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Abstract—Frequent Itemset Mining (FIM) is one of the most
well known techniques to extract knowledge from data. The
combinatorial explosion of FIM methods become even more
problematic when they are applied to Big Data. Fortunately,
recent improvements in the field of parallel programming already
provide good tools to tackle this problem. However, these tools
come with their own technical challenges, e.g. balanced data
distribution and inter-communication costs. In this paper, we
investigate the applicability of FIM techniques on the MapReduce
platform. We introduce two new methods for mining large
datasets: Dist-Eclat focuses on speed while BigFIM is optimized
to run on really large datasets. In our experiments we show the
scalability of our methods.

Index Terms—distributed data mining; mapreduce; hadoop;
eclat

I. INTRODUCTION

Since recent developments (in technology, science, user
habits, businesses, etc.) gave rise to production and storage
of massive amounts of data, not surprisingly, the intelligent
analysis of big data has become more important for both
businesses and academics.

Already from the start, Frequent Itemset Mining (FIM) has
been an essential part of data analysis and data mining. FIM
tries to extract information from databases based on frequently
occurring events, i.e., an event, or a set of events, is interesting
if it occurs frequently in the data, according to a user given
minimum frequency threshold. Many techniques have been
invented to mine databases for frequent events [5], [7], [31].
These techniques work well in practice on typical datasets, but
they are not suitable for truly Big Data.

Applying frequent itemset mining to large databases is
problematic. First of all, very large databases do not fit into
main memory. In such cases, one solution is to use levelwise
breadth first search based algorithms, such as the well known
Apriori algorithm [5], where frequency counting is achieved
by reading the dataset over and over again for each size of
candidate itemsets. Unfortunately, the memory requirements
for handling the complete set of candidate itemsets blows
up fast and renders Apriori based schemes very inefficient
to use on single machines. Secondly, current approaches tend
to keep the output and runtime under control by increasing
the minimum frequency threshold, automatically reducing the
number of candidate and frequent itemsets. However, studies
in recommendation systems have shown that itemsets with
lower frequencies are more interesting [23]. Therefore, we still
see a clear need for methods that can deal with low frequency
thresholds in Big Data.

Parallel programming is becoming a necessity to deal with
the massive amounts of data, which is produced and consumed

more and more everyday. Parallel programming architectures,
and hence the algorithms, can be grouped into two major
subcategories: shared memory and distributed (share nothing).
On shared memory systems, all processing units can con-
currently access a shared memory area. On the other hand,
distributed systems are composed of processors that have their
own internal memories and communicate with each other by
passing messages [6]. It is easier to adapt algorithms to shared
memory parallelism in general, but they are typically not
scalable enough [6]. Distributed systems, in theory, allow quasi
linear scalability for well adapted programs. However, it is not
always easy to write or even adapt the programs for distributed
systems, i.e., algorithmical solutions to common problems may
have to be reinvented. Thanks to the scalability of distributed
systems, not only in terms of technical availability but also
cost, they are becoming more and more common.

While distributed systems are becoming more common,
they are also becoming easier to use. In contrast, Message
Passing Interface (MPI), one of the most common frameworks
for scientific distributed computing, works efficiently only on
low level programming languages, i.e., C and Fortran. It is
known, however, that higher level languages are more popular
in businesses [12]. Although they are not the most efficient in
terms of computation or resources, they are easily accessible.

Fortunately, thanks to the MapReduce framework proposed
by Google [10], which simplifies the programming for dis-
tributed data processing, and the Hadoop implementation by
Apache Foundation [2], which makes the framework freely
available for everyone, distributed programming is becoming
more and more popular. Moreover, recent commercial and
non-commercial systems and services improve the usability
and availability for anyone. For example; the Mahout frame-
work by Apache Foundation [3], which provides a straight
forward usability for the most common machine learning
techniques, can be set up and run on full-blown clusters on
the cloud, having more than hundreds of processors in total,
in less than 1 hour without prior experience with the system.

We believe that, although the initial design principles of the
MapReduce framework do not fit well for the Frequent Itemset
Mining problem, it is important to provide MapReduce with
efficient and easy to use data mining methods, considering its
availability and wide spread usage in industry.

In this paper, we introduce two algorithms that exploit
the MapReduce framework to deal with two aspects of the
challenges of FIM on Big Data: (1) Dist-Eclat is a MapRe-
duce implementation of the well known Eclat algorithm [31],
optimized for speed in case a specific encoding of the data fits
into memory. (2) BigFIM is optimized to deal with truly Big



Data by using a hybrid algorithm, combining principles from
both Apriori and Eclat, also on MapReduce. Implementations
are freely available at http://adrem.ua.ac.be/bigfim.

In this paper, we assume familiarity with the most well-
known FIM techniques [5], [31], [17] and with the MapReduce
framework. In the next Section, we will shortly revise the basic
notions, but we refer the reader to [15], [10] for good, short
surveys on these topics.

II. PRELIMINARIES

Let I = {i1, i2, . . . , in} be a set items, a transaction is
defined as T = (tid, X) where tid is a transaction identifier
and X is a set of items over I. A transaction database D is
a set of transactions. Its vertical database D′ is a set of pairs
that are composed of an item and the set of transactions Cj
that contain the item:

D′ = {(ij , Cij = {tid | ij ∈ X, (tid, X) ∈ D})}.

Cij is also called the cover or tid-list of ij .
The support of an itemset Y is the number of transactions

that contain the itemset. Formally,

support(Y ) = |{tid |Y ⊆ X, (tid, X) ∈ D}|

or, in vertical database format

support(Y ) = |
⋂

ij∈Y
Cij |.

An itemset is said to be frequent if its support is greater
than a given threshold σ, which is called minimum support or
MinSup in short. Frequency is a monotonic property w.r.t. set
inclusion, meaning that if an itemset is not frequent, none of
its supersets are frequent. Similarly, if an itemset is frequent,
all of its subsets are frequent.

Items in an itemset can be represented in a fixed order,
without loss of generality let us assume that items in item-
sets are always in the same order as they are in I, i.e.,
Y = {ia, ib, . . . , ic} ⇔ a < b < c. Then, the common k-prefix
of two itemsets are the first k elements in those sets that are the
same, e.g., sets Y = {i1, i2, i4} and X = {i1, i2, i5, i6} have
a common 2-prefix of {i1, i2}. A prefix tree is a tree structure
where each path represents an itemset, which is exactly the
path from the root to the node, and sibling nodes share the
same prefix. Note that all the possible itemsets in I, i.e., the
power set of I, can be expressed as a prefix tree.

Projected or conditional database of an item ia is the set of
transactions in D that includes ia.

Apriori [5] starts by finding the frequent items by counting
them, making a pass over D. Then, it combines these frequent
items to generate candidate itemsets of length 2, and counts
their supports by making another pass over D, removing
infrequent candidates. The algorithm iteratively continues to
extend k-length candidates by one item and counts their
supports by making another pass over D to check whether
they are frequent. Exploiting the monotonic property, Apriori

prunes those candidates for which a subset is known to be in-
frequent. Depending on the minimum support threshold used,
this greatly reduces the search space of candidate itemsets.

Eclat [31] traverses the prefix tree in a depth first manner to
find the frequent itemsets. The monotonic property states that
if an itemset, a path in the prefix tree, is infrequent then all of
its subtrees are infrequent. Thus, if an itemset is found to be
infrequent, its complete subtree is immediately pruned. If an
itemset is frequent then it is treated as a prefix and extended
by its immediate siblings to form new itemsets. This process
continues until the complete tree has been traversed. Eclat
uses a vertical database format for fast support computation.
Therefore, it needs to store D′ in main memory.

MapReduce [10] is a parallel programming framework that
provides a relatively simple programming interface together
with a robust computation architecture. MapReduce programs
are composed of two main phases. In the map phase, each
mapper processes a distinct chunk of the data and produces
key-value pairs. In the reduce phase, key-value pairs from
different mappers are combined by the framework and fed
to reducers as pairs of key and value lists. Reducers further
process these intermediate parts of information and output the
final results.

III. RELATED WORK

Data mining literature employs parallel methods already
since its very early days [4], and many novel parallel min-
ing methods as well as proposals that parallelize existing
sequential mining techniques exist. However, the number of
algorithms that are adapted to the MapReduce framework is
rather limited. In this section we will give an overview of the
data mining algorithms on MapReduce. For an overview of
parallel FIM methods in general, readers are kindly referred
to [32], [19], [24], [25], [34].

Lin et al. propose three algorithms that are adaptations of
Apriori on MapReduce [21]. These algorithms all distribute
the dataset to mappers and do the counting step in parallel.
Single Pass Counting (SPC) utilizes a MapReduce phase
for each candidate generation and frequency counting steps.
Fixed Passes Combined-Counting (FPC) starts to generate
candidates with n different lengths after p phases and counts
their frequencies in one database scan, where n and p are given
as parameters. Dynamic Passes Counting (DPC) is similar to
FPC, however n and p is determined dynamically at each
phase by the number of generated candidates.

The PApriori algorithm by Li et al. [20] works very similar
to SPC, although they differ on minor implementation details.

MRApriori [16] iteratively switches between vertical and
horizontal database layouts to mine all frequent itemsets. At
each iteration the database is partitioned and distributed across
mappers for frequency counting.

The iterative, level-wise structure of Apriori based algo-
rithms does not fit well into the MapReduce framework
because of the high overhead of starting new MapReduce
cycles. Furthermore, although thanks to breadth-first search
Apriori can quickly produce short frequent itemsets, because



of the combinatorial explosion it can not handle long frequent
itemsets efficiently.

Parallel FP-Growth (PFP) [18] is a parallel version of
the well-known FP-Growth [17]. PFP groups the items and
distributes their conditional databases to the mappers. Each
mapper builds its corresponding FP-tree and mines it indepen-
dently. Zhou et al. [35] propose to use frequencies of frequent
items to balance the groups of PFP. The grouping strategy of
PFP is not efficient neither in terms of memory nor speed. It
is possible for some of the nodes to read almost the complete
database into memory, which is very prohibitive in the field of
Big Data. Zhou et al. propose to balance distribution for faster
execution using singletons, however as we discuss further in
the paper, partitioning the search space using single items is
not the most efficient way.

Malek and Kadima propose an aproximate FIM method that
uses k-medoids to cluster transactions and uses the clusters’
representative transactions as candidate itemsets [22]. The
authors implemented a MapReduce version that parallelizes
the support counting step.

The PARMA algorithm by Riondato et al. [27] finds approx-
imate collections of frequent itemsets. The authors guarantee
the quality of the frequent itemsets that are being found,
through analytical results.

Some work exists that aims to improve the applicability
of the MapReduce framework to data mining. For example,
TWISTER [11] improves the performance between MapRe-
duce cycles, or NIMBLE [14] provides better programming
tools for data mining jobs. Unfortunately, none of these
frameworks are as widely available as the original MapReduce.
We therefore focus on an implementation that uses only the
core MapReduce framework.

From a practical point of view, not many options are
available to mine exact frequent itemsets on the MapReduce
framework. To the best of our knowledge, PFP is the best, if
not only, available implementation [3]. However, our experi-
ments show that it has serious scalability problems. We discuss
these issues in more detail in Section VI-B.

IV. SEARCH SPACE DISTRIBUTION

The main challenge in adapting algorithms to the MapRe-
duce framework is the limitation of the communication be-
tween tasks, which run as batches in parallel. All the tasks
that have to be executed should be defined at start-up, such
that nodes do not have to communicate with each other during
task execution. Fortunately, the prefix tree that is used by
Eclat can be partitioned into independent groups. Each one
of these independent groups can be mined separately on
different machines. However, since the total execution time
of an algorithm highly depends on the running time of the
longest running sub task, balancing the running times is a
crucial aspect for decreasing the total computation time [35].

In the case of Eclat, running time is a function of the number
of frequent itemsets (FIs) in the partition. However, this can
only be estimated with some boundaries [8], [13].

To estimate the computation time of a sub-tree, it has been
proposed to use the total number of itemsets that can be
generated from a prefix [31] [26], the logarithm of the order of
the frequency of items [35], and the total frequency of items
in a partition [4] [24] as estimators.

The total number of itemsets is not a good estimator for
partitioning: since the monotonic property efficiently prunes
the search space, large portions will never have to be generated
or explored. On the other hand, assigning the prefixes to
worker nodes using weights can provide a much better load
balancing. However, the benefit of complicated techniques is
not significant compared to a simple Round-Robin assignment.

Our experiments, shown in Section VI-A, suggest that the
most important factor for obtaining a balanced partitioning is
the length of the prefixes. In fact we can start Eclat at any
depth k of the prefix tree using all frequent k-FIs as seeds.
These seeds can be partitioned among the available worker
nodes. Partitioning the tree at lower depths (using longer FIs)
provides better balancing. This behaviour is expected because
longer FIs not only give more information about the data but
they also avail the finer partitioning of the tree.

Our proposed algorithms exploit the inter-independence of
sub-trees of a prefix tree and uses longer FIs as prefixes for
a better load balancing. Both algorithms mine the frequent
itemsets, in parallel, up to a certain length to find frequent
k-length prefixes, Pk = {p1, p2, . . . , pm}. Then, Pk is parti-
tioned into n groups (P1

k ,P2
k , . . . ,Pn

k ), where n is the number
of distributed workers.

Each group of prefixes, Pj
k , is passed to a worker node

and is used as a conditional database. Since each sub-tree for
a distinct prefix is unique and not dependent on other sub-
trees, each node can work independently without causing any
overlaps. Frequent itemsets that are discovered by individual
workers require no further post-processing.

Prefix trees are formed in a way that siblings are sorted by
their individual frequency in ascending order. Formally, I =
(i1, i2, . . . , in) where support(ia) ≤ support(ib) ⇔ a < b.
This ordering helps to prune the prefix tree at lower depths
and provides shorter run times. The benefits of this ordering
are discussed by Goethals [15].

Details of the algorithms are explained in the following
section.

V. FREQUENT ITEMSET MINING ON MAPREDUCE

We propose two new methods for mining frequent itemsets
in parallel on the MapReduce framework where frequency
thresholds can be set low. Our first method, called Dist-Eclat,
is a pure Eclat method that distributes the search space as
evenly as possible among mappers. This technique is able to
mine large datasets, but can be prohibitive when dealing with
massive amounts of data. Therefore, we introduce a second,
hybrid method that first uses an Apriori based method to
extract frequent itemsets of length k and later on switches
to Eclat when the projected databases fit in memory. We call
this algorithm BigFIM.
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Figure 1: Eclat on MapReduce framework

A. Dist-Eclat

Our first method is a distributed version of Eclat that parti-
tions the search space more evenly among different processing
units. Current techniques often distribute the workload by
partitioning the transaction database into equally sized sub
databases, also called shards, e.g., the Partition algorithm [28].
Each of the sub databases can be mined separately and the
results can then be combined. However, all local frequent
itemsets should be combined and counted again to prune the
globally infrequent ones, which is expensive.

First of all, this approach comes with a large communication
cost, i.e., the number of sets to be mined can be very large,
moreover, the number of sets that have to be recounted can be
very large as well. Implementing such partitioning technique
in Hadoop is therefore prohibitive. A possible solution for
the recounting part, is to mine the sub databases with a lower
threshold, hence, decreasing the number of itemsets that might
have been missed. However, another problem then occurs:
indeed, each shard defines a local sub database for which the
local structure can be very different from the rest of the data.
As a result, computation of the frequent itemsets can blow up
tremendously for some shards, although many of the sets are
actually local structures and far from interesting globally.

We argue that our method does not have to deal with such
problems, since we are dividing the search space rather than
the data space. Therefore, no extra communication between
mappers is necessary and no checking of overlapping mining
results has to be accounted for. We also claim that Eclat, more
specifically Eclat using diffsets [33], memory-wise is the best
fit for mining large datasets.

First of all, Eclat uses the depth-first approach, such that
only a limited number of candidates have to be kept in memory

even while finding long frequent patterns. In contrast, Apriori,
the breadth-first approach, has to keep all k-sized frequent sets
in memory when computing k+1-sized candidates. Secondly,
using diffsets limits the memory overhead approximately to
the size of the original tid-list root of the current branch [15].
This is easy to see: a diffset represents the tids that have to be
subtracted from the tid-list of the parent to obtain the tid-list
for this node, so, at most the tids that can be subtracted on a
complete branch extension is the size of the original tid-list.

Dist-Eclat operates in a three step approach as shown in
Figure 1. Each of the steps can be distributed among multiple
mappers to maximally benefit from the cluster environment.
For this implementation we do not start with a typical trans-
action database, rather we utilize immediately the vertical
database format.

1) Finding the Frequent Items: During the first step, the
vertical database is divided into equally sized blocks (shards)
and distributed to available mappers. Each mapper extracts
the frequent singletons from its shard. In the reduce phase, all
frequent items are gathered without further processing.

2) k-FIs Generation: In this second step, Pk, the set
of frequent itemsets of size k, is generated. First, frequent
singletons are distributed across m mappers. Each of the
mappers finds the frequent k-sized supersets of the items by
running Eclat to level k. Finally, a reducer assigns Pk to a new
batch of m mappers. Distribution is done using Round-Robin.

3) Subtree Mining: The last step consists of mining the
prefix tree starting at a prefix from the assigned batch using
Eclat. Each mapper can complete this step independently since
sub-trees do not require mutual information.

B. BigFIM

Our second method overcomes two problems inherent to
Dist-Eclat. First, mining for k-FIs can already be infeasible.
Indeed, in the worst case, one mapper needs the complete
dataset to construct all 2-FIs pairs. Considering Big Data,
the tid-list of even a single item may not fit into memory.
Secondly, most of the mappers require the whole dataset in
memory in order to mine the sub-trees (cf. Section VI-A).
Therefore the complete dataset has to be communicated to
different mappers, which can be prohibitive for the given
network infrastructure.

1) Generating k-FIs: BigFIM covers the problem of large
tid-lists by generating k-FIs using the breadth-first method.
This can be achieved by adapting the Word Counting problem
for documents [10], i.e., each mapper receives part of the
database (a document) and reports the items/itemsets (the
words) for which we want to know the support (the count).
A reducer combines all local frequencies and reports only the
globally frequent items/itemsets. These frequent itemsets can
be redistributed to all mappers to act as candidates for the
next step of breadth-first search. These steps can be repeated
k times, to obtain the set of k-FIs.



Computing the k-FIs in a level-wise fashion is the most
logical choice: we do not have to keep large tid-lists in
memory, rather we need only the itemsets that have to be
counted. In Apriori, for the first few levels, keeping the can-
didates in memory is still possible—as opposed to continuing
this process to greater depths. Alternatively, when a set of
candidates does not fit into memory, partitioning the set of
candidates across mappers can resolve the problem.

2) Finding Potential Extensions: After computing the
prefixes, the next step is computing the possible extensions,
i.e., obtaining tid-lists for (k+1)-FIs. This can be done similar
to Word Counting, however, now instead of local support
counts we report the local tid-lists. A reducer combines the
local tid-lists from all mappers to a single global tid-list and
assigns complete prefix groups to different mappers.

3) Subtree Mining: Finally, the mappers work on individual
prefix groups. A prefix group defines a conditional database
that completely fits into memory. The mining part then utilizes
diffsets to mine the conditional database for frequent itemsets
using depth-first search.

Using 3-FIs as prefixes generally yields well-balanced dis-
tributions (cf. Section VI-A). Unfortunately, when dealing with
large datasets, a set of 3-FIs extensions can still be too large
to fit into memory. In such cases we can continue the iterative
process until we reach a set of k-FIs that are small enough.
To make an estimate on the size of the prefix extensions, the
following heuristic can be used. Given a prefix p with support s
and order r out of n items, the size of the conditional database
described by p is at most s∗(n−(r+1)). Recall that when a set
of candidates does not fit in to memory, the set of candidates
can also be distributed and then the diffsets does not incur an
exponential blow up in memory usage.

C. Implementation details

In our methods frequent itemsets are mined in step 3
by the mappers and then communicated to the reducer. To
reduce network traffic, we encoded the mined itemsets using
a compressed trie string representation for each batch of
patterns, similar to the representation introduced by Zaki [30].
Basically, delimiters indicate if the tree is traversed downwards
or upwards, and if a support is specified. As an example:

a (300)
a b c (100)
a b d (200)
b d (50)

→ a(300)|b|c(100)$d(200)$$$b|d(50)

As a second remark, we point out that our algorithm com-
putes a superset of the closed itemsets found in a transaction
dataset. We can easily do so by letting the individual mappers
report only the closed sets in their subtree. Although it is
perfectly possible to mine the correct set of closed itemsets,
we omitted this post-processing step in our method.

VI. EXPERIMENTS

A. Load Balancing

We examine the load balancing in two ways: the relation
between the workload and (1) the length of the distributed
prefixes, (2) the assignment scheme.

Let the set of k-prefixes Pk = {p1, p2, . . . , pm} be parti-
tioned to n workers, P1

k ,P2
k , . . . ,Pn

k , where Pj
k is the set of

prefixes assigned to worker j, then the prefixes are assigned
to worker nodes using the following methods:

• Round-Robin: pi is assigned to the worker P(i mod n)
k .

• Equal Weight: When pi is assigned to a worker,
support(pi) is added the score of that worker. pi+1 is
assigned to a worker with the lowest score. Assignment
is order dependent.

• Block partitioning: {p1, . . . , pdm/ne} are assigned to
P1
k , {p(dm/ne+1), . . . , p(2×dm/ne)} are assigned to P2

k ,
and so on.

• Random: Each pi is assigned to a random worker.

For this set of experiments we use 4 different datasets:
Abstracts provided by De Bie [9], T10I4D100K, Mushroom
and Pumsb are from FIMI repository [1]. Properties of these
datasets are given in Table I.

We first mine the datasets to find prefixes of length 1, 2,
and 3, then we distribute these prefixes to 128 workers using
the assignment methods above. The number of FIs that are
generated by each worker is used to estimate the amount of
work done by that worker. Because of the high pruning ratio
at lower depths, this is an accurate estimate of total work of a
worker. Note that, since the number of FIs that are mined in
the first step increases with the prefix length, the amount of
distributed load decreases.

Table IV shows the standard deviation (StDev), average
(Avg) and the difference between the maximum and the
minimum (Max-Min) of the workloads. Since we are trying
to decrease the total running time by balancing the workloads,
the most important indicator of the balancing is the Max-Min.

Figure 2 shows the number of frequent itemsets generated
by 8 workers when the prefixes of length 1, 2, 3 are assigned
using Round-Robin.

Our experiments suggest independence of the assignment
method: using longer prefixes results in a better balancing of
the load.

Generating the longer prefixes requires additional initial
computation. However, for large databases this computation
is negligible compared to the entire mining process. Table II
shows the 1, 2 and 3 length frequent itemsets along with the
total number of frequent itemsets in different databases. For
example in Abstracts, a small dataset, finding 3-FIs is half of
the total work, on the other hand; in Pumsb, a larger dataset,
the number of 3-FIs is negligible to the total number of FIs,
thus, it is still viable to distribute the remaining work after
finding long prefixes.

The allocation schemes that have been used in our experi-
ments (c.f. Section VI-A) are able to distribute the search space



Table IV: Prefix assignments with different methods and prefix lengths.

Round-Robin Equal Weight Block Random
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Abstracts
StDev 1071 311 107 1071 371 118 7235 4850 1835 2260 432 150

Average 3025 2744 1696 3025 2744 1696 3025 2744 1696 3025 2744 1696
Max-Min 4488 1695 482 4488 2223 675 35314 29606 9840 11540 2756 686

T10I4D100K
StDev 103 57 34 103 64 32 138 137 68 130 62 32

Average 213 142 85 213 142 85 215 142 87 213 140 85
Max-Min 666 384 183 666 499 179 723 699 471 1002 333 239

Mushroom
StDev 13287 6449 4096 13287 6052 3596 13287 10026 7518 13287 5736 3679

Average 4488 4482 4446 4488 4482 4446 4488 4482 4446 4488 4482 4446
Max-Min 98303 36348 23814 98303 33453 24711 98303 69626 40406 98303 30991 24830

Pumsb
StDev 3897683 1955503 1112237 3897683 2077845 1003724 3897683 3442159 2598825 3897683 2065441 1191945

Average 1296121 1296113 1296037 1296121 1296113 1296037 1296121 1296113 1296037 1296121 1296113 1296037
Max-Min 21342943 9809612 6167970 21342943 10089432 4815391 21342943 20059553 14507567 21342943 10534931 5827088

Table I: Properties of datasets for our experiments

Dataset Number of Items Number of Transactions
Abstracts 4,976 859

T10I4D100K 870 100,000
Mushroom 119 8,124

Pumsb 2,113 49,046
Tag 45,446,863 6,201,207

Table II: Number of total and 1, 2 and 3 length frequent
itemsets for datasets.

Dataset MinSup Total 1-FIs 2-FIs 3-FIs
Abstracts 5 388,631 1,393 37,363 171,553

T10I4D100K 100 27,169 797 9,627 16,742
Mushroom 812 11,242 56 664 2,816

Pumsb 24,523 22,402,411 52 968 9,416

Table III: Data ratio needed for different computation units

FIs Avg Max Min StDev

Abstracts
1 0.29 0.66 0.20 0.09
2 0.91 0.93 0.86 0.01
3 0.95 0.96 0.93 0.01

Pumsb
1 0.78 0.99 0.51 0.17
2 0.99 1.00 0.99 0.00
3 1.00 1.00 1.00 0.00

Mushroom
1 0.38 1.00 0.10 0.23
2 0.82 0.99 0.57 0.09
3 0.99 1.00 0.97 0.01

well among different computation units w.r.t. the workload bal-
ancing. However, we found that such schemes rendered almost
all nodes to be depending on the complete dataset. Hence,
the complete data should also be communicated to all nodes.
Table III shows statistics on the percentage of the data that is
required by a node when using Equal Weight assignment. The
table shows that for 3-FIs, the average percentage is almost
1, meaning that almost all nodes need the full dataset. This
property can be infeasible when dealing with Big Data.

B. Execution Time

For our runtime experiments we used a scrape of the
delicious dataset provided by DAI-Labor [29]. The original
dataset contains tagging content between 2004 and 2007. The
content is identified by a timestamp, a user, a url and a given
tagname. We created a transaction dataset where transactions
represent tags. Properties of the dataset is shown in Table I. For
the first few experiments we used our local cluster consisting

of 2 machines. Each machine containing 32 Intel(R) Xeon(R)
processing units and 32GB of RAM. However, we restricted
each machine to use up to 6 mappers each. Both machines are
running on Ubuntu 12.04 and Hadoop 1.1.2.

We compared running times for our Hadoop implementa-
tions of Dist-Eclat and BigFIM and the PFP implementation
provided by the Mahout library [3]. Note that PFP is designed
as a top-k miner. Therefore, we forced the algorithm to output
the same number of patterns found by our implementations
to obtain a more fair comparison. The result is shown in
Figure 3, the x-axis gives the MinSup threshold for different
runs and the y-axis shows the computation time in seconds.
As expected, Dist-Eclat is the fastest method and BigFIM
is second. However, for lower MinSup values it is an order
of magnitude slower. Remember, however, that the goal of
BigFIM is to be able to mine enormous databases. More
importantly, PFP is always much slower than our methods
and while decreasing the minimum support, we observed that
PFP either takes an enormous amount of time (we stopped ex-
ecution after approximately one week) or runs out of memory.

The rest of our experiments are conducted without gener-
ating the frequent sets as output. We focus on mining speed
rather than on shipping of data.

We analysed the speed of our algorithm using seeds of
length 1, 2 and 3. Figure 4 shows timing results when mining
the Tag dataset with a MinSup of 15.5K. The x-axis shows the
number of mappers used for each run and the y-axis shows
the time in seconds. The figure shows that using 2- and 3-FIs
give lowest running times and that the two are in fact similar
for this dataset in terms of complete running time. Figure 5
gives an in depth view on the time distribution for individual
mappers for Tag. The x-axis shows 8 mappers with unique
IDs and the y-axis shows the computation time in seconds.
We see a clear inbalance for the 1-FIs: mapper M8 finishes
10 times faster than M1. 2-FIs is much better due to a better
load balancing, however, the variance is still large. Using 3-FIs
yields equally divided mining times.

In another experiment we tested the Pumsb dataset with a
minimum support of 12K. We used only 3-FIs as seeds, but
varied the number of mappers between 1 and 120. Statistics for
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Figure 2: Number of Frequent Itemsets generated by partitions
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Figure 3: Timing comparison for different methods on Tag

this experiment are shown in Table V. We see that not only
the average runtime per node decreases drastically, also the
maximum mining time decreases almost linearly. The latter, in
the end, influences the running time the most. One peculiarity
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Figure 4: Total execution time on Tag with σ = 15.5K
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Figure 5: Execution time of mappers for Tag with σ = 15.5K

Table V: Mining time stats Pumsb with 3-FIs and σ = 12K

#Mappers Avg Max Min StDev Avg FIs
1 36,546.00 36,546 36,546 0.00 18,885
5 7,775.00 8,147 7,042 400.17 3,777
10 3,810.90 4,616 2,591 710.14 1,889
15 2,516.47 3,726 1,733 616.26 1,259
20 1,912.85 3,533 875 754.05 944
40 943.63 2,016 278 456.56 472
60 629.80 1,579 146 344.30 315
80 472.35 1,422 69 326.37 236

100 376.45 2,177 60 313.57 189
120 316.15 1,542 29 264.72 157

Table VI: Mining time stats Tag with 3-FIs and σ = 15K

#Mappers Avg Max Min StDev Avg FIs
20 25,851 42,900 11,160 8,724.88 844
40 13,596 28,620 4,320 6,439.29 422
60 8,508 24,240 1,440 5,195.64 281
80 6,548 23,760 1,320 4,066.11 211

in the result is the sudden increase in time when using 100
mappers. This behaviour is due to coincidence; indeed, some
mappers may get many large seeds because of our simple
allocation scheme, resulting in an increased runtime. Figure 6
shows the decrease in running time compared to the average
number of prefixes per node. The red line in fact shows the
perfect scalability behaviour. Its shows that the scalability is
finite in the sense that after a while adding only a few nodes
is not productive. Because the number of seeds to be divided
reaches a saturation point. We also have to remark that during
initialisation of the mappers, the data has to be distributed to
all of them, resulting in a larger total computation time, in
contrast to using less nodes.

At last, we also conducted the previous experiment for Tag
on a real cluster, using Amazon Elastic MapReduce 1. We

1http://aws.amazon.com/elasticmapreduce
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Figure 6: Timing results Pumsb, σ = 12K

used clusters of sizes between 20 and 80 mappers, using the
m1.xlarge high memory and high I/O performance instances.
Each instance consists of multiple cores performing one map
task. The instances are running Red Hat Enterprise Linux and
the Amazon Distribution of MapReduce. Table VI shows the
statistics for this experiment. We see that the scaling up is
less drastic compared to Pumsb. One reason is the blow up
of the subtree for some 3-FIs which can not be distributed
any longer. The only solution is to increase the length of the
prefixes.

VII. CONCLUSION

In this paper we studied and implemented two frequent
itemset mining algorithms for MapReduce. Dist-Eclat focuses
on speed by using a simple load balancing scheme based on
k-FIs. A second algorithm, BigFIM, focuses on mining very
large databases by utilizing a hybrid approach. k-FIs are mined
by an Apriori variant and then the found frequent itemsets are
distributed to the mappers. At the mappers frequent itemsets
are mined using Eclat.

We studied several techniques for balancing the load of the
k-FIs. Our results show that using 3-FIs in combination with
even a basic Round-Robin allocation scheme results in a good
workload distribution. Progressing further down the prefix
tree results in even better workload distributions, however the
number of intermediate frequent itemsets blow up.

Assignment methods that will result in a better workload
distribution is a further research issue.

At last, the experiments show that our methods outperform
state-of-the-art FIM methods on Big Data using MapReduce.
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