
Put a Tree Pattern in Your Algebra

Philippe Michiels
University of Antwerp

George A. Mihăilă
IBM Research

Jérôme Siméon
IBM Research

Abstract

To address the needs of data intensive XML applica-
tions, a large number of efficient tree pattern algorithms
have been proposed. Still, most XQuery compilers do not
support those algorithms. This is due in part to the lack of
support for tree patterns in most algebras, but also because
identifying which part of a query plan should be evaluated
as a tree pattern is a hard problem. In this paper, we ex-
tend a tuple algebra for XQuery with a tree pattern opera-
tor, and present rewritings suitable to introduce such oper-
ators in query plans. We demonstrate the robustness of the
proposed rewritings under syntactic variations commonly
found in real queries. The proposed tree pattern operator
can be implemented using popular algorithms such as Twig
joins and Staircase joins. We report on experiments which
suggest heuristics useful to decide which algorithm should
be used for a given plan.

1 Introduction

Efficient evaluation of path expressions is crucial for the
overall performance of any XQuery engine. For that rea-
son, the development of algorithms based on the notion
of tree-pattern has been a key focus of research on XML
query processing [4, 15, 23, 19, 9, 18, 16]. Most XQuery
algebras [11, 24, 27, 14, 1] do not support tree patterns, fo-
cusing instead on recovering important relational optimiza-
tions [11, 24, 27, 14, 1] and on how to support larger frag-
ments of the language [3, 27]. In those approaches, path
expressions are typically compiled into nested maps with
navigational primitives, missing opportunities for using tree
pattern algorithms. The TAX algebra [6, 26] used in the
Timber system is the only one to include support for tree
patterns. However, the approach is still limited to a frag-
ment of XQuery and the absence of support for tuple oper-
ators makes it more difficult to recover important relational
optimizations. In this paper, we answer three important
questions: how can tree pattern processing be integrated in
a tuple algebra for XQuery, how can the compiler decide
when a fragment of the query plan can be evaluated using a
tree pattern, and how to decide which tree pattern algorithm
should be used.

There are several reasons why detecting tree patterns in
arbitrary XQuery plans is difficult. Very simple path ex-
pressions, such as query Q1a on Figure 1, might already
be in the form of a tree pattern. However, it is often the
case that such a tree pattern is written as a combination of
FLWOR and path expressions, as in queries Q1b and Q1c
on Figure 1, which are both equivalent to Q1a. Secondly,
tree patterns correspond only to very specific fragments of
XPath, notably without complex predicates or backward
axis, while most queries usually feature complex combi-
nations of XPath primitives which must be broken up into
several tree patterns. For instance, query Q2 on Figure 1
should be split into two tree patterns connected by a selec-
tion predicate on the name, while both query Q3 and Q4
require a more complex treatment in order to properly com-
pute the position predicate. Finally, subtle aspects of the
semantics of path expressions must be taken into account.
For instance, despite being almost identical to Q1b, query
Q5 is not a tree pattern, since it may not return the names
in document order, and must be split into two tree patterns
composed through a map operator.

In this paper, we present an algebraic framework and
compilation techniques that allow a complete XQuery com-
piler to detect when tree pattern algorithms can be used.
Instead of relying on syntax to identify tree patterns, we
use an approach based on the semantics of the query, along
with a two phase rewritings process which provides a ro-
bust way to identify which part of a query can be evaluated
as a tree pattern. We believe this work bridges an impor-
tant gap between the literature on tree pattern algorithms
and the literature on algebraic XQuery optimization. We
implemented the proposed approach in the Galax XQuery
1.0 processor [14]1 and experiments show the robustness of
the approach for complex tree pattern queries.

The main contributions of the paper are as follows:

• We extend the tuple algebra of [27] with a tree pat-
tern operator. That operator is designed to integrate
with other tuple operations and can be implemented
using popular algorithms such as Twig joins [4, 15]
and Staircase joins [18].

1The corresponding implementation can be tried by downloading Galax
version 0.6.5 or later, at http://www.galaxquery.org/.

1

Q1a $d//person[emailaddress]/name

(for $x in
Q1b $d//person[emailaddress]

return $x)/name

let $x :=
for $y in $d//person

Q1c where $y/emailaddress
return $y

return $x/name

Single Tree Patterns

Q2 $d//person[name = "John"]/emailaddress

Q3 $d//person[1]/name

Q4 $d//person[name = "John"]/emailaddress[1]

for $x in
Q5 $d//person[emailaddress]

return $x/name

Multiple Tree Patterns

Figure 1. Tree Patterns Queries

• We present rewritings that normalize queries with tree
patterns to prepare for their detection at the algebraic
level. The rewritings are sound in the face of XPath’s
complex semantics and are robust for syntactic varia-
tions most commonly found in queries.

• We present algebraic optimizations rules to introduce
tree-pattern operators in query plans whenever possi-
ble.

• We present experiments showing the robustness of the
proposed compilation approach in practice.

• We use the resulting compiler to compare the perfor-
mance of well-known tree pattern algorithms in the
context of query plans for the XMark benchmark.
This comparison suggests useful heuristics for decid-
ing which algorithm should be used for a given plan.

The rest of the paper is organized as follows. Section 2
gives an overview of our compilation approach and illus-
trates how it addresses the issues about tree pattern de-
tection raised earlier in this section. Section 3 describes
the rewritings used to normalize tree patterns in arbitrary
queries. Section 4 presents the algebraic tree pattern opera-
tor and the corresponding optimizations. Section 6 contains
the experimental evaluation and discusses heuristics to de-
cide which algorithm to use. Section 7 reviews the related
work, and Section 8 concludes the paper.

2 Tree Pattern Compilation

The compilation proceeds through several phases which
are shown on Figure 2.

XQuery Normalization. The first phase consists in nor-
malizing the query into the XQuery Core, as specified
in [12, 27]. The normalization rules for path expressions
(corresponding to the following grammar productions (68),
(69), (70), (71), and (81) in [2]), are described in detail

XQuery
Syntax Tree XQuery Core

Optimized
XQuery Plan
(Algebra)

XQuery Plan
(Algebra)Evaluation

Engine
Simplified
XQuery Core

Query
Normalization

Query
Compiler

Query
Rewriting

Query
Optimizer

Parser

 Static
Typing

Compilation Phases
XQuery
Expression

XQuery Result

Figure 2. Compilation Architecture

in [12]. For instance, normalization applied to the simple
path (Q1a) on Figure 1 results in the following XQuery
Core expression2.

1. ddo(
2. let $seq :=
3. ddo(Q1a-n
4. let $seq := ddo($d),
5. let $last := fn:count($seq)
6. for $dot at $position in $seq
7. return
8. let $seq := ddo(descendant::person),
9. let $last := fn:count($seq)
10. for $dot at $position in $seq
11. where
12. typeswitch (child::emailaddress)
13. case $v2 as numeric() return
14. $position = $v2
15. default $v3 return
16. fn:boolean($v3)
17. return $dot),
18. let $last := fn:count($seq)
19. for $dot at $position in $seq
20. return child::name)

2To simplify exposition, we assume here that the step $d//person is
normalized similarly to $d/descendant::person.

Lines 4-7 and 1-2,18-20 correspond to the / expression,
lines 3 and 8-17 correspond to the predicate, and lines 8, 12
and 20 correspond to the steps descendant::person,
child::emailaddress and child::name respec-
tively. One benefit of this approach is that it deals with all
of XPath’s semantics, including sorting by document order
and duplicate elimination (through calls to the special func-
tion ddo on lines 1, 2, 4, and 8), the binding of context
information such as position() (on lines 6, 10, and 19)
and last() (on lines 5, 9, and 18), and the case where
predicates are applied to numeric values (the first branch of
the typeswitch expression on lines 13-14).

Normalization is crucial in our context as it exposes the
implicit iteration in XPath’s E1/E2 and E1[E2] operators.
This is the first step toward providing a uniform treatment
for combinations of FLWOR and path expressions.

XQuery Core Rewriting. It is important to note that nor-
malization is applied mechanically to each XQuery expres-
sion. As a result, different queries (e.g., Q1b and Q1c in
Figure 1) result in different normalized queries. The pur-
pose of the next compilation phase is to rewrite expressions
corresponding to tree patterns to remove non-relevant syn-
tactic differences. The rewriting phase uses a set of equiv-
alences expressed over the XQuery core, and prepares for
algebraic compilation. The corresponding rewritings are
presented in details in Section 3. After rewritings, queries
corresponding to tree patterns are always in the same form,
which is a specific combination of step expressions, itera-
tion, and calls to sorting by document order and duplicate
elimination. For example, the following query is the rewrit-
ten form of all the three queries Q1a, Q1b, and Q1c.

1. ddo(Q1-tp
2. for $dot in ddo(
3. for $dot in ddo(
4. for $dot in $d
5. return descendant::person)
6. where child::emailaddress
7. return $dot)
8. return child::name)

Algebraic Compilation. The resulting expression is then
compiled into the algebraic plan P1. That phase uses the
algebra and compilation rules defined in [27].

1. ddo(MapToItem P1
2. {TreeJoin[child::name](IN#dot)}
3. (MapFromItem{[dot : IN]}
4. (ddo(MapToItem{IN#dot}
5. (Select
6. {fn:boolean(
7. TreeJoin[child::emailaddress](IN#dot))}
8. (MapFromItem{[dot : IN]}
9. (ddo(MapToItem
10. {TreeJoin[descendant::person](IN#dot)}
11. (MapFromItem{[dot : IN]}($d))))))))))

For conciseness, the query plans are written in the func-
tional notation used in [27], where each operator has a name
(e.g., Select), a set of inputs sub-plans given in parenthe-
sis, and possibly some dependant sub-plans written in curly
braces. The evaluation of a dependant sub-plan depends on
each tuple or item (denoted by IN) returned by the input sub-
plans. The original plans compiled for a tree pattern com-
bines map operators (MapFromItem and MapToItem) to
perform iteration, navigational primitives (TreeJoin), and
calls to special functions (such as ddo). Other operators in-
clude [dot : Op] which constructs a new tuple with a
field dot, IN#dot which accesses the dot field in the in-
put tuple, and Select which stands for relational selection.

Algebraic Optimization. Once in algebraic form, the
optimization phase includes special-purpose optimization
rules to introduce a tree pattern operator (written Tuple-
TreePattern in our algebra). The corresponding optimiza-
tion rules are presented in Section 4. In the case of query
Q1a, Q1b, and Q1c, the resulting plan looks very simple,
with a single TupleTreePattern corresponding to the ex-
pected tree pattern, as follows.

MapToItem{IN#dot}
(TupleTreePattern

[IN#dot/descendant::person
[child::emailaddress]/child::name{dot}]

(MapFromItem{[dot : IN]}(IN#d)))

This TupleTreePattern accesses the dot field from the
input tuple, evaluates the tree pattern to produces a sequence
of output tuples with a new output dot field corresponding
to the names of the persons matching that tree pattern. For
instance, the following plan corresponds to query Q2, and
combines two tree patterns with a selection predicate.

MapToItem{IN#dot}
(TupleTreePattern

[IN#dot/child::emailaddress{dot}]
(Select{TreeJoin[child::name](IN#dot)="John"}

(TupleTreePattern
[IN#dot/descendant::person{dot}]
(MapFromItem{[dot : IN]}($d)))))

The optimization rules applied during that phase verify
two important properties. First, they are always directed in
a way that creates bigger tree patterns, which means they
detect the largest set of consecutive algebraic operators that
can be combined into a single tree pattern. Second, each
rule works specifically with combinations of algebraic op-
erators which have a tree pattern semantics, which ensures
that intermediate operators (e.g., as for the Select operator
in Q2) are preserved in the final plan.

Choosing a tree pattern algorithm. Finally, the last
compilation phase decides which tree pattern algorithm to
use (e.g., TwigJoin, Staircase join, nested-loop). We will

see in Section 6 that deciding which algorithm to use is non
trivial, and we will suggest some heuristics which work in
simple cases, depending on the shape of the tree pattern and
their location in the query plan.

3 Tree Pattern Rewritings

In this section, we focus on the rewriting techniques
needed to prepare XQuery expressions for tree pattern de-
tection. We write the corresponding transformations using
inference rule notations similar to those used in [12]. To il-
lustrate the effect of each set of rewritings, we apply them
on the normalized expression Q1a-n given at the beginning
of Section 2. Due to space limitations, we focus only on
the most important rewritings. The full set of rewritings
notably includes variable renaming (which is necessary to
handle Q1b, and Q1c), and can be found in [25]. The full
set of rewritings is provably sound and complete for a non-
trivial fragment of XQuery (also given in [25]). However,
a formal study of the properties of those rewritings is be-
yond the scope of this paper. The experimental evaluation
in Section 6 confirms the robustness of those rewritings in
practice.

Type rewritings. The first rules deal with typeswitch
expressions resulting from the compilation of XPath pred-
icates. The first rule removes case clauses which are sure
to be unused, while the second rule bypasses the typeswitch
in case one clause is sure to be used. Those rules rely on
type information, which can be obtained using XQuery’s
static typing feature. We refer the reader to previous work
on XQuery static typing [12, 10] for more details.

typeswitch (Expr0)
case Type1 as $v1 return Expr1 CaseClauses

statEnv ` Expr0 : Type0

statEnv ` Type0 ∩ Type1 = ∅
typeswitch (Expr0) CaseClauses

typeswitch (Expr0)
case Type1 as $v1 return Expr1 CaseClauses

statEnv ` Expr0 : Type0

statEnv ` Type0 ⊂ Type1

let $v1 := Expr0 return Expr1

Applying the previous rewriting rules to lines 12-16 on
the normalized expression for Q1 results in the following.

...
11. where
12. let $v3 := child::emailaddress
13. return fn:boolean($v3)
14. return $dot),
...

FLWOR rewritings. We then apply a set of rewritings
to remove unnecessary let and for clauses. The first two
rules remove unused let bindings and perform variable in-
lining. The third rule removes unused index variables in
for clauses. Those rules rely on an auxiliary judgment
that computes the usage count of a variable in a given ex-
pression.

let $x := Expr1 return Expr2

$x usage in Expr2= 0

Expr2

let $x := Expr1 return Expr2

$x usage in Expr2= 1

[Expr2|$x ⇒ Expr1]

for $x at $i in Expr1 return Expr2

$i usage in Expr2= 0

for $x in Expr1 return Expr2

Applying these rules results in the following.

1. ddo(
2. for $dot in ddo(
3. for $dot in ddo($d)
4. return
5. for $dot in ddo(descendant::person)
6. where fn:boolean(child::emailaddress)
7. return $dot)
8. return child::name)

Loop fusion. The next transformation is a loop-fusion
rewritings that is necessary to impose the proper nesting on
the evaluation of predicates.

for $x in Expr1 (where Cond1)? return
for $y in Expr2 (where Cond2)? return Expr3

for $y in
for $x in Expr1 (where Cond1)? return Expr2

(where Cond2)? return Expr3

Applying loop fusion to our example results in the fol-
lowing expression.

1. ddo(
2. for $dot in ddo(
3. for $dot in
4. for $dot in ddo($d)
5. return ddo(descendant::person)
6. where fn:boolean(child::emailaddress)
7. return $dot)
8. return child::name)

It is important to note that this rule does not hold in the
case one of the for expressions contains an index vari-
able, as would be the case if one of the expression uses

a the context position. For instance, consider the result
of applying all the previous rewriting rules to the query
$d//person[position()=1].

ddo(for $dot in
ddo(for $dot in $d

return descendant-or-self::node())
return
for $dot at $pos in ddo(child::person)
where $pos = 1 return $dot)

Applying loop fusion in this case would result in the con-
text position being computed with respect to the set of all
persons in the document, rather than once for each individ-
ual set of persons that are children of a given node in the
document.

Document order rewritings. Finally, we apply a set of
rewritings whose purpose is to normalize the use of ddo
calls. The first two rewritings remove unnecessary ddo
calls, while the last rewriting makes sure intermediate ex-
pressions are wrapped into ddo calls.

ddo(StepExpr)

StepExpr

ddo(Expr)
statEnv ` Expr : Type

Type ⊂ node()

Expr

ddo(for $x in Expr1

where Cond2 return Expr2)
Expr1 order independant
Expr2 order independant

ddo(for $x in ddo(Expr1)
where Cond2 return ddo(Expr2))

Applying these rules results in the expression Q1-tp
given in Section 2.

4 Algebraic Tree Pattern Optimization

In this section, we describe the tree pattern operator, and
the algebraic treatment of XQuery path expressions.

4.1 TupleTreePattern Operator

We extend the algebra of [27] with a new operator
for tree pattern evaluation: TupleTreePattern[TP](Op),
where TP is the tree pattern being applied, and Op is the
algebraic plan computing the input for the operator. Tree
patterns are expressed using a small fragment of XPath
which is described by the following grammar, with Axis
and NodeTest being defined as in XPath.

TreePattern ::= IN#FieldName(/Pattern)?
Pattern ::= Step([Pattern]) ∗ (/Pattern)?
Step ::= Axis NodeTest{FieldName}?
FieldName ::= QName

The TupleTreePattern operator takes a sequence of tu-
ples as input and produces a sequence of tuples as out-
put. The input field containing the context nodes being pro-
cessed is given at the beginning of the pattern. The tree
pattern used as a parameter for the operator includes anno-
tations for the nodes that must be returned and the corre-
sponding fields in the output tuples. The signature for that
operator is given below. S(...) denotes an (ordered) se-
quence, S(τ) denotes a sequence of tuples of type τ , S(i)
denotes a sequence of items in the XQuery Data Model
(XDM) [28], TreePattern{q1,...,qn} denotes a tree pat-
tern containing the output fields q1,...,qn.

TupleTreePattern[TreePattern{q1,...,qn}](S(τ))
→

S([q1:S(i); ...; qn:S(i)])

A TupleTreePattern returns all bindings matching the
tree pattern, in a root-to-leaf lexical order, which is consis-
tent with the semantics of TwigJoins [4]. Those bindings
are returned as fields within the output tuples, based on the
field annotations in the pattern. This semantics is illustrated
on the following example.

TreePattern
[IN#x/descendant::a/child::c{y}[@id]/child::d{z}](
[x : <a><c id="1"><d id="2"/><d id="3"/>],
[x : <a><c/><a/>],
[x : <a><c id="4"><d id="5"/></c><c id="6"/>]

)
= ([x : <a><c id="1"><d id="2"/><d id="3"/></c>;

y : <c id="1"><d id="2"/><d id="3"/></c>;
z : <d id="2"/>],

[x : <a><c id="1"><d id="2"/><d id="3"/></c>;
y : <c id="1"><d id="2"/><d id="3"/></c>;
z : <d id="3"/>],

[x : <a><c id="4"><d id="5"/></c><c id="6"/>;
y : <c id="4"><d id="5"/></c>;
z : <d id="5"/>])

Note that the TupleTreePattern operator essentially be-
haves as a dependant join. In the above example, the second
tuple for which there is no match does not appear in the re-
sult, the first tuple which matches the pattern twice results
in two output tuples, and the last tuple results only in one
tuple for the c element that contains a d child.

Definition 4.1:[Extraction Point of an XPath expression]
The extraction point of a path expression is the last step of
the path that is not part of a predicate.

Note that the TreePattern operator may result in bind-
ings in which some of the fields have duplicates and that
some of those bindings may not be in document order.

However, the semantics coincide with the XPath semantics
in the case there is only an output field on the extraction
point of the tree pattern.

4.2 TreePattern optimization

We now consider the path expression Q1a presented in
Section 2. Applying the normalization and rewriting phases
described in the previous section results in the expression
Q1-tp which is then compiled in the algebra by applying
the compilation rules in [27], resulting in the plan P1. This
plan features map operators, TreeJoin, and fs:ddo. In the
rest of the section, we illustrate the algebraic optimizations
that enable the detection of a single tree pattern operator for
that plan.

Figure 3 summarizes the algebraic rewritings necessary
to detect TupleTreePattern in query plans. We focus on the
most important rewritings. Due to space limitations, some
additional “clean-up” rewritings used to make the detection
more robust in complex plans are not discussed here. For
instance, the last fs:ddo operation is removed since the
TreeJoin is always applied to one item.

From TreeJoin to TupleTreePattern
The first step in picking up tree patterns from the alge-

braic query plan is to rewrite TreeJoin operators, which op-
erate on items, into TupleTreePattern operators which op-
erate on tuples. This step is handled by the rewrite rules (a)
and (b), each applying to TreeJoin occurences in very spe-
cific contexts. Rule (a) is the most general and can always
be applied to replace an occurence of the TreeJoin opera-
tor and introduces and extra MapToItem that converts the
output from tuples to items, to emulate the output of the
TreeJoin. Rule (b) operates on a more specific case, in
case a MapToItem operator is already present as it is often
the case, notably when the step expression resulting from
normalization is within a for clause. This rule is applied
before rule (a). Note that rule (b) requires the presence of a
distinct-document-order operation, which is necessary since
the resulting TupleTreePattern returns nodes in document
order. Applying rules (a) and (b) to the TreeJoin on lines 2,
7 and 10 in P1, results in the plan P2 below.

1. fs:ddo(MapToItem{IN#out} P2
2. (TupleTreePattern[IN#dot/child::name{out}]
3. (MapFromItem{[dot : IN]}
4. (fs:ddo(MapToItem{IN#dot}
5. (Select{fn:boolean(MapToItem{IN#out}
6. (TupleTreePattern
7. [IN#dot/child::emailaddress{out}]
8. (IN)))}
9. (MapFromItem{[dot : IN]}
10. (fs:ddo(MapToItem{IN#out}
11. (TupleTreePattern
12. [IN#dot/descendant::person{out}]

13. (MapFromItem{[dot : IN]}($d))))))))))))

Eliminating Item-Tuple Conversions
Note that this rewriting may result in slightly more com-

plex plans notably because of the introduction of extra
maps, and that the TupleTreePatterns are still applied in
a nested loop fashion. The following rule, (c) introduces
bulk TreePatterns by collapsing MapFromItem operators
applied to MapToItem operators — which in turn have a
TupleTreePattern as independent subexpression. Before
we can collapse these item-tuple conversions, we need to
eliminate the fs:ddo call, which can be done with rule (f).
Applying rules (f) and (c) to on lines 9-10 in P2 above, re-
sults in the plan P3 below.

1. fs:ddo(MapToItem{IN#out} P3
2. (TupleTreePattern[IN#dot/child::name{out}]
3. (MapFromItem{[dot : IN]}
4. (fs:ddo(MapToItem{IN#dot}
5. (Select{fn:boolean(MapToItem{IN#out}
6. (TupleTreePattern
7. [IN#dot/child::emailaddress{out}]
8. (IN)))}
9. (TupleTreePattern
10. [IN#dot/descendant::person{dot}]
11. (MapFromItem{[dot : IN]}($d)))))))))

Merging individual tree patterns
The final set of rules are used to merge compositions of

single-step tree patterns into multi-step tree patterns occur
next to each other. Rule (d) deals with sequences of consec-
utive steps, while rule (e) deals with predicate branches in
the pattern. In the plan P3 above, we first have to apply (e)
on lines 5-10, resulting plan P4 below, in which the Select
operation to be removed and a predicate branch added to the
tree pattern. Note that the fs:ddo in P3 can be removed
with rule (f), since it operates over a TupleTreePattern,
which includes fs:ddo semantics.

1. fs:ddo(MapToItem{IN#out} P4
2. (TupleTreePattern[IN#dot/child::name{out}]
3. (MapFromItem{[dot : IN]}
4. (MapToItem{IN#dot}
5. (TupleTreePattern
6. [IN#dot/descendant::person{dot}
7. [child::emailaddress]]
8. (MapFromItem{[dot : IN]}($d)))))))

Finally, applying rule (d) again on lines 3-4, followed by
rule (e) on the TreePatterns on lines 2 and 5-7, result in
the final expected plan P5 below, where the tree pattern has
been fully recognized by the compiler.

1. MapToItem{IN#out} P5
2. (TupleTreePattern

Replacing TreeJoins with TupleTreePatterns

TreeJoin[Axis, nt](IN#in) → MapToItem{IN#out}(TupleTreePattern[IN#in/Axis :: nt{out}](IN)) (a)

ddo(MapToItem{TreeJoin[Axis, nt](IN#in)}(Op)) → MapToItem{IN#out}(TupleTreePattern[IN#in/Axis :: nt{out}](Op)) (b)

Eliminating Item-Tuple Conversions

MapFromItem{[out1:IN]}
(MapToItem{IN#out2} → TupleTreePattern[IN#in/Axis :: nt{out1}](Op) (c)

(TupleTreePattern[IN#in/Axis :: nt{out2}](Op)))

Merging Individual Tree Patterns

TupleTreePattern[IN#out1/step2{out2}]
(TupleTreePattern[IN#in/pattern/step1{out1}](Op)) → TupleTreePattern[IN#in/pattern/step1/step2{out2}](Op) (d)

Select{
fn:boolean(fs:ddo(

(MapToItem{IN#out1}
(TupleTreePattern[IN#out/pred1{out1}] (IN))))

and → TupleTreePattern[IN#in/step{out}[pred1] . . . [predn]](Op) (e)
· · ·
fn:boolean(fs:ddo(

(MapToItem{IN#outN}
(TupleTreePattern[IN#out/predN{outN}] (IN))))

}
(TupleTreePattern[IN#in/step{out}](Op))

fs:ddo(MapToItem{IN#out} → TupleTreePattern[IN#in/pattern](Op) (f)
(TupleTreePattern[IN#in/pattern](Op)))

Figure 3. XPath algebraic rewritings

3. [IN#dot/descendant::person
4. [child::emailaddress]/child::name{out}]
5. (MapFromItem{[dot : IN]}($d)))

Note that the outer fs:ddo call is the subject of a very
simple cleanup rule, since TupleTreePatterns incorporate
tits semantics. Obviously, this example works all the way
to the point where the original path expression is recovered.
However, the benefit of that approach is that the query plans
generated through those rewritings are always possible eval-
uation plans. For more complex path expressions, such as
Q2 or Q3, or Q4, Q5 which were given in Section 2, the op-
timizer will detect only a certain fragment of the plan, leav-
ing intermediate maps as necessary to preserve the proper
semantics.

5 XPath Algorithms Revisited

In this section, we review the physical algorithms used
to implement the logical TupleTreePattern operator de-
scribed in the previous Section. In addition to nested-loop
joins (NLJoin), we focus on two of the most well-known
XPath join algorithms: TwigJoin [4] with the improvements
suggested in [15, 23], and Staircase Join (SCJoin). We im-
plemented those algorithms, taking some of the specificities
of our physical setup into account (DOM in main memory,

Figure 4. Name index for a given QName

along with in-memory name indices). We start by describ-
ing our physical setup, then review the various physical al-
gorithms. We also described improvements over the origi-
nal algorithms that are made possibles by properties of the
tree pattern generated from path expressions.

5.1 Physical Data Model and Name Indexes

The main data structure we use to represent XML docu-
ments is an implementation of the XDM [28] based on a tree
structure in main-memory. Each node contains local proper-
ties of that node (node-kind, node-name, typed-value, etc.),
a pointer to its parent and a pointer to a list of its children.

In addition, we require the presence of name indices pro-
viding efficient access to element nodes based on pre-order
and post-order in the tree. Access to both pre-order and
post-order guarantees that the same index can be used for
both the TwigJoin and the SCJoin algorithms.

Figure 4 shows one name index, which consists of (a)
a main array of references to the DOM-elements with a
matching QName in document order, (b) an index over the
pre-order positions of the elements, pointing to the main
array and (c) an index over the post-order positions of the
elements, pointing to the main array. Note that any data
structure providing efficient access to an element node given
its pre-order or post-order number can be used. In our im-
plementation, we use sorted arrays and binary search for
efficient lookup. The array-based indexes were selected be-
cause they have the least overhead at build time, especially
since we load them with already sorted key sequences, re-
sulting in linear scalability with the document size.

5.2 Revisiting Nested Loops

The NLJoin algorithm is the default evaluation strategy
when none of the other two algorithms can be applied. The
biggest drawback of the nested loops physical algorithm is
the need for sorting by document order and duplicate elim-
ination. Duplicate elimination is especially important be-
cause it keeps the intermediate results from growing expo-
nentially with duplicate nodes. On the other hand, dupli-
cate elimination is a blocking operation and thus may sig-
nificantly slow down query evaluation. Note however, that
sorting and duplicate elimination operations can often be
removed using static analysis techniques such as described
in [13].

Note that even if a TupleTreePattern operator is intro-
duced in the plan during logical optimization, TwigJoin and
SCJoin algorithms may not be applicable. More precisely,
the following constraints must hold:

• the tree pattern must be restricted to a case where the
algorithms can be applied (e.g., no backward axis);

• the sequence of input nodes must be sorted by docu-
ment order and duplicate free;

• appropriate name indexes must be available for the ap-
propriate (parts of) the document.

Finally, note that NLJoin is more than a fall-back strat-
egy. As we show in Section 6, NLJoins can be the best eval-
uation strategy for some specific queries, even if a TwigJoin
or SCJoin is available.

5.3 Revisiting TwigJoins

Initial reports on TwigJoins [4] discuss two algorithms.
PathStack is an algorithm that is specifically designed and
optimized for straight-line tree patterns, i.e., tree patterns
without branches. We do not consider this algorithm in
this work and we restrict this discussion to the more generic
counterpart of PathStack, namely TwigStack.

The TwigStack algorithm evaluates an entire tree pattern,
including the branches, in one pass over the indexes. Our
name indexes provide in-order access to all elements with
the same QName and to their pre- and post-order positions,
which is exactly what the TwigStack algorithm needs. The
general idea behind TwigStack is to restrict query process-
ing to complete matchings of the tree pattern only, skipping
any partial and thus irrelevant results. For this, it maintains
a stack for every tree pattern node, which keeps track of all
root-to-leaf matchings of the tree pattern. Before a node nq

is pushed on a stack Sq , the algorithm ensures, by inspect-
ing the corresponding QName indexes, that (i) there is a
descendant of nq in the index of all child tree pattern nodes
and (ii) all these nodes recursively satisfy this property. The
algorithm also ensures that if a node n comes before n′ in
document order, and if both n and n′ are part of the result,
that n is pushed on a stack before n′. Despite its optimality,
TwigStack has some specific drawbacks:

• The algorithm executes a significant number of in-
structions for each node visited.

• TwigStack produces all separate root-to-leaf matches,
which are later joined into full tree pattern matchings.
This last step requires blocking, which is undesirable,
especially for main memory query processors.

We use the above properties of the TwigStack algorithm,
together with specifics of the XPath semantics to optimize
TwigStack in several ways.

1. XPath queries only select nodes belonging to the stack
of a single tree pattern node. We can use this prop-
erty to remove the blocking factor from the TwigStack
algorithm. Since we are not interested in the full tree
pattern matching, there is no need for joining all partial
results into full tree pattern answers. Note that for this
optimization, we need to restrict the number of output
fields inside the TupleTreePattern operators to one
which is the cases where the semantics coincide with
that of path expressions (see Section 3).

2. TwigStack ensures that every node that is pushed on
any stack is part of the final result. Therefore, once
an XPath output node is pushed on a stack, we do not
need to match all descendant nodes on the descendant
stacks, we can just skip them. Since the original al-
gorithm ensures that nodes are pushed on the stacks in
document order, we know that this modification causes
the output to be sorted by document order and dupli-
cate free.

3. Finally, we use the efficient lookup potential of the
name indexes to optimize cursor navigation inside the
TwigStack algorithm, as described in [15].

5.4 Revisiting Staircase Joins

The Staircase Join algorithm [18] is another well known
evaluation strategy for XPath, which was originally de-
signed to implement XPath using relational database tech-
nology. Staircase Joins are incorporating several optimiza-
tions that ensure the optimal evaluation of a single XPath
step. The algorithm consists of the following steps:

• Pruning gets rid of context nodes whose results are
subsets of those of other context nodes. This step
avoids the occurrence of duplicate output nodes;

• Using pre-/post- order indexes, the algorithm identifies
a continuous region in the relational table that encodes
the nodes, where all the answers for one context node
are located;

• A scanning of one completely isolated region per re-
maining context node results in the output list to be
sorted and duplicate free;

• For some axes, optimality is attained by skipping over
parts of the document regions that are known to be
empty.

The key difference between our implementation and the
original specification of the algorithm lies in the fact that
Galax uses a DOM physical data layout, in contrast with
the relational structure described in [18]. Since it is not de-
sirable to duplicate the entire document in main memory in
order to obtain the same indexing organization, we resort
to using partial indexes, i.e., the name indexes described
above. The disadvantage of this approach is that we cannot
rely on the continuous addressing of the nodes based on the
pre-order position of an item, a concept that is intensively
used by the original Staircase Join algorithm to identify and
scan partitions. As a consequence, the cost of identifying a
region, including skipping, becomes log(|Document|), as
this requires an index lookup. This is in contrast with the
constant cost of the original approach.

However, there is also an important advantage: the selec-
tivity of the QName indexes will restrict scanning to nodes
that match the name test of the step. Next to this, name in-
dices are easier to maintain compared to a direct addressing
system in case of updates. It is also important to point out
that the main array of the indexes contains all items in docu-
ment order, allowing sequential scanning within one region.

Finally, the original SCJoin algorithm does not handle
predicate branches. In case the TupleTreePattern opera-
tor features such predicates, we evaluate the corresponding
items on a per-node basis.

6 Experimental Evaluation

This section serves two purposes. First, we validate the
robustness of the compilation approach described earlier in
this paper. In order to do so, we run the compiler over se-
mantically equivalent but syntactically different expressions
and verify that appropriate tree patterns are detected.

In the second part of this section we derive heuristics for
deciding among XPath join algorithms by comparing the
relative performance of several popular tree pattern algo-
rithms in the context of complete query plans (as opposed
to in isolation). For convenience, we briefly review the main
findings of that analysis here:

• For simple rooted path expressions, NLJoin is always
outperformed by SCJoin or TwigJoin. SCJoins and
TwigJoins are often providing very comparable perfor-
mances, differing only by a constant factor;

• The performance of SCJoin can degrade for complex
tree patterns while TwigJoin is always well-behaved;

• There is no single best algorithm for evaluating tree
pattern operators in a query plan. A combination of
parameters, including the form of the query and the
shape and size of the documents must be taken into ac-
count to predict which XPath join algorithms performs
best. Clearly, an accurate cost model is needed.

6.1 Validation of the logical rewritings

As we have seen, one of the benefits of the proposed
compilation pipeline is the ability to detect tree patterns
even in cases where navigation is not written directly in
XPath, but within a combination of FLWOR and path ex-
pressions. Consider for instance the following path expres-
sion.

$input/site/people/person
[emailaddress]/profile/interest

There are many equivalent variations of that path expres-
sion, such as the following FLWOR expression.

for $x1 in $input/site,
$x2 in $x1/people,
$x3 in $x2/person[emailaddress]

return $x3/profile/interest

In order to test the robustness of our rewritings3, we gen-
erated 20 variants of the above path expression by replacing
the / operator by equivalent for clauses and optionally

3Some of these syntactic variations require static analysis in order to
decide that intermediate results are in document order and free of dupli-
cates (see [25]).

replacing the predicate by a where clause. We ran these
queries both on the standard engine (with no TupleTreeP-
attern operator) and on the new engine. While on the old
engine the generated plans were dependent on the syntac-
tic form of the query, on the new engine, all the variants
generated the exact same plan, containing a single Tuple-
TreePattern operator.

The recovery of the path expression enables the applica-
tion of specialized XPath algorithms, which in turn speeds
up query evaluation and improves overall scalability, as is
shown in Figure 5.

Figure 5. Evaluation of a path expression writ-
ten as a FLWOR, with and without the rewrites

6.2 Comparative Experiments

We ran experiments on both synthetic queries and the
XMark benchmarks. We show that there is no single best
XPath evaluation strategy and that the performance of the
different algorithms depends on many variables, each favor-
ing or disfavoring different aspects of individual algorithms.

For the first experiment we evaluate the six queries given
in Figure 6, with all three evaluation strategies and dif-
ferent sizes of documents, namely 2.1, 4.3, 6.5, 8.7 and
11 MB MemBeR documents of depth 4, containing 100
different tags, uniformly distributed. The results of this
test are shown in Table 1 (where we highlight the best
times in boldface). Interestingly, it is sometimes benefi-
cial to turn some child steps into descendant steps to ben-
efit from the improved handling of descendant in SCJoin
and TwigJoin. Figure 7 show the evaluation time for sev-
eral XMark queries for which replacing a child by a
descendant step without changing the semantics.

The results of both tests show that NLJoin is never the
fastest strategy. The reason for this lies in the construction

2.1 MB 4.3 MB 6.5 MB 8.7 MB 11 MB
NL 0.0661 0.14784 0.2137 0.3078 0.3856

QE1 TJ 0.0207 0.04369 0.0698 0.1264 0.1468
SC 0.0150 0.04310 0.0645 0.1063 0.1570
NL 0.0698 0.1247 0.2193 0.3035 0.3557

QE2 TJ 0.0380 0.0686 0.1102 0.1531 0.2131
SC 0.0157 0.0463 0.0630 0.1091 0.1358
NL 0.0686 0.1431 0.2247 0.2952 0.4086

QE3 TJ 0.0179 0.0586 0.0749 0.1177 0.1656
SC 0.0212 0.0589 0.1126 0.1473 0.2226
NL 0.0668 0.1393 0.2259 0.3201 0.3864

QE4 TJ 0.0205 0.0446 0.0772 0.1151 0.1549
SC 0.0206 0.0544 0.0828 0.0957 0.1339
NL 0.0714 0.1412 0.2296 0.3038 0.3652

QE5 TJ 0.0343 0.0825 0.1081 0.1619 0.2783
SC 0.0207 0.0489 0.0622 0.1058 0.1541
NL 0.0701 0.1513 0.2334 0.3294 0.4136

QE6 TJ 0.0182 0.0481 0.0799 0.1105 0.1506
SC 0.0203 0.0587 0.0832 0.1372 0.1651

Table 1. Evaluation time (in seconds) for the
queries in Figure 6

Figure 7. XMark queries where child has
been replaced with descendant

of both queries and documents. However, for more com-
plex path expressions, NLJoin can sometimes be the fastest
algorithm.

The XMark results indicate that SCJoins are the better
evaluation strategy in most cases. These and other exper-
iments have shown that SCJoins indeed provide good per-
formance and scalability for simple path expressions. The
synthetic queries QE1 to QE6, however, point out that, once
the query gets sufficiently complex, SCJoins are no longer
the fastest. The results for QE2 and QE5 in Table 1 show
that TwigJoins are clearly faster. But query complexity is
obviously not the only factor affecting performance, as is
shown in the results for QE1 and QE4, where the document
size seems to influence which algorithm performs best.

It is also worth pointing out that evaluating child axes
does not penalize query performance in both TwigJoin and

(QE1) $input/desc::t01[child::t02[child::t03[child::t04]]]
(QE2) $input/desc::t01/child::t02[1]/child::t03[child::t04]
(QE3) $input/desc::t01[child::t02[child::t03]/child::t04[child::t03]]
(QE4) $input/desc::t01[desc::t02[desc::t03[desc::t04]]]
(QE5) $input/desc::t01/desc::t02[1]/desc::t03[desc::t04]
(QE6) $input/desc::t01[desc::t02[desc::t03]/desc::t04[desc::t03]]

Figure 6. The first three queries correspond with the last three, but all child axes (except the first)
have been replaced with descendant ones.

SCJoin algorithms. This is due to the constant access cost
to children and parent in the Galax data model.

6.3 XPath Evaluation in an XQuery Context

In previous experiments, involving isolated tree pattern
expressions, NLJoins are slower than either TwigJoins and
SCJoins. This is not always the case for more complex path
expressions or path expressions within large more complex
queries. This experiment shows that once path expressions
fall outside the tree pattern fragment, or are embedded in-
side XQuery expressions, the relative performance among
the join algorithms changes.

Experiment Setup – We used a MemBeR document
of 50,000 nodes and depth 15. All nodes have the same
qname t1. Next, we evaluated the queries (/t1[1])k for
k = 5, 10, 15. The results are as follows:

k = 5 k = 10 k = 15
NLJoin 0.00683 0.00064 0.00059
TwigJoin 0.85847 0.88072 0.84561
SCJoin 0.23770 0.23803 0.21785

There are a few reasons for the big difference between
NLJoin on the one hand and TwigJoins and SCJoins on the
other.

• Since the query falls outside the tree pattern fragment,
the plan will contain TupleTreePattern operators em-
bedded in maps. So, both TwigJoins and SCJoins will
scan the index once for each step,

• The query is very selective, causing Nested Loop to
visit a very limited portion of the tree.

• The NLJoin only accesses the first child of every step,
because of the cursor based implementation. The other
algorithms have a cost of at least Log(|Input|) per
step for the index lookup.

Although this is a quite extreme example, it suffices to
achieve sufficient selectivity in a query in order for NLJoins
to benefit from this.

7 Related work

In the past several years, efficient XML processing has
received considerable interest. Numerous efforts have fo-
cused on the development of algorithms [4, 15, 23, 19, 9,
18, 16], along with appropriate index structures [17, 8, 21,
7, 5, 20, 22], based on the notion of tree pattern has been a
key focus of research on XML query processing. Our work
is essentially complementary, as it aims at bridging the gap
between algorithmic work on tree patterns and XML alge-
braic compilers.

The first complete algebraic treatment of XPath 1.0 was
proposed in [3]. The approach uses a nested-relational al-
gebra which enables well-understood relational optimiza-
tions, including traditional join optimization. However, it
does not integrate support for tree-pattern operators as pre-
sented here. The TAX algebra [6] developed for the Timber
system is a tree-based algebra that support tree-pattern eval-
uation. Compilation for a fragment of XQuery into TAX is
described in [6]. However it is unclear how the approach
can scale to arbitrary XQuery expressions, and how to inte-
grate traditional relational optimization in the context of a
purely tree-based approach. Our work is the first to extend a
tuple algebra for XQuery [27] with support for tree-pattern
evaluation. Work on System RX [1] includes a tree pattern
operator capable of returning multiple bindings. However,
the compiler relies on the syntactic form of the path expres-
sions to detect when a tree pattern operator can be used.
Instead, we provide a more semantic treatment which fa-
cilitates the recognition of tree pattern operators in more
complex queries.

8 Conclusion

In this paper, we have proposed an approach that support
the systematic compilation of path expression in arbitrary
XQuery. We developed algebraic techniques to detect the
possible use of tree-pattern operators, and presented the first
comparative evaluation between several well known XPath
algorithms. Our experiments indicate that there is no single
best algorithm for evaluating path expressions in the con-
text of XQuery, and point to the necessity of developing a

suitable cost-model.
Interesting future work include the extension of the tree-

pattern fragment that is being suported to deal with posi-
tional predicates. We are also interested in evaluating the
benefits of other variants of Twigjoin algorithms, as well as
the possible use of streaming XPath algorithms. Also, our
study so far has been limited to a single data model. We are
considering the use of more advanced disc-based indices
and extending our approach to specific shredding models
such as the one proposed in [17].

Acknowledgments. We would like to thank Mary
Fernández and Christopher Ré for numerous discussions on
XPath evaluation, and their help with the implementation.

Philippe Michiels is supported by the IWT (Institute for
the Encouragement of Innovation by Science and Technol-
ogy) Flanders, grant number 31016. Some of this work was
done during an internship at the IBM Watson Research Cen-
ter (NY), partially funded by IBM.

References

[1] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein,
G. Lapis, G. Lohman, B. Lyle, F. Özcan, H. Pirahesh,
N. Seemann, T. Truong, B. V. der Linden, B. Vickery,
and C. Zhang. System RX: one part relational, one
part XML. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Manage-
ment of data, pages 347–358, New York, NY, USA,
2005.

[2] S. Boag, D. Chamberlin, M. F. Fernandez, D. Flo-
rescu, J. Robie, and J. Simeon. XQuery 1.0: An XML
query language. Candidate Recommendation, Nov.
2005.

[3] M. Branter, S. Elmer, C.-C. Kanne, and G. Moerkotte.
Full-fledged algebraic XPath processing in Natix. In
ICDE, Boston, MA, 2005.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. In SIGMOD
’02: Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages 310–
321, New York, NY, USA, 2002. ACM Press.

[5] T. Chen, T. W. Ling, and C. Y. Chan. Prefix path
streaming: A new clustering method for optimal holis-
tic XML twig pattern matching. In DEXA, pages 801–
810, 2004.

[6] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and
S. Paparizos. From tree patterns to generalized tree
patterns: On efficient evaluation of XQuery. In VLDB,
pages 237–248, Berlin, Germany, Sept. 2003.

[7] S. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zan-
iolo. Efficient structural joins on indexed XML docu-
ments. In VLDB, Hong Kong, China, Aug. 2002.

[8] J.-K. M. Chin-Wan Chung and K. Shim. APEX :
An adaptive path index for XML data. SIGMOD,
15(5):121–132, June 2002.

[9] B. Choi, M. Mahoui, and D. Wood. On the optimal-
ity of holistic algorithms for twig queries. In DEXA,
pages 28–37, 2003.

[10] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani.
Types for path correctness of xml queries. In ICFP,
pages 126–137, 2004.

[11] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The
NEXT logical framework for XQuery. In VLDB,
pages 168–179, Toronto, Canada, Aug. 2004.

[12] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra,
K. Rose, M. Rys, J. Simeon, and P. Wadler. XQuery
1.0 and XPath 2.0 formal semantics, W3C working
draft. Candidate Recommendation, Nov. 2005.

[13] M. Fernández, J. Hidders, P. Michiels, J. Siméon,
and R. Vercammen. Optimizing sorting and duplicate
elimination in XQuery path expressions. In Proc. of
the 16th International Conference on Database and
Expert Systems Applications (DEXA 2005), volume
3588 of Lecture Notes in Computer Science, pages
554–563, Copenhagen, Denmark, 2005.

[14] M. Fernández, J. Siméon, B. Choi, A. Marian, and
G. Sur. Implementing XQuery 1.0: The Galax Ex-
perience. In VLDB, Sept. 2003.

[15] M. Fontoura, V. Josifovski, E. Shekita, and B. Yang.
Optimizing cursor movement in holistic twig joins.
In CIKM ’05: Proceedings of the 14th ACM interna-
tional conference on Information and knowledge man-
agement, pages 784–791, New York, NY, USA, 2005.
ACM Press.

[16] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing XPath queries. In VLDB, pages
95–106, 2002.

[17] T. Grust, M. V. Keulen, and J. Teubner. Accelerat-
ing XPath evaluation in any RDBMS. ACM Trans.
Database Syst., 29(1):91–131, 2004.

[18] T. Grust and M. van Keulen. Tree awareness for re-
lational DBMS kernels: Staircase join. In Intelligent
Search on XML Data, pages 231–245, 2003.

[19] H. Jiang, H. Lu, and W. Wang. Efficient processing of
twig queries with or-predicates. In SIGMOD Confer-
ence, pages 59–70, 2004.

[20] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig
joins on indexed XML documents. In VLDB, pages
273–284, 2003.

[21] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In VLDB, September
2001.

[22] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen. From re-
gion encoding to extended Dewey: On efficient pro-
cessing of XML twig pattern matching. In VLDB,
pages 193–204, 2005.

[23] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Efficient
processing of ordered XML twig pattern. In DEXA,
pages 300–309, 2005.

[24] N. May, S. Helmer, and G. Moerkotte. Nested queries
and quantifiers in an ordered context. In ICDE, pages
239–250, Boston, MA, Mar. 2004.

[25] P. Michiels, G. A. Mihăilă, and J. Siméon. Put a tree
pattern in your tuple algebra. Technical report, Tech.
Rep., Univ. of Antwerp, TR-06-09, Belgium, 2006.

[26] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree logical classes for efficient evaluation
of XQuery. In SIGMOD, pages 71–82, Paris, France,
June 2004.

[27] C. Re, J. Simeon, and M. Fernandez. A complete and
efficient algebraic compiler for XQuery. In ICDE, At-
lanta, Georgia, Apr. 2006.

[28] XQuery 1.0 and XPath 2.0 data model (XDM). Can-
didate Recommendation, Nov. 2005.

A APPENDIX: A Normal Form for Tree Patterns in XQuery

We conjecture that our complete set of rewrite rules (given below) is capable of picking up all expressions inside the
supported fragment that have XPath semantics and rewrite them into a Tree Pattern Normal Form such that they can be picked
up by the algebraic rewrites as TupleTreePattern operators. Due to time restrictions, the formal proof for this conjecture
could not be verified and written down in this paper and it is left as future work.

A.1 Supported Frgament

expr ::= $x | . | * | l | expr/expr | expr//expr | expr[expr] |
(let $x := expr | for $x in expr)∗ (where cond)? return expr

cond ::= expr | cond and cond

A.2 XQuery Core Mapping

A.2.1 Core Fragment (CXQ)

expr ::= $x | $x/child::* | $x/child::l | $x/descendant-or-self::* |
fs:distint-docorder(expr) | for $x in exprwhere cond return expr

cond ::= expr | cond and cond

A.2.2 Mapping Rules

Conjecture 1 Every XQ expression e is mapped to an equivalent expression e′ in CXQ, using the translation rules below.

Slash Normalization

e1/e2 7→
fs:distinct-docorder(

for $fs:dot in e1

return e2

)

e1//e2 7→
fs:distinct-docorder(

for $fs:dot in e1/descendant-or-self::*
return e2

)

Predicate Normalization

e1[e2] 7→
for $fs:dot in e1

where e2

return $fs:dot

Inlining

let $x := e1

return e2
7→ e2[$x/e1]

Steps

. 7→ $fs:dot

l 7→ child::l

* 7→ child::*

Introducing Where

for $x in e1

return e2
7→

for $x in e1

where $x
returnn e2

A.3 Tree Pattern Normalization rules

A.3.1 Tree Pattern Normal Form (TPNF)

The language TPNF is a sublanguage of CXQ and is defined by following grammar:

expr ::= for | step | self
for ::= fs:distint-docorder(for $fs:dot in expr where expr return step)
step ::= $fs:dot/child::* | $fs:dot/child::l | $fs:dot/descendant-or-self::*
self ::= $fs:dot

A.4 TPNF Normailization

Below we give the complete set of rewrite rules that are needed for rewriting any expression in CXQ that has XPath
semantics into TPNF.

A.4.1 Pre-processing

Insert fs:distinct-docorder Call

fs:distinct-docorder(
for $x in e1

where e2

return e3

)

7→

fs:distinct-docorder(
for $x in fs:distinct-docorder(e1)
where e2

return fs:distinct-docorder(e3)
)

With e1, e3 not a distinct-docorder call.

Remove Duplicate fs:distinct-docorder Calls

fs:distinct-docorder(fs:distinct-docorder(e)) 7→ fs:distinct-docorder(e)

Resulting grammar:
expr ::= fs:distinct-docorder($x | $x/child::* | $x/child::l | $x/descendant-or-self::* |

for $x in exprwhere cond return expr)
cond ::= expr | cond and cond

A.4.2 Actual Normalization Rules

Loop Fusion

fs:distinct-docorder(
for $x in e1

where c2

return
fs:distinct-docorder(

for $y in e3

where c4

return e5

))

7→

fs:distinct-docorder(
for $y in

fs:distinct-docorder(
for $x in e1

where c2

return e3)
where c4

return e5)

If $x /∈ FV (c4) ∪ FV (e5).

Lift Condition

fs:distinct-docorder(
for $x in e1

where c2

return
fs:distinct-docorder(

for $y in e3

where c4

return e5

))

7→

fs:distinct-docorder(
for $x in e1

where c2 and c4

return
fs:distinct-docorder(

for $y in e3

return e5

))

Where $y /∈ FV (c4).

fs:distinct-docorder(
for $y in

fs:distinct-docorder(
for $x in e1

where c2

return e3

)) where c4

return e5

7→

fs:distinct-docorder(
for $y in

fs:distinct-docorder(
for $x in e1

where $x
return e3

)) where c4 and c2

return e5

Where $x /∈ FV (c2).

Extract Condition

fs:distinct-docorder(
for $x in e1

where c2

return $y/step
)

7→

fs:distinct-docorder(
for $z in $y
where

for $x in e1

where c2

return $x
return $z/step

)

When $x 6= $y. The step is optional.

A.4.3 Post-processing

Predicate Decomposition

for $x in e
where e1 and e2

return er

7→

for $x in
for $x in e
where e1

return $x
where e2

return er

Redundant Loop Removal

for $x in e where $x return $x 7→ e

Remove fs:distinct-docorder Calls

fs:distinct-docorder($x) 7→ $x

fs:distinct-docorder($x/child::*) 7→ $x/child::*

fs:distinct-docorder($x/child::l) 7→ $x/child::l

fs:distinct-docorder($x/descendant-or-self::*) 7→ $x/descendant-or-self::*

A.4.4 Identifying Implicit Tree Patterns

Insert fs:distinct-docorder Call (bis)

e 7→ fs:distinct-docorder(e)

When the result of e always is in document order of free from duplicates, independantly of the input.

Note that for the last rule we need to verify wether an expression always yields a result that is sorted by document order
and duplicate-free. We conjecture here, that this can indeed be decided for the CXQ fragment.

The latter rule detects all non XPath expressions that have XPath semantics and puts an fs:distinct-docorder call around
them. Proving completeness is done by showing that the above rules rewrite all expressions that are surrounded by an
fs:distinct-docorder call to expressions in TPNF.

