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Through every rift of discovery some seeming anomaly drops out of the darkness,
and falls, as a golden link into the great chain of order.
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CHAPTER 1
Introduction

Data mining is a step in the knowledge discovery in databases (KDD) process
that consists in applying data analysis and discovery algorithms with the goal to find
unsuspected relationships and to summarise the data in ways that are both under-
standable and useful [25]. These relationships and summaries are often referred to
as patterns and models.

When modeling data, one differentiates typically between predictive and descrip-
tive modeling. A predictive model is built, or learnt, from the data and is typically
meant to be used to predict the value of an unknown output variable depending on
one or more known input variables. Depending on the type of the response variable,
e.g. categorical or quantitative, it is respectively called classification or regression.
The goal of descriptive modeling, on the other hand, is to provide insightful de-
scriptions of the data, e.g. by grouping the data into clusters. Other data mining
algorithms are focused on the discovery of patterns and rules. For example, the task
of finding combinations of items that occur frequently in databases.

Besides discovering these regularities, detecting exceptions, or anomalies, in
data can be equally interesting. For example, anomalous traffic in a computer net-
work could signal the failure of one or more devices or that a hacker has penetrated
the network, while anomalies in credit card transfers could indicate credit card or
identity theft. In healthcare, anomalous sensor readings when monitoring patients
at the intensive care unit could signify organ failure, or when screening newborns
abnormal values in a blood sample could indicate the presence of a rare disease.

1



2 CHAPTER 1. INTRODUCTION

In general, anomalies in data, often also referred to as outliers, are observations
that deviate from the expected normal behaviour [14]. Two problems are com-
monly associated with anomalies: anomaly detection and anomaly characterisation.
Anomaly detection refers to the problem of finding anomalies in data, while anomaly
characterisation provides insight for the anomalousness.

An abstract approach to detect anomalies in data is to model normal behaviour
and declare any observation that differs strongly from this normal model as an
anomaly. Modeling the norm of the data, however, is not a trivial task and therefore
in its general form, this problem is not easy to solve. Over time, a variety of anomaly
detection techniques have been developed adopting concepts from diverse research
communities such as statistics, machine learning, data mining and information the-
ory, solving specific instantiations of the problem that depends among others on the
type of input data, the availability of labeled training data, . . . These specifications
differ from application to application.

Example of applications where anomaly detection is typically used and which
serve as main motivation for the research in this thesis are intrusion and fraud
detection, monitoring in health care and industry, and screening for rare diseases.
These applications have in common that there is an abundance of examples for
the normal cases, but none, or only a handful, for the anomalies. This is due to the
fact that it is either very expensive, dangerous, or virtually impossible to acquire
(many) labeled examples for abnormal situations. Standard binary (or multi-class)
classification techniques need enough labeled training data for each class to build
an accurate predictive model and thus cannot be applied directly. Since we are
building a model for the normal behaviour given only training data from one class,
this problem setting is known as one-class classification.

Anomalies are related to noise and novelties in the data [49]. All these terms refer
to objects or patterns in data that are typically unexpected. Adopting the definitions
by Chandola et al. [14], the main difference between noise and anomalies lies in
the interest of the data analyst. Anomalies are considered meaningful to a data
analyst, while noise hinders modeling and obfuscates true patterns in the data.
Novelties, on the other hand, are both unexpected and interesting to a data analyst.
Anomalies should however be treated as abnormalities, while novelties are typically
incorporated into the normal model after being detected. Since techniques to
identify anomalies, or outliers, are often used to detect noise or novelties and vice
versa many authors, including myself, do not always follow these strict definitions.

Identification of anomalies alone is not enough however; characterisation of
anomalies is also very important. This goes in general for all kinds of patterns in
data, but since anomalies translate to significant, and often critical, actionable infor-
mation, descriptions are especially important. For example, a human operator will
not likely shut down a chemical installation based on detection of a few anomalies
if there is no good explanation to do so. Similarly, medical doctors are ultimately
responsible for their patients, and hence will not trust a black-box technique telling
them a patient has a rare disease if it cannot explain why this must be so. Likewise,
Wikipedians will not revert an edit if no clear evidence is presented that a page has
been vandalised and thus need a good explanation and characterisation.

In this dissertation, we aim developing efficient data mining techniques to build,
starting from the available data with limited human effort, models that accurately
identify anomalies in (new) data and characterise these in an understandable way.
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1.1 Thesis Outline

The outline of the remainder of this thesis is as follows.

• Chapter 2 investigates how to detect abnormal or novel events embedded in
spatio/temporal data. To this end, we present an algorithm based on Support
Vector Data Description (SVDD). The algorithm uses an extended representa-
tion of the spatio/temporal data, a tensor product kernel to separately deal
with the distinct features of time and measurements, and a voting function
which identifies anomalies based on different representations of the time
series in a robust way.

• Chapter 3 explores to which extend straightforward data-driven techniques
can be employed to distinguish vandalism from legitimate edits on Wikipedia.

• Chapter 4 shows how to identify and characterise anomalies in binary or
transaction data. We use the Minimal Description Length (MDL) principle
to model the normal behaviour and detect anomalies as deviation from the
expected length in bits of the compressed instances. By analysing the itemsets,
the small blocks used to build the model and to compress instances, we
can characterise the decisions, and explain what changes would lead to a
different verdict. We also give a method that, given a few anomalous examples,
estimates the distribution of encoded lengths for the anomalies.

• Chapter 5 addresses the issues, manifested in dense and large datasets, of the
underlying algorithm that is used to build the models for the normal behaviour
in Chapter 4. We therefore introduce an any-time, one-phase alternative for
mining high-quality data descriptions directly and efficiently from transaction
data.

• Chapter 6 summarises the main contributions of the dissertation and rounds
up with concluding remarks.





CHAPTER 2
Identifying Anomalies in

Spatio/Temporal Data

Anomaly or novelty detection in spatio/temporal data refers to the auto-
matic identification of abnormal or novel events embedded in data that
occur at a specific location/time. Traditional techniques used in process
control to identify anomalies are not robust for noise in the data set.

We present an algorithm based on the support vector machine approach
for data description. This technique is intrinsically robust for anomalies
in the data set, but to make it work several extensions are needed that
form the main contribution of this work: an extended representation of
the spatio/temporal data, a tensor product kernel to separately deal with
the distinct features of time and measurements, and a voting function
which identifies anomalies based on different representations of the time
series in a robust way.

Experimental results on both artificial and real data demonstrate that our
algorithm performs significantly better than other standard techniques
used in process control.

This chapter is based on work published as [72]:
K. Smets, B. Verdonk, and E. M. Jordaan. Discovering novelty in spatio/temporal data using one-class
support vector machines. In Proceedings of the IEEE/INNS International Joint Conference on Neural
Networks (IJCNN), Atlanta, GA, pages 2956–2963, 2009.

5



6 CHAPTER 2. IDENTIFYING ANOMALIES IN SPATIO/TEMPORAL DATA

2.1 Introduction

In many real-life applications, information gathered from measurements is essential
to ensure the quality of products and to enable control of a production process.
Advances in data capture technology and the availability of inexpensive storage
result in huge amounts of measurements. This makes it harder for human experts to
analyse the data in a timely and cost effective way. Therefore, algorithms to detect
malfunctioning or abnormal behaviour, and which automate the data analysis, are
needed to make the construction of monitoring systems more efficient.

Automated data analysis for the detection of anomalies is not a new concept.
For years data-driven non-parametric computational intelligence techniques have
been used for flight control systems [43], to monitor power plants [94], . . . Anomaly
detection (outlier identification) is a standard problem in classical statistics [3] as
well as in data mining [75] and machine learning [45, 50]. A state-of-the-art con-
tribution to the toolbox of non-parametric anomaly detection methods is Support
Vector Data Description (SVDD) [66, 79]. This approach is based on the support
vector machine (SVM) algorithm, that has popularised and stimulated research in
kernel-based learning methods [67].

In the last few years, the SVDD (or one-class SVM) method has been applied for
various tasks [21, 27, 44]. Most authors concentrate on detecting anomalies in static
data, where they use the data as-is, as in the analysis of mass spectral data [80], to
detect whether the object under inspection is abnormal when considered as a whole.
Little attention is given to apply the method, or a closely related online variant, for
detecting anomalies or novelties in time-series [17, 46].

The present work is motivated by anomaly detection problems in production
processes, like the detection of abnormal events during the production of chemi-
cal products. These processes are monitored by inspecting various input/output
relations that change over time. Figure 2.1 shows data from a typical chemical batch
process, where 6 variables are monitored from start until finish. The aim is to detect
anomalies like abnormal peaks, time shifts and phases that take too long. Therefore
our goal is different from the goal in time series analysis, where the emphasis is on
identifying patterns and/or on forecasting.

The problem of determining whether or not a particular batch is typical or not, is
one that has been studied extensively in the field of process chemometrics [20]. The
most widely used techniques are principal component analysis (PCA) and partial
least squares (PLS). In order to make use of these techniques, the data needs to be
unfolded [92]. The batch-level unfolding PCA is more sensitive to the overall batch
variation while the observation level unfolding PLS is more sensitive to localised
batch variation. Another drawback of both of these techniques is that the data from
the different batches are required to be of the same length, i.e. of the same duration.
In reality this, of course, is seldom the case. These techniques have been used to
detect abnormal batches based on some correlation with a quality variable, but only
after a batch was completed. Therefore, these techniques are not suitable to detect
within batch anomalies in the spatio/temporal data setting.

In order to detect anomalies inside a particular batch, it will not suffice to con-
struct a global model on the whole time interval and compare the batch as a whole
to this model. This could only respond to queries whether or not to consider the
whole batch as anomalous or not, but would not give us any clue where the batch
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Figure 2.1: Real data coming from the production process of a chemical product,
denoted as ‘ProdX’ for confidentiality reasons, at Dow Benelux. The data set consists
of 110 batches. In each batch 6 variables xi are monitored over time t .

has gone wrong. To accomplish the latter, we need to deduce for every sample point
in time whether it is still on track or not.

Traditional techniques used in process control to achieve this are based on
the computation of the point-wise mean and standard deviation over all training
batches, or on the point-wise minimum and maximum value of all the samples
[59]. An obvious drawback of these techniques is sensitivity to peculiarities in the
training set. Since the technique we propose is based on the SVDD approach, it is
intrinsically robust for noise and outliers in the data set.

To make the technique based on the SVM approach work, several extensions
are needed which form the contributions of this chapter. Firstly, we present an
extended data representation to reflect the vicinity of data within and across batches.
Secondly, we use a composite tensor product kernel to relate the time and the data
part of the representation respectively. Thirdly, we introduce a robust identification
function which combines the results of several SVDD models built from different,
but closely related, representations of the data.

The rest of the chapter is organised as follows. We start in Section 2.2 with a brief
introduction to Support Vector Data Description, after which we give a review of
the theory behind composite kernels. In Section 2.3 we present our algorithm for
detecting anomalies in spatio/temporal data. The settings of the computational ex-
periments are described in Section 2.4 and are analysed in Section 2.5. In Section 2.6,
we round up with discussion and we conclude in Section 2.7.
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2.2 Preliminaries

This section first briefly reviews the Support Vector Data Description (SVDD), for
more details we refer to [79]. Thereafter we present the tensor product composite
kernel that will be used to represent and to incorporate space/time similarities.

Support Vector Data Description

In general terms, the idea behind the SVDD method is to construct a close boundary
around the training data, representating the normal scenario. In order to do so,
one searches for a hypersphere that describes the data as well as possible, i.e. the
hypersphere with the smallest volume. Like in the standard SVM algorithm for
binary classification we allow some misclassification, i.e. we tolerate that some
objects lie outside the hypersphere. This approach makes the algorithms more
robust for potential anomalies present in the training data.

Formalising the above, in SVDD [79] we are given a set of unlabeled vectors
{x i , i = 1. . .m}, where x i ∈X . Here we assume for simplicity that the input space
X ⊆Rn . In general, a nonlinear functionΦ(x) maps an object x from the input space
X into a large, or even infinite, dimensional feature space H . Constructing the
hypersphere requires solving the following convex quadratic optimisation problem

minimize
R∈R,a∈H ,ξ∈Rm

F (R, a,ξ) = R2 + 1

νm

m∑
i=1

ξi (2.1)

subject to ‖Φ(x i )−a‖2 ≤ R2 +ξi and ξi ≥ 0

where a is the center of the hypersphere in feature space, R is the radius of the
sphere and ν ∈ (0,1) a parameter to trade-off the radius of the hypersphere and the
number of vectors falling outside the constructed sphere. The decision function is
readily available as

f (z) = sgn(R2 −‖Φ(z)−a‖2) (2.2)

and detects whether a newly presented objectΦ(z) lies inside or outside the hyper-
sphere in feature space.

After introducing Lagrange multipliersαi for each vectorΦ(x i ), the dual problem
of the optimisation problem (2.1) can be written as

maximize
α∈Rm

W (α) =
m∑

i=1
αi 〈Φ(x i ),Φ(x i )〉 (2.3)

−
m∑

i=1

m∑
j=1

αiα j 〈Φ(x i ),Φ(x j )〉

subject to
m∑

i=1
αi = 1 and 0 ≤αi ≤ 1

νm

Solving the dual problem leads to

a =
m∑

i=1
αiΦ(x i ).
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As distances are closely related to dot products, we can also rewrite the decision
function only in terms of dot products

f (z) = sgn
(
R2 −∑

i , j
αiα j 〈Φ(x i ),Φ(x j )〉 (2.4)

+2
∑

i
αi 〈Φ(z),Φ(x i )〉−〈Φ(z),Φ(z)〉

)
.

The famous kernel trick is the procedure of using a kernel function in input space X

to replace the inner product of two vectors in feature space H [67]. Accordingly, the
hypersphere in feature space H becomes a decision boundary in the input space X .
In order to do so, we replace the occurrences of the dot products in (2.3) and (2.4) by

k(x , z) = 〈Φ(x),Φ(z)〉.

There are many admissible choices for the kernel function. The most widely
used in SVDD is the Gaussian RBF kernel, i.e.

k(x , z) = exp(
−‖x − z‖2

2σ2 ).

When k(x , x) evaluates to a constant, as is the case for the Gaussian RBF kernel, one
can show that SVDD is equivalent to one-class SVM [79]. Instead of fitting a soft
hypersphere around the training data, one-class SVM constructs a hyperplane in
feature space to separate as many mapped vectors as possible from the origin [66].

According to (2.4), any vector z with f (z) = −1 is an anomaly. Moreover, it
can be proved that a vector x i in the training set is an anomaly if and only if its
corresponding Lagrange multiplier αi is 1

νm . The other support vectors 0 <αi < 1
νm

lie on the hypersphere in feature space. We refer to the former as non-bound support
vectors and to the latter as bound support vectors. For both one-class SVM and
SVDD we know that ν is an upper bound for the fraction of anomalies over all
training samples and a lower bound for the fraction of support vectors [66].

The main motivating, and commonly accepted, reasons to choose SVDD as our
anomaly detection algorithm are the following. Firstly, it uses simple geometrical
concepts to construct the decision boundary. Secondly, by using regularisation,
the algorithm is intrinsically robust for anomalies present in the data set. Thirdly,
because it is a kernel-based method that only relies on in-products or closely related
concepts, like distances, we can plug in kernels so that the data description is able
to construct a tighter decision boundary. As we will see later, the use of kernels also
allows us to exploit time/space similarities. Finally, a more general version of SVDD
is capable of including domain knowledge in the form of negative samples [79].

Tensor Product Composite Kernel

In [47], Mak et al. introduce the general concept of composite kernels together with
two different forms, namely the direct sum kernel and the tensor product kernel.
Composite kernels can be useful to combine various attributes of the data, each with
different characteristics, while preserving for each attribute a distinct representation
in feature space. As will be explained in Section 2.3, we make use of the tensor
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product composite kernel to separately deal with the distinct features of the time
and the measurements part of the data respectively.

For the sake of completeness, we repeat the definition of Mak et al. [47] and add
a proof that the tensor product kernel is a valid kernel.

Definition 1 (Composite Kernel). Consider vectors x i composed as

x i =
[

x1i x2i . . . xRi

]
and a mapping for each constituent xr i , r = 1, . . . ,R, via a separate kernel kr (·, ·), to
Φr (xr i ), and constructΦ(x i ) as

Φ(x i ) =
[
Φ1(x1i ) Φ2(x2i ) . . . ΦR (xRi )

]
,

then the similarity between two vectors x i and x j in the composite kernel-induced
feature space H is measured by

k(x i , x j ) =G
(
k1(x1i , x1 j ), . . . ,kR (xRi , xR j )

)
where G is some function that combines the constituent kernels kr (·, ·), r = 1, . . . ,R
into a valid composite kernel k(·, ·).

Proposition 1 (Tensor/Hadamard/Schur Product Kernel). If kr (·, ·), r = 1, . . . ,R, are
valid kernels, so is

k(x i , x j ) =
R∏

r=1
kr (xr i , xr j ).

We generalise the proof found in [32], which shows that the “Hadamard product
in kernel space becomes the tensor product in feature space” for R = 2.

Proof. The new feature vector is defined as a rank R tensor (i.e. with R indices): one
index for each of the original feature vectors.

Φ(xi )I1 I2...IR =
R∏

r=1
Φr (xr i )Ir

means that the (I1, I2, . . . , IR ) component of the new feature vector is the product of
the I th

1 component ofΦ1(x1i ), the I th
2 component ofΦ2(x2i ) . . . and the I th

R compo-
nent ofΦR (xRi ).
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This being said, we have the following derivation, using the natural component-
wise inner product forΦ(x i ):

k(x i , x j ) = 〈Φ(x i ),Φ(x j )〉
= ∑

I1,I2,...,IR

Φ(x i )I1 I2...IRΦ(x j )I1 I2...IR (2.5)

= ∑
I1,I2,...,IR

R∏
r=1
Φr (xr i )Ir

R∏
r=1
Φr (xr j )Ir

=
R∏

r=1

∑
Ir

Φr (xr i )IrΦr (xr j )Ir

=
R∏

r=1
〈Φr (xr i ),Φr (xr j )〉

=
R∏

r=1
kr (xr i , xr j ).

For the sum to make sense in (2.5), we are assuming that the dimension of Hr is
countable. This is the case whenΦr is constructed from the countable eigenfunction
expansion of Kr (xr i , xr j ) (see [54]).

In words, the tensor product kernel allows us to define different kernels on
different attributes of our data set and to turn them into a valid kernel, that can be
used in any kernel-based algorithm, like SVDD, by element-wise multiplying the
Gram matrices.

Furthermore, as the constituent kernels used throughout this chapter are Gaus-
sian RBF kernels, the tensor product kernel boils down to a multivariate Gaussian
RBF kernel where each attribute vector has it own scaling factor

k(x i , x j ) =
R∏

r=1
exp(

−‖xr i −xr j ‖2

2σ2
r

)

= exp
( R∑

r=1

−‖xr i −xr j ‖2

2σ2
r

)
.

2.3 SVDD-based Anomaly Detection for Spatio/Temporal Data

In this section we formulate our algorithm for discovering anomalies in spatio/tem-
poral data. It extends the algorithm for discovering novelty in time series given in [46]
in three ways. Firstly, we extend the data representation in [46] with spatio/temporal
information – in case of time dependent data, the time stamp. Including a time
stamp in the data representation is an idea that is also proposed in [82]. Secondly,
we use a composite tensor product kernel to relate the time and the data part of
the representation respectively. Thirdly, by giving a more general definition of the
identification function that pinpoints anomalous events, we improve the ideas
in [46], as will be confirmed in Section 2.5.

We formulate the algorithm in the context of monitoring variables in a pro-
duction process that is time dependent. Afterwards, we point out what has to be
changed in order to adapt it for more general spatial data, like the detection of
anomalies in images.
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Data Representation

Suppose we are given K training batches X k , k = 1, . . . ,K . Each of the batches can
be represented as a matrix, that contains Nk rows and where each row contains
the time stamp xt and a vector xd containing the value of the d variables at that
particular time, i.e.

X k =
[

xk
t (i ) xk

d(i )
]

i=1,...,Nk
.

Using a single time stamp implies that the measurements of different variables are
gathered at the same point in time during the production process. Nevertheless,
note that different batches may have different time stamps and might vary in length.

As already mentioned in the introduction, it does not suffice to construct a global
model on the time interval and compare the batches as a whole to this model. This
could only respond to queries whether or not to consider the batch as an anomaly or
not, but would not give us any clue where the batch has gone wrong. To accomplish
the latter, we need to deduce for every sample point in time whether it is still on track
or not. As SVDD needs a set of m unlabeled vectors as training set, a straightforward
way to present our training batches is by extracting all sample points. In this case m
no longer equals the number of batches K , but is now the number of measurements
taken over all batches, i.e. m =∑K

k=1 Nk .
This approach, however, has its limitations. By throwing the data in a single

pile, we lose information. We lose specific relationships concerning the vicinity
inside and across multiple batches. If we only take the current time stamp and the
corresponding measurement into account, we will be constructing a point-wise
model that merely models the data boundary and thus is incapable of detecting
anomalies such as time shifts and phases that take too long. Moreover, if timings
across training batches are not completely synchronised this results in a very sparse
training set.

The easiest way to represent vicinity within a batch is by using a (discrete) sliding
window technique and thus by incorporating measurements of previous time stamps
into the attribute vector. This idea is already written down by many, specifically in
literature about modeling time series [60]. We refer to [46] where the technique of
unfolding a time series into a phase space using a time-delay embedding process, is
already combined with one-class SVM for novelty detection in time series.

Definition 2 (Time-delay embedding process of a time series). Given an embedding
dimension E ∈N, a time series xd (i ), i = 1, . . . , N , can be converted to a set of vectors
xd ,E (i ), i = E , . . . , N , where

xd ,E (i ) =
[

xd (i −E +1) xd (i −E +2) . . . xd (i )
]

.

As we are dealing with batches where not one variable xd but several variables
xd are monitored, we need to apply the time-delay embedding on each of the
measurements. Based on the above definition, the training data TE we feed to the
SVDD algorithm is given by

TE =
{{[

xk
t (ik ) xk

d,E (ik )
]

ik=E ,...,Nk

}
k=1,...,K

}
(2.6)

where
xk

d,E (ik ) =
[

xk
d(ik −E +1) xk

d(ik −E +2) . . . xk
d(ik )

]
.
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Note that our representation differs from the one used in [46] because we include
in the data representation the time stamp of the most recent measurement of the
unfolding process. With this time stamp, samples can only be considered close to
each other if they are sampled at related moments in time and if the measurement
values are close to one another. Leaving out the first condition by not including the
time stamp in the data representation, clearly leads to a wrong similarity measure.

For the embedding process to make sense, we assume that the overall sampling
rate is more or less the same across the batches. Otherwise one must fix a set of
specific capture time windows and supply data from within such a window as extra
parameters, rather than just using the previous E measurements.

Time Kernel versus Data Kernel

In [47] the authors introduce the general concept of composite kernels together with
two different forms, namely the direct sum kernel and the tensor product kernel.
Composite kernels can be useful to combine various attributes of the data, each with
different characteristics, while preserving for each attribute a distinct representation
in feature space. A multivariate Gaussian RBF kernel with a different width for each
attribute is a special case of a tensor product kernel but much more general tensor
product kernels can be constructed by element-wise multiplying the Gram matrices
of the constituent kernels for each attribute [47].

Given that the training vectors for our SVDD algorithm are of the form

xE (i ) =
[

xt (i ) xd,E (i )
]

the use of a tensor product kernel seems natural. In this chapter we combine two
different Gaussian RBF kernels: one on the time part xt (i ) and one on the measure-
ments xd,E (i ). In the rest of the chapter we simply refer to the time kernel and the
data kernel, each specified by the parameter σt and σd respectively. Note that we
assume that the measurements are scaled so that we can use a single parameter σd

for the data kernel.
The need for a different width of the kernel can be easily seen as follows. First,

the time stamps might differ in scale from the other measurements, but, more
importantly, vicinity relations that express closeness in time are not necessarily the
same as those in value.

Furthermore, note that the batches might vary in length and do not need to be
perfectly aligned. Small variations in timings will be handled by the time kernel,
while small variations in the data vector will be administered by the data kernel.

In addition, if we combine both a Gaussian RBF kernel on the time stamps and
one on the measured variables, we are introducing a continuous delay window that
slides over the batches. It compares only those samples that are close to each other
in time across the various presented batches.
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Robust Anomaly Detection

Different values for the embedding dimension E lead to different representations
of the time series. Methods to determine proper embedding dimensions exist in
the literature on nonlinear time series analysis [34]. In this work we use another
approach. As in [46], we train several SVDDs using different embedding dimensions
and then apply an identification function to the output of these SVDDs.

Definition 3 (Anomalous point). Given a set S of different embedding dimensions E ,
voting thresholds θS and θE in [0,1], we say that the i th sample xE (i ) is an anomalous
point only when the indication function I (i ) = 1, where

I (i ) = sgn(
1

|S|
∑
E∈S

I (E , i )−θS ),

I (E , i ) = sgn(P (E , i )−θE ),

P (E , i ) = 1

E

E−1∑
e=0

fE (xE (i +e)),

and fE is the decision function of the SVDD trained on the TE representation. Ob-
serve that fE (xE (i )) = 0 for i < E and i > N .

For each measurement xE (i ), P (E , i ) reflects the (relative) number of windows
that it is part of and that cause detection of an anomalous event. We will explain the
motivation behind this choice with a simple example (see Table 2.1).

Table 2.1: Example: robust anomaly detection.

f3(x3(i )) i 1 2 3 4 5 6 7

1 0 − − − − − −
2 0 0 − − − − −
3 1 1 1 − − − −
4 − 1 1 1 − − −
5 − − 1 1 1 − −
6 − − − 0 0 0 −
7 − − − − 0 0 0

P (3, i ) 1/3 2/3 3/3 2/3 1/3 0/3 0/3

I (3, i ) ; θ3 = 0 1 1 1 1 1 0 0

I (3, i ) ; θ3 = 0.9 0 0 1 0 0 0 0

Suppose we are working with E = 3 and that f3(x3(3)) = 1, f3(x3(4)) = 1, f3(x3(5)) =
1, f3(x3(6)) = 0, f3(x3(7)) = 0. Then P (3,3) = 1, P (3,4) = 2

3 and P (3,5) = 1
3 . This is

consistent with the fact that xd(3) occurs as feature attribute in three windows for
all of which the decision function fE equals 1, while xd(4) is a feature attribute in
three windows, but only for two of these windows is the decision function fE equal
to 1. With θE = 0.9, we then have that I (3,3) = 1, while I (3,4) = I (3,5) = 0, and so
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Algorithm 1 Offline SVDD-based Anomaly Detection (SVND) for Temporal Data

Step 0: Parameter initialisation
Choose model parameters

1. embedding dimension range: S
2. SVDD parameter: ν
3. kernel function and parameters used by SVDD: composite Gaussian RBF kernel
with (different) σt and σd , which specify the widths of respectively the time and
data kernel
4. voting thresholds: θE and θS

Step 1: Model training
Given K training batches, where every batch X k , k = 1, . . . ,K consists of time depen-
dent xk

t (i ) and data part xk
d(i ), i = 1, . . . , Nk

for all E in S do
construct set of training vectors TE given by (2.6)
train a SVDD model on TE using composite kernel on the time part xk

t (i ) and
data part of xk

d,E (i )
end for

Step 2: Anomaly detection
Given a test batch X

for all E in S do
construct set of test vectors TE given by (2.6)
test every i th vector for anomaly using fE (xE (i ))
check for anomaly in model using I (E , i )

end for
check for global anomaly using I (i )

only the 3rd sample is considered abnormal for embedding dimension E = 3. With
θE = 0, which is the approach taken in [46], the samples on the whole interval [1,5]
are tagged as abnormal for E = 3. This is less intuitive and may lead to a large num-
ber of false positives, especially when the embedding dimension E is large. When
combining multiple embedding dimensions, the authors in [46] therefore rely on
an all-agree voting scheme (θS = 1) for the indication function I (i ) rather than on a
majority voting scheme (θS = 0.5) as in our approach (see Section 2.4).

Algorithm

We summarise the above ideas in Algorithm 1 which we use to train the model and
test for anomalies. This algorithm can also be modified to be used in an online
environment. In that case, we need to take into account the delay factor caused by
the largest embedding dimension E in S.

There is no restriction on using this algorithm only for unidimensional temporal
data. Vicinity in terms of spatial location in multidimensional spaces lies open for
exploration. For example to detect anomalies inside images, one needs to replace
the time kernel by a spatial kernel that takes into account the 2D pixel coordinates
and generalise the indication function so that it no longer depends on a single index
(i ) but on the indices (i , j ).
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We remark that spatio/temporal data exhibit autocorrelation and heteroscedas-
ticity. The value of each sample is therefore affected by its neighbours and the
variance of the data is not uniform, but is a function of the location in time or
space [75]. Therefore it is obvious that the samples are not independent and identi-
cally distributed and thus fail to meet the i.i.d. assumption. This fact implies that
theoretical results obtained for SVDD or one-class SVMs, such as the PAC perfor-
mance bound [66], no longer remain valid. In practice, this seems not to damage
the validity of using SVDD for anomaly or novelty, as confirmed by [17, 46] and our
experiments.

2.4 Experimental Setup

Despite the huge amount of data available from real production processes, there
is to our knowledge no labeled, publically available benchmark data set available
to (numerically) evaluate and compare the accuracy of our algorithm with existing
techniques for anomaly detection. For the experiments, we will be using both (unla-
beled) real and (labeled) artificial data to demonstrate the promising performance
of our algorithm.

Real Data

We have applied our algorithm to real, unlabeled data coming from the production
process of a chemical product – denoted as ‘ProdX’ for confidentiality reasons – at
Dow Benelux. The data set consists of 110 batches. In each batch 6 variables are
monitored as illustrated in Figure 2.1. Here we apply anomaly detection to only one
of the monitored variables but the experiment can be repeated for all variables and
leads to a similar performance. Out of the 110 batches we have selected 2 training
sets, one consisting of 22 clean batches and one consisting of these 22 batches
augmented with 3 batches which highly differ from the expected behaviour. The
purpose of this augmented training set is to demonstrate the robustness of our
algorithm with regard to the presence of highly erroneous batches in the training set.
This will further be discussed in Section 2.5. The three sets of batches are displayed
in Figure 2.2.

Artificial Data

Because the results on real, unlabeled data are difficult to quantify, we considered
artificial data which is generated as follows. First we have ∆1 zeros after which we
generate a sinus function that takes ∆2 samples to climb to 1, ∆3 samples to reach
zero, ∆4 samples to reach −1 and ∆5 to return to zero again, and the batch ends with
one more period of ∆6 zeros. In all batches we use discrete timestamps t ranging
from 1 to N =∑

i ∆i .
The standard distribution of the duration of each period is as follows

∆=
[

100 75 75 75 100
]

.

In order to create (small) differences in sample density and in total batch length,
each entry in∆ is modified by adding a uniform random noise term chosen from
[−5,5].
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Figure 2.2: Shown are the real data monitoring a single variable x over time t : (a)
all 110 batches, (b) 22 clean batches reflecting the normal scenario and (c) same 22
clean batches augmented with 3 batches that highly differ from the expected norm.

All batches are subject to additive Gaussian white noise with zero mean and
standard deviation equal to 0.025. In 10 of the 20 training batches and 115 of 232 the
test batches, we add bursts of extra noise (5 times the standard deviation of the white
noise) to simulate anomalies. The duration d and place of this error term is chosen
uniformly from respectively [1,25] and [1, N −d ], where N denotes the length of a
batch. We refer to the batches without bursts of extra noise as clean batches, and to
those with extra noise as noisy batches.

The regions where some artificial errors are introduced are shaded in the sub-
sequent figures. However, as we are dealing with one-class classification, i.e. un-
supervised learning, we discard the labels during training and use them only for
performance evaluation afterwards.

We repeat each experiment 10 times. Each time the artificial data set consists of
20 different training batches. The set of 232 test batches remains the same during all
experiments.

Parameter Settings and Implementation Details

The parameters in Algorithm 1 are set using some heuristics. The parameters ν,σt

and σd are data dependent. For the real data, we set σt = 0.25 and σd = 0.05.
Because the amount of anomalies is rather small, we set ν= 0.05. This allows 5%
of the data to become non-bound support vectors (and thus to be considered as
true anomalies). For the artificial data σt = 100, σd = 0.25 (7 time-stamps are fully
compared and there is a fast decay for larger differences) while ν = 0.05. For all
experiments the set of embedding dimensions S consists of the odd numbers from
1 to 19, as in [46]. The voting thresholds are set to θE = 0.9 and θS = 0.5. On the
artificial data, we will also compare this threshold combination to θE = 0 and θS = 1,
corresponding to the settings used in [46]. We will refer to our algorithm with the
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former threshold combination as SVND (majority) and to the latter as SVND (all-
agree).

To construct the various Support Vector Data Descriptions, we use the fast
incremental SVDD algorithm provided by DDTools [78], which we extend to use
the composite tensor product kernel. As kernel we plug into this implementation a
multivariate Gaussian RBF kernel which is the tensor product of a Gaussian time
and a Gaussian data kernel.

All experiments are run on Sun Fire V20z nodes (dual AMD Opteron with 4 or 8
GB RAM).

2.5 Experimental Analysis

This section presents the experimental results on both real and artificial data. In
order to evaluate the performance of our technique, we compare it to two baseline
models used in process control [59]. The first baseline model is constructed by
calculating the point-wise mean (mean(t )) and standard deviation (std(t )) over all
training batches. If the new test sample with time stamp t is outside the region
bounded by [mean(t )±3std(t )] it is considered an anomaly. The second base line
model keeps tracks of the (point-wise) minimum and maximum value of the samples
provided in the training batches.

Real Data

In Figure 2.3 we display the anomalies detected by our algorithm (SVND) as well as
those detected by the two baseline models ([mean±3·std], [min,max]) for the test
batch plotted in red. The decisions of the various algorithms are marked beneath
the batch data, using the color and in the order as prescribed by the legend. In
Figure 2.3a the training set consists of the 22 clean batches in Figure 2.2(b), while
in Figure 2.3b the training set is the augmented training set in Figure 2.2(c). Visual
inspection, due to the lack of labeled data, shows that while the performance of our
algorithm is the same as that of the baseline models for the clean training set, our
algorithm clearly outperforms the baseline models on the noisy training set.

Only when zooming in, can one observe that for almost all t ≥ 5 the test batch in
Figure 3(a) falls below and outside the intervals [min,max] and [mean ± 3· std] and
hence is classified as anomaly in that region of the time domain.

Artificial Data

To measure the performance of our algorithm on the artificial data, we keep track
of the false negative rate (E I ), i.e. the percentage of good samples misclassified as
anomalies, and the false positive rate (E I I ), i.e. the percentage of anomalies erro-
neously classified as good data. We exclude the clean batches from the calculation of
the false positive rate, since there are no anomalies in the clean batches, and hence
no chance of making errors of the second kind (type I I errors).

Table 2.2 shows the average mean and standard deviation (over 10 runs) of the
false negative and false positive rate on both training and test data.

For the baseline models we observe a negligible false negative rate on the training
data and a high false positive rate on training and test data (far too many true
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Figure 2.3: Anomalies detected in real data for the test batch plotted in red by
our algorithm (SVND) and two point-wise baseline models trained on 22 clean
batches (a) and two additional erroneous batches (b).

anomalies are not detected). We also clearly see that SVND (majority) outperforms
SVND (all-agree) with respect to the false positive rate, on both training and test
batches. For the false negative rate, both perform similarly. Overall, we observe
that the false negative rate of both SVND approaches is in between that of the two
baseline models, but that the false positive rate of SVND (majority) is significantly
better than the other three.

For our artificial problem the embedding dimension E = 11 yields the minimal
number of false positives/negatives. From E ≥ 13 on the error rates increase again
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Table 2.2: Error rates on artificial data.

training data test data

E I E I I E I E I I

baseline mean std 0.00±0.00 0.38±0.43 0.01±0.01 0.67±0.24

min max 0.00±0.00 0.49±0.51 0.08±0.07 0.51±0.26

SVND all-agree 0.00±0.00 0.27±0.32 0.03±0.05 0.49±0.23

majority 0.00±0.01 0.13±0.22 0.03±0.06 0.13±0.21

SVDD E = 1 0.04±0.05 0.25±0.30 0.05±0.06 0.48±0.22

3 0.01±0.02 0.18±0.25 0.03±0.06 0.29±0.24

5 0.00±0.01 0.15±0.23 0.02±0.05 0.21±0.23

7 0.00±0.00 0.15±0.24 0.02±0.05 0.20±0.23

9 0.00±0.01 0.16±0.25 0.02±0.05 0.21±0.24

11 0.01±0.02 0.10±0.20 0.03±0.06 0.11±0.21

13 0.01±0.02 0.12±0.22 0.03±0.06 0.13±0.22

15 0.01±0.03 0.14±0.26 0.03±0.06 0.14±0.25

17 0.01±0.02 0.15±0.26 0.03±0.06 0.16±0.26

19 0.01±0.03 0.20±0.30 0.03±0.06 0.18±0.28

Shown are the average (mean ± std) false negative rate (E I ) and false positive rate
(E I I ) on training and test data for the two point-wise baseline models, SVND with
two voting schemes and the SVDD models for different embedding dimensions E .

as we start to over-fit. We also remark that the all-agree results are highly correlated
with the results for E = 1. By leaving the results for E = 1 out of the all-agree voting
scheme, as is done in [46], its performance can be improved.

The results in Table 2.2 can be further explained by looking at Figure 2.4 and 2.5.
In Figure 2.4a, we plot a set of 20 training batches and the regions with anomalies

(denoted by the shaded areas), while Figure 2.4b shows the two corresponding
baseline models computed from this training set. From Figure 2.4b it is clear that
the baseline models only model the boundary of the data and are sensitive to the
presence of anomalies in the training set.

It is not possible to plot the decision boundary for SVND since it combines sev-
eral SVDD models, each trained using a different embedding dimension. However,
in Figure 2.5 we plot for specific embedding dimensions the bound and non-bound
support vectors. This gives a rough idea of the decision boundary and provides more
insight, since the bound support vectors lie on the hypersphere in feature space,
while the non-bound support vectors are the samples that the SVDD algorithm
considers as anomalies and fall outside the hypersphere.



2.5. EXPERIMENTAL ANALYSIS 21

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

 

 
train data
region with extra noise

(a) Training data
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(b) Baseline models
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(c) Noisy test signal

Figure 2.4: Artificial data: training data (a), baseline models (b) and the abnormali-
ties identified on a noisy test signal (c).
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(a) E = 1

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

train data
outliers
bound SVs
non−bound SVs

(b) E = 11
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(c) E = 19

Figure 2.5: SVDD models obtained using the training data from Figure 2.4a for
different embedding dimensions. Notice that for E = 1 we merely model the data
boundary, while for higher embedding dimensions almost all the non-bound sup-
port vectors (red crosses) lie in noisy regions.
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Table 2.3: Distribution support vectors.

E bound SVs non-bound SVs

1 0.88±0.03 4.56±0.03

3 1.69±0.12 4.14±0.08

5 2.68±0.16 3.68±0.09

7 3.99±0.16 3.02±0.09

9 5.45±0.37 2.47±0.14

11 6.64±0.24 2.13±0.16

13 7.70±0.32 2.09±0.21

15 8.71±0.35 2.11±0.26

17 9.54±0.39 2.18±0.27

19 10.36±0.39 2.24±0.25

Shown are the percentage (mean ± std) of the training data that are bound and
non-bound support vectors for different embedding dimensions E .

Figure 2.5a shows that, like the baseline models, the SVDD model constructed
with E = 1 only strictly captures the data boundary, resulting in a high false positive
rate. Also note that there is no clear distinction between the distribution of the bound
and non-bound support vectors, resulting in a high number of false negatives.

In Figure 2.5b and 2.5c, we see that when the embedding dimension increases
the non-bound support vectors are more capable of identifying the real anomalies
present inside the training data and they no longer lie only at the boundary. If the
embedding dimension gets too big (E ≥ 13), the amount of bound support vectors is
much larger than the non-bound support vectors and overfitting occurs. This results
in the fact that (again) less anomalies are detected and thus a higher false positive
rate on both the training and test batches.

In Table 2.3 we give the percentage of bound and non-bound support vectors
for the different embedding dimensions. We see that that the amount of bound
support vectors increases and reaches over 10% of the training data when we use a
feature vector consisting of the current measurement and the 18 previous ones. More
important, however, is the distribution of the bound versus non-bound support
vectors. We see in Table 2.3 that the amount of non-bound support vectors first
decreases as the embedding dimension increases, but that from E = 15 it increases
again though in a less steep way. This tendency is also noticeable in terms of the
false positive rate on both training and test data, but note that the increase starts at
E = 13 in Table 2.2.

In Figure 2.4c we illustrate the different algorithms on a noisy signal of which
several anomalies are located inside the boundaries of the training data. The figure
confirms that our algorithm is the only one able to detect not only the anomalies
located outside these boundaries but also the anomalies located inside of them.

To numerically illustrate the robustness of our algorithm with respect to the
presence of highly erroneous batches in the training set, we now add to the training
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Table 2.4: Robust test error rates.

E I E I I

baseline mean std 0.00±0.01 0.79±0.28

min max 0.07±0.04 0.58±0.27

SVND all-agree 0.04±0.06 0.49±0.23

majority 0.03±0.06 0.11±0.21

SVDD E = 1 0.05±0.07 0.48±0.22

3 0.03±0.06 0.28±0.24

5 0.03±0.06 0.20±0.21

7 0.03±0.06 0.19±0.22

9 0.03±0.06 0.19±0.24

11 0.04±0.07 0.10±0.21

13 0.04±0.07 0.11±0.22

15 0.04±0.07 0.12±0.23

17 0.04±0.07 0.12±0.24

19 0.04±0.07 0.13±0.25

Shown are the average (mean ± std) false negative rate (E I ) and false positive rate
(E I I ) on the test data for the two point-wise baseline models, SVND with two voting
schemes and the SVDD models for different embedding dimensions E , obtained
with 2 highly erroneous batches, a zero and anti-phase signal, in the training data.

sets used so far for the artificial data both the zero and anti-phase signal. The results
are given in Table 2.4. Comparing Table 2.2 and 2.4, we see that the performance of
our algorithm remains unchanged while the two baseline models suffer, as expected,
an increase of the false positive rate.

2.6 Discussion

The experiments on artificial and real data show that in the case of univariate (tem-
poral) modeling the results are quite promising. Compared to standard techniques
to monitor production processes, SVND is highly robust for noise and erroneous
batches in the training data. Higher embedding dimensions allow us to step away
from a strict boundary based model and to detect anomalies due to time-shifts,
abnormal peaks and phases that take too long, resulting in significantly less false
positives and false negatives.

It is well known that different values for the embedding dimension E lead to
different representations of the batches in phase space. We opted for using an
ensemble method to postpone the selection of this non-trivial parameter. The
distribution of the support vectors however, seems to provide a nice heuristic to
determine a good embedding dimension in the context of anomaly detection.
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In the future, several tracks can be further explored. On one hand, there is a
need to see how well this method scales and if it also performs well in practice on
spatial data, e.g. for detecting anomalies inside images. On the other hand, the
performance of our algorithm to monitor multivariate (temporal) variables needs to
be further investigated.

The results of our preliminary experiments on the multivariate batches of ‘ProdX’
are harder to interpret. The higher dimensionality of the problem limits the use of
visualisations to obtain insights in the constructed models, while the lack of labeled
data leaves us without clues for starting a detailed inspection.

Moreover, we observe that scaling all the data between 0 and 1 and running
SVND using a single scale parameter σd for the data kernel is a too simple approach.
As is often necessary in the SVM approach, optimisation of the scale parameter for
each input variable seems to be necessary. Also, it is clear that different time stamps
may be needed to account for the fact that the various variables are measured at
different time stamps. This is, however, easily accommodated in the framework we
have presented.

2.7 Conclusion

In this chapter we presented a new algorithm for detecting anomalies in spatio/tem-
poral data using one-class support vector machines. The tensor product combi-
nation of a time (or spatial) kernel and a data kernel, enables us to exploit vicinity
relations in both time (or space) and data. A more general voting scheme combining
an ensemble of SVDDs enables us to incorporate historical information provided
by different time-delay embeddings without suffering loss of robustness or over-
fitting. In case of temporal data, our algorithm detects anomalies due to time-shifts,
abnormal peaks and phases that take too long and has a significantly better false pos-
itive and false negative rate than other standard techniques and than the approach
presented in [46].





CHAPTER 3
Automated Vandalism

Detection in Wikipedia

Since the end of 2006 several autonomous bots are, or have been, running
on Wikipedia to keep the encyclopedia free from vandalism and other
damaging edits. These hand-crafted rule-based systems, however, are far
from optimal and need to be improved to relieve the human editors from
the burden of manually reverting such edits.

We investigate the possibility of using machine learning techniques to
build an autonomous system capable to distinguish vandalism from
legitimate edits. We highlight the results of a step in this direction by
applying two off-the-shelf classifiers using a straightforward feature rep-
resentation.

Despite the promising results, this study also reveals that elementary fea-
tures, which are also used by the current approaches to fight vandalism,
will not suffice to build such a system. They will need to be accompanied
by additional information which, among other things, incorporates the
semantics of a revision.

This chapter is based on work published as [71]:
K. Smets, B. Goethals, and B. Verdonk. Automatic vandalism detection in Wikipedia: Towards a machine
learning approach. In Proceedings of the AAAI Workshop on Wikipedia and Artificial Intelligence: An
Evolving Synergy (WikiAI), Chicago, IL, pages 43–48, 2008.

27
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Figure 3.1: Categories of typical acts of vandalism together with the percentage of
occurrence as empirically determined by Priedhorsky et al. [64].

3.1 Introduction

Since the inception of Wikipedia in 2001, the free encyclopedia, which is editable
by anyone, has grown rapidly to become what it is today: one of the largest sources
of adequate information on the Internet. This popularity translates itself to an ever
growing large amount of articles, readers consulting them, editors improving and
extending them . . . and unfortunately also in the number of acts of vandalism com-
mitted a day. By vandalism we understand every edit that damages the reputation
of articles and/or users of Wikipedia. Priedhorksy et al. [64] provide a survey of the
typical categories of damages together with an empirically determined likeliness
of occurrence. Key examples, in decreasing order of appearance, include among
others introducing nonsense, offenses or misinformation, the partial deletion of
content, adding spam (links), and mass deletion of an article. In Figure 3.1 we show
the percentage of occurrence of these typical acts of vandalism.

To fight vandalism, Wikipedia relies on the good faith of its users that accidentally
discover damaged articles and, as in practice turns out, on the time-consuming
efforts of its administrators and power users. To ease their job, they use special
tools like Vandal Fighter to monitor the recent changes and which allow quick
reverts of modifications matching regular expressions that define bad content or
are performed by users on a blacklist. Since the end of 2006 some vandal bots,
computer programs designed to detect and revert vandalism have seen the light
on Wikipedia. Nowadays the most prominent of them are ClueBot and VoABot II.
These tools are built around the same primitives that are included in Vandal Fighter.
They use lists of regular expressions, and consult databases with blocked users or
IP addresses to keep legitimate edits apart from vandalism. The major drawback
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of these approaches is the fact that these bots utilise static lists of obscenities and
‘grammar’ rules which are hard to maintain and easy to deceive. As we will show,
they only detect 30% of the committed vandalism. So there is certainly need for
improvement.

We believe this improvement can be achieved by applying machine learning and
natural language processing (NLP) techniques. Not in the least because machine
learning algorithms have already proven their usefulness for related tasks, such as
intrusion detection, spam filtering for email, as well as spam filters for weblogs.

The remainder of this chapter is organised as follows. First, we motivate in Sec-
tion 3.2 the use of machine learning to detect vandalism automatically, followed by a
brief overview of related work in Section 3.3. Next, we complement in Section 3.4 the
most recent vandalism studies by discussing the performance results of the vandal
fighting bots currently active on Wikipedia. Thereafter, we describe in Section 3.5 the
setup of the preliminary machine learning experiments using a Naive Bayes classifier
and a compression based classifier on the same features that serve as raw input for
those bots and we analyse the results in Section 3.6. Finally, we outline approaches
to investigate next in Section 3.7 and we formulate conclusions in Section 3.8.

3.2 Vandalism Detection and Machine Learning

The particular task to detect vandalism is closely related to other anomaly detection
problems in computer security: intrusion detection or filtering out spam from mail-
boxes and weblogs. It is a specific kind of web-defacement, but as the accessibility
allows anyone to contribute, there is no need for crackers breaking into systems.
We can see it as a form of content-based access control, where the integrity con-
straint on Wikipedia enforces that “All article modifications must be factual and
relevant” [26]. Moreover, solutions to automatically detect vandalism need to cope
with intrinsic characteristics shared among these anomaly detection problems. We
need to deal with an imbalanced and ever changing class distribution as the normal
edits outnumber vandalism and both vandalism and legitimate edits are likely to
change, due to respectively the adversarial environment and the rise of new articles
or formatting languages.

Machine learning provides state of the art solutions to closely related problems.
We put two techniques from the world of spam detection to the test. On one hand we
use a well-known Naive Bayes classifier and on the other hand we employ, as results
from Naive Bayes models are significantly improved by state-of-the-art statistical
compression models [8], a classifier based on probabilistic sequence modeling.

Although we are aware that we will not be capable of identifying all types of
vandalism (e.g. detecting misinformation in the pure sense is regarded as impossi-
ble without consulting external sources of information), we believe that machine
learning might cope with this interesting, challenging and far from trivial problem.

3.3 Related Work

Wikipedia has been subject to a statistical analysis in several research studies. Viégas
et al. [84] make use of a visualisation tool to analyse the history of Wikipedia articles.
With respect to vandalism in particular, the authors are able to (manually) identify
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mass addition and mass deletion as jumps in the history flow of a page. Buriol et
al. [11] describe the results of a temporal analysis of the Wikigraph and state that 6
percent of all edits are reverts and likely vandalism. This number is confirmed by
Kittur et al. [35] in a study investigating the use of reverting as the key mechanism to
fight vandalism. The authors also point out that only looking for reverts explicitly
signaling vandalism is not strict enough to find evidence for most of the vandalism
in the history of articles. In a recent study, Priedhorsky et al. [64] categorise the
different types of vandalism and their occurrence rate in a subset of 676 revision
chains that were reverted. They confirm that reverts explicitly commented form
a good approximation to spot damages, with a precision and recall of respectively
77% and 62%. Our work complements this last one, as we investigate a yet more
recent version of the English Wikipedia history, and also analyse the decisions
made by two bots. We also try to respond to the authors’ request to investigate the
automatic detection of damage. The authors believe in intelligent routing tasks,
where automation directs humans to potential damage incidents but where humans
still make the final decision.

There is strong cross-pollination possible between Wikipedia and several re-
search areas. Wikipedia can benefit from techniques from the machine learning,
information retrieval and NLP domains in order to improve the quality of the articles.
Adler and de Alfaro [1] build a content-driven system to compute and reflect the
reputation of authors and their edits based on the time span modifications remain
inside an article. Priedhorky et al. [64] use a closely related measure but they do
not take into account the lifetime but the expected viewing time to rate the value of
words. Rassback et al. [65] explore the feasibility of automatically rating the quality
of articles. They use a maximum entropy classifier to distinguish six quality classes
combining length measures, wiki specific measures (number of images, in/out
links . . . ) and commonly used features to solve NLP problems (part-of-speech usage
and readability metrics). Our problem to detect damages is related to their work in
the sense that we need to rate the quality of a single revision instead of the whole ar-
ticle. The cross-pollination also holds for the other way around as machine learning,
information retrieval and NLP can benefit from the use of Wikipedia. Gabrilovich
and Markovitch [19] use a semantic interpreter built using articles from Wikipedia
which is capable of measuring the semantic relatedness between text documents.

Recently, Potthast et al. [63] also use machine learning to detect vandalism in
Wikipedia. Compared to their work, we have a larger, auto-labeled data set, use dif-
ferent classifiers, and most importantly, use different features. We aim to summarise
an edit by focusing on the difference between the new and old version of an article,
while Potthast et al. developed a feature set consisting of 16 numerical features that
characterise their insights after manually analysing 301 cases of vandalism. Note,
that the first curated vandalism corpus Webis-WVC-07 [62] is smaller than the one
we auto-labeled and its class distribution is not representative. We will however use
this corpus in an additional experiment to further evaluate our trained classifiers.
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3.4 Performance Analysis of Vandal Fighting Bots on Wikipedia

In this section we complement the work in [64] by analysing the results of the vandal
fighting bots on one hour of data from the English version of Wikipedia. We show
that there is still significant room for improvement in the automatic detection of
vandalism. Furthermore, we provide additional evidence that the labeling proce-
dure based on edit reverts, is quite sound. Next, we introduce the Simple English
Wikipedia and present the results of a modified version of ClueBot on this data set,
which we also use in our machine learning experiments later on. We start however
with a short introduction to ClueBot’s inner working.

ClueBot

ClueBot [13] uses a number of simple heuristics to detect a subset of the types of
vandalism shown in Figure 3.1. First, it detects page replaces and page blanks relying
on an auto-summary feature of MedaWiki software. Next, it categorises mass delete,
mass addition and small changes based on absolute difference in length. For the
last three types, vandalism is determined by using a manually crafted static score
list with regular expressions specifying the obscenities and defining some grammar
rules which are hard to maintain and easy to by-pass. Negative scores are given to
words or syntactical constructions that seem impossible in good articles, while wiki
links and wiki transcludes are considered as positive. The difference between the
current and the last revision is calculated using a standard diff algorithm. Thereafter,
the inserted and deleted sentences are analysed using the score list and if this value
exceeds a certain threshold vandalism is signaled. ClueBot further relies on the user
whitelist for trusted users and increases its precision by only reverting edits done by
anonymous or new users.

Obtaining labeled data

We restrict ourselves to the recent changes of pages from the main namespace (0),
the true encyclopedic articles, and ignore revisions from user or talk and discussion
pages of the (Simple) English Wikipedia.

All revision data is automatically labeled by matching revision comments to
regular expressions that signal a revert action, i.e. an action which restores a page to
a previous version. This approach closely resembles the identification of the set of
revisions denoted in [64] as Damaged-Loose, a superset of the revisions explicitly
marked as vandalism (Damaged-Strict). The different labeling functions are listed
in Table 3.1.

While labeling based on commented revert actions is a good first order approxi-
mation, mislabeling cannot be excluded. If we regard vandalism as the positive class
throughout this chapter, then there will be both false positives and false negatives.
The former arises when reverts are misused for other purposes than fighting vandal-
ism like undoing changes without proper references or prior discussion. The latter
occurs when vandalism is corrected but not marked as reverted in the comment,
or when vandalism remains undetected for a long time. Estimating the number of
mislabelings is very hard and manual labeling is out of question, considering the
vast amount of data.
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Table 3.1: Labeling functions

revert revisions in between pairs of identical versions of an article

vloose comments probably indicating vandalism reversion

(^revert\ to.+using)
(^reverted\ edits\ by.+using)
(^reverted\ edits\ by.+to\ last\ version\ by)
(^bot\ -\ rv.+to\ last\ version\ by)
(-assisted\ reversion)
(^(revert(ed)?|\verb|rv).+to\ last)
(^undo\ revision.+by)

vstrict comments almost definitely indicating vandalism reversion

(\brvv)
(\brv[/ ]v)
(vandal(?!proof|bot))
(\b(rv|rev(ert)?|rm)
\b.*(blank|spam|nonsense|porn|mass\sdelet|vand))

All revision data is automatically labeled by matching revision comments to regular
expressions that signal a revert action, i.e. an action which restores a page to a
previous version.

Table 3.2: Webis Wikipedia Vandalism Corpus

legitimate vandalism

WP:WPVS1 639 31 (4.63%)

Webis-WVC-07 940 301 (32.0%)

Note, that only the Wikipedia:WikiProject Vandalism Study (WP:WPVS1) subset of
the Webis Wikipedia Vandalism Corpus (Webis-WVC-07) contains a proper distribu-
tion of legitimate versus vandalised edits.
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(a) WP:WPVS1

(b) Webis-WVC-07

Figure 3.2: Graphical representation of the error rates of the labeling functions
(reverted, vloose, vstrict) listed in Table 3.1 on the Webis Wikipedia vandalism
dataset (Webis-WVC-07) [62], which is a superset of the first Wikipedia:WikiProject
Vandalism Study (WP:WPVS1).
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Table 3.3: Edit statistics on English Wikipedia (2008.03.01).

1 hour 5 hours

legitimate 6944 28 312

reverted 323 1 926

mislabeled 26 (8.00%) n.a.

ClueBot 68 (22.89%) 349 (18.12%)

VoABot II 33 (11.11%) 154 (8.00%)

Shown are the number of legitimate and reverted (vloose) edits collected during
1 and 5 hours on the first of March 2008, and the number of reverts are made
by ClueBot or VoABot II (the percentages reflect the recall). For the first hour we
manually tracked the mistakes the auto-labeling of the reverted edits made and the
false positive rate is listed between parentheses.

Figure 3.2 visualises the error rates of the labeling functions listed is Table 3.1 on
the Webis Wikipedia vandalism dataset (Webis-WVC-07) [62], which is a superset
of the first Wikipedia:WikiProject Vandalism Study (WP:WPVS1), listed in Table 3.2.
Note that class distribution in Figure 3.2b is not representative and as a consequence
the error rates, and the overlapping areas, are less meaningful. On the other hand,
looking at the area of both false positives and false negatives in Figure 3.2a reveals
that the labeling procedure based on signaled reverts (reverted vloose) is quite sound
as the area is almost the same.

English Wikipedia (enwiki)

Table 3.3 summarises our analysis of the first hour of data from the first of March
2008 (00:00:00 - 00:59:59). From the total of 6944 revisions during the first hour,
4.65% are considered vandalism. Manual inspection demonstrates that of these 323,
11 are mislabeled as vandalism and for 15 others we are in doubt. So in the worst
case we have to cope with a false positive rate of 8%.

Of the correctly labeled acts of vandalism 68 are identified by ClueBot and 33
by VoABot II, the two active vandal fighting bots on Wikipedia nowadays. Together
this corresponds to a recall of 33%. Hence the bulk of the work is still done by power
users and administrators. All vandalism identified by the two bots is true vandalism,
and as such the precision during this one hour is 100%.

Priedhorsky et al. identify in [64] that around 20% of their labeled data is misin-
formation, a number confirmed by our manual inspection. Even disregarding those,
the above analysis reveals there is much room for improvement w.r.t. the recall.

Empirical analysis on a data set including the next four hours, see Table 3.3,
shows that these numbers are multiplied by a factor 5 and thus remain invariant.
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Table 3.4: Size (Simple) English Wikipedia

pages revs xml.bz2

enwiki 11 405 052 167 464 014 133.0 GB

simplewiki 53 449 499 395 88.7 MB

Size (Simple) English Wikipedia expressed in terms of the total number of pages,
revisions and the compressed file size of the pages-meta-history files available at
http://download.wikimedia.org.

Table 3.5: Edit statistics on Simple Wikipedia

period nr (%) of vandalism revs pages

2003 - 2004 21 (1.12) 1 870 784

2004 - 2005 276 (2.03) 13 624 2541

2005 - 2006 2 194 (5.60) 39 170 6626

2006 - 2007 12 061 (8.33) 144 865 17 157

2007 - . . . 12 322 (6.96) 177 165 22 488

2003 - . . . 26 874 (7.13) 376 694 28 272

Shown are the estimated number (and percentage) of vandalised revisions together
with the number of revisions and pages from the main namespace in Simple English
Wikipedia using the dump made available on 2007.09.27.

Simple English Wikipedia (simplewiki)

As a proof of concept and because of storage and time constraints, we run the
preliminary machine learning experiments on Simple English Wikipedia, a user-
contributed online encyclopedia intended for people whose first language is not
English. This encyclopedia is much smaller in size compared to the standard English
Wikipedia as shown in Table 3.4. There are no bots in operation that try to remove
spam or vandalism. Nevertheless the articles are also subject to vandalism, which
often last longer as fewer readers and users are watching the pages.

We work with the dump from 2007.09.27 and again we only consider the main
articles disregarding pages from other namespaces. Labeling using the same proce-
dure, as outlined in Section 3.4, shows that the amount of vandalism, as we see in
Table 3.5, is fairly stable and comparable with the percentages on English Wikipedia
shown in Table 3.3.

As a reference, we provide the performance of a modified version of ClueBot on
the simplewiki data set in Table 3.6. We use our own implementation based on the
source code of the one running at enwiki, with that difference that we only consider
the heuristics to detect vandalism and do not take into account the dynamic user
whitelist.

http://download.wikimedia.org
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Table 3.6: Emperical performance of ClueBot

acc pre rec F1

2003 - 2004 97.52 12.50 4.76 6.89

2004 - 2005 97.22 25.77 9.05 13.40

2005 - 2006 93.46 41.85 7.61 12.88

2006 - 2007 91.44 62.07 13.06 21.58

2007 - . . . 93.20 63.81 17.74 27.77

2003 - . . . 92.70 61.14 14.72 23.72

Shown are the accuracy, precision, recall and F1 of ClueBot (without user whitelist)
on Simple English Wikipedia.

Compared to the edit statistics shown in Table 3.3, we notice in Table 3.6 a drop
in both precision and recall. The former can possibly be explained by not using
the dynamic user white list, while the fact that the static score list of the ClueBot is
manually tailored towards the English Wikipedia could explain the drop in recall. A
more thorough study, including manually analysing the decisions of the ClueBot, is
required before we can further explain the decreased performance.

3.5 Experimental Setup

In this section, we will discuss the setting for our machine learning experiment
conducted on the simplewiki data set, the Simple English version of Wikipedia and
on the Webis-WVC-07 corpus. We first consider the data representation. Thereafter
we give a brief description of two learning algorithms put to test: a Naive Bayes
classifier on bags of words (BOW) and a combined classifier built using probabilistic
sequence modeling [8], also referred to in the literature as statistical compression.

Revision Representation

In this case study we use the simplest possible data representation. As for ClueBot
and VoABot II, we extract raw data from the current revision and from the history
of previous edits. This first step could be seen as making the static scoring list of
ClueBot dynamic. This should provide a baseline for future work. In particular,
for each revision we use its text, the text of the previous revision, the user groups
(anonymous, bureaucrat, administrator . . . ) and the revision comment. We also
experimented with including the lengths of the revisions an extra feature. The effect
on overall performance is however minimal and thus we discarded them in this
analysis. Hence the focus lies here more on the content of an edit.

As the modified revision and the one preceding it differ slightly, it makes sense
to summarise an edit. Like ClueBot, we calculate the difference using the standard
diff tool. Processing the output gives us three types of text: lines that were inserted,
deleted or changed. As the changed lines only differ in some words or characters
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revisionj-1
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deleted
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anonymous, bureaucrat, bot, checkuser, sysop ...

j-1 j

Figure 3.3: Extraction process of the straightforward revision representation.

from each other, we again compare these using wdiff. Basically, this is the same as
what users see when they compare revisions visually using the MediaWiki software.
Figure 3.3 summarises this straightforward revision representation, while Table 3.7
gives a censored example of the feature representation used throughout this chapter,
applied to a vandalised revision.

Naive Bayes

As a first attempt we use the Naive Bayes implementation from the ‘Bow’ toolkit [51]
as learning mechanism. This tool treats each feature as a bag of words and uses
Porter’s stemming algorithm and stop word removal to decrease the size of the fea-
ture space. Next, we train a Naive Bayes classifier on each of the features separately.
Our final classifier combines the results of the individual classifiers by multiplying
the obtained probability scores.

Probabilistic Sequence Modeling

Probabilisitic sequence modeling (PSM) forms the foundation of statistical com-
pression algorithms. The key strength of compression-based methods is that they
allow constructing robust probabilistic text classifiers based on character-level or
binary sequences, and thus omit tokenisation and other error-prone pre-processing
steps. Nevertheless, as clearly stated by [68], they are not a “parameter free” sil-
ver bullet for feature selection and data representation. In fact they are concrete
similarity measures within defined feature spaces. Commonly used statistical com-
pression algorithms are dynamic Markov compression (DMC) and prediction by
partial matching (PPM), both described in detail by [8]. Basically these are n-gram
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Table 3.7: Example Revision Representation

delete Vandalism is almost always a crime; different types of van-
dalism include: graffiti, smashing the windows of cars and
houses, and rioting.

{{stub}}

insert Being *** is almost always a crime; different types of **** ***
include: ***** style.

change
delete

Vandalism property vandal graffiti website vandals funny
attention

vandal Vandals

change in-
sert

******* of as *** **** *** **** site **** *** *** ***

****** ***-*******

comment

user
group

anonymous

Shown is the censored feature list of revision 29853 from the Vandalism page in
Simple English Wikipedia.

models where weights are implicitly assigned to the coordinates during compres-
sion. Empirical tests, in above references, show that compression by DMC and PPM
outperforms the explicit n-gram vector space model due to this inherent feature
weighting procedure. For the implementation we use PSMSlib [7], which uses the
PPM algorithm.

During the training phase a compression model M f
c is built [8] for each feature

f in Table 3.7 and for each class c (vandalism or legitimate). The main idea is that
sequences of characters generated by a particular class will be compressed better
using the corresponding model. In theory, an optimal compression can be achieved
if one knows the entropy given that model. In order to classify a revision r , we
estimate for each of its feature values x the entropy H by calculating,

H f
c (r ) = 1

|x| log
|x|∏

i=1
p(xi |xi−1

i−k , M f
c ),

where p(xi |xi−1
i−k , M f

c ) is the probability assigned by model M f
c to symbol xi given its

k predecessors. In order to score the revision, we combine all features by summing
over the entropies,

Sc (r ) =∑
f

H f
c (r )
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and then calculating the log ratio

S(r ) = log
Svan(r )

Sleg (r )
.

If the value S exceeds a prespecified threshold, default 0, we assign the revision to
the vandalism class otherwise we consider it as legitimate. The threshold parameter
trades off the precision and the recall.

Evaluation Setup

To evaluate our machine learning experiments we use 60% of the labeled simplewiki
data for training and the remaining 40% for evaluation purposes. We do not aim to
statistically analyse the different approaches but use it more as a guide to conduct
our search towards a machine learning based vandalism detection tool.

We will compare all classifiers using accuracy ( t p+tn
t p+tn+ f p+ f n ), precision ( t p

t p+ f n ),

recall ( t p
t p+ f n ) and F1 score (2 pr eci si on·r ecal l

pr eci si on+r ecal l ). As these measures are highly depen-
dent on the choice of the threshold parameter, we also include ROC and preci-
sion/recall curves to compare the overall classification performance.

For reference purposes we also include the results of the classifiers, built using
all auto-labeled simplewiki data and evaluate these on the Webis-WVC-07 corpus,
the first publically available curated data set for detecting vandalism.

3.6 Experimental Analysis

In this section we analyse the results of the two attempts to put machine learning to
work on the Simple English data set and Webis Wikipedia Vandalism corpus.

Table 3.8 shows the results on the simplewiki test set of the final Naive Bayes
classifier taking into account either the revision diff features as bags of words only
or including the user group information together with revision comments. While
the precision in these tables is almost the same as in Table 3.6, a significant increase
can be noticed in terms of recall and F1, especially when including user group
information and comment.

Table 3.9 shows the results on the whole data set of the classifiers trained using
different sets of features and provides insight in the influence of the features.

As expected, we see that the ‘(change) delete’-feature contributes little more
than noise, while the ‘change insert’ is the most decisive factor. Next, we observe
a seemingly important contribution of the ‘change delete’-feature with respect to
the recall. This may be due to the fact that some pages are vandalised more than
others. It is, however, not a decisive feature as it contributes little to the overall result
in terms of precision.

The domination of the ‘user group’-feature on the recall can be easily explained
by combining the facts that anonymous users commit most of the vandalism, but
that their overall legitimate contribution to Wikipedia is rather small.

Note that the Naive Bayes classifier on all features, as shown by the last line in
Table 3.9, the recall is higher but at the same time there is a drop in the precision.

Table 3.9 shows the overall performance of the classifier build using probabilistic
sequence modeling together with the results of the individual models on the same
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Table 3.8: Performance of Naive Bayes

diff only all features

acc pre rec F1 acc pre rec F1

2003 - 2004 97.48 40.00 44.44 42.10 97.94 50.00 44.44 47.05

2004 - 2005 96.48 30.07 36.03 32.78 96.35 29.37 37.83 33.07

2005 - 2006 92.35 37.01 29.41 32.78 91.65 34.27 34.39 34.33

2006 - 2007 92.66 69.75 32.66 44.49 92.61 61.61 48.00 53.96

2007 - . . . 93.10 59.49 19.60 29.48 93.42 59.11 34.53 43.59

2003 - . . . 93.03 61.66 25.03 35.61 93.14 58.82 36.94 45.38

Shown is, for every year, the accuracy, precision, recall and F1 scores of Naive Bayes
on Simple English Wikipedia using only the revision diff features in a bag of words,
and including user group information and revision comments.

Table 3.9: Results individual classifiers on the simplewiki dataset.

NB PSM

acc pre rec F1 acc pre rec F1

delete 86.18 14.76 28.13 19.36 15.68 08.09 95.67 14.93

insert 95.85 26.36 26.70 26.53 50.31 12.74 92.81 22.41

change del 50.02 10.79 53.07 17.94 28.91 08.05 78.67 14.61

change ins 90.68 64.86 20.68 31.36 50.28 11.77 83.62 20.64

93.03 61.66 25.04 35.61 85.54 31.17 72.01 43.51

comment 87.29 23.60 28.94 26.00 79.78 26.67 92.33 41.38

user group 84.44 31.02 83.19 45.20 84.60 31.71 85.98 46.33

93.14 58.82 36.94 45.38 84.36 32.09 91.71 47.55

Shown are the accuracy, precision, recall and F1 scores for the overall classifiers built
using Naive Bayes and Probabilistc Sequence Modeling, together with the results of
the models built for the individual models on the simple wiki test set.

simplewiki test set. Interesting to note is that the recall is much higher, but that
the precision drops unexpectedly. We lack a plausible explanation for this strange
behaviour, but the effect can be diminished by setting the threshold parameter to a
score higher than zero.

This is shown in Figure 3.4, where we plot the precision/recall and receiver
operating characteristic curves for varying thresholds for the probabilistic sequence
models and for the Naive Bayes models, both with and without user groups and
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Figure 3.4: Precision/Recall and ROC curves: Naive Bayes versus Probabilistic Se-
quence Modeling for revision diff features with(out) user group and comment on
both the simplewiki dataset and the Webis-WVC-07 corpus. The dots corresponds
to the default classifiers as used in Table 3.9.

comments and both simplewiki and Webis-WVC-07 datasets. The marks show the
results when the log ratio threshold is equal to 0. The tendency is that, despite
the worse behavior shown in Table 3.9, the overall accuracy measured in term of
precision and recall is better for the compression based models than for the bag of
words model using Naive Bayes.

Figure 3.5 summarises and compares the overall performance of ClueBot with
the Naive Bayes and Probabilistic Sequence Modeling classifiers, including all fea-
tures or only using the diff features.
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Figure 3.5: ClueBot compared to Naive Bayes and Probabilistic Sequence Modeling
for revision diff features with(out) user groups and comment on simplewiki.

3.7 Discussion

Experiments demonstrate that, by applying two machine learning algorithms, a
straight forward feature representation and using a set of noisy labeled examples,
the rate to detect vandalism of the actual running bots can be improved. We feel
confident that this study is merely a starting point and that there is much room for
improvement.

To boost the overall performance we will need additional information. A next
step might be to combine the combine the ideas from [1] and [19] to enhance the
feature representation. We might rebuild their explicit semantic interpreter and use
it for semantic comparison between the current modified revision and the previous
versions of an article. We could compare the concepts related to text inserted and
deleted, and weight these features using respectively the authority of authors and
the value of words expressed in text life or expected viewing rate.

We believe that incorporating weighted semantics derived from explicit semantic
analysis, as described by [19], is necessary to improve overall performance. The
intuition is that the semantics of offenses, nonsense and spam are likely to differ
from the semantics of the revised article and hence are an important feature for
classification. Moreover, we believe that the ‘text deleted’-feature contains more
information than is apparent from the current results, where it appears to be merely
a noise factor. To exploit the usefulness of this feature, we will take into account its
effect on the semantic level by measuring the text life, i.e. the value of the deleted
words, as suggested by [1].
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Moreover, since the user groups play a dominant role in reducing the false
positive rate, a more fine-grained feature reflecting the authority of authors [1] could
be included to improve the precision of the classifiers and might be an alternative to
the black-list currently used in the vandal fighting bots.

Although nowadays large manually labeled multi-lingual vandalism corpora
are available for research purposes [61], using a set of noisy labeled provides still a
valuable alternative to bootstrap classifiers using co-training, trained on different
and more diverse sets of features, e.g. the ones used by Potthast et al. [63]. The
labeling technique based on the reverted-vloose revisions used in this chapter how-
ever could be improved in several ways. First, it might be better, to start from the
reverted-vstrict revisions, since these comments almost definitely indicate rever-
sion of vandalism. Moreover, it should be possible to extract other templates, and
improve the current ones, indicating reverts that cleanup vandalism, using pattern
extraction techniques [9].

3.8 Conclusion

To the best of our knowledge, we were among the first to try machine learning
techniques to answer the need of improving the recall of current hand-crafted
rule-based systems, which are only capable of identifying 30% of all vandalism.
We demonstrated that the detection rate of the current autonomous bots to fight
vandalism on Wikipedia can be improved employing a machine learning approach
relying on a straightforward feature representation and a set of noisy labeled training
examples.





CHAPTER 4
Identifying and Characterising
Anomalies in Transaction Data

In many situations there exists an abundance of normal examples, but
only a handful of anomalies. In this chapter we show how in binary or
transaction data such rare cases can be identified and characterised.

Our approach uses the Minimum Description Length principle to de-
cide whether an instance is drawn from the training distribution or not.
By using frequent itemsets to construct this compressor, we can easily
and thoroughly characterise the decisions, and explain what changes
in an example would lead to a different verdict. Furthermore, we give
a technique through which, given only a few anomalous examples, the
decision landscape and optimal boundary can be predicted—making the
approach parameter-free.

Experimentation on benchmark and real data shows our method pro-
vides very high classification accuracy, thorough and insightful char-
acterisation of decisions, predicts the decision landscape reliably, and
can pinpoint observation errors. Moreover, a case study on real MCADD
data shows we provide an interpretable approach with state-of-the-art
performance for screening newborn babies for rare diseases.

This chapter is based on work published as [73]:
K. Smets and J. Vreeken. The odd one out: Identifying and characterising anomalies. In Proceedings of
the 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, pages 804–815, 2011.
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4.1 Introduction

In many situations there is an abundance of samples for the normal case, but no,
or only a handful, anomalies. Examples of such situations include, intrusion detec-
tion [30, 38], screening for rare diseases [5, 31], monitoring in health care [21] and
industry [72], fraud detection [6, 33], as well as predicting the lethality of chemical
structures in pharmaceutics [18, 39]. In all these cases it is either very expensive,
dangerous, or virtually impossible to acquire (many) anomalous examples. This
means that standard classification techniques cannot be applied, as there is not
enough training data for each of the classes. Since there are only enough examples
for one class, this problem setting is typically known as one-class classification, but
for obvious reasons it can also be regarded as anomaly, or outlier, detection. The
goal is simple: given sufficient training data for only the normal class, reliably detect
the rare anomalies in unseen data. That is, to point the odd ones out.

Identification alone is not enough, however: explanations are also very impor-
tant. This goes for classification in general, but in the one-class setup descriptions
are especially important; we are deciding over rare events with possibly far-reaching
consequences. A human operator will not follow advice to shut down a complex
chemical installation if there is no good explanation to do so. Similarly, medical doc-
tors are ultimately responsible for their patients, and hence will not trust a black-box
telling them a patient has a rare disease if it cannot explain why this must be so.

In this chapter we give an approach for identifying anomalies in transaction
data, with immediate characterisation of the why. Our approach uses the Minimum
Description Length principle to decide whether an instance is drawn from the
training distribution or not; examples that are very similar to the data the compressor
was induced on will require only few bits to describe, while an anomaly will take
many bits. By using a pattern-based compressor, thorough characterisation of its
decisions is made possible. As such, our method can explain what main patterns are
present/missing in a sample, identify possible observation errors, and show what
changes would lead to a different decision, that is, show how strong the decision is.
Furthermore, given only few anomalous examples the decision landscape can be
estimated well.

We are not the first to address the one-class classification problem. However,
important distinctions can be made between our approach and that of previous
proposals. Here we give an overview of these differences, in Section 4.4 we discuss
related work in more detail.

Most existing methods for one-class classification focus on numeric data. How-
ever, in many cases events are discrete (e.g. alarms do or do not go off, chemical
sub-structures exist or not, etc.) and therefore are naturally stored in a binary or
transaction database. Applying these methods on binary data is not trivial.

In classification research, high accuracy is generally the main goal. However, as
pointed out above, for an expert the explanation of the decision is equally important.
By their black-box nature, existing methods typically do not offer this. Our approach
does, as it uses discovered patterns to describe and classify instances.

Also, by their focus on accuracy, most existing methods require the user to set a
number of parameters to maximise their performance. Whereas this has obvious
merit, in practice the expert will then need to fine-tune the method, while the effect
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and interplays of the parameters is often unclear. Our approach does not have such
parameters, making it more easily applicable.

Besides method-specific parameters, a key parameter in one-class classification
is the specificity/sensitivity threshold. As there are not enough anomalies available,
the decision landscape is unknown, and hence, it is difficult to set this threshold
well. Our method also requires such a decision threshold. However, given only a
couple of outlying examples, our method can estimate the decision landscape. As
such, we provide the user with an effective way to set the decision threshold, as well
as a way to see whether it is possible to identify anomalies at all.

As the compressor, here we use KRIMP [70], which describes binary data using
itemsets. The high quality of these descriptions, or code tables, has been well es-
tablished [40, 85, 86]. Alternatively, however, other compressors can be used in our
framework, e.g. to apply it on other data types or with different pattern types.

Summarising, the main contributions of this chapter are two-fold. First, we pro-
vide a compression-based one-class classification method for identifying anomalies
in transaction data that allows for thorough inspection of decisions. Second, we
give a method that estimates the distribution of encoded lengths for anomalies
very well, given only few anomalous examples. This allows experts to fine-tune
the decision threshold accordingly—making our approach parameter-free for all
practical purposes.

Experimentation on our method shows it provides competitive classification
accuracies, reliably predicts decision landscapes, pinpoints observation errors, and
most importantly, shows why decisions are made.

The remainder of the chapter is organised as follows. First, we cover the pre-
liminaries in Section 4.2 including notation, and short introductions to MDL and
one-class classification. Next, Section 4.3 covers the theory of using MDL for the
one-class classification problem. Related work is discussed in Section 4.4. We ex-
perimentally evaluate our method in Section 4.5. We round up with discussion in
Section 4.6 and conclude in Section 4.7.

4.2 Preliminaries

In this section we give the notation used throughout the chapter, and provide an
introduction to MDL.

Notation

Throughout this chapter, as well as the following one, we consider transaction
databases. Let I be a set of items, e.g. the products for sale in a shop. A transaction
t ∈ P (I ) is a set of items that, e.g. representing the items a customer bought in
the store. A database D over I is then a bag of transactions, e.g. the different sale
transactions on a given day. We say that a transaction t ∈ D supports an itemset
X ⊆I , if X ⊆ t . The support of X in D is the number of transactions in the database
in which X occurs.

Note that any binary or categorical dataset can be trivially converted into a
transaction database.

All logarithms are to base 2, and by convention 0log0 = 0.
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One-Class Classification

In one-class classification, or anomaly detection, the training database D consists
solely (or, overwhelmingly) of samples drawn from one distribution Dn . The task is
to correctly identify whether an unseen instance t ∉ D was drawn from Dn or not.
We refer to sample being from the normal class if they were drawn from distribution
Dn , and to the anomalous class if they were drawn from any other distribution Da .
We explicitly assume the Bayes error between Dn and Da to be sufficiently low. That
is, we assume well-separated classes—an unavoidable assumption in this setup.
(Section 4.3 gives a technique to evaluate whether the assumption is valid.)

Next, we formalise this problem in terms of the Minimum Description Length
principle.

MDL, a brief introduction

The Minimum Description Length principle (MDL) [24], like its close cousin MML
(Minimum Message Length) [88], is a practical version of Kolmogorov Complex-
ity [42]. All three embrace the slogan Induction by Compression. For MDL, this
principle can be roughly described as follows.

Given a set of models M , the best model M ∈M is the one that minimises

L(M)+L(D | M) ,

in which L(M) is the length in bits of the description of M , and L(D | M) is the length
of the description of the data when encoded with model M .

This is called two-part MDL, or crude MDL—as opposed to refined MDL, where
model and data are encoded together [24]. We use two-part MDL because we are
specifically interested in the model: the patterns that give the best description.
Further, although refined MDL has stronger theoretical foundations, it cannot be
computed except for some special cases.

To use MDL, we have to define what our models M are, how a M ∈M describes
a database, and how all of this is encoded in bits. Note, that in MDL we are only
concerned with code lengths, not actual code words.

The MDL principle implies that the optimal compressor induced on database D
drawn from a distribution D will encode transactions drawn from this distribution
more succinct than any other compressor.

More in particular, let L(t | M) be the length, in bits, of a random transaction t ,
after compression with the optimal compressor M induced from database D , then

L(t | M) =− log(Pr(t | D)) ,

if we assume that the patterns that encode a transaction are independent [40]. That
is, under the Naïve Bayes assumption, given dataset D1 drawn from distribution D1

and dataset D2 drawn from D2, the MDL-optimal models M1 and M2 respectively
induced on these datasets, and an unseen transaction t , we have the following
implication

L(t | M1) < L(t | M2) ⇒ Pr(t | D1) > Pr(t | D2) .

Hence, it is the Bayes-optimal choice to assign t to the class of the compressor
that encodes it most succinct [40].
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4.3 One-Class Classification by Compression

In this section we detail the theory of using the Minimum Description Length prin-
ciple for one-class classification and characterisation.

MDL for One-Class Classification

In our current setup, however, we only have sufficient training data for the normal
class. That is, while we can induce Mn to model the norm, we cannot access a
model Ma for the anomalies, and hence require a different way to decide whether
an unseen t was drawn from Dn or Da . At the same time, however, we do know that
the MDL-optimal compressor Mn will encode transactions drawn from Dn shorter
than transactions drawn from any other distribution, including Da . As such, we
have the following theorem.

Theorem 1. Let t1 and t2 be two transactions over a set of items I , respectively
sampled from distributions D1 and D2, with D1 6= D2. Further, let D be a bag of
transactions sampled from D1, and M be the MDL-optimal compressor induced on
D. Then, by the MDL principle we have

L(t1 | M) < L(t2 | M) ⇒ Pr(t1 | D) > Pr(t2 | D) .

With this theorem, and under the assumption that Dn and Da are dissimilar, we
can use the encoded size of a transaction to indicate whether it was drawn from the
training distribution or not. By MDL we know that if L(t | M) is small, Pr(t | D) is high,
and hence t was likely generated by the distribution D underlying D . Otherwise, if
L(t | M) is (very) large, we should regard t an anomaly, as it was likely generated by
a another distribution than D. Crucial, of course, is to determine when L(t | M) is
small enough.

The standard approach is to let the user define a cut-off value determined by
the false-negative rate, i.e. the number of normal samples that will be classified as
anomalies. For our setting, this would mean setting a decision threshold θ on the en-
coded sizes of transactions, L(t | M), such that at least the given number of training
instances are misclassified. Clearly, this approach has a number of drawbacks. First,
it definitely incorrectly marks a fixed percentage of training samples as anomalies.
Second, it does not take the distribution of the compressed lengths into account,
and so gives an unrealistic estimate of the real false negative rate.

To take the distribution of encoded sizes into account, we can consider its first
and second order moments. That is, its mean and standard deviation. Chebyshev’s
inequality, given in the theorem below, smooths the tails of the distribution and
provides us a well-founded way to take the distribution into account for setting θ.
It expresses that for a given random variable—in our case the compressed length,
L(t | M)—the difference between an observed measurement and the sample mean
is probability-wise bounded, and depends on the standard deviation.

Theorem 2 (Chebyshev’s inequality [23]). Let X be a random variable with expecta-
tion µX and standard deviation σX . Then for any k ∈R+,

Pr(|X −µX | ≥ kσX ) ≤ 1

k2 .
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Figure 4.1: Code length histograms for the 2 different classes of Mushroom, regarding
separately edible or in-edible as the normal class. Shown are the compressed sizes
of the transactions used to model the norm, together with the decision thresholds
at false negative rates of respectively 10%, 5% and 1% estimated using Cantelli’s
inequality.

Note that this theorem holds in general, and can be further restricted if one
takes extra assumptions into account, e.g. whether random variable X is normally
distributed or not.

Given that M is the MDL-optimal compressor for a transaction database D over
a set of items I , M encodes D most succinct amongst all possible compressors.
Hence we know that those transactions t over I with

L(t | M) < 1

|D|
∑

d∈D
L(d | M) ,

will have high Pr(t | D). In other words, if M requires fewer bits to encode t than it
requires on average for transactions from D , it is very likely that t was sampled from
the same distribution as D . In order to identify anomalies, we are therefore mainly
concerned with transactions that are compressed significantly worse than average.
To this end, we employ Cantelli’s inequality, the one-sided version of Chebyshev’s
inequality.

Theorem 3 (Cantelli’s inequality [23]). Let X be a random variable with expectation
µX and standard deviation σX . Then for any k ∈R+,

Pr(X −µX ≥ kσX ) ≤ 1

1+k2 .

Again, like Theorem 2, this theorem holds in the general case, and we can restrict
it depending on the knowledge we have on the distribution of the normal samples
Dn . Cantelli’s inequality gives us a well-founded way to determine a good value for
the threshold θ; instead of having to choose a pre-defined amount of false-negatives,
we can let the user choose a confidence level instead. That is, an upper bound for
the false-negative rate (FNR). Then, by θ = µ+kσ, we set the decision threshold
accordingly.
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Example 1. Consider Figure 4.1, depicting the histograms of the encoded sizes for
the Mushroom database, regarding respectively the edible or in-edible mushrooms
as examples for the normal class. A single histogram reflects the information the
user is able to derive only looking at the encoded lengths of the normal, either edible
or in-edible, examples. A standard procedure to set the decision threshold is to
choose a fixed number of known false-negatives. In our setup, we opt to use the
expected false-negative rate instead, for which Cantelli’s gives us the correct value
for the decision threshold θ. The dashed lines in Figure 4.1 show the thresholds
for confidence levels of respectively 10%, 5% and 1%. The confidence level of
10%, for instance, corresponds setting θ at 3 standard deviations to the right of the
average. This means the user has less than 10% chance of observing a future normal
transaction that lies further than the decision threshold.

Note that using only the empirical cumulative distribution, the decision thresh-
old would always fall inside the observed range, while by using Cantelli’s inequality
we are able to exceed this range: in the case above from 5% onward. Obviously,
the user has no guarantees on the rate that anomalies will be classified as normal
samples, i.e. the false positive rate (FPR). We will discuss that particular problem in
Section 4.3.

KRIMP for One-Class Classification

In the previous subsections, we simply assumed access to the MDL-optimal com-
pressor. Obviously, we have to make a choice for which compressor to use in practice.
In this chapter we employ KRIMP, an itemset-based compressor [70], to approximate
the optimal compressor for a transaction database. As such, it aims to find that set
of itemsets that together describe the database best. The models KRIMP considers,
code tables, have been shown to be of very high quality [40, 85, 86]. In Section 5.2
we will go in closer detail, here it suffices to know KRIMP describes a transaction
t exactly using sets of non-overlapping itemsets, cover(t), and that we denote the
encoded length in bits of a transaction t by

L(t |C T ) = ∑
X∈cover(t )

L(X |C T ) .

By running KRIMP on training database D, consisting of normal examples, we
obtain an approximation of the MDL-optimal compressor for D . To employ this com-
pressor for one-class classification, or anomaly detection, we combine the insights
from Section 4.3 and 5.2. Formally, this means that given a decision threshold θ, a
code table C T for database D , both over a set of items I , for an unseen transaction
t also over I , we decide that t belongs to the distribution of D iff

L(t |C T ) ≤ θ .

In other words, if the encoded length of the transaction is larger than the given
threshold value, we decide it is an anomaly. We will refer to our approach as OC3,
which stands for One-Class Classification by Compression.

The MDL-optimal compressor for the normal class can obviously best be ap-
proximated when D consists solely of many samples from Dn . In practice, however,
these demands may not be met.



52 CHAPTER 4. MDL-BASED ANOMALY DETECTION IN TRANSACTION DATA

Firstly, D may not be very large. The smaller D is, the less well the compressor
will be able to approximate the MDL-optimum. We thus especially expect good
performance for large training databases. Note that MDL inherently guards against
overfitting: adding too much information to a model would make it overly complex,
and thus degrade compression.

Secondly, D may contain some (unidentified) samples from Da . However, under
the assumption that Dn and Da are well separated, the MDL-optimal compressor
for a dataset D with a strong majority of samples from Dn , and only few from Da ,
will typically encode future samples from Dn in fewer bits than those from Da . As
such, the classifier will also work when the training data contains anomalies. Unless
stated otherwise, in the remainder of this chapter we assume that D is sampled
solely from the normal class.

Characterising Decisions

One of the main advantages of using a pattern-based compressor like KRIMP, is that
we can characterise decisions, adopting the insights from Vreeken et al. [86].

As an example, suppose a transaction t is classified as an anomaly. That is,
L(t | C T ) > θ. To inspect this decision, we can look at the itemsets by which the
transaction was covered; this gives us information whether the anomaly shows
patterns characteristic for the normal class. That is, the more t resembles the
patterns of the normal class, the more it will be covered by long itemsets and less by
singletons. On the other hand, patterns that are highly characteristic for D that are
missing from the transaction cover are equally informative; they pinpoint where t is
essentially different from the normal class.

Since code tables on average contain up to a few hundred of elements [87],
this analysis can easily be done by hand. In addition, we can naturally rank these
patterns on encoded size, to show the user what most characteristic, or frequently
used, patterns are missing or present. As such, decisions can easily be thoroughly
inspected.

Estimating the Decision Landscape

For many situations it is not unrealistic to assume that, while not abundant, some
example anomalies are available besides the training data (e.g. less than 10). Even if
these examples are not fully representative for the whole anomalous class Da , we
can use them to make a more informed choice for the threshold parameter.

To this end, we propose to generate artificial anomalies, based on the given
anomalies, to estimate the number of bits our normal-class compressor will require
to encode future samples from Da ; given this estimated distribution of encoded
lengths, and the encoded lengths for the training data, we can set the decision
threshold θ to maximise expected accuracy—as well as to inspect whether it is likely
we will see good classification scores.

For this, we have to make one further assumption that builds on the one under-
lying one-class classification, i.e. that the normal and anomalous distributions are
essentially different, and hence, that the MDL-optimal compressor for the normal
class will badly compress anomalous samples. Now, in addition, we assume that by
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slightly altering a known anomaly it will still be an anomaly. Note that if the normal
and anomalous distributions are not well-separated, this assumption will not hold.

More formally, let us consider the MDL-optimal compressor M for a training
database D of samples from Dn , all over a set of items I . Further, we have a known
anomaly t ∈Da for which L(t | M) is large, compared to L(d | M) for random d ∈ D .
Next, let us construct transactions t ′ by removing few (one, two, . . . ) items X from
t , and replacing these with equally many items Y not in t , i.e. t ′ ← (t \ X )∪Y , with
|t ′| = |t |, Y ⊆ I and X \ t = ;. Now, the main assumption is that on average, t ′ is
about as likely as t in Da , i.e. we have Pr(t ′ | Da) ≈ Pr(t | Da), and t ′ is unlikely to
be drawn from Dn , i.e. Pr(t ′ |Dn) is small and L(t ′ | M) relatively large. Under this
assumption, L(t ′ | M) gives us a good estimate of the encoded sizes of real future
anomalies.

Naturally, the quality of the estimate is strongly influenced by how we swap items.
One option is random change. Alternatively, we can take the compressor and the
training data into account. Through these, we can identify those X and Y that will
maximally change L(t ′ | M); by choosing X and Y such that t ′ is compressed badly,
we will (likely) overestimate the separation between Dn and Da , and analogously we
underestimate when we minimise L(t ′ | M).

We argue that in this setup the latter option is preferred. First of all, it is possible
that the identified anomalies are extremes—otherwise they might not have been
discovered. Second, it is not unlikely the two distributions share basic characteristics.
A pattern very common in D will likely also occur in samples from Da ; we should
take this into account when sampling t ′s.

Given some prototype anomalies, we generate new samples according to the
following distribution. First, we uniformly choose a transaction t among the given
prototype anomalies. Next, from t we select an item i to remove, using the following
exponential distribution,

Pr(i ) = 2−1/l (i )∑
j∈t

2−1/l ( j )
,

where, l (i ) = L(Z |C T )
|Z | and i ∈ Z ∈ cover(t ) . By this choice, we prefer to remove those

items that require the most bits to be described—that is, those that fit the patterns
from the normal class least. To complete the swap, we choose an item from I \ t
to add to t . (Note that if the original dataset is categorical, it only makes sense to
swap to items corresponding to the same category.) We choose the item j to swap
to according to the following distribution, similar to how Vreeken and Siebes [85]
imputed missing values,

Pr( j ) = 2−L(t j |C T )∑
k∈I \(t\i )

2−L(tk |C T )
,

with t j = (t \ {i })∪ { j }. This distribution generates transactions t ′ with preference to
short encoding.

To estimate the expected false positive rate, we generate a large number of sam-
ples and calculate mean and standard deviation. One can use Cantelli’s inequality,
or assume the encoded lengths of the anomalies to follow a normal distribution.
Then, one can update θ by taking both FPR and FNR into account, e.g. choose the
intersection between the two distributions.
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Measuring Decision Certainty

Item swapping is also useful to show how a transaction t needs to be modified in
order to change the classification verdict. Or, the other way around, to show what
items are most important with regard to the decision of t . However, we can go one
step further, and look at the certainty of a decision by considering the encoded
lengths of altered transactions. The rationale is that the more we need to change t
to let its encoded length reach below the decision threshold, the more likely it is this
example is indeed an anomaly. Alternatively, for a sample with an observation error,
a small change may be enough to allow for a correct decision.

So, the goal is, given a transaction t , to maximally reduce the encoded size
L(t | C T ) with a limited number of changes δ. In general, transactions may have
different cardinality, so up to δ elements can be added—in categorical databases
transactions are of the same size and up to δ items need to be swapped. Clearly, with(|I \t |

δ

)× (|t |
δ

)
possible altered transactions, solving this problem exhaustively quickly

becomes infeasible for larger δ and I . However, in our setup we can exploit the
information in the code table to guide us in choosing those swaps that will lead to a
short encoding.

The idea is to cover the transaction t using the most specific elements, i.e., the
itemsets X ∈C T with highest cardinality |X |, while tolerating up to δ missing items.
The reason to choose the most specific elements is that we cover the most singletons
by one itemset, and therewith replace many (on average long) codes by just one
(typically short) code. Note that, alternatively, one could attempt to greedily cover
with the elements with the shortest codes, or even minimise the encoded length by
dynamic programming.

We present the pseudo-code for finding a δ-fault-tolerant cover for a transaction
t and a code table C T as Algorithm 2. In order to calculate the resulting encoded
length of t , we simply use the code lengths in the code table. In the algorithm, while
covering t , we keep track of the number of swaps made so far, denoted as ε. Once
the number of uncovered items in t is smaller or equal than ε (line 2) we can stop:
the items remaining in t are the items we have to remove, the items S \ t are the ones
we have to add. We only use Algorithm 2 as a step during analysis of decisions; it
would require non-trivial adaptations to KRIMP to let it consider missing items when
constructing the optimal code table, and our focus here is clearly not to construct a
new compressor.

4.4 Related Work

Much of the existing work on one-class classification targets record data constructed
with numerical attributes. For a general overview, we refer to [49, 77]. Very few of
these studies are applicable to transaction data, as many of the these methods rely
on density estimations (e.g. Parzen-windows or mixture of Gaussians) to model
the norm. Two state-of-the-art algorithms that, by respectively using the appropri-
ate kernel or distance measure, are applicable to binary data are Support Vector
Data Description (SVDD) [79], or one-class SVM [66], and Nearest Neighbour Data
Description (NNDD) [77].

He et al. [28] study outlier detection for transaction databases. The authors
assume that transactions having less frequent itemsets are more likely to be outliers.
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Algorithm 2 FAULT-TOLERANT COVER

Input: Transaction t ∈ D and code table C T , with C T and D over a set of items I .
Maximum number of faults δ, and current number of faults ε.

Output: Fault-tolerant cover of t using the most specific elements of C T , tolerating
at most δ faults.

1. S ← smallest X of C T in Standard Cover Order with |X \ t | ≤ δ, X ∈ t if |X | = 1
2. if |t \ S| ≤ ε then
3. Res ← {S}
4. else
5. Res ← {S} ∪ Fault-Tolerant Cover(t\S,C T ,δ–|S\t |,ε+|S\t |)
6. end if
7. return Res

Narita et al. [56], on the other hand, use information of association rules with
high confidence for the outlier degree calculation. Both these approaches were
formulated to detect outliers in a database, but can also be used for single-class
problems. While both methods use patterns and share the transparency of our
approach, their performance is very parameter-sensitive. For the former, the authors
restrict themselves to the top-k frequent itemsets. In the latter, besides a minimum
support threshold, the user also needs to specify minimum confidence. Both papers
notice large changes in accuracy depending on the parameter settings, but postpone
insight in how to set these optimally to future work.

We are not the first to employ the MDL principle for one-class classification. How-
ever, to the best of our knowledge, we are the first to apply it in a binary/transaction
database setting. Bratko et al. [8] and Nisenson et al. [58] consider streams of char-
acter data (e.g. text, streams of bytes or keyboards events, etc.). In these approaches,
the compressor is immaterial; that is, well-known universal compression algorithms,
such as gzip, are used, which do not allow for inspection. The algorithms compress
common shared (sub)strings of characters that occur often together in the streams.
In transaction databases one is not interested in sequences of items, as items are
unordered.

We use KRIMP, introduced by Siebes et al. [70], to build a compression model
relying on the (frequent) itemsets to encode transactions. Van Leeuwen et al. show
that these models are able to compete with the state-of-the-art multi-class classi-
fiers [40]. Moreover, Vreeken et al. demonstrate how to identify and characterise
differences among databases or different classes in a database based on the infor-
mation of encoded lengths [86]. Alternatively, one could use PACK [76], LESS [29],
or any other suited transaction data compressor, in our framework.

4.5 Experiments

In this section we experimentally evaluate our approach. First, we discuss the
experimental setup, then investigate classification accuracy. Next, we show how clas-
sification decisions can be characterised, and observation errors in transactions can
be detected. Finally, we estimate the distribution of encoded lengths for anomalies
to improve classification results.
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Table 4.1: Statistics of the datasets used in the experiments.

KRIMP

Dataset |D| |I | %1s |K | minsup

Adult 48842 95 15.3 2 50

Anneal 898 66 20.2 5 1

Breast 699 14 62.4 2 1

Chess (k-k) 3196 75 49.3 2 400

Chess (kr-k) 28056 58 12.1 18 1

Connect-4 67557 129 33.3 3 1

Heart 303 46 28.0 4 1

Iris 150 16 26.3 3 1

Led7 3200 14 33.3 10 1

MCADD 32916 195 11.1 1 128

Mushroom 8124 117 19.3 2 1

Nursery 12960 27 28.1 4 1

Pageblocks 5473 39 25.0 5 1

Pen Digits 10992 76 19.8 10 10

Pima 768 36 23.7 2 1

Tic–Tac–Toe 958 27 34.5 2 1

Typist 533 40 25.7 10 1

Wine 178 65 20.6 3 1

Given are, per dataset, the number of rows, the number of distinct items, density
(in percentage of 1s), the number of classes and the minsup thresholds for the
KRIMP-compressor.

Experimental Setup

For the experimental validation of our method we use a subset of publically avail-
able discretised datasets from the LUCS-KDD repository [15]. In addition to these
datasets, shown in Table 4.1, we also consider the Typist recognition problem pro-
vided by Hempstalk et al. [30], discretised and normalised using the LUCS-KDD DN
software [15].

We turn this selection of multi-class classification datasets into several one-class
classification problems. For each dataset, one class at a time, we consider a particular
class K ∈K as the normal class and the samples from the remaining classes K \ K
as anomalies. All results reported in this section are 10-fold cross-validated.

To obtain the KRIMP code table C TK for a dataset DK , we use (closed) frequent
itemsets in DK mined with minsup set as low as practically feasible. The actual
values for minsup are depicted in Table 4.1.
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One-Class Classification

We compare our method to two state-of-the-art [30, 79] one-class classifiers: Support
Vector Data Description (SVDD) [66, 79] and Nearest Neighbour Data Description
(NNDD) [77], both of which are publically available in DDtools [78].

For the kernel in SVDD, or one-class SVM, we use the polynomial kernel, and
optimise the degree parameter d for high accuracy. While more generally employed
in one-class classification, for binary data the RBF kernel leads to worse results. One
other advantage of using polynomial kernels with binary data is the close relatedness
to itemsets: the attributes in the feature space induced by this kernel indicate the
presence of itemsets up to length d .

For NNDD we use the Hamming distance. To determine the number of neigh-
bouring points that are used to decide the classification, parameter k, we optimise
the log-likelihood of the leave-one-out density estimation [78].

To compare the algorithms, we use the AUC, i.e. area under the ROC curve, as it is
independent of actual decision thresholds. Table 4.2 shows the AUC scores averaged
over 10-folds and each of the classes of each dataset. We see, and it is confirmed by
pairwise Student’s t-tests at α-level 5%, that, in general, the performance of OC3 is
on par with that of both other algorithms, and that SVDD clearly outperform NNDD.
Especially for datasets with high numbers of transactions, e.g. Chess (kr-k), Connect-
4, Mushroom, and Pen Digits, OC3 provides very good performance, while for data
with very small classes, such as Iris, Tic–Tac–Toe and Wine, it does not improve over
the competing methods. This is expected, as MDL requires sufficient samples to
properly estimate the training distribution. In conclusion, OC3 performs on par
with the state of the art, and can improve over it for large databases.

The sub-par performance of all classifiers on Pageblocks and Pima, can be ex-
plained: these datasets contain large numbers of identical transactions that only
differ on class-label, making errors unavoidable.

In our setup, classification depends on code length distributions for the different
classes. Figure 4.2a and 4.2b show the histograms on the training instances of two
classes from the Pen Digits dataset. One can notice that the normal transactions
(shown in hatched red) are better compressed than the anomalies, i.e. the other
classes, (filled blue) which is in accordance with the MDL assumption. The quality of
the classification result is determined by the amount of overlap. Following, the more
the two distributions are apart, the better the results are. For the sub-par performing
datasets in Table 4.2, the histograms overlap virtually completely, and hence the
separation-assumption is not met.

If memory or time constraints do not allow us to mine for frequent itemsets
at low minsup, e.g. for the dense Chess (k-k) dataset, some characteristic patterns
might be missing from the code tables, in turn leading to sub-par compression and
performance. Clearly, at further expense, mining at lower minsup would provide
better compression, which in turn should provide better performance on these
datasets.
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Table 4.2: AUC scores for the benchmark datasets.

Dataset OC3 SVDD NNDD

Adult 68.63 ± 3.71 72.86 ± 6.68 65.64 ± 5.84

Anneal 95.58 ± 0.62 93.62 ± 9.95 97.32 ± 2.36

Breast 87.12 ± 12.76 96.47 ± 1.19 72.77 ± 33.04

Chess (k-k) 68.57 ± 0.58 65.62 ± 7.89 82.27 ± 1.69

Chess (kr-k) 94.89 ± 5.18 86.46 ± 8.71 80.38 ± 9.79

Connect-4 73.73 ± 6.47 55.14 ± 6.98 62.22 ± 5.52

Heart 65.13 ± 9.99 69.06 ± 12.15 66.18 ± 7.85

Iris 93.39 ± 3.84 98.20 ± 2.08 95.96 ± 4.60

Led7 91.45 ± 3.50 93.41 ± 3.45 79.43 ± 7.26

Mushroom 100.00 ± 0.00 97.69 ± 2.89 99.92 ± 0.07

Nursery 98.43 ± 1.68 98.68 ± 1.68 84.54 ± 7.16

Pageblocks 52.59 ± 23.87 56.79 ± 13.91 51.13 ± 13.07

Pen Digits 98.25 ± 0.89 98.98 ± 0.80 98.32 ± 1.00

Pima 50.94 ± 28.93 65.32 ± 9.66 50.63 ± 12.81

Tic–Tac–Toe 89.90 ± 7.15 98.74 ± 1.78 97.89 ± 1.22

Typist 87.81 ± 6.93 92.30 ± 6.35 87.84 ± 7.73

Wine 91.37 ± 0.66 97.85 ± 1.18 95.51 ± 5.26

average 82.81 ± 8.22 84.54 ± 4.20 80.47 ± 7.64

Shown are, per dataset, mean and standard deviation of the average AUC score over
the classes. The KRIMP-compressor in OC3 ran using the all closed itemsets above
minsup values in Table 4.1 as candidates. Highlighted are the comparative results
using pairwise Student’s t-tests at α-level 5%: bold and underlined values indicate
AUC scores significantly better or worse than the other two, while italics signal scores
that only differ significantly from those of SVDD.
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(a) Pen Digits - Class 1
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(b) Pen Digits - Class 10
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(c) MCADD - Healthy Class

Figure 4.2: Code length histograms for MCADD and Pen Digits. Shown are the com-
pressed sizes of transactions of the normal ones (in hatched red) and the anomalies
(in filled blue). The solid black line depicts our estimate, using 4 counterexamples,
of the encoded lengths for the anomalies. The dashed line represents the decision
threshold bounding the FPR at 10%, while the dotted line, if present, shows the
decision threshold after updating.
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Figure 4.3: Example transactions from MCADD: observation error (top a), true
anomaly (top b) and corrections (bottom) suggested by Algorithm 2 (δ = 1). The
rounded boxes visualise the itemsets that are used to cover the transaction; each
itemset is linked to its code. Width of the bar represents the length of the code.
Swapped items are displayed in boldface. Clearly, the observation error is correctly
identified, as its encoded length can be decreased much with only swap, whereas
the encoded length of the anomaly cannot be improved much.
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Inspection and Characterisation

One of the key strengths of our approach is that we can analyse and explain the
classification of transactions. Here, we investigate how well the approach Section 4.3
outlines works in practice. Note that black-box methods like SVDD and NNDD do
not allow for characterisation.

To demonstrate the usability of our approach in a real problem setting, we per-
form a case study on real MCADD data, described in detail in Section 4.5, obtained
from the Antwerp University Hospital. Medium-Chain Acyl-coenzyme A Dehydroge-
nase Deficiency (MCADD) [5] is a deficiency newborn babies are screened for during
a Guthrie test on a heel prick blood sample. This recessive metabolic disease affects
about one in 10 000 people while around one in 65 is a carrier of the responsible
mutated gene. If left undiagnosed, this rare disease is fatal in 20 to 25% of the cases
and many survivors are left with severe brain damage after a severe crisis.

Figure 4.3, which shows the covers of 4 transactions from the MCADD dataset,
serves as our running example. A typical cover of a transaction from the normal
class is shown in Figure 4.3a (bottom): one or more larger itemsets possibly com-
plemented with some singletons. Also note that the lengths of the individual codes,
denoted by the alternating light and dark grey bars, are short. This is in strong
contrast with the covers of the other transactions, which resemble typical covers for
anomalous transactions, where mostly singletons are used. Also, the code lengths of
itemsets in the cover of an anomalous transaction are typically long.

The ‘anomaly’ transaction at the top of Figure 4.3a was artificially constructed by
taking a transaction from the normal class. If we use Algorithm 2, with δ, the number
of mistakes allowed, set to one, we exactly recover the true normal transaction
(bottom of Figure 4.3a). This shows that we are able to detect and correct observation
errors in future samples. Or, the other way around, if many swaps are needed for
the decision to change, this gives a plausible explanation why the transaction is
identified as an anomaly.

The top transaction in Figure 4.3b is a true anomaly. We first of all observe
that the encoded size of the transaction is large. Next, as the items are labeled
descending on their support, we see that more than halve of the items belong to
the 20% least frequent. Moreover, we note that by applying Algorithm 2 the gains
in encoded length are negligible (see bottom of Figure 4.3b for one example). This
trend holds in practice, and strengthens confidence in the assumption made in
Section 4.3, that small variations of anomalies remain ‘anomalous’. However, as
shown above, perturbing normal samples can cause large variation in encoded size
as larger patterns fall apart into singletons.

Estimating Anomaly Distributions

Next, we investigate how well we can estimate the distribution of encoded lengths for
anomalies, by generating samples from a limited number of anomalies, as outlined
in Section 4.3. For both the MCADD and Pen Digits dataset, we generated 10000
samples based on 4 randomly selected anomalies. As shown in Figure 4.2, the so-
derived normal distributions, based on the sample mean and standard variation,
approximate the true anomaly distributions closely. Note that, as intended, the
estimate is slightly conservative.



62 CHAPTER 4. MDL-BASED ANOMALY DETECTION IN TRANSACTION DATA

Alternatively, if we uniformly swap items, the patterns shared by both anomalies
and the expected ones are more likely to be destructed. Experiments show this
provides overly optimistic estimates of the separation of the distributions. Further,
in many situations, it is sensible to estimate pessimistically. That is, closer to the
normal samples. For example, if MCADD is left undiagnosed, it is fatal in 20% to
25% of the cases, and survivors are typically left with severe brain damage.

We will now use illustrate through Figure 4.2a and 4.2b how a user can use
this information to update the decision threshold θ. Initially, the user only has
information from the normal class, denoted by the hatched red histograms. By
using Cantelli’s inequality, the decision threshold can be set to allow up to 10% false
negatives (dashed line). After estimating the distribution for the anomalies, we
notice this initial choice fits perfect for class 10 in Figure 4.2b. However, the decision
threshold for class 1 in Figure 4.2a is too low (5% FNR, 0.2% FPR). If we update the
decision threshold (dotted line) to counterbalance both the estimated false negative
and false positive rate using Cantelli’s inequality, we observe that the false negative
and false positive rates on the hold-out validation set are more in balance: 1.8% FNR
and 1.5% FPR. So, by using information derived from the artificial anomalies, the
user can update the threshold and improve classification results.

Case study: MCADD

In our study, the dataset contains controls versus MCADD, with respectively 32 916
normal ones and only 8 anomalies. The instances are represented by a set of 21
features: 12 different acylcarnitine concentrations measured by tandem mass spec-
trometry (TMS), together with 4 of their calculated ratios and 5 other biochemical
parameters. We applied k-means clustering with a maximum of 10 clusters per
feature to discretise the data resulting in 195 different items. We run KRIMP using a
minimum support of 15, which corresponds to a relative minsup of 0.05%.

Repeated experiments using 10-fold cross-validation show that all 8 anomalous
cases are ranked among the top-15 largest encoded transactions. Besides, we notice
that the obtained performance indicators (100% sensitivity, 99.9% specificity and
a predictive value of 53.3%) correspond with the state-of-the-art results [5, 31] on
this problem. Moreover, analysing the anomalous cases by manually inspecting the
patterns in the code table and covers, reveals that particular combinations of values
for acylcarnitines C2, C8 and C10 together with particular following ratios C 8

C 2 , C 8
C 10

and C 8
C 12 were grouped together in the covers of the abnormal cases. Exactly these

combination of variables are commonly used in diagnostic criteria by experts and
were also discovered in previous in-depth studies [5, 31].

The largest outlying samples stand out as a rare combination of other acetylcar-
nitine values. Although these samples are not MCADD cases, they are very different
from the general population and are therefore abnormal by definition.
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4.6 Discussion

The experiments in the previous section demonstrate that our method works: trans-
actions that are succinctly compressed by patterns from the normal class are indeed
highly likely to belong to that class. The obtained AUC scores are on par with the
state-of-the-art one-class classifiers for binary data, and especially good for large
datasets.

In practice, a user lacks an overall performance measure to reliably specify the
specificity/sensitivity threshold, as anomalous examples are rare in one-class classi-
fication. Consequently, the ability to inspect classification decisions is important. In
contrast to existing approaches, our pattern-based method provides the opportunity
to analyse decisions in detail.

Examples in the experiments show possible use cases. First, we are able to
explain why a transaction is classified as such. Transactions that are covered with
itemsets that are highly characteristic for the normal class are likely normal as well,
while those transactions that do not exhibit such key patterns (and thus encoded
almost solely by singletons) can be considered as anomalies. Next, our approach is
able to detect, and correct, observation errors in test samples.

Furthermore, if some anomalies are available, we propose to approximate the
encoding distributions of the anomalies. By using this information, a user is able
to make a more informed decision when setting the decision threshold. Here, we
choose to generate samples conservatively. Visualising the approximated distribu-
tion of encoded lengths for anomalies shows whether one-class classification, based
on compressed lengths, is actually possible.

A case study on the MCADD dataset shows that true anomalies are correctly
identified. Different from the setup explored here, where unseen transactions are
considered as potential anomalies, one could also be interested in detecting anoma-
lies in the dataset at hand. The method discussed in this chapter may well provide
a solution for this problem, that is, pointing out the most likely outlying items and
transactions by compressed size. Related, as a future work, we are investigating a
rigorous approach for cleaning data using MDL.

Although in this chapter we focus on binary data, the methods we present can be
generalised as a generic approach using MDL. That is, as long as a suited compressor
is employed, the theory will not differ for other data types. Variants of KRIMP have
already been proposed for sequences, trees, and graphs [4].

4.7 Conclusion

In this chapter we introduced a novel approach to anomaly detection, or one-class
classification, for binary or transaction data. In this setting little or no examples are
available for the class that we want to detect, but an abundance of normal samples
exists. Our method is based on the Minimum Description Length principle, and
decides by the number of bits required to encode an example using a compressor
trained on samples of the normal situation. If the number of bits is much larger
than expected, we decide the example is an anomaly. Experiments show that this
approach provides accuracy on par with the state of the art.
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Most important, though, is that it holds three advantages over existing methods.
First, by relying on pattern-based compression, our method allows for detailed
inspection and characterisation of decisions, both by showing which patterns were
recognised in the example, as well as by checking whether small changes affect the
decision. Second, we show that given a few anomalous examples, our method can
reliably estimate the decision landscape. Thereby, it can predict whether the normal
class can be detected at all, and allows the user to make an informed choice for the
decision threshold. Third, given this estimate the method is parameter-free.



CHAPTER 5
Directly Mining

Descriptive Patterns

Mining small, useful, and high-quality sets of patterns has recently be-
come an important topic in data mining. The standard approach is to
first mine many candidates, and then to select a good subset. However,
the pattern explosion generates such enormous amounts of candidates
that by post-processing it is virtually impossible to analyse dense or large
databases in any detail.

We introduce SLIM, an any-time algorithm for mining high-quality sets
of itemsets directly from data. We use MDL to identify the best set of item-
sets as that set that describes the data best. To approximate this optimum,
we iteratively use the current solution to determine what itemset would
provide most gain—estimating quality using an accurate heuristic. With-
out requiring a pre-mined candidate collection, SLIM is parameter-free
in both theory and practice.

Experiments show we mine high-quality pattern sets; while evaluat-
ing orders-of-magnitude fewer candidates than our closest competitor,
KRIMP, we obtain much better compression ratios—closely approximat-
ing the locally-optimal strategy. Classification experiments indepen-
dently verify we characterise data very well.

This chapter is based on work published as [74]:
K. Smets and J. Vreeken. SLIM: Directly mining descriptive patterns. In Proceedings of the 12th SIAM
International Conference on Data Mining (SDM), Anaheim, CA, 2012.
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5.1 Introduction

Pattern mining is one of the central topics in data mining, and is focused on discov-
ering interesting local structure in data. Starting from frequent sets and association
rules [2], one of the key goals in pattern mining has been completeness: discovering
all patterns that satisfy certain conditions. In a way, this is a useful goal, as we
know that all returned patterns meet the requirements—and as such, are potentially
interesting.

Completeness, however, also has its drawbacks. Typically, there exist extremely
many patterns fulfilling the constraints, many of which convey the same informa-
tion. Mining all patterns hence leads to prohibitively large and strongly redundant
results, which are in turn difficult to use or interpret. To address this, researchers
have recently instead focused on discovering small and useful, high-quality sets of
patterns [37, 52, 87].

We identify the best set of patterns as those patterns that together describe the
data best. That is, by the Minimum Description Length (MDL) principle [24], we are
after that set of patterns that provides the optimal lossless compression of the data.
By definition, this set has many desirable properties: it is non-redundant, not overly
simple, nor complex for the data—as otherwise, bits could have been saved. The
main question is, how do we mine this optimal result?

In this chapter, we present SLIM, an efficient heuristic for directly mining high-
quality data descriptions on transaction data. SLIM is a fast, one-phase, any-time
alternative to KRIMP [70]. Besides obtaining better compression, it can handle large
and dense datasets, and is parameter-free in both theory and practice.

The MDL approach to pattern mining was pioneered by Siebes et al. [70, 87],
who gave the KRIMP algorithm to approximate the optimal set of itemsets, or, code
table. Subsequent research showed these sets of patterns to be very useful. Besides
characterising the distribution of the data very well, they have been shown to provide
high performance in a wide range of tasks, including difference measurement [86],
clustering [41], and anomaly detection [73].

Like many pattern set mining approaches [10, 36, 69], KRIMP follows a straight-
forward two-phase approach to mining code tables. First, it mines a collection of
frequent itemsets. Second, it considers these candidates in a static order, accepting
a pattern if it improves compression. This simplicity has some drawbacks.

First of all, mining candidates is expensive. As more candidates correspond to
a larger search space, lower support thresholds correspond to better final results.
Often, however, it is difficult to keep the number of candidates feasible—for large and
dense databases especially, a small drop of the threshold can lead to an enormous
increase in patterns. Moreover, as most candidates will be rejected, this step is quite
wasteful.

Second, by considering candidates only once, and in a fixed order, KRIMP some-
times rejects candidates that it could have used later on. A more powerful strategy
would be to iteratively select the best addition out of all candidates—which naively,
however, quickly becomes infeasible for larger databases or candidate collections.

With SLIM, we address these issues, and give an efficient any-time algorithm for
mining descriptive pattern sets directly from data. We greedily construct pattern
sets in a bottom-up fashion, iteratively joining co-occurring patterns such that
compression is maximised. To reduce computation and database scans, it employs a
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simple yet accurate heuristic to estimate the gain or cost of introducing a candidate.
Importantly, SLIM is parameter-free in both theory and practice.

Experiments show we discover high-quality pattern sets. The SLIM code tables
attain very high compression ratios; in particular on large and dense datasets, we
obtain tens of percentages better compression than KRIMP, while considering orders-
of-magnitude fewer candidates. Classification experiments show high accuracy,
verifying that we characterise the data well. Convergence plots show SLIM closely
approximates the powerful greedy approach of selecting the best candidate out of
all candidates; all while being much more efficient.

The remainder of this chapter is organised as follows. First, we cover the pre-
liminaries in Section 5.2 including short introductions to code tables and KRIMP.
Next, in Section 5.3 we discuss how to mine and identify good candidate patterns.
In Section 5.4 we introduce the SLIM algorithm for mining high quality code tables
directly from data. Section 5.5 discusses related work, and we experimentally evalu-
ate our method in Section 5.6. Finally, we round up with discussion in Section 5.7
and conclude in Section 5.8.

5.2 Preliminaries

In this section we provide an introduction to code tables and the KRIMP algorithm,
and refer to Section 4.2 for the notation used throughout the chapter and a brief
introduction to MDL.

Code tables

Recall from Section 4.2 that in order to use MDL, we have to define what our models
are, how a model describes a database, and how we encode these in bits.

As our itemset-based models we use code tables [70, 87]. A code table is a
simple dictionary: a two-column table with itemsets on the left-hand side, and
corresponding codes on its right-hand side. The itemsets in the code table are
ordered first descending on cardinality, second descending on support, and third
lexicographically. We refer to this as the Standard Cover Order.

The actual codes on the right-hand side are of no importance: their lengths
are. To explain how these lengths are computed, the coding algorithm needs to be
introduced. A transaction t is encoded by searching for the first itemset X in the
code table for which X ⊆ t . The code for X becomes part of the encoding of t . If
t \ X 6= ;, the algorithm continues to encode t \ X . Since it is insisted that each code
table contains at least all single items, this algorithm gives a unique encoding to
each (possible) transaction over I .

The set of itemsets used to encode a transaction is called its cover. Note that the
coding algorithm implies that a cover consists of non-overlapping itemsets. The
length of the code of an itemset in a code table C T depends on the database at hand;
the more often a code is used, the shorter it should be. To this end, we use an optimal
prefix code. To compute the code lengths, we have to cover every transaction in the
database.

The usage of an itemset X ∈C T is the number of transactions t ∈ D which have
X in their cover. The relative usage of X ∈C T is the probability that X is used in the
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encoding of an arbitrary t ∈ D . For optimal compression of D , the higher Pr(X | D),
the shorter its code should be. In fact, from information theory [16], we have the
Shannon entropy, which gives us the length of the optimal prefix code for X as

L(X | D) =− logPr(X | D) ,

where

Pr(X | D) = usage(X )∑
Y ∈C T

usage(Y )
.

The length of the encoding of transaction is now simply the sum of the code lengths
of the itemsets in its cover,

L(t |C T ) = ∑
X∈cover(t )

L(X |C T ) .

The size of the encoded database is then the sum of the sizes of the encoded transac-
tions,

L(D |C T ) = ∑
t∈D

L(t |C T ) .

To find the optimal code table using MDL, we need to take both the compressed
size of the database and the size of the code table into account. For the size of the
code table, we only consider those itemsets that have a non-zero usage. The size of
the right-hand side column is obvious; it is simply the sum of all the different code
lengths. For the size of the left-hand side column, note that the simplest valid code
table consists only of the single items. This code table we refer to as the Standard
Code Table, or ST . We encode the itemsets in the left-hand side column using the
codes of ST . This allows us to decode up to the names of items. The encoded size of
the code table is then given by

L(C T | D) = ∑
X∈C T

usage(X)6=0

L(X | ST )+L(X |C T ) .

We define the optimal set of itemsets as the one whose associated code table min-
imises the total encoded size

L(C T ,D) = L(C T | D)+L(D |C T ) .

More formally, we define the problem as follows.

Minimal Coding Set Problem Let I be a set of items and let D be a dataset over
I , cover a cover algorithm, and F a collection of candidate patterns F ⊆ P (I ).
Find the smallest set of patterns S ⊆F such that for the corresponding code table
C T the total compressed size, L(C T ,D), is minimal.

Using our cover algorithm only patterns occurring in D can be used in describing
the data. As such, P (I ) is a clear overestimate for what candidates the optimal C T
can consist of. For reasons of efficiency, and without loss of generality, we can hence
limit F to the collection of all itemsets in D with a support of at least 1.

Even for small F , however, the search space of all possible code tables is rather
large—and moreover, it does not exhibit structure nor monotonicity we can use to
efficiently find the optimal code table [87]. Hence, we resort to heuristics.
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Algorithm 3 The KRIMP Algorithm [87]

Input: A transaction database D and a candidate set F , both over a set of items I

Output: A heuristic solution to the Minimal Coding Set Problem, code table C T
1. C T ← Standard Code Table(D)
2. for F ∈F in Standard Candidate Order do
3. C Tc ← (C T ⊕F ) in Standard Cover Order
4. if L(D ,C Tc ) < L(D ,C T ) then
5. C T ← post-prune(C Tc )
6. end if
7. end for
8. return C T

Introducing KRIMP

The KRIMP algorithm was introduced by Siebes et al. [70, 87] as a straightforward
approach for mining good approximations of the optimal code table. Subsequent
research showed these code tables to indeed be of high quality, and useful for a wide
range of data mining tasks [41, 73, 86, 87].

The pseudo-code of KRIMP is given as Algorithm 3. It starts with the singleton
code table (line 1), and a candidate collection F of frequent itemsets up to a given
minsup. The candidates are ordered first descending on support, second descending
on itemset length and third lexicographically. Each candidate F is considered in
turn by inserting it in C T (3), denoted by C T ⊕F , and calculating the new total
compressed size (4). It is only accepted if compression improves (4). If accepted, all
elements X ∈C T are reconsidered wrt. their contribution to compression (5).

The minsup parameter is used to control the number of candidates: the lower
minsup, the more candidates, the larger the search space, and hence the better
the approximation of the optimal code table. As by MDL we are after the optimal
compressor, minsup should be set as low as practically feasible. Hence, technically
minsup is not a true parameter.

In practice, however, keeping the number of itemsets feasible is difficult. Es-
pecially for dense or large databases, minute decreases in threshold give rise to
enormous increases in patterns. Mining, sorting, and storing these in large numbers
takes non-trivial time and effort, even before KRIMP can begin selecting.

Its robust empirical results aside, KRIMP is a rather rough greedy heuristic: it
considers each candidate only once, in a static order, raising the question how good
its approximations really are.

A standard approach to hard optimisation problems, with provable approxima-
tion bounds in case of sub-modular set functions [57], is to locally optimise the target
function. For KRIMP, local optimisation translates to iteratively finding the F ∈F

that maximally increases compression. By considering F quadratically instead of
linearly, however, the running time quickly grows out of hand. In Section 5.6 we will
refer to this variant as KRAMP. While there are no results on sub-modularity for code
tables, and hence no approximation bounds, we can use it as a gold-standard to
compare to.
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5.3 Identifying good candidates

Instead of filtering pre-mined candidates, we rather mine code tables directly from
data. To do so, we need to be able to identify good candidates on the fly.

Covering Data

Intuitively, SETCOVER seems like a suited approach for approximating the optimal
code table. Its goal is to find the smallest set of itemsets that cover all 1s in the
data. This problem is NP-hard, but good approximation bounds exists for the greedy
approach. That approach, also known as Tiling [22], iteratively finds that itemset (or,
tile) by which the most uncovered 1s in the data are covered.

In practice, however, Tiling does not mine good code tables. Whereas KRIMP

refines its cover by replacing general patterns with more specific ones, Tiling only fo-
cuses on covering data; quickly leading to the selection of overly general (individual
items), or overly specific itemsets (complete transactions), that do not contribute
towards good compression.

Interestingly, though, we do see that the first few discovered tiles typically do
compress well. This is especially interesting, as we further note that both methods
initially regard the data similarly: at first, every 1 in the data corresponds to a
separate code, and hence, covering many 1s with one tile means replacing many
codes with one code. This suggests finding tiles may be worthwhile, if we consider
the right search space.

(Note that as in our problem itemset costs develop non-monotonically with
changes of C T , the weighted variant of SETCOVER does not apply trivially.)

Covering Codes

Whereas Tiling only regards the uncovered part of the 0/1 data matrix, in our problem
we always consider complete covers. That is, the introduction of a new code table
element X into C T induces a different covering of the data—for which we determine
its quality by L(C T ,D).

We can regard the cover of a database D by a code table C T as follows. Let C

be the |D|-by-|C T | binary matrix, where the rows correspond to transactions t ∈ D
and the columns to elements X ∈C T . The cell values are 1 when X ∈ cover(t ), and 0
otherwise.

In this cover matrix, or cover space, an itemset XYZ represents a group of code
table elements X ,Y , Z ∈C T that co-occur in the covers of transactions in D . As such,
frequent itemsets in C make for good code table candidates: as instead of writing
multiple codes together many times, we can gain bits if we can write one short code
for their combination instead.

Introducing (or removing) an element X to C T changes the cover matrix, how-
ever, both in numbers of columns, and values. As the co-occurrences change, so
does what makes a good addition to the current C T . This suggests that to find
good candidates, we have to iteratively search for frequent itemsets in cover space,
updating for every change in C T .
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Estimating candidate quality

As simple an observation it is, mining good itemsets in cover space to find good code
table candidates is the key idea of this chapter. In the remainder, we will show that
by iteratively considering such itemsets, we can optimise compression far beyond
KRIMP, and do this much more quickly too. Before we can do so, we first have to
discuss how to measure the quality of a candidate.

As we are optimising compression, the quality of a candidate X essentially is
the gain in total compression L(C T ,D) we obtain when we add X to C T . The most
straightforward approach is to calculate these gains for every candidate and then to
select the best one. As such, every candidate X to be considered corresponds to the
combination of code table elements identified by an itemset Y in C . The items in Y
are in fact indexes to elements in C T , i.e. Y ⊆ {1, . . . , |C T |}. Hence, X is simply the
union of the code table elements Xi ∈C T identified by the i ∈ Y , i.e. X =⋃

i∈Y Xi .
Next, once we know the gains in compression for every candidate, we simply

locally optimise and accept that X into C T which maximises compression. Although
powerful, this is expensive, since to calculate the gain for a candidate, we have to
cover the database.

Instead, we can estimate the gain first, and only calculate exact gain for the best
estimated candidate. To maximise compression, we observe we want candidates
1) with high usage (i.e. short codes), 2) replacing many codes in C , while 3) not
adding much complexity. The first two of these properties are simply approximated
by finding frequent itemsets in C .

However, we can say more on what itemsets we want: highly frequent sets of only
few items. Besides that these sets will likely compress well, they add little complexity
to C T . However, keeping in mind that by iteratively refining, if we consider too large
itemsets in C , we strongly reduce our search space and are more likely to end up in
a local minimum. Moreover, calculating the gain in compression is most accurate
for itemsets of length 2. Hence, we restrict the cardinality of the itemsets we find
in C to length 2. Note however, that more specific code table elements, i.e. large
itemsets in D , can (and are) be constructed in only few iterations.

Suppose X and Y are itemsets in C T . Let C T ′ be the code table after adding the
union of these two itemsets, i.e. C T ′ =C T ⊕ (X ∪Y ). We can estimate the usage of
X ∪Y in C T ′ as

|usage(X )∩usage(Y )| ,

where by usage(X ) we slightly abuse notation to refer to the tid list of transactions
with X in their cover. Note this gives an upper bound to usage(X ∪Y ), where equality
only holds if X ∪Y is considered for covering right before when X or Y would be
used. As code table elements are ordered first on length, and the union of two
non-equal itemsets produces a longer set, this is implicitly enforced—making the
bound quite tight.

Although useful, as a gain estimate it is quite rough: it disregards the effects
on L(C T | D) of adding X ∪Y to C T , the increase of the code lengths of X and Y
as their usage decreases, as well as the scaling effect on all other code lengths. We
can improve our estimate by taking these effects into account as follows, directly
estimating the total compressed size for adding a candidate.

Let∆L be the difference in encoded size between C T and C T ′; or, in other words,
the gain in bits for candidate X ∪Y . It is easy to see that∆L for the total encoded size
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consists of the difference in compressed sizes of the database, and the difference
between the encoded sizes of the code tables,

∆L(C T ⊕ (X ∪Y ),D)

= L(C T ,D)−L(C T ⊕ (X ∪Y ),D)

=∆L(D |C T ⊕ (X ∪Y ))+∆L(C T ⊕ (X ∪Y ) | D) .

For notational brevity, we use the lower case, x, of an itemset X ∈C T to indicate
usage(X ), i.e. x = usage(X ). Then, let s be the sum of usages of C T , i.e. s =∑

X∈C T x.
Similarly, we use x ′ and s′ for C T ′. Using this notation, we can write the difference
in bits between encoding D by either C T or C T ′ as follows,

∆L(D |C T ⊕ (X ∪Y )) = s log s − s′ log s′+x y ′ log x y ′− ∑
C∈C T
c 6=c′

(c logc − c ′ logc ′) ,

and the difference in the model complexity as

∆L(C T ⊕ (X ∪Y ) | D) = log x y ′−L(X ∪Y | ST )

+|C T | log s −|C T ′| log s′+ ∑
C∈C T
c′ 6=c

c′c 6=0

logc ′− logc

+ ∑
C∈C T
c′ 6=c
c=0

logc ′−L(C | ST )+ ∑
C∈C T
c′ 6=c
c′=0

L(C | ST )− logc ,

where x y ′ = usage(X ∪Y ) when using C T ′. This means that we can express the gain
in bits when adding X ∪Y to C T only in terms of the usages of code table elements
for which the usage changes between C T and C T ′.

In practice, however, it is hard to predict how usage(Z ) for all Z ∈C T will develop
when a new element X ∪Y is inserted into C T . While we know the usages of Z ∈C T
ordered above X ∪Y remain static, a cascading effect may occur for those below it:
in some t ∈ D, where some Z ∈C T with Z ∩ (X ∪Y ) 6= ; was previously part of the
cover of t , X ∪Y may now prevent Z from being used; hence changing usage of Z ,
as well as the usage of those Z ′ now used to cover Z \ (X ∪Y ) of t , which in turn can
block other previously used elements, etc.—potentially changing all usages.

Although unpredictable, in practice the effect is not often dramatic. Hence, for
practical reasons, for estimating the gain we can assume only the usage of X , Y ,
and X ∪Y will change, using our above usage estimate for X ∪Y . For calculating
the estimated gain in total compressed size, we then simply use x y ′ = |usage(X )∩
usage(Y )|, x ′ = x −x y ′, y ′ = y −x y ′ and s′ = s −x y ′. As such, we obtain a very easily
calculable, and as we will see, generally accurate estimate of ∆L for X ∪Y .
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Algorithm 4 The SLIM Algorithm

Input: A transaction database D over a set of items I

Output: A heuristic solution to the Minimal Coding Set Problem, code table C T
1. C T ← Standard Code Table(D)
2. for F ∈ {X ∪Y : X ,Y ∈C T } in Gain Order do
3. C Tc ← (C T ⊕F ) in Standard Cover Order
4. if L(D ,C Tc ) < L(D ,C T ) then
5. C T ← post-prune(C Tc )
6. end if
7. end for
8. return C T

5.4 Directly Mining Descriptive Patterns

We can now combine the above results, and construct the SLIM algorithm for mining
heuristic solutions to the Minimal Coding Set Problem directly from data.1

We give the pseudo-code as Algorithm 4. SLIM starts with the singleton-only
code table ST (line 1). Every iteration (2) we consider all pairwise combinations of
X ,Y ∈C T as candidates in Gain Order, i.e. descending on∆L(C T ⊕(X ∪Y ),D). Iter-
atively, we add a candidate to C T in Standard Cover Order (3), cover the data, and
compute total encoded size (4). If compression improves, we accept the candidate,
otherwise reject it. If accepted, we reconsider every element in C T to whether it still
contributes towards compression (5), and update the candidate list (2). We continue
considering pairwise combinations of X ,Y ∈ C T to refine the current code table
until no candidate decreases the total compressed size, after which we are done.

Note that, if desired, extra constraints on individual candidates (e.g. a minimum
support, or length) can be checked when constructing the candidate list, or before
adding them to the code table at line 3.

In practice, we do not need to materialise all candidates on line 2. Instead, we
traverse C T ordered on usage, employing branch-and-bound to find the X ∪Y
with highest estimated gain; as we traverse the elements descending on usage, we
do not need to consider any element V or W with lower usage than the current
best candidate X ∪Y . Moreover, suppose X is considered before Y . Therefore
usage(Y ) ≤ usage(X ), and we can first bound using usage(X∪Y ) = usage(X ). Second,
we can bound using usage(X ∪Y ) = usage(Y ). Then, if this bound is met, we need
to calculate the expected usage usage(X ∪Y ) by intersecting the usage lists of X and
Y . Moreover, to speed up computation, we store the top-k best estimates, allowing
us to quickly suggest the next-best candidate when a candidate is rejected.

SLIM is well-suited for any-time computation, as it iteratively refines the cur-
rent code table. As such, it allows for interactive data analysis and time-budgeted
computation, providing good intermediate results. Given a result, SLIM can simply
continue refining.

Next, we analyse the complexity of SLIM. Considering the candidates (line 2)
maximally takes O(|C T |2) steps. A code table for D could contain all |F | itemsets
occurring in D . At worst, we re-evaluate each candidate |F | times. The complexity of

1SLIM is Dutch for smart, whereas KRIMP means to shrink.
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steps 3–6 is O(|F |× |D|× |I |). Together, the worst-case time-complexity is O(|F |3 ×
|D| × |I |). We will see in the experiments this estimate is quite pessimistic; in
practice, code tables are small (ranging from 10s to 1000s) and SLIM evaluates up to
5 orders-of-magnitude fewer candidates than all |F | itemsets occurring in D .

Regarding memory complexity we can be brief. As we need to store a code table
of maximally |F | itemsets, and the database D , memory complexity is O(|F |+ |D|).

5.5 Related Work

Since the seminal paper by Agrawal and Srikant [2] on frequent pattern mining, a lot
of research is aimed at reducing the pattern explosion; mining the most interesting
and useful patterns in manageable amounts. The traditional approach is to mine
concise representations for collections of patterns, either lossless, such as non-
derivable [12] itemsets, or lossy, as for self-sufficient itemsets [91] and probabilistic
summaries [93]. This is different from our approach in that we summarise data,
instead of pattern collections.

Webb argues [90] not to condense set of mined patterns, but to rank patterns
according to their statistical significance, and let the end-user consider the top-k.
However, as patterns are considered individually, redundancy among significant
patterns remains.

Considering patterns as binary features on rows, Knobbe and Ho [36], and Bring-
mann and Zimmermann [10], resp. exhaustively and heuristically select those groups
of patterns by which data rows are partitioned optimally, using an external criterion
such as joint-entropy or accuracy. Unlike SLIM, both post-process materialised
collections of candidate patterns, and partition the data instead of summarising it.

Tilings [22] are sets of itemsets that together efficiently cover the data, and
are hence strongly related to SETCOVER. Although tilings can be mined directly
from data, as area is not (anti-)monotonic with set inclusion, efficiency is an issue.
Related, Kontonasios and De Bie [37] propose a two-phase approach to select the
most informative noisy tiles from a collection of fault-tolerant itemsets, using MDL
and a maximum entropy data model. Both methods require a number of patterns to
select, as well as a minimum area threshold.

SLIM is strongly related to the KRIMP algorithm [87]. Both aim at finding the
set of itemsets that together describe the data best. KRIMP code tables have been
shown to capture data distributions very well, and have been used successfully for
a wide range of data mining tasks [41, 86, 87]. KRIMP post-processes a candidate
collection, filtering it in a static order. By iteratively considering the current data
description, SLIM avoids redundant patterns, explores a larger search space, does
not mine and sort huge numbers of candidates, and does not require a minimal
support threshold.

Recently, Siebes and Kersten [69] proposed the GROEI algorithm for finding the
best k-element KRIMP code table by beam search. By considering a much larger
search space, they improve over KRIMP at expense of efficiency—for beam-width 1
it coincides with KRAMP—and hence only small datasets are considered. Although
beyond the scope of this thesis, the SLIM search strategy and estimation heuristics
can likely speed up GROEI significantly.
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The PACK algorithm [76] makes a connection between decision trees and item-
sets, mines good decision trees, and returns the itemsets that follow from these. It
can mine its trees either from a candidate itemset collection, or directly from the
data. Unlike here, PACK considers the data 0/1 symmetrically. As a result, it requires
fewer bits, but returns many more itemsets.

Wang and Partharsarthy [89] incrementally build probabilistic models for pre-
dicting itemset frequencies. Iteratively they update the model by those itemsets for
which the estimate deviated more than the threshold. For efficiency, itemsets are
considered in level-wise batches. Mampaey et al. [48] propose a convex heuristic
to efficiently iteratively find the least-well predicted itemset overall, using BIC to
control complexity. As constructing and querying maximum entropy models is com-
putationally very expensive, only high-level summaries can be mined. Furthermore,
by only considering frequency, co-occuring patterns cannot be detected [37].

5.6 Experiments

Here we experimentally evaluate SLIM, its heuristics, and the quality of the discov-
ered code tables.

Setup

We implemented a prototype in C++, and provide the source code for research
purposes.2

We use the shorthand notation L% to denote the relative compressed size of D ,

L(D ,C T )

L(D ,ST )
%,

wherever D is clear from context. Lower values indicate better compression and are
preferred from a MDL point of view.

As candidates F for KRIMP, we use all frequent itemsets mined at the minsup
thresholds depicted in Table 5.2. These thresholds were chosen as low as feasible,
while making the processing finish within 24 hours. KRIMP includes AFOPT one of
the fastest miners from the FIMI repository [87]. Timings reported for KRIMP include
mining and sorting of the candidate collections.

All experiments were conducted as single-threaded runs on Linux machines
with Intel Xeon X5650 processors (2.66GHz) and 12 GB of memory.

Datasets

We consider a wide range of benchmark and real datasets. The base statistics for
each are depicted in Table 5.1. We show for each database the number of attributes,
number of transactions, the density (relative number of 1s), and the number of
classes.

From the LUCS/KDD dataset repository we take some of the largest and most
dense databases. From the FIMI repository we use the Accidents, BMS and Pumsb

2http://adrem.ua.ac.be/implementations/

http://adrem.ua.ac.be/implementations/
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Table 5.1: General statistics.

Dataset |D| |I | %1s |K |
Abstracts 859 3933 1.2 -

Accidents 340183 468 7.2 -

Adult 48842 97 15.3 2

BMS-pos 515597 1657 0.4 -

BMS-webview 1 59602 497 0.5 -

Chess (k-k) 3196 75 49.3 2

Chess (kr-k) 28056 58 12.1 18

Connect-4 67557 129 33.3 3

DNA amplification 4590 391 1.5 -

Ionosphere 351 157 22.3 2

Letter recognition 20000 102 16.7 26

Mammals 2183 121 20.5 -

MCADD 31924 198 11.1 2

Mushroom 8124 119 19.3 2

Pen digits 10992 86 19.8 10

Plants 34781 70 12.4 -

Pumsb 49046 2113 3.5 -

Pumsbstar 49046 2088 2.4 -

Waveform 5000 101 21.8 3

Shown are the number of transactions, attributes, density (in percentage of 1s) and
number of classes (if any).

datasets. The Chess (kr–k) and Plants datasets were obtained from the UCI reposi-
tory.

We use the real Mammals presence and DNA Amplification databases. The
former consists of presence records of European mammals3 within geographical
areas of 50×50 kilometers [53]. The latter contains DNA copy number amplifications.
Such copies activate oncogenes and are hallmarks of advanced tumours [55].

From the Antwerp University Hospital we obtained MCADD data [73]. Medium-
Chain Acyl-coenzyme A Dehydrogenase Deficiency (MCADD) is a deficiency all
newborns are screened for [81].

The Abstracts dataset contains the abstracts of all accepted papers at the ICDM
conference up to 2007, where words are stemmed and stop words removed [37].

In this chapter we mainly focus on the above data sets, however, we will reuse
the (smaller) data sets from previous chapter, depicted in Table 4.1, to analyse two

3The full version of the mammal dataset is available for research purposes upon request from the
Societas Europaea Mammalogica. http://www.european-mammals.org

http://www.european-mammals.org
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Table 5.2: Overview statistics.

KRIMP SLIM

Dataset minsup L% |C T | |F | L% |C T | |F |
Abstracts 3 91.9 1102 6 M 84.3 1815 13 M

Accidents 50000 55.1 1583 3 M 31.1 2018 21 k

Adult 1 24.4 1303 58 M 22.8 1201 199 k

BMS-pos 100 81.7 9478 6 M 83.1 1964 15 k

BMS-webview 1 35 85.9 718 1 M 84.0 965 2 M

Chess (k-k) 500 30.0 275 846 M 14.7 292 20 k

Chess (kr-k) 1 61.6 1684 373 k 57.5 1060 28 k

Connect-4 40000 42.9 56 24 M 12.3 1670 297 k

DNA amplification 9 36.7 326 312 M 35.7 359 67 k

Ionosphere 35 59.8 170 226 M 49.7 240 294 k

Letter recognition 1 35.7 1780 581 M 33.4 1599 521 k

Mammals 200 48.1 316 94 M 39.9 434 235 k

MCADD 35 55.4 2280 2 M 51.0 4067 924 k

Mushroom 1 20.5 442 6 G 18.5 340 16 k

Pen digits 1 42.2 1247 459 M 39.4 1347 394 k

Plants 2000 46.4 511 913 k 36.1 840 179 k

Pumsb 35000 70.0 175 2 M 19.1 3299 151 k

Pumsbstar 12500 56.0 331 2 M 25.1 4274 383 k

Waveform 5 44.5 921 466 M 39.0 734 134 k

For KRIMP we give relative compression (L%), number of non-singleton code table
elements, and number of candidates for the given minsup threshold. For SLIM we
give relative compression (L%), number of non-singleton code table elements, and
number of evaluated candidates.

more computationally intensive greedy optimisation strategies and to compare the
experiments regarding anomaly detection.

Compression

First we investigate how well SLIM describes data. In Table 5.2 we give the relative
compression rates (L%) for both SLIM and KRIMP. To ease interpretation we also
plot these in Figure 5.1. The shorter the bars in the plot, the shorter the discovered
descriptions of the data.

Overall, we see SLIM outperforms KRIMP with an average gain in compression
ratio of 11%, up to over 50% for Pumsb. The only exception is BMS-pos, for which
both methods fail to find succinct descriptions.

Analysing these results in more detail, we see that, unsurprisingly, the largest
improvements are made on the large and/or dense datasets, such as Accidents,
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Figure 5.1: Comparing SLIM and KRIMP: relative compression (L%) (top), overall
running time in seconds (bottom), and time needed by SLIM to reach the compres-
sion attained by KRIMP (mid-grey). Note that besides obtaining better compression,
SLIM is nearly always faster than the optimised KRIMP implementation.

Connect-4, and Ionosphere. By their characteristics, these datasets give rise to very
large numbers of patterns, and hence can only be considered by KRIMP if we set
minsup relatively high—implicitly limiting the detail at which KRIMP can describe
the data.

The ability to compress a dataset depends on the amount of recognisable struc-
ture. For sparse datasets, like Abstracts, and the two BMS datasets, neither SLIM nor
KRIMP can identify much structure, whereas SLIM can describe Pumsb(star) quite
succinctly by considering lower-frequency itemsets. For dense data, such as Chess
(k-k), Connect-4, and Mushroom, both algorithms ably find structure.

When we look at the number of (non-singleton) itemsets in C T , we see very
similar results. In general, for both SLIM and KRIMP, depending on the data, the
code tables contain between a hundred up to a few thousand itemsets. Three
datasets, Connect-4 and Pumsb-(star), stand-out, with SLIM returning 10 times more
patterns. However, for these KRIMP can only run with very high minsup—whereas
SLIM does not have this restriction, and can better capture the structure by using
more fine-grained patterns.

Greedy vs. Greedy

Next, we compare SLIM to two variants of the powerful standard greedy optimisation
algorithm for complex combinatorial problems. KRAMP is a variant of KRIMP that
in each iteration chooses that F out of all F that locally maximises compression.
Analogously, SLAM is a variant of SLIM calculating exact compression gain to order
the candidates at every iteration—instead of estimating it heuristically.

Clearly, KRAMP and SLAM are computationally expensive. Hence, we first com-
pare on some small, well-known UCI benchmark datasets: Anneal, Breast, Heart,
Iris, Led7, Nursery, Page blocks, Pima, Tic-tac-toe and Wine. All these datasets are
easily mined and processed using a minsup threshold of 1. Comparing the total
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Table 5.3: Greedy vs. Greedy

Dataset KRIMP SLIM SLAM KRAMP

Anneal 34.6 31.3 31.8 32.4

Breast 16.9 15.6 15.6 16.6

Heart 55.8 48.1 48.0 50.5

Iris 45.7 45.5 45.5 45.6

Led7 28.5 27.4 27.4 28.3

Nursery 45.5 43.2 43.1 44.1

Page blocks 5.0 5.0 4.9 5.0

Pima 34.1 30.9 30.3 31.9

Tic-tac-toe 62.4 49.5 47.0 52.1

Wine 72.8 71.0 70.2 71.5

average 40.1 36.8 36.4 37.8

Adult 24.4 22.8 22.5 22.9

Chess (k-k) 30.0 14.7 14.9

Chess (kr-k) 61.6 57.5 57.5

DNA amplification 36.7 35.7 35.7

Ionosphere 59.8 49.7 48.9

Letter recognition 35.7 33.4 32.6

Mushroom 20.5 18.5 18.8

Pen digits 42.2 39.4 38.4

Waveform 44.5 39.0 38.5

average 39.5 34.5 34.2

Connect-4 42.9 12.3 22.1

Accidents 55.1 31.1 43.3

Comparing relative compression (L%) for the different greedy algorithms. First block
shows the results for the smallest datasets, i.e. where both SLAM and KRAMP finish in
less than 24 hours. Second block shows the result given SLIM one day and SLAM one
week to converge. In the last two blocks, we give some results for which SLAM is not
converged within one week or where both SLIM and SLAM still need computation
time after the previous mentioned time constraints. Only for Adult we let KRAMP

run for two months.
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Figure 5.2: Convergence plot for Adult. The lines in lower left corner show the final
attained relative compression.

compressed sizes in Table 5.3, we observe that SLAM is always ranked best, SLIM

second, KRAMP third and KRIMP last, with an average relative compression (L%)
of respectively 36.4, 36.8, 37.8 and 40.1. Note that although KRAMP considers the
largest search-space, it does not always obtain the best result. In the remainder, we
do not consider these datasets further.

When we consider some larger databases, we see the same pattern: SLAM obtains
the best average L% of 34.2, SLIM a close second at 34.5, and KRIMP is behind with
39.5—KRAMP does not finish within reasonable time.

Last, using Adult as a typical example, we plot the development of L% per itemset
accepted into C T as Figure 5.2. As the plot shows, SLIM closely follows SLAM and
KRAMP, quickly converging to good compression—much more directly than KRIMP.
Note that as itemsets can be pruned from C T , the final x-coordinate does not
necessarily match |C T | in Table 5.2. Further, we note that while SLIM only needs
35 minutes to converge, SLAM requires one week, and KRAMP two months. We will
discuss convergence and runtime in more detail below.

Number of Candidates

Next, we compare the number of instantiated candidates |F |, shown in Table 5.2.
This is the number of itemsets for which we calculate the total compressed size by
covering the data. For KRIMP this equals the number of frequent itemsets at the
listed minsup threshold. For SLIM this reflects the number of materialised unions
of code table elements. As Table 5.2 shows, SLIM evaluates 2 orders-of-magnitude
fewer candidates. In general, SLIM considers between 10 thousand and 10 million
itemsets, whereas KRIMP processes millions to billions of itemsets.
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Only for Abstracts and BMS-webview 1 SLIM evaluates more candidates than
KRIMP—datasets for which a minute decrease in minsup leads to an explosion of
candidates. As such, also for this sparse data SLIM can consider candidates at lower
support than KRIMP can handle, while for the other datasets SLIM only requires a
fraction to reach better compression.

Timings and convergence

We now inspect run-times and convergence. We plot the total wall-clock running
time for SLIM and KRIMP as the bottom bar plot of Figure 5.1. For KRIMP (darkest
bars), this includes mining frequent itemsets, sorting, and selecting from them.
For SLIM we mark two timestamps: in mid-grey we show the time it takes SLIM to
overtake KRIMP; the light bars display the time to convergence, with a maximum
run-time of 24 hours.

First we inspect how long SLIM requires to match the compression of KRIMP. We
see that for 16 datasets SLIM reaches this point faster than KRIMP—in fact, several
orders-of-magnitude faster for many of these, particularly for dense datasets. For
BMS-pos, the bar is not shown, as SLIM does not reach the same compression. For
Ionosphere the bar is simply not visible, as SLIM overtakes KRIMP in less than one
second. As such, SLIM is generally much faster than KRIMP in obtaining KRIMP-level
descriptions.

Second, we compare overall runtime. We see SLIM is still faster than KRIMP

for 9 datasets, including huge improvements for Chess (k-k), DNA amplification,
Ionosphere and Mushroom. For the other datasets, the current implementation
requires more time, yet it acquires much more succinct descriptions.
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To inspect these cases, we again consider Figure 5.2. By optimising (estimated)
gain the compressed size converges much faster for SLIM than for KRIMP. After the
early large gain, the line quickly levels. Although not converged, now only very few
bits are gained per candidate. This goes general, where for Pumbsb(star) runtime is
further increased by the relatively large code table. As SLIM is worst-case quadratic
in |C T |, the tail of convergence is where most time is invested: C T grows, while few
candidates can be pruned. Caching evaluations between iterations will likely speed
up the implementation. A more efficient encoding would make selection more strict,
providing better descriptions and do away with the small-gain candidates.

In Figure 5.3 we plot the correlation between our estimate of ∆L to the actual
gain in total compressed size. We see the two show strong correlation, as most of
the measurements lie on the diagonal, especially for gain (upper right quadrant).
Moreover, we see almost no false positives (upper left quadrant), and only few
examples where few bits are gained while we estimated small loss (lower right
quadrant). This strong correlation explains why the convergence of SLIM and SLAM

are similar in Figure 5.2.

Classification

Above, we saw SLIM describes data more succinct than KRIMP. We here indepen-
dently validate how well it captures data distributions by classification: KRIMP

showed performance on par with 6 state-of-the-art classifiers on a wide range of
datasets [87]. If SLIM performs at least as well, we can say it mines code tables at
least as characteristic for the data.

For this, we reuse the simple classification scheme based on code tables [87]. To
use it, we need a code table per class. To build those we split the database according
to class, after which the class labels are removed from all transactions. We then
apply SLIM and KRIMP to each of these class-databases, resulting in a code table
per class. When the compressors have been constructed, classifying a transaction
t is trivial: simply assign the class label belonging to the code table providing the
minimal encoded length for t .

We measure performance by accuracy, the percentage of true positives on the test
data. All reported results have been obtained using 10-fold cross-validation. Note
that we do not maximise accuracy by choosing good pairings between intermediately
reported code tables [87], but simply use the final code tables.

We give the accuracy scores as Figure 5.4. We observe high similarity between
SLIM and KRIMP, and that on average SLIM performs slightly better. A pair-wise
Student t-test reveals that only the results on the Connect-4 and Chess (kr-k) differ
significantly, at significance levels lower than 0.1%, respectively in favour of SLIM

and KRIMP. The performance for Chess (kr-k) is due to SLIM much better describing
the large classes, whereas the more general KRIMP code tables balance better against
those for the small classes.



5.6. EXPERIMENTS 83

A
dult

C
hess

(k-k)

C
hess

(kr-k)
C

onnect-4

Ionosphere

L
etter

recog.
M

ushroom

P
en

digits

W
aveform

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Slim

Krimp

Figure 5.4: Comparing accuracy on classification tasks.

Anomaly Detection

Chapter 4 discusses how compression can be used to identify cases that differ from
the norm. Informally said, by building a compressor on a database, we can decide
whether a sample is an anomaly by its encoded length: if more bits are required than
expected, the sample is likely anomalous. Experiments show KRIMP performs on
par with the best anomaly detection methods for binary and categorical data.

To see whether SLIM is as useful as KRIMP for detecting anomalies, we consider
both the results on benchmark datasets and a case study on detecting carriers of
MCADD, a rare metabolic disease [81].

To compare SLIM and KRIMP, we use the AUC, i.e. area under the ROC curve,
as it is independent of actual decision thresholds. Table 5.4 shows the AUC scores
averaged over 10-folds and each of the classes of each dataset. We see, and it
is confirmed by pairwise Student’s t-tests at α-level 5%, that, in general, their is
no difference in performance between SLIM and that of KRIMP. However, SLIM

consistently outperforms KRIMP on the datasets for which the latter is mined using
a minsup higher that 1: Chess (k-k), Connect-4, Ionosphere, MCADD and Waveform.
This confirms the claim made in Section 4.5 that some characteristic patterns might
be missing from KRIMP code tables if memory of time constraints do not allow us to
mine for frequent item sets at low minsup. In particular, SLIM improves, in less than
10 seconds, the results on the Chess (k-k) data set significantly when comparing to
the scores of the other classifiers in Table 4.2.



84 CHAPTER 5. DIRECTLY MINING DESCRIPTIVE PATTERNS

Table 5.4: One-Class Classification

Dataset SLIM KRIMP p-value

Adult 67.02 ± 2.81 68.72 ± 2.64 0.18

Anneal 97.62 ± 2.08 95.32 ± 2.17 0.03

Breast 84.93 ± 12.06 86.93 ± 8.73 0.68

Chess (k-k) 88.41 ± 2.95 68.53 ± 0.46 0.00

Chess (kr-k) 94.57 ± 5.92 94.84 ± 5.05 0.91

Connect-4 73.72 ± 4.51 70.32 ± 5.28 0.14

Heart 59.13 ± 10.24 65.65 ± 8.01 0.13

Ionosphere 69.48 ± 6.82 63.65 ± 4.67 0.04

Iris 96.60 ± 1.23 94.73 ± 3.61 0.14

Led7 91.35 ± 3.58 91.50 ± 3.46 0.93

Letter recognition 93.82 ± 1.83 92.22 ± 1.73 0.06

MCADD 95.11 ± 4.47 92.08 ± 7.74 0.30

Mushroom 100.00 ± 0.00 100.00 ± 0.00 1.00

Nursery 96.05 ± 3.74 87.62 ± 20.49 0.22

Page blocks 50.67 ± 21.43 51.02 ± 21.54 0.97

Pen digits 99.10 ± 0.61 98.58 ± 0.74 0.10

Pima 51.18 ± 20.62 50.69 ± 20.87 0.96

Tic-tac-toe 88.92 ± 5.43 88.08 ± 6.61 0.76

Typist 86.88 ± 0.91 86.75 ± 1.82 0.84

Waveform 82.71 ± 9.87 80.14 ± 10.44 0.17

Wine 95.17 ± 2.97 94.23 ± 1.58 0.39

average 83.93 ± 15.73 81.98 ± 15.34 0.67

AUC scores for the benchmark classification datasets in Table 4.1 and 5.1 for the
anomaly detection tasks using OC3. Shown are, per dataset, mean and standard
deviation of the average AUC score over the classes. The KRIMP-compressor in OC3

ran using all frequent itemsets above the minsup values in Table 5.2 as candidates.
The last column indicates the p-values using a pairwise Student’s t-test and the AUC
scores that differ significantly at α-level 5% are highlighted in bold.
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Moreover, repeated analysis of the case-study on the MCADD dataset show SLIM

provides similar performance to KRIMP: all 8 anomalous cases are ranked among
the top-15 in both code tables, and the obtained performance indicators (100%
sensitivity, 99.9% specificity and a predictive value of 53.3%) correspond with the
state-of-the-art results [81].

The highly-ranked non-MCADD cases show combinations of attribute-values
very different from the general population, and are therefore abnormal by definition.
Analysing the encoding of normal cases reveals that the code tables correctly identify
attribute-value combinations commonly used in diagnostics by experts [81].

Manual Inspection

Finally, we subjectively evaluate the selected itemsets. To this end, we take ICDM
Abstracts dataset. Considering the top-k itemsets with highest usage we see SLIM

and KRIMP provide highly similar results: both provide patterns related to topics in
data mining—e.g. ‘mine association rules [in] databases’, ‘support vector machines
(SVM)’, ‘algorithm [to] mine frequent patterns’.

One can argue, however, that experts should not only look at the top-ranked
itemsets, as the patterns are selected together to describe the data. When we browse
the code tables a whole, we see SLIM and KRIMP select roughly the same patterns
of 2 to 5 items. As KRIMP only considers patterns of at least minsup occurrences, in
this data it does not consider more specific itemsets, whereas SLIM may consider
any itemset in the data.

For this dataset, SLIM selects a few highly specific patterns, such as ‘femal, ecolo-
gist, jane, goodal, chimpanze, pan, troglodyt, gomb, park, tanzania, riplei, stuctur’.
Inspection shows these itemsets all represent small groups of papers sharing (do-
main) specific terminology—an application paper in this case—that is not used in
any of the other abstracts. As such, these itemsets make sense from both interpre-
tation, and MDL perspective; since the likelihood of these words is very low, yet
they strongly interact, and hence can best be described using a single (rare) pattern,
saving bits by not requiring codes for the individual rare words.

Note however, that if such level of detail is not desired, a domain expert can prune
the search space by specifying additional constraints, e.g. by specifying minsup, on
the candidates SLIM may consider.

5.7 Discussion

The experiments show SLIM finds sets of itemsets that describe the data well, char-
acterising it in detail. In particular on large and dense datasets, SLIM code tables
obtain tens of percents better compression ratio than KRIMP. Classification results
show high accuracy, verifying that high-quality pattern sets are discovered.

Dynamically reconsidering the set of candidates while traversing the space
leads to better compression. In particular, SLIM closely approximates the expensive
greedy algorithms KRAMP and SLAM, that select the best candidate of all current
candidates. By employing a branch-and-bound strategy using an efficient and tight
heuristic, SLIM is much more efficient. The good convergence adds to its any-time
property, providing users good results within a time-budget, while allowing further
refinements given more time.
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SLIM evaluates up to 5 orders-of-magnitude fewer candidates than KRIMP, while
obtaining more succinct descriptions. Moreover, although the KRIMP implemen-
tation is optimised, the prototype implementation of SLIM is often quicker too.
SLIM can be optimised in many ways. For example, we currently do not re-use
information from previous iterations; nor do we cache whether items co-occur at
all. Furthermore, SLIM is trivial to parallelise, including parallel branch-and-bound
search, evaluation of top-ranked candidates, and covering the data.

Although the exact effects on usage of a change in C T can only be calculated
by covering the data, better estimates of ∆L may lead to a further decrease in the
number of evaluated candidates. Moreover, if the estimate would be sub modular,
efficient optimisation strategies with provable bounds could be employed [57].

Our main goal is to provide a faster alternative to KRIMP that can operate on
large and dense data, while finding even better sets of patterns. Both for describing
succinctly, and classification we have seen SLIM is indeed at least as good as KRIMP.
Further research needs to verify whether SLIM can also match or surpass KRIMP on
other data mining tasks [41, 73, 86].

SLIM, SLAM and KRAMP all spend much of their time searching for candidates
that only lead to minute improvements in compression. A natural heuristic to stop
search early, without much expected loss of quality, would be to stop as soon as the
gain estimate becomes negative or when a finite difference approximation of the
derivative of L% indicates we reach a plateau. Another option is to make selection
more strict by refining the encoding model.

Although beyond the scope of this dissertation, the encoding model can be
improved in several ways. First, by allowing overlap during covering we can likely
gain compression, although covering becomes more complex. Also, dynamic codes
could be used; taking into account what itemsets can or cannot be used to encode
the remainder of t . These changes will make selection more strict, increasing con-
vergence, possibly avoiding small-gain candidates, yet will make encoding more
complex. Future work includes investigating whether this indeed leads to better, i.e.
more useful, code tables.

5.8 Conclusion

In this chapter, we introduced SLIM, an any-time algorithm for mining small, useful,
high-quality sets of patterns directly from data. We use MDL to identify the best set
of itemsets as that set that describes the data best. To approximate this optimum, we
iteratively consider what refinement provides most gain—estimating quality using a
light-weight and accurate heuristic. Importantly, SLIM is completely parameter-free.

Experiments show that SLIM is able to discover high-quality pattern sets, result-
ing in high compression rates and high accuracy scores. Furthermore, SLIM closely
approximates the common greedy approach of selecting the best candidate overall,
while being several orders of magnitude faster.



CHAPTER 6
Conclusions

In this thesis we explored several topics related to the detection and character-
isation of anomalies in data. The research in Chapter 2 and 3 was motivated by
specific real world problems, i.e. the identification of anomalies when monitoring
the production processes in a chemical plant and the detection of vandalism on
Wikipedia. In Chapter 4 and 5 we presented a more general technique to detect
anomalies in binary or transaction data using an on itemsets based compressor and
we applied it on a case study to screen newborns for a rare disease called MCADD.

In addition to the inherent changes to cope with the application and data-
dependent specifications, we shifted from a machine learning to a more data mining
perspective to identify and characterise anomalies in data. We made a transition
from a more predictive inspired principle, Structural Risk Minimization (SRM), to-
wards a more descriptive oriented principle, Minimal Description Length (MDL).
Both model selection principles are mathematically sound and tend to trade-off
complexity of the model and the quality of fitting/describing the training data.

In Chapter 2 we use a specific instantiation of SRM, namely Support Vector Data
Description (SVDD), that balances the size of the hypersphere to the proportion
of training examples that fall outside this sphere. Since the description of this
hypersphere only depends on the support vectors, the training examples lying on the
circumference, the model can be seen as a (lossy) compression of the data. In MDL,
however, compression of the data is primary, as one minimises both the number of
bits needed to describe the models, itemset-based code tables in Chapter 4 and 5,
and the number of bits needed to encode the training data using this model.
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Being predictive in nature, it is not surprising that SVDD performs better than
OC3 in Chapter 4. Moreover, Vapnik proved that the asymptotic bounds on the
prediction risk are less tight for MDL than SRM, albeit that the prediction risk
decreases as the compression ratio increases [83]. The transition to MDL, however,
and more specifically to pattern-based compressors, is motivated by the need to
detect anomalies using a parameter-free approach and to provide the data analyst
with insight for the anomalousness.

Despite the good performance and the interesting property that the unbound
support vectors indicate possible anomalies in the training data, SVDD constructs a
global model that is hard to interpret. The classification of a new example tells us
something about the (dis)similarity to some of the samples, objects or transactions
in the training data, but does not give justification of the decision. Working with
kernels in possibly infinite Hilbert spaces makes it hard to transfer knowledge back
to the input space. Only in case of simple kernels, like a linear or polynomial kernel,
it is straightforward, but tedious, to write and interpret the decision in terms of the
input features. Moreover, transforming the input data prior to applying the kernel
trick, as in Chapter 2, complicates analysis even more.

To allow easier analysis of the decisions and inspired by the good results on
detecting spam in e-mails and on weblogs, we opted for using Naive Bayes and
Prediction by Partial Matching respectively to detect vandalism on Wikipedia in
Chapter 3. Although it should be possible to inspect the weighted n-grams, the PPM
models produced using an off-the-shelf statistical compressor for sequences did not
allow for such inspection.

In Chapter 4, relying on the state of the art itemset-based compressor KRIMP,
we put a step forward to detect anomalies in binary or transaction data using an
interpretable global model with good generalisation capabilities. Moreover, the local
compressing blocks, the itemsets, remain visible throughout the compression of
the data and are gathered in a compact code table. This allows a human expert
to analyse decisions, either manually or guided with the technique presented in
Chapter 4.

The code tables used Chapter 4 are, however, attained after post-processing a
vast amount of possible patterns. To obtain these descriptive local patterns without
requiring a pre-mined candidate collection, and thus to make the parameter-free
analysis of dense and large datasets more feasible, we developed in Chapter 5 an
any-time algorithm SLIM.

6.1 Contributions

The main contributions of the research presented in this thesis can be summarised
as follows.

• In Chapter 2 we presented an algorithm for detecting anomalies in spatio/tem-
poral data using one-class support vector machines. The tensor product com-
bination of a time (or spatial) kernel and a data kernel, enables us to exploit
vicinity relations in both time (or space) and data. A more general voting
scheme, which combines an ensemble of SVDDs, enables us to incorporate
historical information provided by different time-delay embeddings without
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suffering loss of robustness or over-fitting. In case of temporal data, the algo-
rithm detects anomalies due to time-shifts, abnormal peaks and phases that
take too long.

• In Chapter 3 we demonstrated that the detection rate of the current hand-
crafted rule-based systems to fight vandalism on Wikipedia can already be
improved employing a machine learning approach relying on a straightfor-
ward feature representation and a set of noisy labeled training examples.

• In Chapter 4 we provided a novel approach to anomaly detection for binary or
transaction data. By relying on pattern-based compression, our method allows
for detailed inspection and characterisation of decisions, both by showing
which patterns were recognised in the example, as well as by checking whether
small changes affect the decision. Given a few prototype outliers, our method
can reliably estimate the decision landscape. This allows the user to verify
whether the outliers can be detected at all or to make an informed choice for
the decision threshold.

• In Chapter 5 we introduced an efficient, one-phase, any-time algorithm for
mining high-quality data descriptions directly from transaction data. Pattern
sets are constructed in a bottom-up fashion, iteratively joining co-occurring
patterns such that compression is maximised, resulting in a closer approx-
imation of the optimal set of patterns. Moreover, interweaving candidate
generation and search space traversal allows us to reduce the number of eval-
uated candidates by several orders of magnitude and to provide more detail
when necessary. To further improve efficiency, we employed a simple yet
accurate heuristic to estimate the gain or cost of introducing a candidate. In
particular on large and dense datasets SLIM provides a faster alternative to
KRIMP that is able to describe the data better, characterising it in more detail.

6.2 Outlook

The discussion sections in each of the previous chapters outline opportunities for
future research. In this section, we provide a general view on more fundamental
problems that could be tackled in future work.

Despite the fact that we only have to model the norm, we could argue that
anomaly detection is a more difficult problem than the two thoroughly studied
predictive modeling tasks, classification and regression, and therefore deserves
closer attention. First, we mostly have information about the normal scenarios
and possess limited information about the anomalies. Second, given the limited
information of the anomalies, common methods to predict the generalisation risk
or model selection techniques cannot be applied directly. Generating artificial
anomalies based on a prototype is one example of transforming the problem into a
more traditional setting and to be able to apply standard methods. This is, however,
not without risk, and more intensive research is needed to get insights in these risks
and to provide answers to more general questions. Under which assumptions or
conditions will a particular anomaly detection method work? And, more importantly,
when will it fail? What kind of anomalies are we likely to detect and for which do we
remain blind?
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Moreover, in this thesis we only considered static normal models to detect and
explain anomalies, and completely ignored the dynamic environments we are typi-
cally working in. In practice, an anomaly detection technique, and any other data
mining task, cannot be treated in isolation. When new samples become available,
the models should be updated accordingly to take into account the new information.
Although building and verifying models to detect outliers seems initially harder,
the same difficulties, typical for modeling in general, arise when put to practice.
When things go wrong, for example when we fail to detect misbehaviour in a pro-
duction process or if we produce too many false alarms, models should be updated
accordingly.

Reacting upon and discovering new knowledge is easier if understandable mod-
els and explanations for unsuspected patterns are available. Providing this in dialog
with the end-user remains one of the key challenges in the heterogeneous field of
(interactive) data mining.
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Samenvatting

De toegenomen opslag- en verwerkingscapaciteit maken het verzamelen en bewaren
van gegevens steeds makkelijker. Er is echter een heel proces nodig om kennis te
verwerven uit deze gegevens of om deze gegevens in een toepassing te gebruiken.
Eén van de pijlers binnen dit proces is datamining. In dit domein worden algoritmen
ontwikkeld om enerzijds de gegevens samen te vatten in zogenaamde modellen, en
anderzijds om onverwachte patronen of relaties te vinden in de gegevens. Om vat te
krijgen op de steeds groeiende hoeveelheid aan gegevens, willen we dat de modellen
en patronen zowel bruikbaar als verstaanbaar zijn voor de gegevensbezitter.

In dit proefschrift ontwikkelen we datamining technieken om, vertrekkende van de
beschikbare gegevens met beperkte menselijke inspanning, modellen op te stellen
met als doel onregelmatigheden, observaties afwijkend van de verwachte norm, in
(nieuwe) gegevens accuraat te identificeren en begrijpelijk te karakteriseren.

Daar we in de praktijk geconfronteerd worden met een diversiteit aan mogelijke
toepassingen en verschillende soorten gegevens, is het ontwikkelen van een allesom-
vattende methode waarbij in elke stap van het proces alle eisen tegelijk ingewilligd,
geoptimaliseerd en gevalideerd worden een brug te ver. Doorheen dit proefschrift
belichten we dan ook telkens enkele deelaspecten van deze probleemstelling. We
gaan er hierbij telkens van uit dat, om het normmodel uit de gegevens op te bouwen,
we voornamelijk beschikken over voorbeelden van de te verwachten situatie.

Na een korte algemene inleiding in hoofdstuk 1, gaan we in hoofdstuk 2 en 3 uit
van specifieke praktische problemen. In hoofdstuk 2 stellen we een model op om
onregelmatigheden te detecteren tijdens het opvolgen van productie processen in
een chemische fabriek. In hoofdstuk 3 geven we een aanzet om vandalenstreken op
te merken in Wikipedia.

Het aanduiden van deze onregelmatigheden is echter niet voldoende. We wensen
een beschrijving die toelicht waarom bepaalde gegevens als onverwacht worden
bestempeld. Door expliciet gebruik te maken van modellen die zijn opgebouwd
met een beperkt aantal patronen die de normale verwachtingen beschrijven en de
verschillen met de huidige observatie te belichten, verlenen we dit nodige inzicht in
hoofdstuk 4. Het zonder tussenstap efficiënt vergaren van de compacte modellen
vormt het onderwerp in hoofdstuk 5.
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