
Navigating with a Browser?Miha l Bieleki,1?? Jan Hidders,2 Jan Paredaens,2Jerzy Tyszkiewiz, 1 Jan Van den Busshe31Warsaw University, Poland2University of Antwerp, Belgium3University of Limburg, BelgiumNavigare neesse est, vivere nonest neesse. PompeiusAbstrat. We onsider the navigation power of Web browsers, suh asNetsape Navigator, Internet Explorer or Opera. To this end, we formallyintrodue the notion of a navigational problem. We investigate variousharateristis of suh problems whih make them hard to visit withsmall number of liks.The Web browser is an indispensable piee of appliation software for the mod-ern omputer user. All the popular browsers essentially implement a very basimahinery for navigating the Web: a user an enter a spei� URL as some kindof \soure node" to start his navigation; he an then further lik on links tovisit other Web nodes; and he an go \bak" and \forward" along a stak ofalready visited nodes.A lot of appliation software, suh as word proessors or spreadsheets, allowsin addition to the standard \manual" use of the software, also some kind of\programmed" use, by allowing the user to write maros whih are then exeutedby the software tool. Suh maros are typially simple programs, whih o�er thestandard test and jump ontrol onstruts; some variables to store temporaryinformation; and for the rest are based on the basi features o�ered by theappliation.In this paper, we study suh a maro mehanism for Web browsers. Thereto,we introdue the browser stak mahine. This is a �nite-memory automaton asintrodued by Kaminski and Franez [4℄, i.e., an automaton with �nite ontroland a �nite number of registers whih an store Web nodes, whih is extendedwith the basi features o�ered by a Web browser and already summarized above:liking on a link; going \bak"; and going \forward". The browser stak mahineis a restrition of the browser mahine introdued by Abiteboul and Vianu [2℄,whih has an unlimited Turing tape for storing Web nodes, rather than just the�nite memory plus the stak whih we have here.? Researh supported in parts by Polish KBN grant 7T11C 007 21 (M.B. and J.T.)and by FWO grant G.0246.99 (J.H.)?? Contat author: Institute of Informatis, Warsaw University, Banaha 2, PL-02-097Warszawa, Poland, e-mail mab�mimuw.edu.pl.

Just like Alan Turing was interested in understanding the problems solvable bya lerk following a formal algorithm, using only penil and suÆient supply ofpaper, we are here interested in the problems solvable by suh a browser stakmahine. However, while Turing ould easily de�ne a \problem" as funtion onthe natural numbers, what kind of \problems" over the Web an we onsiderin our setting? Abiteboul and Vianu onsidered the Web as a database andstudied the power of browser mahines in answering queries to this database.Browser stak mahines from suh a database querying perspetive were studiedin another paper [6℄. We will take a di�erent angle here, and want to fouson navigational problems. A navigational problem asks the browser to visit aertain spei�ed set of Web nodes, and no others. It thus orresponds to avoiding\getting lost in hyperspae" and getting your job done. Spei�ally, we fouson strutural navigational problems only, where the browser has to solve theproblem purely on strutural information of the Web graph alone. More advanedmodels ould also introdue various prediates on Web nodes so that the browseran detet various properties of the nodes, but we feel the basi \unolored"model remains fundamental.Conretely, we o�er the following ontributions:1. We show that browser stak mahines, simple as they may appear, an sim-ulate arbitrary Turing mahines.2. We introdue a notion of \data transfer-optimal" browser programs whihnever download a node more than one. We show that this is a real re-strition, by exhibiting various natural navigational problems that annotbe solved in suh an optimal manner, and by providing a rather generalneessary ondition on the struture of suh problems.3. We provide onrete lower bounds on the number of data transfers a browserprogram has to make to solve ertain simple problems. Interestingly, ourproof employs a basi result from ommuniation omplexity.4. Finally, we propose a new feature for Web browsers: swithing the ontents ofthe \bak" and \forward" staks. We show that this feature allows problemsto be solvable with provably less data transfer, and that it allows solvingnavigational problems unsolvable without it.1 Web instanes and browser stak mahines1.1 Web instanesDe�nition 1. A Web graph is a �nite, loally ordered direted graph V =hV; l; <i. V is the �nite set of verties of V (we always use the mathing Ro-man letter for the set of verties of any Web graph denoted by a blakboard-fontletter), l is the edge relation (we all it also the link relation), and < is a ternaryrelation giving the loal ordering of the verties reahable by edges outgoing fromthe urrent node.De�nition 2. A page of a Web graph V is the following struture: it is a nodev 2 V together with the ordered list t1; : : : ; tk of all the verties ti 2 V suh that

l(v; ti); the list being given in the loal order of all the verties reahable by oneedge from v. We will often depit suh a page as follows: vt1;:::;tk . A Web graphan be equivalently represented by the set of its pages.De�nition 3. A Web instane (V; s) is a Web graph with a distinguished nodes, and suh that all verties of V are reahable by links from s, whih is heneforthalled the soure.The soure node is where browsing starts in the Web graph. Obviously, nodesnot reahable from the soure are irrelevant to browsing, hene the reahabil-ity requirement. This formalization of Web instane is similar to earlier formalmodels of the Web, e.g., that by Abiteboul and Vianu [2℄1.2 Browser stak mahineWe next de�ne browser stak mahines, whih we abbreviate later on as BSM,for the automati navigation of Web instanes.De�nition 4. A browser stak mahine is a �nite state omputing devie Bequipped with the following ingredients:1. The omponents of B are:(a) A �nite state ontrol.(b) A read-only tape, whih stores a sequene of verties of a Web graph. Thetape an be aessed by a head, whih an move bakwards and forwards,and an sense the beginning and the end of the tape.() A �nite number of registers r1; : : : ; rk, eah one apable of storing asingle node of a Web graph.(d) Two staks, alled V and W, on whih B an store always the entireontent of its tape (as a single stak item), together with the urrentloation of the head.2. The following ations an be undertaken by B, as ordered by its �nite ontrol:(a) B an hange its ontrol state.(b) B an move the head forward or bakward on the tape.() B an store in any of the registers the identity of the node urrently seenby the head on the tape.(d) B an make a forward move, whih onsists of storing the urrent ontentof the tape, together with the head position, on the W stak, removingthe top of the V stak and restoring it as the urrent tape and settingthe head in the reorded position. This move is impossible if the V stakis empty.(e) B an make a bakward move, whih onsists of storing the urrent on-tent of the tape, together with the head position, on theV stak, removingthe top of the W stak and restoring it as the urrent tape and settingthe head in the reorded position. This move is impossible if the W stakis empty.

(f) B an lik, whih auses the urrent ontent of the tape together withthe urrent head position to be stored at the top of the W stak, removesthe entire ontent of the V stak, and �lls the tape with the list of theverties, whih are aessed by the edges outgoing from the node seen bythe head on the tape at the moment of liking. The head is set at the�rst ell of the tape. If the link points to the urrent page itself, nothinghappens.1(g) B an halt.3. The following information determines the next state and the next move ofthe mahine:(a) The urrent ontrol state.(b) Equalities and non-equalities between values of registers and/or the nodeurrently under the head.() Information whether the head sans the leftmost or rightmost ell of thetape. (Reall that, aording to the mehanism of hanging the tape on-tent, the length of the tape an vary.)(d) Information whether any of the staks is empty.4. The initial on�guration of the mahine in a Web instane (V; s) is as fol-lows:(a) s is the value of all the registers of B.(b) s is the only node on the tape.() Both staks are empty.A formal de�nition of the omputation of a mahine on an instane is easilyprodued and omitted from this extended abstrat.2 Navigational problemsOur entral idea is to study the power of BSMs in solving navigational problems :De�nition 5. A navigational problem is a partial omputable funtion P fromWeb instanes to �nite sets of nodes, suh that{ whenever P (V; s) is de�ned, it is a subset of V ; and{ if � : (V; s) ! (V0; s0) is an isomorphism, then P (V0; s0) = �(P (V; s)).The seond ondition is a ommon \onsisteny riterion" found in databasequerying [3, 1℄ and orresponds to the oneptual pratie not to distinguishbetween isomorphi logial strutures.De�nition 6. Reall that the set of nodes on whih a BSM B liks during itsomputation on (V; s) is denoted B(V; s). B solves a navigational problem P iffor every instane (V; s) on whih P is de�ned B(V; s) = P (V; s).1 The same behavior is shown by real life browsers.

De�nition 7. A navigational problem P is alled \visitable" if it an be solvedby a BSM.We begin with the most rude approximation of the omputational power ofBSMs.Theorem 1. There is a translation of Turing mahines M into BSMs BM andof input words w into Web instanes (Vw ; s) suh that the omputation of BMin (Vw ; s) simulates the omputation of M on w:Proof. We give a diret enoding of the omputations of any single-tape Turingmahine in the model of BSM.Turning to the onstrution, let M be a Turing mahine with a a single input-work tape with tape alphabet onsisting of symbols f0; 1g. Blank is allowed too,but annot be written by the mahine on the tape. Let w = w1 : : : wn 2 f0; 1g�be an input word for M . We onvert w into a Web instane (Vw ; s) as follows:sp1;a0;a1;o //

��
$$II

II
II

II

))SSSSSSSSSSSSSSSS

p1p2;i1 // p2p3;i2 //� � � // pn�1pn;in�1 // pnpn�1;inYYo a0 a1and where additionally eah link ij points on the node al i� wj = l. Note theloop from pn to pn�1.Now we onstrut a BSM BM able to mimi in (Vw ; s) the omputation of Mon w as follows:1. Starting from s, B stores the addresses of a0 and a1 in its registers. (Hereand in the following, B identi�es links by their order of appearane on thepages. There are always at most 4 of them, so all of the neessary informationan be enoded in the �nite ontrol of B.)2. Next it follows the �rst link on eah page it arrives at, until it �nds a two-page-large loop, whih an be easily deteted by omparing the link withthe address of the previous page (stored on the W stak). When this loop isfound, B must be in pn.3. B memorizes pn in a register.4. On page pi B repeats the ations(a) Compare the seond link on the page with the stored addresses a0; a1.(b) If it is aj ; then move the head to the j-th link on that page.() Go bak one step.until it omes bak to s.5. Presently, the position of the head on eah of the pages p1; : : : ; pn whih areon the V stak indiates the orresponding symbol of M 's input word w.6. B starts simulating M , whih is done by walking bakward and forward onthe staks exatly as the head of M does, updating always the head positionon the atually visited page to be over the j-th link, with j the symbol

M writes to the urrent tape ell. In this simulation, the page urrentlyvisited by B orresponds to the tape ell with the head of M , the W stakorresponds to the portion of M 's tape to the left of the head, and the Vstak orresponds to the portion of M 's tape to the right of the head, exeptthat the not-yet-used portion of the tape will be only reated by B when itis neessary.7. If B senses that the V stak is empty and M wants to go right, then Bmemorizes in a register the urrent loation of the head on the present page(whih is always either pn or pn�1 in suh ases), liks on the �rst link (sothat it goes to either pn�1 or pn, respetively), makes one move bakward,restores the head position to the memorized position, makes a move forward,and prints there the intended symbol, assuming that what is saw there wasa blank symbol.8. If M aepts and halts, B goes all the way bak to s and liks on link o.Note that in longer omputations the vast majority of the pages stored on thestaks are opies of pn�1 and pn. However, the position of the head is always thepage urrently visited2, so the BSM never gets lost in the simulation.As it is readily seen, M aepts w i� o 2 B(Vw ; s). utRemark 1. Now, if we take a universal Turing mahine as M , a standard argu-ment shows that the navigational problem solved by B is RE-omplete.It is worth noting that the above onstrution depends ruially on the Webinstane possessing a yle. Hene, it is a natural question to ask what happensif we restrit attention to ayli Web graphs. The following result answers thisquestion.Theorem 2. Every visitable navigational problem, when restrited to ayliinstanes, is in PSPACE, and there exist suh problems that are PSPACE-omplete.Proof. The �rst part follows by a straightforward simulation of B by a Turingmahine, whih stores the staks of B on its work tape. In the absene of y-les, these staks never exeed height equal to the ardinality of the input Webinstane, and the pages themselves are of size linearly dependent on the num-ber of pages of the input. This gives altogether a polynomial amount of spae,neessary to perform the simulation.After minor tehnial modi�ations, the proof method of Theorem 1 yields thePSPACE-hardness part. utLet Reahk be the navigational problem (V; s) 7! \the set of verties reahablefrom s in at most k steps" (we permit k 2 f1; 2; : : :g [f1g).Theorem 3. For eah k > 0 Reahk is visitable.2 With the small and only temporary exeption when the BSM liks to extend thestaks by a new page.

Proof. The mahine does depth-�rst-searh, limited to k steps. To avoid loopsand to assure that the BSM always halts, it liks only pages that are not alreadyon the W stak. Before liking a page it stores it in a register then goes bakto the soure omparing the page to all pages on the W stak. ut2.1 Navigational problems and data transferThe above theorems do not exhaust all the interesting questions onneted withthe navigational abilities of BSMs.Cliking on a link auses data transfer to happen, even if the page has beenalready seen by the browser. The pages stored on the staks are ahed loally,so visiting them does not ause any data transfer. Thus, by measuring how manytimes a BSM liks during its omputation, we indeed measure the data transferit generates.De�nition 8. A BSM B is alled a \1-visitor" if in its omputation on anyWeb instane, B liks every node at most one.A navigational problem is alled \1-visitable" if it is solvable by a 1-visitor.1-visitability is an important feature of problems. Suh problems an be solvedwithout making any unneessary data transfer. In ertain sense, for 1-visitableproblem there exist BSM whih ahieve the optimal possible ommuniationost.We next present an intrinsi neessary ondition on navigational problems to be1-visitable:De�nition 9. Given a Web instane (V; s) and a subset V 0 of the verties ofV, a node n of V is said to be distant from V 0 if n 62 V 0 and all paths in V froma node in V 0 to n ontain more than one edge.De�nition 10. Given a Web instane (V; s), a subset V 0 of V is alled a \PD[k℄set" (Path with k Distant nodes) if there is a subset S � V 0 suh that{ s 2 S,{ if jSj > 1 then there is a simple path in V that starts in s and ontainsexatly the verties in S, and{ there are at most k verties in V 0 that are distant from S.Theorem 4. A navigational problem P an be 1-visitable only if there is a nat-ural number k suh that for every Web instane (V; s), P (V; s) is a PD[k℄ set.Proof. (Sketh) Let B be the BSM solving P . If B has no registers then itannot ompare pages and an therefore only visit the soure s without the riskof visiting a page twie. If, on the other hand, B has registers then it an omparepages and hek if a ertain page that is to be visited was not visited before.Let us all the path that is formed by the W stak plus the urrent page theCurrent path. It either holds that B has diretly after every lik all the visitedpages that are distant from the Current path in its registers, or it does not. Let

us �rst assume that it does. Sine this will then also hold after the last lik,the visited pages will be an PD[k℄ set with S the Current path just after thelast lik. Let us assume that diretly after a lik to a ertain page the BSMholds no longer all the visited pages that are distant from the Current path in itsregisters. Let p be the �rst page for whih this holds, and S the orrespondingCurrent path. Let p0 be the page that B liked to just before p and let S0 be theorresponding Current path. After the lik to page p the BSM an only visitpages that are hildren of pages in S0 or were in the registers of B just after thelik to p0. Sine after this lik all visited pages distant from S0 are also in theregisters it follows that at that moment all the pages distant from S0 that wereand will be visited by B are then in its k registers. It follows that all the pagesvisited by B form an PD[k℄ set. utIt is obvious that the above ondition is not suÆient for a problem to be visitableat all, let alone 1-visitable. The reason is that, aording to Theorem 2, theproblem must obey ertain omplexity requirements to have at least a hane tobe visitable.A ounterpart of Theorem 3 is the following one.Theorem 5. Reah1 is 1-visitable. For k > 1 the problem Reahk is not 1-visitable.Proof. The proof follows from Theorem 4 or an be done in a similar way to theProof 2 of Theorem 7. utAn obvious approah for showing ertain navigational problems to be 1-visitableis to start from a BSM B, not neessarily a 1-visitor, that solves the problem,and then to try to \optimize" B's program, making it more \areful" not tolik on a page that has been liked before. Putting this idea in pratie in fullgenerality is impossible (see Theorem 7), but we an at least show that thereare ases where suh an approah is suessful.Theorem 6. If a navigational problem P is visitable by a BSM B and, for everyWeb instane (V; s), the trae of the omputation of B on (V; s) is a simple path(perhaps with a link from the last node to some earlier one on the path), then Pis indeed 1-visitable.Proof. Omitted. ut3 Clik omplexityWe now know that many navigational problems are not 1-visitable: they annotbe solved by a BSM without liking more often than the atual number ofnodes that are visited by the BSM. Hene, it is natural to wonder about theatual \lik omplexity" of a visitable navigational problem: how many liksmust any BSM make to solve them? We next prove a quite negative result, tothe e�et that the number of needed liks in general annot be bounded as afuntion of the number of visited nodes.

De�nition 11. For a BSM B and a Web instane (V; s) let CB(V; s) be thenumber of liks during omputation of B on (V; x).Theorem 7. There exists no �xed reursive funtion f : N ! N suh that forevery visitable navigational problem P on Web instanes, there exists a BSM Bsolving P for all Web instanes (V; s) with CB(V; x) � f(jB(V; x)j).Proof. We give two fundamentally di�erent proofs of the theorem. Eah of themhighlights a quite di�erent reason for whih a BSM might have to lik manytimes on the same page.Proof 1. Suppose suh a funtion f exists.We proeed as in the proof of Theorem 1. By appropriately hoosing a Turing ma-hine M to be simulated by a BSM B, we an onstrut a visitable navigationalproblem suh that the deision problem o ?2 B(V; s) is not in DSPACE(n3 �f(n)).This follows from the well-known hierarhy theorem for deterministi spae om-plexity.Now suppose there exists another BSM B0 suh that B0(V; s) = B(V; s) forall Web instanes (V; s) and CB0(V; s) � f(jB(V; s)j). By a straightforwardmodi�ation of the argument given in the proof of Theorem 2, we an simulateB0 by a Turing mahine using at most (n3 �f(n)) spae for input Web instanes ofsize n. By this simulation, o ?2 B(V; s) is in DSPACE(n3 �f(n)), a ontradition.Proof 2. Consider the following Web instane (V; s):aa1;:::;an bb1;:::;bnsa;bccHHHHHH

;;wwwwwwwhere the pages of a1; : : : ; an; b1; : : : ; bn ontain no further links. Moreover, someof the ai'a may equal to some of the bj 's. The task of the BSM is to verify if thesequenes a1; : : : ; an and b1; : : : ; bn are idential, and if so, to lik on bn:The following BSM B does that, liking altogether on a number of vertieslinear in n.After liking on s; B liks on a; then memorizes a1 in a register xa, goes bakto s; liks on b, memorizes b1 in a register xb and ompares xa with xb. If theyare distint then B immediately halts.Otherwise B repeats the following ation until xa and xb are the last links onthe pages a and b: lik on a; then move the head to the link next to the valueof xa; memorize its value in xa, go bak to s; lik on b, move the head to thelink next to the value of xb; memorize its value in xb, and ompare xa with xb.If they are distint then immediately halt.If B �nds an and bn equal (i.e., the above loops terminates without disoveringany di�erene), lik on bn:

Now we prove that any BSM B solving the same navigational problem mustindeed use a large number of liks, even though jB(V; s)j � 3:We use an argument from ommuniation omplexity. Let there be two players,Alie and Bob, eah of whom has an ordered subset (unknown to the otherperson) of a (known to both Bob and Alie) set � = f�1; : : : ; �tg. Their taskis to deide if the sequenes are equal, by sending eah other messages: wordsover the same alphabet �. They do so aording to a prede�ned ommuniationprotool. This protool spei�es whose turn is to send the next message, basedon the full history of prior messages. At the end of the protool, the players mustbe able to deide if the words are equal. A theorem of ommuniation omplexityasserts that for any suh protool, whih gives the orret answer for every pairof words of length n; there exists a pair of words for whih the total length ofexhanged messages is at least logt(� tn�n!), see [5, Setion 1.3℄.We show that if there exists a BSM B with k registers and r < j�j ontrol states,solving our initial navigational problem with liks, then Alie and Bob anuse it to onstrut a protool to deide the equality of any two ordered subsetsof � of size n, with ommuniation of (� 1)=(k + 1) elements. This protool isvalid for all � of suÆiently high ardinality.Indeed, suppose suh a B exists and that it has k registers and r ontrol states.Let the ordered subsets (i.e., words) Alie and Bob have be a1 : : : an and b1 : : : bn;respetively. Eah of the players onverts his/her sequene into a Web pageaa1;:::;an and bb1;:::;bn ; respetively. Now eah of them simulates the BSM B in theso formed instane of the above �gure. Whenever B enters a (b; respetively)then only Alie (Bob, respetively) an ontinue the simulation, and does so untilB enters the other node from among a and b. At this moment that player sendsto the other one a message \B liks on the link to your page with x1; : : : ; xkas the values of the registers and q as the ontrol state". Note that indeed it isenough to send x1; : : : ; xk; �q , where �q is used to enode the ontrol state. Thenthe other player takes over the simulation, and so on. Note that he/she an doit, sine at this moment the ontent of the W stak is sa;b with head pointing atthe entered page, theV stak is empty, and all the remaining information B hasare the values of the registers and the ontrol state. If B either halts or likson bn, Bob noti�es Alie about the deision of B. Now, besides the last messageof length 1; eah message exhanged has length r + 1 and the number of suhmessages is equal to the number of liks B has done minus one (the initial likon s). The total amount of ommuniation is then (�1)(r+ 1) � logt(� tn�n!) �logt((t � n)n), by the ommuniation omplexity theorem. This estimation isvalid for any suÆiently large t. Hene the number of liks satis�es � 1 + limt!1 logt((t� n)n)r + 1 = 1 + nr + 1 : ut

Remark 2. We haven't made one spei� feature of real-life browsers a part ofour BSM. Namely, they are apable of remembering whih pages they visited,and represent this information by displaying the already visited links in a spe-i� olor. This feature ould be, without muh diÆulty, inorporated into ourmodel. Now the remark is that even in presene of this feature, the last the-orem remains true, and, indeed, both proofs remain valid. In partiular, thereare visitable navigational problems whih are not 1-visitable, even by BSM withmemory.4 Enhaned BrowsingIf we have a look at the navigation mehanism of browsers, it appears that theybehave very muh like Theseus in the maze, in the old Greek myth. Theseus hadbeen equipped with a roll of veil by Ariadne. He set one end of the veil at theentrane to the maze, and following it, he ould �nd the way bak from the mazeafter killing Minotaur. Modern browsers set one end of the veil at the entraneto the WWW and, at any time, they an leave the roll at any plae and walkbak and forth along the veil. If they deide to do so, they an take the roll againand reloate it to any other plae in the maze.We propose another, more powerful navigation mehanism. We suggest that, inaddition to what they already an do, browsers should be able to reloate thebeginning of the veil, too. This is about the way how professional limbers usetheir ropes, reusing them over and over again on their way up. On the level ofuser interfae, it would amount to giving the user the hoie, whih of the twostaks should be reset to empty upon a lik: V or W. This an be ahievedquite easily, by adding a button to exhange the ontents of the two staks,leaving unhanged the rule that the forward stak is always disarded. It is aonservative enhanement, i.e., those not interested an still use their old wayof navigating.The new style of navigation is indeed provably more eÆient than the old one.Theorem 8. The navigational problem de�ned in the seond proof of Theorem7 requires 4 liks altogether to ompute by an enhaned BSM.Proof. First we link a and b by a stak, as shown below. Next, we an walkbetween a and b on the stak, omparing their sons, without any more liks.
99

99
99 b a

99
99

99
b a

<<
<<

<

��
��

��s =) Stak=)swap s utThe lass of 1-visitable problems inreases even more substantially, when wemove from normal BSMs to the enhaned ones. Formally, we show that Theorem4 is not valid for enhaned BSMs. Note that the problem we have shown above to

be 1-visitable is not 1-visitable for standard BSMs, even with memory of visitedpages, aording to the Remark 2.Let Q be the following navigational problem: Q(V; s) = the set of all nodesreahable from s by following always the leftmost link union the set of all nodesreahable from s by following always the rightmost link to a page not yet visited.Q has been shown in Theorem 4 not to be 1-visitable.Theorem 9. The neessary ondition on 1-visitability expressed by Theorem 4fails for enhaned BSMs.Proof. Sine Q(V; s) doesn't satisfy the ondition it suÆes to show that Q(V; s)is 1-visitable by an enhaned BSM. The BSM follows the path formed by hoos-ing always the �rst link on eah page whenever this leads to a new page. Thisan be heked by memorizing the page the new link points to in a register andgoing down the W stak to see if this page is a new one. When this path ends(beause either there are no more links to follow or the leftmost link points toa page already visited), the BSM goes bak to s; swaps the staks (so that nowthe W stak ontains the whole so far visited path), �nds the rightmost linkon s whih leads to a new node, and follows this proedure as long as on theurrent page there is at least one link not yet on the W stak, hoosing alwaysthe rightmost one. utHowever, the �rst proof of Theorem 7 is easily seen to arry over to enhanedbrowser stak mahines, soTheorem 10. There exists no reursive funtion f : N ! N suh that for everyvisitable navigational problem P on Web instanes, there exists an enhanedBSM B solving P for all Web instanes (V; s) with CB(V; x) � f(jB(V; x)j).Enhaned browsers are not only more eÆient but also more powerful than thestandard ones.Theorem 11. There exists a navigational problem whih is solvable by an en-haned BSM, but not by a standard one.Proof. Omitted due to spae limitations. utReferenes1. S. Abiteboul and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.2. S. Abiteboul and V. Vianu. Queries and omputation on the Web. TheoretialComputer Siene, 239(2):231{255, 2000.3. A. Chandra and D. Harel. Computable queries for relational data bases. Journalof Computer and System Sienes, 21(2):156{178, 1980.4. M. Kaminski and N. Franez. Finite-memory automata. Theoretial ComputerSiene, 134(2):329{363, 1994.5. E. Kushilevitz and N. Nisan. Communiation omplexity. Cambridge UniversityPress, 1997.6. M. Spielmann, J. Tyszkiewiz, and J. Van den Busshe. Distributed omputationof Web queries using automata. In Proeedings 21st ACM Symposium on Priniplesof Database Systems. ACM Press, 2002.

