Navigating with a Browser*

Michal Bielecki,'** Jan Hidders,? Jan Paredaens,?
Jerzy Tyszkiewicz, ! Jan Van den Bussche?

'"Warsaw University, Poland
2University of Antwerp, Belgium
#University of Limburg, Belgium

NAVIGARE NECESSE EST, VIVERE NON
EST NECESSE. PoMPEIUS

Abstract. We consider the navigation power of Web browsers, such as
Netscape Navigator, Internet Explorer or Opera. To this end, we formally
introduce the notion of a navigational problem. We investigate various
characteristics of such problems which make them hard to visit with
small number of clicks.

The Web browser is an indispensable piece of application software for the mod-
ern computer user. All the popular browsers essentially implement a very basic
machinery for navigating the Web: a user can enter a specific URL as some kind
of “source node” to start his navigation; he can then further click on links to
visit other Web nodes; and he can go “back” and “forward” along a stack of
already visited nodes.

A lot of application software, such as word processors or spreadsheets, allows
in addition to the standard “manual” use of the software, also some kind of
“programmed” use, by allowing the user to write macros which are then executed
by the software tool. Such macros are typically simple programs, which offer the
standard test and jump control constructs; some variables to store temporary
information; and for the rest are based on the basic features offered by the
application.

In this paper, we study such a macro mechanism for Web browsers. Thereto,
we introduce the browser stack machine. This is a finite-memory automaton as
introduced by Kaminski and Francez [4], i.e., an automaton with finite control
and a finite number of registers which can store Web nodes, which is extended
with the basic features offered by a Web browser and already summarized above:
clicking on a link; going “back”; and going “forward”. The browser stack machine
is a restriction of the browser machine introduced by Abiteboul and Vianu [2],
which has an unlimited Turing tape for storing Web nodes, rather than just the
finite memory plus the stack which we have here.

* Research supported in parts by Polish KBN grant 7T11C 007 21 (M.B. and J.T.)
and by FWO grant G.0246.99 (J.H.)

** Contact author: Institute of Informatics, Warsaw University, Banacha 2, PL-02-097
Warszawa, Poland, e-mail mab@mimuw.edu.pl.

Just like Alan Turing was interested in understanding the problems solvable by
a clerk following a formal algorithm, using only pencil and sufficient supply of
paper, we are here interested in the problems solvable by such a browser stack
machine. However, while Turing could easily define a “problem” as function on
the natural numbers, what kind of “problems” over the Web can we consider
in our setting? Abiteboul and Vianu considered the Web as a database and
studied the power of browser machines in answering queries to this database.
Browser stack machines from such a database querying perspective were studied
in another paper [6]. We will take a different angle here, and want to focus
on navigational problems. A navigational problem asks the browser to visit a
certain specified set of Web nodes, and no others. It thus corresponds to avoiding
“getting lost in hyperspace” and getting your job done. Specifically, we focus
on structural navigational problems only, where the browser has to solve the
problem purely on structural information of the Web graph alone. More advanced
models could also introduce various predicates on Web nodes so that the browser
can detect various properties of the nodes, but we feel the basic “uncolored”
model remains fundamental.

Concretely, we offer the following contributions:

1. We show that browser stack machines, simple as they may appear, can sim-
ulate arbitrary Turing machines.

2. We introduce a notion of “data transfer-optimal” browser programs which
never download a node more than once. We show that this is a real re-
striction, by exhibiting various natural navigational problems that cannot
be solved in such an optimal manner, and by providing a rather general
necessary condition on the structure of such problems.

3. We provide concrete lower bounds on the number of data transfers a browser
program has to make to solve certain simple problems. Interestingly, our
proof employs a basic result from communication complexity.

4. Finally, we propose a new feature for Web browsers: switching the contents of
the “back” and “forward” stacks. We show that this feature allows problems
to be solvable with provably less data transfer, and that it allows solving
navigational problems unsolvable without it.

1 Web instances and browser stack machines

1.1 Web instances

Definition 1. A Web graph is a finite, locally ordered directed graph V =
(V,1,<). V is the finite set of vertices of V (we always use the matching Ro-
man letter for the set of vertices of any Web graph denoted by a blackboard-font
letter), 1 is the edge relation (we call it also the link relation), and < is a ternary
relation giving the local ordering of the vertices reachable by edges outgoing from
the current node.

Definition 2. A page of a Web graph V is the following structure: it is a node
v € V together with the ordered list t1,. .., ty of all the vertices t; € V' such that

l(v,t;), the list being given in the local order of all the vertices reachable by one

. A Web graph

v

edge from v. We will often depict such a page as follows:

t1,.. otk

can be equivalently represented by the set of its pages.

Definition 3. A Web instance (V,s) is a Web graph with a distinguished node
s, and such that all vertices of V are reachable by links from s, which is henceforth
called the source.

The source node is where browsing starts in the Web graph. Obviously, nodes
not reachable from the source are irrelevant to browsing, hence the reachabil-
ity requirement. This formalization of Web instance is similar to earlier formal
models of the Web, e.g., that by Abiteboul and Vianu [2]

1.2 Browser stack machine

We next define browser stack machines, which we abbreviate later on as BSM,
for the automatic navigation of Web instances.

Definition 4. A browser stack machine is a finite state computing device B
equipped with the following ingredients:

1. The components of B are:

(a) A finite state control.

(b) A read-only tape, which stores a sequence of vertices of a Web graph. The
tape can be accessed by a head, which can move backwards and forwards,
and can sense the beginning and the end of the tape.

(c) A finite number of registers r1,...,71, each one capable of storing a
single node of a Web graph.

(d) Two stacks, called = and <, on which B can store always the entire
content of its tape (as a single stack item), together with the current
location of the head.

2. The following actions can be undertaken by B, as ordered by its finite control:

(a) B can change its control state.

(b) B can move the head forward or backward on the tape.

(c) B can store in any of the registers the identity of the node currently seen
by the head on the tape.

(d) B can make a forward move, which consists of storing the current content
of the tape, together with the head position, on the & stack, removing
the top of the = stack and restoring it as the current tape and setting
the head in the recorded position. This mowve is impossible if the = stack
1§ empty.

(e) B can make a backward move, which consists of storing the current con-
tent of the tape, together with the head position, on the = stack, removing
the top of the & stack and restoring it as the current tape and setting
the head in the recorded position. This mowve is impossible if the & stack
1§ empty.

(f) B can click, which causes the current content of the tape together with
the current head position to be stored at the top of the & stack, removes
the entire content of the = stack, and fills the tape with the list of the
vertices, which are accessed by the edges outgoing from the node seen by
the head on the tape at the moment of clicking. The head is set at the
first cell of the tape. If the link points to the current page itself, nothing
happens.!

(g) B can halt.

3. The following information determines the next state and the next move of
the machine:

(a) The current control state.

(b) Equalities and non-equalities between values of registers and/or the node
currently under the head.

(¢) Information whether the head scans the leftmost or rightmost cell of the
tape. (Recall that, according to the mechanism of changing the tape con-
tent, the length of the tape can vary.)

(d) Information whether any of the stacks is empty.

4. The initial configuration of the machine in a Web instance (V,s) is as fol-
lows:

(a) s is the value of all the registers of B.
(b) s is the only node on the tape.
(¢) Both stacks are empty.

A formal definition of the computation of a machine on an instance is easily
produced and omitted from this extended abstract.

2 Navigational problems

Our central idea is to study the power of BSMs in solving navigational problems:

Definition 5. A navigational problem is a partial computable function P from
Web instances to finite sets of nodes, such that

— whenever P(V,s) is defined, it is a subset of V; and
—ifa:(V,s) = (V',s") is an isomorphism, then P(V',s") = a(P(V,s)).

The second condition is a common “consistency criterion” found in database
querying [3,1] and corresponds to the conceptual practice not to distinguish
between isomorphic logical structures.

Definition 6. Recall that the set of nodes on which a BSM B clicks during its
computation on (V,s) is denoted B(V,s). B solves a navigational problem P if
for every instance (V,s) on which P is defined B(V,s) = P(V,s).

! The same behavior is shown by real life browsers.

Definition 7. A navigational problem P is called “visitable” if it can be solved
by a BSM.

We begin with the most crude approximation of the computational power of
BSMs.

Theorem 1. There is a translation of Turing machines M into BSMs By and
of input words w into Web instances (Vy,,s) such that the computation of By
in (Vy,s) simulates the computation of M on w.

Proof. We give a direct encoding of the computations of any single-tape Turing
machine in the model of BSM.

Turning to the construction, let M be a Turing machine with a a single input-
work tape with tape alphabet consisting of symbols {0,1}. Blank is allowed too,
but cannot be written by the machine on the tape. Let w = wy ... w, € {0,1}*
be an input word for M. We convert w into a Web instance (V,,, s) as follows:

s p1 P2 Pn—1 Pn

P1,20,01,0 P2,i1 p3,i2 Pnyin—1 Pn—1,in

and where additionally each link ; points on the node a; iff w; = I. Note the
loop from p, to pp—1.

Now we construct a BSM By able to mimic in (V,,, s) the computation of M
on w as follows:

1. Starting from s, B stores the addresses of ag and a; in its registers. (Here
and in the following, B identifies links by their order of appearance on the
pages. There are always at most 4 of them, so all of the necessary information
can be encoded in the finite control of B.)

2. Next it follows the first link on each page it arrives at, until it finds a two-
page-large loop, which can be easily detected by comparing the link with
the address of the previous page (stored on the & stack). When this loop is
found, B must be in p,.

3. B memorizes p, in a register.

4. On page p; B repeats the actions
(a) Compare the second link on the page with the stored addresses ag, a;.
(b) If it is aj, then move the head to the j-th link on that page.

(c) Go back one step.
until it comes back to s.

5. Presently, the position of the head on each of the pages p1,...,p, which are
on the = stack indicates the corresponding symbol of M’s input word w.

6. B starts simulating M, which is done by walking backward and forward on
the stacks exactly as the head of M does, updating always the head position
on the actually visited page to be over the j-th link, with j the symbol

M writes to the current tape cell. In this simulation, the page currently
visited by B corresponds to the tape cell with the head of M, the & stack
corresponds to the portion of M’s tape to the left of the head, and the =
stack corresponds to the portion of M’s tape to the right of the head, except
that the not-yet-used portion of the tape will be only created by B when it
is necessary.

7. If B senses that the = stack is empty and M wants to go right, then B
memorizes in a register the current location of the head on the present page
(which is always either p, or p,—1 in such cases), clicks on the first link (so
that it goes to either p,_; or p,, respectively), makes one move backward,
restores the head position to the memorized position, makes a move forward,
and prints there the intended symbol, assuming that what is saw there was
a blank symbol.

8. If M accepts and halts, B goes all the way back to s and clicks on link o.

Note that in longer computations the vast majority of the pages stored on the
stacks are copies of p,_1 and p,,. However, the position of the head is always the
page currently visited?, so the BSM never gets lost in the simulation.

As it is readily seen, M accepts w iff o € B(Vy, s). O

Remark 1. Now, if we take a universal Turing machine as M, a standard argu-
ment shows that the navigational problem solved by B is RE-complete.

It is worth noting that the above construction depends crucially on the Web
instance possessing a cycle. Hence, it is a natural question to ask what happens
if we restrict attention to acyclic Web graphs. The following result answers this
question.

Theorem 2. FEvery wisitable navigational problem, when restricted to acyclic
instances, is in PSPACE, and there exist such problems that are PSPACE-
complete.

Proof. The first part follows by a straightforward simulation of B by a Turing
machine, which stores the stacks of B on its work tape. In the absence of cy-
cles, these stacks never exceed height equal to the cardinality of the input Web
instance, and the pages themselves are of size linearly dependent on the num-
ber of pages of the input. This gives altogether a polynomial amount of space,
necessary to perform the simulation.

After minor technical modifications, the proof method of Theorem 1 yields the
PSPACE-hardness part. O

Let Reachy, be the navigational problem (V,s) — “the set of vertices reachable
from s in at most k steps” (we permit k € {1,2,...} U {oo}).

Theorem 3. For each k > 0 Reachy, is visitable.

2 With the small and only temporary exception when the BSM clicks to extend the
stacks by a new page.

Proof. The machine does depth-first-search, limited to k steps. To avoid loops
and to assure that the BSM always halts, it clicks only pages that are not already
on the & stack. Before clicking a page it stores it in a register then goes back
to the source comparing the page to all pages on the & stack. O

2.1 Navigational problems and data transfer

The above theorems do not exhaust all the interesting questions connected with
the navigational abilities of BSMs.

Clicking on a link causes data transfer to happen, even if the page has been
already seen by the browser. The pages stored on the stacks are cached locally,
so visiting them does not cause any data transfer. Thus, by measuring how many
times a BSM clicks during its computation, we indeed measure the data transfer
it generates.

Definition 8. A BSM B is called a “I-visitor” if in its computation on any
Web instance, B clicks every node at most once.
A navigational problem is called “1-visitable” if it is solvable by a I-visitor.

1-visitability is an important feature of problems. Such problems can be solved
without making any unnecessary data transfer. In certain sense, for 1-visitable
problem there exist BSM which achieve the optimal possible communication
cost.

We next present an intrinsic necessary condition on navigational problems to be
1-visitable:

Definition 9. Given a Web instance (V,s) and a subset V' of the vertices of
V, a node n of V is said to be distant from V' if n € V' and all paths in V from
a node in V' to n contain more than one edge.

Definition 10. Given a Web instance (V,s), a subset V' of V' is called a “PD/[k]
set” (Path with k Distant nodes) if there is a subset S C V' such that

- S€ES,

— if |S| > 1 then there is a simple path in V that starts in s and contains
exactly the vertices in S, and

— there are at most k vertices in V' that are distant from S.

Theorem 4. A navigational problem P can be 1-visitable only if there is a nat-
ural number k such that for every Web instance (V,s), P(V,s) is a PD[k] set.

Proof. (Sketch) Let B be the BSM solving P. If B has no registers then it
cannot compare pages and can therefore only visit the source s without the risk
of visiting a page twice. If, on the other hand, B has registers then it can compare
pages and check if a certain page that is to be visited was not visited before.

Let us call the path that is formed by the & stack plus the current page the
Current path. It either holds that B has directly after every click all the visited
pages that are distant from the Current path in its registers, or it does not. Let

us first assume that it does. Since this will then also hold after the last click,
the visited pages will be an PD[k] set with S the Current path just after the
last click. Let us assume that directly after a click to a certain page the BSM
holds no longer all the visited pages that are distant from the Current path in its
registers. Let p be the first page for which this holds, and S the corresponding
Current path. Let p’ be the page that B clicked to just before p and let S’ be the
corresponding Current path. After the click to page p the BSM can only visit
pages that are children of pages in S’ or were in the registers of B just after the
click to p’. Since after this click all visited pages distant from S’ are also in the
registers it follows that at that moment all the pages distant from S’ that were
and will be visited by B are then in its k registers. It follows that all the pages
visited by B form an PDIk] set. O

It is obvious that the above condition is not sufficient for a problem to be visitable
at all, let alone 1-visitable. The reason is that, according to Theorem 2, the
problem must obey certain complexity requirements to have at least a chance to
be visitable.

A counterpart of Theorem 3 is the following one.

Theorem 5. Reach, is 1-visitable. For k > 1 the problem Reach;, is not 1-
visitable.

Proof. The proof follows from Theorem 4 or can be done in a similar way to the
Proof 2 of Theorem 7. O

An obvious approach for showing certain navigational problems to be 1-visitable
is to start from a BSM B, not necessarily a 1-visitor, that solves the problem,
and then to try to “optimize” B’s program, making it more “careful” not to
click on a page that has been clicked before. Putting this idea in practice in full
generality is impossible (see Theorem 7), but we can at least show that there
are cases where such an approach is successful.

Theorem 6. If a navigational problem P is visitable by a BSM B and, for every
Web instance (V,s), the trace of the computation of B on (V,s) is a simple path
(perhaps with a link from the last node to some earlier one on the path), then P
is indeed 1-visitable.

Proof. Omitted. O

3 Click complexity

We now know that many navigational problems are not 1-visitable: they cannot
be solved by a BSM without clicking more often than the actual number of
nodes that are visited by the BSM. Hence, it is natural to wonder about the
actual “click complexity” of a visitable navigational problem: how many clicks
must any BSM make to solve them? We next prove a quite negative result, to
the effect that the number of needed clicks in general cannot be bounded as a
function of the number of visited nodes.

Definition 11. For a BSM B and a Web instance (V,s) let Cg(V,s) be the
number of clicks during computation of B on (V,x).

Theorem 7. There exists no fized recursive function f : N — N such that for
every visitable navigational problem P on Web instances, there exists a BSM B
solving P for all Web instances (V,s) with Cp(V,z) < f(|B(V,x)|).

Proof. We give two fundamentally different proofs of the theorem. Each of them
highlights a quite different reason for which a BSM might have to click many
times on the same page.

Proof 1. Suppose such a function f exists.
We proceed as in the proof of Theorem 1. By appropriately choosing a Turing ma-
chine M to be simulated by a BSM B, we can construct a visitable navigational

problem such that the decision problem o é B(V, 5) is not in DSPACE(n?- f(n)).
This follows from the well-known hierarchy theorem for deterministic space com-
plexity.

Now suppose there exists another BSM B’ such that B'(V,s) = B(V,s) for
all Web instances (V,s) and Cp/(V,s) < f(|B(V,s)|). By a straightforward
modification of the argument given in the proof of Theorem 2, we can simulate
B’ by a Turing machine using at most (n*: f(n)) space for input Web instances of

?

size n. By this simulation, o0 € B(V, s) is in DSPACE(n?- f(n)), a contradiction.

Proof 2. Consider the following Web instance (V, s).

a b

ai,...,an b1,...,bn

where the pages of ay,...,a,,b1,...,b, contain no further links. Moreover, some
of the a;’a may equal to some of the b;’s. The task of the BSM is to verify if the
sequences aq,...,a, and by, ...,b, are identical, and if so, to click on b,.

The following BSM B does that, clicking altogether on a number of vertices
linear in n.

After clicking on s, B clicks on a, then memorizes a; in a register x,, goes back
to s, clicks on b, memorizes b in a register x; and compares x, with ;. If they
are distinct then B immediately halts.

Otherwise B repeats the following action until z, and x; are the last links on
the pages a and b: click on a, then move the head to the link next to the value
of z,, memorize its value in z,, go back to s, click on b, move the head to the
link next to the value of xzj, memorize its value in x;, and compare z, with zy.
If they are distinct then immediately halt.

If B finds a,, and b, equal (i.e., the above loops terminates without discovering
any difference), click on b,.

Now we prove that any BSM B solving the same navigational problem must
indeed use a large number of clicks, even though |B(V, s)| < 3.

We use an argument from communication complexity. Let there be two players,
Alice and Bob, each of whom has an ordered subset (unknown to the other
person) of a (known to both Bob and Alice) set X = {o4,...,0;}. Their task
is to decide if the sequences are equal, by sending each other messages: words
over the same alphabet Y. They do so according to a predefined communication
protocol. This protocol specifies whose turn is to send the next message, based
on the full history of prior messages. At the end of the protocol, the players must
be able to decide if the words are equal. A theorem of communication complexity
asserts that for any such protocol, which gives the correct answer for every pair
of words of length n, there exists a pair of words for which the total length of
exchanged messages is at least logt((;)n!), see [5, Section 1.3].

We show that if there exists a BSM B with k registers and r < | X| control states,
solving our initial navigational problem with ¢ clicks, then Alice and Bob can
use it to construct a protocol to decide the equality of any two ordered subsets
of X of size n, with communication of (¢ — 1)/(k + 1) elements. This protocol is
valid for all X of sufficiently high cardinality.

Indeed, suppose such a B exists and that it has k registers and r control states.
Let the ordered subsets (i.e., words) Alice and Bob have be a; ...a, and by ... b,,
respectively. Each of the players converts his/her sequence into a Web page
» ‘ - and . ’ - respectively. Now each of them simulates the BSM B in the
so formed instance of the above figure. Whenever B enters a (b, respectively)
then only Alice (Bob, respectively) can continue the simulation, and does so until
B enters the other node from among a and b. At this moment that player sends
to the other one a message “B clicks on the link to your page with zy,...,zg
as the values of the registers and ¢ as the control state”. Note that indeed it is
enough to send 1, ..., zy, 04, Where g, is used to encode the control state. Then
the other player takes over the simulation, and so on. Note that he/she can do

it, since at this moment the content of the & stack is with head pointing at

the entered page, the = stack is empty, and all the remaining information B has
are the values of the registers and the control state. If B either halts or clicks
on b, Bob notifies Alice about the decision of B. Now, besides the last message
of length 1, each message exchanged has length r + 1 and the number of such
messages is equal to the number ¢ of clicks B has done minus one (the initial click
on s). The total amount of communication is then (¢—1)(r +1) > logt((i)n!) >
log,((t — n)™), by the communication complexity theorem. This estimation is
valid for any sufficiently large ¢. Hence the number ¢ of clicks satisfies

lim;_, o0 log, ((t — n)™) 14 n

>1 = .
czl+ r+1 r+1

Remark 2. We haven’t made one specific feature of real-life browsers a part of
our BSM. Namely, they are capable of remembering which pages they visited,
and represent this information by displaying the already visited links in a spe-
cific color. This feature could be, without much difficulty, incorporated into our
model. Now the remark is that even in presence of this feature, the last the-
orem remains true, and, indeed, both proofs remain valid. In particular, there
are visitable navigational problems which are not 1-visitable, even by BSM with
memory.

4 Enhanced Browsing

If we have a look at the navigation mechanism of browsers, it appears that they
behave very much like Theseus in the maze, in the old Greek myth. Theseus had
been equipped with a roll of veil by Ariadne. He set one end of the veil at the
entrance to the maze, and following it, he could find the way back from the maze
after killing Minotaur. Modern browsers set one end of the veil at the entrance
to the WWW and, at any time, they can leave the roll at any place and walk
back and forth along the veil. If they decide to do so, they can take the roll again
and relocate it to any other place in the maze.

We propose another, more powerful navigation mechanism. We suggest that, in
addition to what they already can do, browsers should be able to relocate the
beginning of the veil, too. This is about the way how professional climbers use
their ropes, reusing them over and over again on their way up. On the level of
user interface, it would amount to giving the user the choice, which of the two
stacks should be reset to empty upon a click: = or &. This can be achieved
quite easily, by adding a button to exchange the contents of the two stacks,
leaving unchanged the rule that the forward stack is always discarded. It is a
conservative enhancement, i.e., those not interested can still use their old way
of navigating.

The new style of navigation is indeed provably more efficient than the old one.

Theorem 8. The navigational problem defined in the second proof of Theorem
7 requires 4 clicks altogether to compute by an enhanced BSM.

Proof. First we link a and b by a stack, as shown below. Next, we can walk
between a and b on the stack, comparing their sons, without any more clicks.

-\ b a b a /-
\ Stack \
— - S

swap

ad

The class of 1-visitable problems increases even more substantially, when we
move from normal BSMs to the enhanced ones. Formally, we show that Theorem
4 is not valid for enhanced BSMs. Note that the problem we have shown above to

be 1-visitable is not 1-visitable for standard BSMs, even with memory of visited
pages, according to the Remark 2.

Let @ be the following navigational problem: Q(V,s) = the set of all nodes
reachable from s by following always the leftmost link union the set of all nodes
reachable from s by following always the rightmost link to a page not yet visited.
(@ has been shown in Theorem 4 not to be 1-visitable.

Theorem 9. The necessary condition on I-visitability expressed by Theorem 4
fails for enhanced BSMs.

Proof. Since Q(V,s) doesn’t satisfy the condition it suffices to show that Q(V, s)
is 1-visitable by an enhanced BSM. The BSM follows the path formed by choos-
ing always the first link on each page whenever this leads to a new page. This
can be checked by memorizing the page the new link points to in a register and
going down the & stack to see if this page is a new one. When this path ends
(because either there are no more links to follow or the leftmost link points to
a page already visited), the BSM goes back to s, swaps the stacks (so that now
the & stack contains the whole so far visited path), finds the rightmost link
on s which leads to a new node, and follows this procedure as long as on the
current page there is at least one link not yet on the & stack, choosing always
the rightmost one. O

However, the first proof of Theorem 7 is easily seen to carry over to enhanced
browser stack machines, so

Theorem 10. There exists no recursive function f : N — N such that for every

visitable navigational problem P on Web instances, there exists an enhanced
BSM B solving P for all Web instances (V,s) with Cp(V,z) < f(|B(V,z)|).

Enhanced browsers are not only more efficient but also more powerful than the
standard ones.

Theorem 11. There exists a navigational problem which is solvable by an en-
hanced BSM, but not by a standard one.

Proof. Omitted due to space limitations. O

References

1. S. Abiteboul and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

2. S. Abiteboul and V. Vianu. Queries and computation on the Web. Theoretical
Computer Science, 239(2):231-255, 2000.

3. A. Chandra and D. Harel. Computable queries for relational data bases. Journal
of Computer and System Sciences, 21(2):156-178, 1980.

4. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329-363, 1994.

5. E. Kushilevitz and N. Nisan. Communication complezity. Cambridge University
Press, 1997.

6. M. Spielmann, J. Tyszkiewicz, and J. Van den Bussche. Distributed computation
of Web queries using automata. In Proceedings 21st ACM Symposium on Principles
of Database Systems. ACM Press, 2002.

