frequently occur in
close proximity to each other throughout the given proteins.
Thorough analysis revealed that the patterns did indeed re-
flect amino acids that could span distances in the primary
sequence of the protein but were brought together through
the protein folding. Furthermore, the types of patterns that
we found in the current setting mostly seem to reflect amino
acids with a supporting role to the overall or specific struc-
ture of the protein.
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