
Navigating with a Browser?Mi
ha l Biele
ki,1?? Jan Hidders,2 Jan Paredaens,2Jerzy Tyszkiewi
z, 1 Jan Van den Buss
he31Warsaw University, Poland2University of Antwerp, Belgium3University of Limburg, BelgiumNavigare ne
esse est, vivere nonest ne
esse. PompeiusAbstra
t. We
onsider the navigation power of Web browsers, su
h asNets
ape Navigator, Internet Explorer or Opera. To this end, we formallyintrodu
e the notion of a navigational problem. We investigate various
hara
teristi
s of su
h problems whi
h make them hard to visit withsmall number of
li
ks.The Web browser is an indispensable pie
e of appli
ation software for the mod-ern
omputer user. All the popular browsers essentially implement a very basi
ma
hinery for navigating the Web: a user
an enter a spe
i�
 URL as some kindof \sour
e node" to start his navigation; he
an then further
li
k on links tovisit other Web nodes; and he
an go \ba
k" and \forward" along a sta
k ofalready visited nodes.A lot of appli
ation software, su
h as word pro
essors or spreadsheets, allowsin addition to the standard \manual" use of the software, also some kind of\programmed" use, by allowing the user to write ma
ros whi
h are then exe
utedby the software tool. Su
h ma
ros are typi
ally simple programs, whi
h o�er thestandard test and jump
ontrol
onstru
ts; some variables to store temporaryinformation; and for the rest are based on the basi
 features o�ered by theappli
ation.In this paper, we study su
h a ma
ro me
hanism for Web browsers. Thereto,we introdu
e the browser sta
k ma
hine. This is a �nite-memory automaton asintrodu
ed by Kaminski and Fran
ez [4℄, i.e., an automaton with �nite
ontroland a �nite number of registers whi
h
an store Web nodes, whi
h is extendedwith the basi
 features o�ered by a Web browser and already summarized above:
li
king on a link; going \ba
k"; and going \forward". The browser sta
k ma
hineis a restri
tion of the browser ma
hine introdu
ed by Abiteboul and Vianu [2℄,whi
h has an unlimited Turing tape for storing Web nodes, rather than just the�nite memory plus the sta
k whi
h we have here.? Resear
h supported in parts by Polish KBN grant 7T11C 007 21 (M.B. and J.T.)and by FWO grant G.0246.99 (J.H.)?? Conta
t author: Institute of Informati
s, Warsaw University, Bana
ha 2, PL-02-097Warszawa, Poland, e-mail mab�mimuw.edu.pl.

Just like Alan Turing was interested in understanding the problems solvable bya
lerk following a formal algorithm, using only pen
il and suÆ
ient supply ofpaper, we are here interested in the problems solvable by su
h a browser sta
kma
hine. However, while Turing
ould easily de�ne a \problem" as fun
tion onthe natural numbers, what kind of \problems" over the Web
an we
onsiderin our setting? Abiteboul and Vianu
onsidered the Web as a database andstudied the power of browser ma
hines in answering queries to this database.Browser sta
k ma
hines from su
h a database querying perspe
tive were studiedin another paper [6℄. We will take a di�erent angle here, and want to fo
uson navigational problems. A navigational problem asks the browser to visit a
ertain spe
i�ed set of Web nodes, and no others. It thus
orresponds to avoiding\getting lost in hyperspa
e" and getting your job done. Spe
i�
ally, we fo
uson stru
tural navigational problems only, where the browser has to solve theproblem purely on stru
tural information of the Web graph alone. More advan
edmodels
ould also introdu
e various predi
ates on Web nodes so that the browser
an dete
t various properties of the nodes, but we feel the basi
 \un
olored"model remains fundamental.Con
retely, we o�er the following
ontributions:1. We show that browser sta
k ma
hines, simple as they may appear,
an sim-ulate arbitrary Turing ma
hines.2. We introdu
e a notion of \data transfer-optimal" browser programs whi
hnever download a node more than on
e. We show that this is a real re-stri
tion, by exhibiting various natural navigational problems that
annotbe solved in su
h an optimal manner, and by providing a rather generalne
essary
ondition on the stru
ture of su
h problems.3. We provide
on
rete lower bounds on the number of data transfers a browserprogram has to make to solve
ertain simple problems. Interestingly, ourproof employs a basi
 result from
ommuni
ation
omplexity.4. Finally, we propose a new feature for Web browsers: swit
hing the
ontents ofthe \ba
k" and \forward" sta
ks. We show that this feature allows problemsto be solvable with provably less data transfer, and that it allows solvingnavigational problems unsolvable without it.1 Web instan
es and browser sta
k ma
hines1.1 Web instan
esDe�nition 1. A Web graph is a �nite, lo
ally ordered dire
ted graph V =hV; l; <i. V is the �nite set of verti
es of V (we always use the mat
hing Ro-man letter for the set of verti
es of any Web graph denoted by a bla
kboard-fontletter), l is the edge relation (we
all it also the link relation), and < is a ternaryrelation giving the lo
al ordering of the verti
es rea
hable by edges outgoing fromthe
urrent node.De�nition 2. A page of a Web graph V is the following stru
ture: it is a nodev 2 V together with the ordered list t1; : : : ; tk of all the verti
es ti 2 V su
h that

l(v; ti); the list being given in the lo
al order of all the verti
es rea
hable by oneedge from v. We will often depi
t su
h a page as follows: vt1;:::;tk . A Web graph
an be equivalently represented by the set of its pages.De�nition 3. A Web instan
e (V; s) is a Web graph with a distinguished nodes, and su
h that all verti
es of V are rea
hable by links from s, whi
h is hen
eforth
alled the sour
e.The sour
e node is where browsing starts in the Web graph. Obviously, nodesnot rea
hable from the sour
e are irrelevant to browsing, hen
e the rea
habil-ity requirement. This formalization of Web instan
e is similar to earlier formalmodels of the Web, e.g., that by Abiteboul and Vianu [2℄1.2 Browser sta
k ma
hineWe next de�ne browser sta
k ma
hines, whi
h we abbreviate later on as BSM,for the automati
 navigation of Web instan
es.De�nition 4. A browser sta
k ma
hine is a �nite state
omputing devi
e Bequipped with the following ingredients:1. The
omponents of B are:(a) A �nite state
ontrol.(b) A read-only tape, whi
h stores a sequen
e of verti
es of a Web graph. Thetape
an be a

essed by a head, whi
h
an move ba
kwards and forwards,and
an sense the beginning and the end of the tape.(
) A �nite number of registers r1; : : : ; rk, ea
h one
apable of storing asingle node of a Web graph.(d) Two sta
ks,
alled V and W, on whi
h B
an store always the entire
ontent of its tape (as a single sta
k item), together with the
urrentlo
ation of the head.2. The following a
tions
an be undertaken by B, as ordered by its �nite
ontrol:(a) B
an
hange its
ontrol state.(b) B
an move the head forward or ba
kward on the tape.(
) B
an store in any of the registers the identity of the node
urrently seenby the head on the tape.(d) B
an make a forward move, whi
h
onsists of storing the
urrent
ontentof the tape, together with the head position, on the W sta
k, removingthe top of the V sta
k and restoring it as the
urrent tape and settingthe head in the re
orded position. This move is impossible if the V sta
kis empty.(e) B
an make a ba
kward move, whi
h
onsists of storing the
urrent
on-tent of the tape, together with the head position, on theV sta
k, removingthe top of the W sta
k and restoring it as the
urrent tape and settingthe head in the re
orded position. This move is impossible if the W sta
kis empty.

(f) B
an
li
k, whi
h
auses the
urrent
ontent of the tape together withthe
urrent head position to be stored at the top of the W sta
k, removesthe entire
ontent of the V sta
k, and �lls the tape with the list of theverti
es, whi
h are a

essed by the edges outgoing from the node seen bythe head on the tape at the moment of
li
king. The head is set at the�rst
ell of the tape. If the link points to the
urrent page itself, nothinghappens.1(g) B
an halt.3. The following information determines the next state and the next move ofthe ma
hine:(a) The
urrent
ontrol state.(b) Equalities and non-equalities between values of registers and/or the node
urrently under the head.(
) Information whether the head s
ans the leftmost or rightmost
ell of thetape. (Re
all that, a

ording to the me
hanism of
hanging the tape
on-tent, the length of the tape
an vary.)(d) Information whether any of the sta
ks is empty.4. The initial
on�guration of the ma
hine in a Web instan
e (V; s) is as fol-lows:(a) s is the value of all the registers of B.(b) s is the only node on the tape.(
) Both sta
ks are empty.A formal de�nition of the
omputation of a ma
hine on an instan
e is easilyprodu
ed and omitted from this extended abstra
t.2 Navigational problemsOur
entral idea is to study the power of BSMs in solving navigational problems :De�nition 5. A navigational problem is a partial
omputable fun
tion P fromWeb instan
es to �nite sets of nodes, su
h that{ whenever P (V; s) is de�ned, it is a subset of V ; and{ if � : (V; s) ! (V0; s0) is an isomorphism, then P (V0; s0) = �(P (V; s)).The se
ond
ondition is a
ommon \
onsisten
y
riterion" found in databasequerying [3, 1℄ and
orresponds to the
on
eptual pra
ti
e not to distinguishbetween isomorphi
 logi
al stru
tures.De�nition 6. Re
all that the set of nodes on whi
h a BSM B
li
ks during its
omputation on (V; s) is denoted B(V; s). B solves a navigational problem P iffor every instan
e (V; s) on whi
h P is de�ned B(V; s) = P (V; s).1 The same behavior is shown by real life browsers.

De�nition 7. A navigational problem P is
alled \visitable" if it
an be solvedby a BSM.We begin with the most
rude approximation of the
omputational power ofBSMs.Theorem 1. There is a translation of Turing ma
hines M into BSMs BM andof input words w into Web instan
es (Vw ; s) su
h that the
omputation of BMin (Vw ; s) simulates the
omputation of M on w:Proof. We give a dire
t en
oding of the
omputations of any single-tape Turingma
hine in the model of BSM.Turning to the
onstru
tion, let M be a Turing ma
hine with a a single input-work tape with tape alphabet
onsisting of symbols f0; 1g. Blank is allowed too,but
annot be written by the ma
hine on the tape. Let w = w1 : : : wn 2 f0; 1g�be an input word for M . We
onvert w into a Web instan
e (Vw ; s) as follows:sp1;a0;a1;o //

��
$$II

II
II

II

))SSSSSSSSSSSSSSSS

p1p2;i1 // p2p3;i2 //� � � // pn�1pn;in�1 // pnpn�1;inYYo a0 a1and where additionally ea
h link ij points on the node al i� wj = l. Note theloop from pn to pn�1.Now we
onstru
t a BSM BM able to mimi
 in (Vw ; s) the
omputation of Mon w as follows:1. Starting from s, B stores the addresses of a0 and a1 in its registers. (Hereand in the following, B identi�es links by their order of appearan
e on thepages. There are always at most 4 of them, so all of the ne
essary information
an be en
oded in the �nite
ontrol of B.)2. Next it follows the �rst link on ea
h page it arrives at, until it �nds a two-page-large loop, whi
h
an be easily dete
ted by
omparing the link withthe address of the previous page (stored on the W sta
k). When this loop isfound, B must be in pn.3. B memorizes pn in a register.4. On page pi B repeats the a
tions(a) Compare the se
ond link on the page with the stored addresses a0; a1.(b) If it is aj ; then move the head to the j-th link on that page.(
) Go ba
k one step.until it
omes ba
k to s.5. Presently, the position of the head on ea
h of the pages p1; : : : ; pn whi
h areon the V sta
k indi
ates the
orresponding symbol of M 's input word w.6. B starts simulating M , whi
h is done by walking ba
kward and forward onthe sta
ks exa
tly as the head of M does, updating always the head positionon the a
tually visited page to be over the j-th link, with j the symbol

M writes to the
urrent tape
ell. In this simulation, the page
urrentlyvisited by B
orresponds to the tape
ell with the head of M , the W sta
k
orresponds to the portion of M 's tape to the left of the head, and the Vsta
k
orresponds to the portion of M 's tape to the right of the head, ex
eptthat the not-yet-used portion of the tape will be only
reated by B when itis ne
essary.7. If B senses that the V sta
k is empty and M wants to go right, then Bmemorizes in a register the
urrent lo
ation of the head on the present page(whi
h is always either pn or pn�1 in su
h
ases),
li
ks on the �rst link (sothat it goes to either pn�1 or pn, respe
tively), makes one move ba
kward,restores the head position to the memorized position, makes a move forward,and prints there the intended symbol, assuming that what is saw there wasa blank symbol.8. If M a

epts and halts, B goes all the way ba
k to s and
li
ks on link o.Note that in longer
omputations the vast majority of the pages stored on thesta
ks are
opies of pn�1 and pn. However, the position of the head is always thepage
urrently visited2, so the BSM never gets lost in the simulation.As it is readily seen, M a

epts w i� o 2 B(Vw ; s). utRemark 1. Now, if we take a universal Turing ma
hine as M , a standard argu-ment shows that the navigational problem solved by B is RE-
omplete.It is worth noting that the above
onstru
tion depends
ru
ially on the Webinstan
e possessing a
y
le. Hen
e, it is a natural question to ask what happensif we restri
t attention to a
y
li
 Web graphs. The following result answers thisquestion.Theorem 2. Every visitable navigational problem, when restri
ted to a
y
li
instan
es, is in PSPACE, and there exist su
h problems that are PSPACE-
omplete.Proof. The �rst part follows by a straightforward simulation of B by a Turingma
hine, whi
h stores the sta
ks of B on its work tape. In the absen
e of
y-
les, these sta
ks never ex
eed height equal to the
ardinality of the input Webinstan
e, and the pages themselves are of size linearly dependent on the num-ber of pages of the input. This gives altogether a polynomial amount of spa
e,ne
essary to perform the simulation.After minor te
hni
al modi�
ations, the proof method of Theorem 1 yields thePSPACE-hardness part. utLet Rea
hk be the navigational problem (V; s) 7! \the set of verti
es rea
hablefrom s in at most k steps" (we permit k 2 f1; 2; : : :g [f1g).Theorem 3. For ea
h k > 0 Rea
hk is visitable.2 With the small and only temporary ex
eption when the BSM
li
ks to extend thesta
ks by a new page.

Proof. The ma
hine does depth-�rst-sear
h, limited to k steps. To avoid loopsand to assure that the BSM always halts, it
li
ks only pages that are not alreadyon the W sta
k. Before
li
king a page it stores it in a register then goes ba
kto the sour
e
omparing the page to all pages on the W sta
k. ut2.1 Navigational problems and data transferThe above theorems do not exhaust all the interesting questions
onne
ted withthe navigational abilities of BSMs.Cli
king on a link
auses data transfer to happen, even if the page has beenalready seen by the browser. The pages stored on the sta
ks are
a
hed lo
ally,so visiting them does not
ause any data transfer. Thus, by measuring how manytimes a BSM
li
ks during its
omputation, we indeed measure the data transferit generates.De�nition 8. A BSM B is
alled a \1-visitor" if in its
omputation on anyWeb instan
e, B
li
ks every node at most on
e.A navigational problem is
alled \1-visitable" if it is solvable by a 1-visitor.1-visitability is an important feature of problems. Su
h problems
an be solvedwithout making any unne
essary data transfer. In
ertain sense, for 1-visitableproblem there exist BSM whi
h a
hieve the optimal possible
ommuni
ation
ost.We next present an intrinsi
 ne
essary
ondition on navigational problems to be1-visitable:De�nition 9. Given a Web instan
e (V; s) and a subset V 0 of the verti
es ofV, a node n of V is said to be distant from V 0 if n 62 V 0 and all paths in V froma node in V 0 to n
ontain more than one edge.De�nition 10. Given a Web instan
e (V; s), a subset V 0 of V is
alled a \PD[k℄set" (Path with k Distant nodes) if there is a subset S � V 0 su
h that{ s 2 S,{ if jSj > 1 then there is a simple path in V that starts in s and
ontainsexa
tly the verti
es in S, and{ there are at most k verti
es in V 0 that are distant from S.Theorem 4. A navigational problem P
an be 1-visitable only if there is a nat-ural number k su
h that for every Web instan
e (V; s), P (V; s) is a PD[k℄ set.Proof. (Sket
h) Let B be the BSM solving P . If B has no registers then it
annot
ompare pages and
an therefore only visit the sour
e s without the riskof visiting a page twi
e. If, on the other hand, B has registers then it
an
omparepages and
he
k if a
ertain page that is to be visited was not visited before.Let us
all the path that is formed by the W sta
k plus the
urrent page theCurrent path. It either holds that B has dire
tly after every
li
k all the visitedpages that are distant from the Current path in its registers, or it does not. Let

us �rst assume that it does. Sin
e this will then also hold after the last
li
k,the visited pages will be an PD[k℄ set with S the Current path just after thelast
li
k. Let us assume that dire
tly after a
li
k to a
ertain page the BSMholds no longer all the visited pages that are distant from the Current path in itsregisters. Let p be the �rst page for whi
h this holds, and S the
orrespondingCurrent path. Let p0 be the page that B
li
ked to just before p and let S0 be the
orresponding Current path. After the
li
k to page p the BSM
an only visitpages that are
hildren of pages in S0 or were in the registers of B just after the
li
k to p0. Sin
e after this
li
k all visited pages distant from S0 are also in theregisters it follows that at that moment all the pages distant from S0 that wereand will be visited by B are then in its k registers. It follows that all the pagesvisited by B form an PD[k℄ set. utIt is obvious that the above
ondition is not suÆ
ient for a problem to be visitableat all, let alone 1-visitable. The reason is that, a

ording to Theorem 2, theproblem must obey
ertain
omplexity requirements to have at least a
han
e tobe visitable.A
ounterpart of Theorem 3 is the following one.Theorem 5. Rea
h1 is 1-visitable. For k > 1 the problem Rea
hk is not 1-visitable.Proof. The proof follows from Theorem 4 or
an be done in a similar way to theProof 2 of Theorem 7. utAn obvious approa
h for showing
ertain navigational problems to be 1-visitableis to start from a BSM B, not ne
essarily a 1-visitor, that solves the problem,and then to try to \optimize" B's program, making it more \
areful" not to
li
k on a page that has been
li
ked before. Putting this idea in pra
ti
e in fullgenerality is impossible (see Theorem 7), but we
an at least show that thereare
ases where su
h an approa
h is su

essful.Theorem 6. If a navigational problem P is visitable by a BSM B and, for everyWeb instan
e (V; s), the tra
e of the
omputation of B on (V; s) is a simple path(perhaps with a link from the last node to some earlier one on the path), then Pis indeed 1-visitable.Proof. Omitted. ut3 Cli
k
omplexityWe now know that many navigational problems are not 1-visitable: they
annotbe solved by a BSM without
li
king more often than the a
tual number ofnodes that are visited by the BSM. Hen
e, it is natural to wonder about thea
tual \
li
k
omplexity" of a visitable navigational problem: how many
li
ksmust any BSM make to solve them? We next prove a quite negative result, tothe e�e
t that the number of needed
li
ks in general
annot be bounded as afun
tion of the number of visited nodes.

De�nition 11. For a BSM B and a Web instan
e (V; s) let CB(V; s) be thenumber of
li
ks during
omputation of B on (V; x).Theorem 7. There exists no �xed re
ursive fun
tion f : N ! N su
h that forevery visitable navigational problem P on Web instan
es, there exists a BSM Bsolving P for all Web instan
es (V; s) with CB(V; x) � f(jB(V; x)j).Proof. We give two fundamentally di�erent proofs of the theorem. Ea
h of themhighlights a quite di�erent reason for whi
h a BSM might have to
li
k manytimes on the same page.Proof 1. Suppose su
h a fun
tion f exists.We pro
eed as in the proof of Theorem 1. By appropriately
hoosing a Turing ma-
hine M to be simulated by a BSM B, we
an
onstru
t a visitable navigationalproblem su
h that the de
ision problem o ?2 B(V; s) is not in DSPACE(n3 �f(n)).This follows from the well-known hierar
hy theorem for deterministi
 spa
e
om-plexity.Now suppose there exists another BSM B0 su
h that B0(V; s) = B(V; s) forall Web instan
es (V; s) and CB0(V; s) � f(jB(V; s)j). By a straightforwardmodi�
ation of the argument given in the proof of Theorem 2, we
an simulateB0 by a Turing ma
hine using at most (n3 �f(n)) spa
e for input Web instan
es ofsize n. By this simulation, o ?2 B(V; s) is in DSPACE(n3 �f(n)), a
ontradi
tion.Proof 2. Consider the following Web instan
e (V; s):aa1;:::;an bb1;:::;bnsa;bccHHHHHH

;;wwwwwwwhere the pages of a1; : : : ; an; b1; : : : ; bn
ontain no further links. Moreover, someof the ai'a may equal to some of the bj 's. The task of the BSM is to verify if thesequen
es a1; : : : ; an and b1; : : : ; bn are identi
al, and if so, to
li
k on bn:The following BSM B does that,
li
king altogether on a number of verti
eslinear in n.After
li
king on s; B
li
ks on a; then memorizes a1 in a register xa, goes ba
kto s;
li
ks on b, memorizes b1 in a register xb and
ompares xa with xb. If theyare distin
t then B immediately halts.Otherwise B repeats the following a
tion until xa and xb are the last links onthe pages a and b:
li
k on a; then move the head to the link next to the valueof xa; memorize its value in xa, go ba
k to s;
li
k on b, move the head to thelink next to the value of xb; memorize its value in xb, and
ompare xa with xb.If they are distin
t then immediately halt.If B �nds an and bn equal (i.e., the above loops terminates without dis
overingany di�eren
e),
li
k on bn:

Now we prove that any BSM B solving the same navigational problem mustindeed use a large number of
li
ks, even though jB(V; s)j � 3:We use an argument from
ommuni
ation
omplexity. Let there be two players,Ali
e and Bob, ea
h of whom has an ordered subset (unknown to the otherperson) of a (known to both Bob and Ali
e) set � = f�1; : : : ; �tg. Their taskis to de
ide if the sequen
es are equal, by sending ea
h other messages: wordsover the same alphabet �. They do so a

ording to a prede�ned
ommuni
ationproto
ol. This proto
ol spe
i�es whose turn is to send the next message, basedon the full history of prior messages. At the end of the proto
ol, the players mustbe able to de
ide if the words are equal. A theorem of
ommuni
ation
omplexityasserts that for any su
h proto
ol, whi
h gives the
orre
t answer for every pairof words of length n; there exists a pair of words for whi
h the total length ofex
hanged messages is at least logt(� tn�n!), see [5, Se
tion 1.3℄.We show that if there exists a BSM B with k registers and r < j�j
ontrol states,solving our initial navigational problem with

li
ks, then Ali
e and Bob
anuse it to
onstru
t a proto
ol to de
ide the equality of any two ordered subsetsof � of size n, with
ommuni
ation of (
� 1)=(k + 1) elements. This proto
ol isvalid for all � of suÆ
iently high
ardinality.Indeed, suppose su
h a B exists and that it has k registers and r
ontrol states.Let the ordered subsets (i.e., words) Ali
e and Bob have be a1 : : : an and b1 : : : bn;respe
tively. Ea
h of the players
onverts his/her sequen
e into a Web pageaa1;:::;an and bb1;:::;bn ; respe
tively. Now ea
h of them simulates the BSM B in theso formed instan
e of the above �gure. Whenever B enters a (b; respe
tively)then only Ali
e (Bob, respe
tively)
an
ontinue the simulation, and does so untilB enters the other node from among a and b. At this moment that player sendsto the other one a message \B
li
ks on the link to your page with x1; : : : ; xkas the values of the registers and q as the
ontrol state". Note that indeed it isenough to send x1; : : : ; xk; �q , where �q is used to en
ode the
ontrol state. Thenthe other player takes over the simulation, and so on. Note that he/she
an doit, sin
e at this moment the
ontent of the W sta
k is sa;b with head pointing atthe entered page, theV sta
k is empty, and all the remaining information B hasare the values of the registers and the
ontrol state. If B either halts or
li
kson bn, Bob noti�es Ali
e about the de
ision of B. Now, besides the last messageof length 1; ea
h message ex
hanged has length r + 1 and the number of su
hmessages is equal to the number
 of
li
ks B has done minus one (the initial
li
kon s). The total amount of
ommuni
ation is then (
�1)(r+ 1) � logt(� tn�n!) �logt((t � n)n), by the
ommuni
ation
omplexity theorem. This estimation isvalid for any suÆ
iently large t. Hen
e the number
 of
li
ks satis�es
 � 1 + limt!1 logt((t� n)n)r + 1 = 1 + nr + 1 : ut

Remark 2. We haven't made one spe
i�
 feature of real-life browsers a part ofour BSM. Namely, they are
apable of remembering whi
h pages they visited,and represent this information by displaying the already visited links in a spe-
i�

olor. This feature
ould be, without mu
h diÆ
ulty, in
orporated into ourmodel. Now the remark is that even in presen
e of this feature, the last the-orem remains true, and, indeed, both proofs remain valid. In parti
ular, thereare visitable navigational problems whi
h are not 1-visitable, even by BSM withmemory.4 Enhan
ed BrowsingIf we have a look at the navigation me
hanism of browsers, it appears that theybehave very mu
h like Theseus in the maze, in the old Greek myth. Theseus hadbeen equipped with a roll of veil by Ariadne. He set one end of the veil at theentran
e to the maze, and following it, he
ould �nd the way ba
k from the mazeafter killing Minotaur. Modern browsers set one end of the veil at the entran
eto the WWW and, at any time, they
an leave the roll at any pla
e and walkba
k and forth along the veil. If they de
ide to do so, they
an take the roll againand relo
ate it to any other pla
e in the maze.We propose another, more powerful navigation me
hanism. We suggest that, inaddition to what they already
an do, browsers should be able to relo
ate thebeginning of the veil, too. This is about the way how professional
limbers usetheir ropes, reusing them over and over again on their way up. On the level ofuser interfa
e, it would amount to giving the user the
hoi
e, whi
h of the twosta
ks should be reset to empty upon a
li
k: V or W. This
an be a
hievedquite easily, by adding a button to ex
hange the
ontents of the two sta
ks,leaving un
hanged the rule that the forward sta
k is always dis
arded. It is a
onservative enhan
ement, i.e., those not interested
an still use their old wayof navigating.The new style of navigation is indeed provably more eÆ
ient than the old one.Theorem 8. The navigational problem de�ned in the se
ond proof of Theorem7 requires 4
li
ks altogether to
ompute by an enhan
ed BSM.Proof. First we link a and b by a sta
k, as shown below. Next, we
an walkbetween a and b on the sta
k,
omparing their sons, without any more
li
ks.
99

99
99 b a

99
99

99
b a

<<
<<

<

��
��

��s =) Sta
k=)swap s utThe
lass of 1-visitable problems in
reases even more substantially, when wemove from normal BSMs to the enhan
ed ones. Formally, we show that Theorem4 is not valid for enhan
ed BSMs. Note that the problem we have shown above to

be 1-visitable is not 1-visitable for standard BSMs, even with memory of visitedpages, a

ording to the Remark 2.Let Q be the following navigational problem: Q(V; s) = the set of all nodesrea
hable from s by following always the leftmost link union the set of all nodesrea
hable from s by following always the rightmost link to a page not yet visited.Q has been shown in Theorem 4 not to be 1-visitable.Theorem 9. The ne
essary
ondition on 1-visitability expressed by Theorem 4fails for enhan
ed BSMs.Proof. Sin
e Q(V; s) doesn't satisfy the
ondition it suÆ
es to show that Q(V; s)is 1-visitable by an enhan
ed BSM. The BSM follows the path formed by
hoos-ing always the �rst link on ea
h page whenever this leads to a new page. This
an be
he
ked by memorizing the page the new link points to in a register andgoing down the W sta
k to see if this page is a new one. When this path ends(be
ause either there are no more links to follow or the leftmost link points toa page already visited), the BSM goes ba
k to s; swaps the sta
ks (so that nowthe W sta
k
ontains the whole so far visited path), �nds the rightmost linkon s whi
h leads to a new node, and follows this pro
edure as long as on the
urrent page there is at least one link not yet on the W sta
k,
hoosing alwaysthe rightmost one. utHowever, the �rst proof of Theorem 7 is easily seen to
arry over to enhan
edbrowser sta
k ma
hines, soTheorem 10. There exists no re
ursive fun
tion f : N ! N su
h that for everyvisitable navigational problem P on Web instan
es, there exists an enhan
edBSM B solving P for all Web instan
es (V; s) with CB(V; x) � f(jB(V; x)j).Enhan
ed browsers are not only more eÆ
ient but also more powerful than thestandard ones.Theorem 11. There exists a navigational problem whi
h is solvable by an en-han
ed BSM, but not by a standard one.Proof. Omitted due to spa
e limitations. utReferen
es1. S. Abiteboul and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.2. S. Abiteboul and V. Vianu. Queries and
omputation on the Web. Theoreti
alComputer S
ien
e, 239(2):231{255, 2000.3. A. Chandra and D. Harel. Computable queries for relational data bases. Journalof Computer and System S
ien
es, 21(2):156{178, 1980.4. M. Kaminski and N. Fran
ez. Finite-memory automata. Theoreti
al ComputerS
ien
e, 134(2):329{363, 1994.5. E. Kushilevitz and N. Nisan. Communi
ation
omplexity. Cambridge UniversityPress, 1997.6. M. Spielmann, J. Tyszkiewi
z, and J. Van den Buss
he. Distributed
omputationof Web queries using automata. In Pro
eedings 21st ACM Symposium on Prin
iplesof Database Systems. ACM Press, 2002.

