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ABSTRACT
Checking and analyzing various executions of different Business
Processes can be a tedious task as the logs from these executions
may contain lots of events, each with a (possibly large) number of
attributes. We developed a way to automatically model the behavior
captured in log files with dozens of attributes. The advantage of our
method is that we do not need any prior knowledge about the data
and the attributes. The learned model can then be used to detect
anomalous executions in the data. To achieve this we extend the
existing Dynamic Bayesian Networks with other (existing) tech-
niques to better model the normal behavior found in log files. We
introduce a new algorithm that is able to learn a model of a log file
starting from the data itself. The model is capable of scoring events
and cases, even when new values or new combinations of values
appear in the log file, and has the ability to give a decomposition
of the given score, indicating the root cause for the anomalies. Fur-
thermore we show that our model can be used in a more general
way for detecting Concept Drift.
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1 INTRODUCTION
We propose a way of detecting anomalous behavior in Business
Processes (BPs). A BP is a series of structured activities in order to
perform a task [33]. Such a sequence of events that together form
an instantiation of a BP is called a case of the business process. In
order to monitor a BP, activities are logged in a log file. This file
consists of different events and every line in the log file represents
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Time ID Type Activity UID UName URole tID
0 0 User-Actions Log in 001 User1 employee 1
1 1 User-Actions Logged in 001 User1 employee 1
1 2 Request Create Request 001 User1 employee 1
2 3 Request Send Mail 001 User1 employee 1
3 4 User-Actions Log in 001 User1 employee 2
4 5 User-Actions Logged in 001 User1 employee 2
6 6 Request Create Request 001 User1 employee 2
7 7 Request Send Mail 001 User1 employee 2
8 8 Request Disapproved 002 User2 manager 2
9 9 User-Actions Log in 003 User3 employee 3
10 10 User-Actions Logged in 003 User3 employee 3
10 11 Request Create Request 003 User3 employee 3
11 12 Request Approved 002 User2 manager 1
12 13 Request Send Mail 003 User3 employee 3
17 14 Request Approved 004 User4 sales-manager 3
18 15 User-Actions Log in 001 User1 manager 4
19 16 User-Actions Logged in 001 User1 manager 4
20 17 Request Create Request 001 User1 manager 4
21 18 Request Approved 001 User1 manager 4
21 19 Request Send Mail 001 User1 manager 4

Table 1: Example Log file containing normal (black) and
anomalous (red) cases. The normal events are used for train-
ing the model.

a single event. Often log files already indicate which events belong
together in the same case. If not we can apply a clustering algorithm
as described in [23] for identifying the different cases.

Example 1.1. The log file in Table 1 is generated by a Business
Process where an employee needs to login to a system to create a
request. This request is then sent to his or her manager who can
approve or reject the request. The log consists of 7 attributes: Time,
(event)ID, Type, Activity, UID, UName and URole. We also keep track
of the case to which an event belongs. In total we have 4 users, each
with a unique ID and Name. Every user has a role from a limited set
of roles. For the sake of simplicity we have only captured a subset of
all possible actions that can occur.

In the context of Business Processes, the detection of anomalous
behavior is an important problem. Therefor, in this paper we de-
scribe an anomaly detection system that can find deviating cases.
This is done by learning the structure and parameters of a model
that reflects the normal behavior of a system. Our model takes all
attributes and relations between attributes into account, in con-
trast to existing techniques from the Business Process domain [30].
Our model provides us with a lot more useful information since
log files created by an autonomous system often consist of many
attributes. Attributes can influence each other within an event and
between different events. Besides missing or wrongly ordered activ-
ities there can be constraints that enforce that two activities must
be performed by the same person or that a person needs to have a
certain role to perform an action.

https://doi.org/10.1145/3297280.3297326
https://doi.org/10.1145/3297280.3297326
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Diagrams like BPMN [19] are a great tool for human under-
standing of a Business Process. For applications such as anomaly
detection, BPMN models are, however, insufficiently powerful as
they lack the ability to easily express joint probability distribu-
tions and multiple attributes; they focus on a single perspective
(i.e. the resource-activity perspective). Therefore, in order to take
advantage of all possible relations between attributes in a log file,
we create a model based on Dynamic Bayesian Networks (DBNs)
[26]. DBNs are an extension of Bayesian Networks that are able to
incorporate discrete time. DBNs link events to their predecessors
in order to find relations between these events rather than only
relations within one event.

In this paper we identify and alleviate two important shortcom-
ings of DBNs when it comes to modeling the allowable sequences
in a log:

• DBNs are not able to handle unseen values in a way appro-
priate for business process logs.

• The case where a value always occurs together with another
value describes a common structure in log files. We can
model these relations in a DBN but only implicit, which may
lead to less effective structures.

To achieve this we extend the formalism of Dynamic Bayesian
Networks to incorporate the aspects that are typical for log files.
We show that the extended Dynamic Bayesian Networks perform
well for detecting anomalies.

The structure of our paper is as follows. Section 2 describes ex-
isting approaches to this (or similar) problems. Section 3 introduces
the model for describing normal behavior in log files. We then use
this model in Section 3.4 in order to discover anomalies in cases of
events found in log files. The construction of the model is described
in Section 4. We will evaluate our new method in Section 5.

2 RELATEDWORK
The problem we are interested in is that of finding anomalous
sequences (cases) within a large database of discrete multivariate
sequences (BP logs). Different techniques have been proposed to
solve this problem both in the anomaly detection field [2, 10, 36],
as in the process mining field [5, 6, 21]. Some of these techniques
use signatures of known anomalies that can occur in the system. It
is clear that these systems cannot recognize a new type of anomaly
and are too limited for our purpose. We are interested in techniques
that build a model, such as Markov Chains that represent normal
behavior of a system.

A first type of algorithms works on a database of univariate
sequences; i.e., they only take the activity perspective into account.
Bezerra et al. [5] investigated the detection of anomalies in a log file
using existing Process Mining algorithms in order to build a model
of the process. Then they use conformance checking to detect de-
viating traces of activities. Other algorithms work on databases of
multivariate sequences. Bertens [2] uses MDL to identify multivari-
ate patterns that helps to detect and describe anomalies. A code
table consisting of mappings between encodings and frequently oc-
curring patterns is first generated by their algorithm called DITTO
[3]. The anomaly score is defined by dividing the length of the
encoded sequence given the code table on the whole dataset by the
length of the sequence.

Univariate Multivariate Method
Our method ✓ DBN
Bezerra [5] ✓ Process Mining
Nolle [21] ✓ Neural Networks
Bertens [2] ✓ MDL
Bohmer [6] ✓ Probabilistic Model

Table 2: Summary of Related Work in comparison with our
proposed method

Nolle et al. [21] propose an unsupervised anomaly detection
method based on neural networks in business process event logs.
They explicitly divide the log in the control flow and a data per-
spective. These two perspectives are then used as inputs for their
neural network architecture that predicts both perspectives for the
next event. The use of these neural networks makes it possible to
reduce the impact of noise in the dataset, where other methods
need a training dataset without anomalies as a reference set. The
major downsides of this method are that it cannot handle a lot of
attributes in the data perspective as the learning phase becomes
infeasible and is not able to cope with unseen values (both in the
activity and data perspective).

Bohmer et al. [6] introduce a probabilistic model that is able
to score events in the data. First a Basic Likelihood Graph is con-
structed where all activities are nodes and the edges between nodes
indicate the probability that given the previous activity, a certain
activity happens next. In the next phase this graph is extended by
adding context attributes such as resource and weekday between
two activities that correspond to the resource that performed the
previous action on a particular weekday. Using this graph it is possi-
ble to compute a baseline-score given the occurrence of a particular
activity. This baseline-score is compared with the actual score given
to an execution case by the model. To score an actual case, Bohmer
et al. use the data in the graph with the corresponding probabilities
to score the entire case. Besides data present in the graph, the model
is also able to deal with new values. They do not describe and test
the use of more attributes in detail, but their model can be extended
in a straightforward way to other attributes as well. A summary of
the different techniques can be found in Table 2.

3 EXTENDED DYNAMIC BAYESIAN
NETWORKS

In this section we extend Dynamic Bayesian Networks to create a
model which is more flexible and powerful when dealing with log
files. In order to do so we first formally define a log file.

Definition 3.1. We assume that A = {A1, . . . ,An }, an ordered
set of attributes, is given. For each attribute Ai a set of allowed
values dom(Ai ) is also given.

An event e is a pair (ID,desc) with ID an identifier and desc
an event description. An event description is a tuple (a1, . . . ,an )
with ai ∈ dom(Ai ); desc .Ai denotes ai . We use e .Ai as a shorthand
notation for e .desc .Ai .

A case C = ⟨e1, . . . , ei ⟩ is a sequence of events. A log L is a set
of cases, where events in the cases have different identifiers.
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3.1 History and Context of an event
To be able to incorporate the time aspect we introduce the k-history
and k-context of an event.

Definition 3.2. The k-history of an event ei is defined as a tuple
Hk (e

i ) = (xk · . . . · x1) where · denotes concatenation and where

x l =

{
ei−l .desc if i − l > 0
(None1, . . . ,None |A |) otherwise

None is a special dedicated value that should not occur in the log.
We useHk (e

i ).Al to denote the value of attribute A from the l-th
event before ei in the case that is, x l .A.

Definition 3.3. The k-context of an event e is defined as Ck (e) =
(Hk (e) · e .desc). We use the notations:

Ck (e).A := e .A

Ck (e).A
l := Hk (e).A

l

Example 3.4. For the log in Table 1, the 2-history of the event with
ID 3 is the tuple (User-Actions2, Logged in2, 0012, User12, employee2,
Request1, Create Request1, 0011, User11, employee1). The 2-context
of this event is the tuple (User-Actions2, Logged in2, 0012, User12,
employee2, Request1, Create Request1, 0011, User11, employee1, Re-
quest, Send Mail, 001, User1, employee).Were we use the subscript
i to indicate the i-th timestep before the current event. For the
current event we omit these subscripts.

3.2 Conditional Probability Tables and
Functional Dependencies

In Dynamic Bayesian Networks, the relations within the model are
represented using Conditional Probability Tables (CPTs).

Definition 3.5. A CPT (X | Y ) is a table where each row contains
the conditional probability for a value of X given a combination of
values of Y .

The following example indicates the problems we have when
using only CPTs for describing BP log files:

Example 3.6. Consider the situation where every User has a par-
ticular Role and certain activities can only be executed by certain
roles. The attribute Role depends on the User and the Activity in this
example. When building a single CPT we have to add a row for every
possible combination of values for User and Activity, resulting in a
large table with a lot of probabilities equal to 1. Also, when a new user
is added to the system, all combinations with this user would have to
be added to the CPT.

This observation certainly is not new, and in the literature several
proposals exist to deal with large CPTs on the one hand [4, 12, 18]
and new values on the other [9]. In this paper, however, we have
chosen to use so-called functional dependencies to deal with these
problems. We will explain the reasons for this choice after the
formal definition of functional dependencies.

Definition 3.7. Given a log L. A Functional Dependency At1 →
Bt2 holds in L if for all events e, f ∈ L holds that if C(e).At1 =
C(f ).At1 , None , then C(e).Bt2 = C(f ).Bt2 for attributes A and B
and time steps t1 and t2, with t1 ≤ t2 and t2 equal to the current
timestep.

A Functional Dependency (FD) between attributes X and Y can
be represented by a function FDX→Y : a_dom(X ) → a_dom(Y ),
FDX→Y (x) = y, with x and y the respective values for attributes X
and Y. a_dom(A) is defined as follows:

Definition 3.8. Let L be a log over A and {Ai1 , . . . ,Aik } ⊆ A(L).
We define the active domaina_dom(Ai1 , . . . ,Aik ) = {(e .ai1 , . . . , e .aik )
|∀T ∈ L : e ∈ T } as the set containing all values that occur in the
log for the given attributes.

Example 3.9. In the log in Table 1, U ID → URole is a Functional
Dependency. Every value of UID maps to a single value of URole. A
particular value in URole can however occur together with multiple
values of UID. We have the following mappings in our log:

{001 7→ employee, 002 7→manaдer ,

003 7→ employee, 004 7→ sales −manaдer }

A first benefit of using FDs is that they are well-studied and sev-
eral highly efficient methods for listing all (approximate) functional
dependencies exist [35]. They also ensure a more easy learning
phase for the CPTs as some relations are already found and should
not be checked again. Another benefit is the compactness of the
model. A CPT where we set all probabilities to 1 would explode
when an attribute has multiple parents. Every FD is kept in a sep-
arate table, making it also possible to give a better, more detailed
explanation of which particular FD has been violated.

Besides FDs we could also choose to use Decision Trees (DTs)
[4] or standard Association Rules (ARs) [18] but lots of these ap-
proaches have the disadvantage that they work on value-level.
ProbLog [12], however, does allow for expressing functional de-
pendencies, thanks to its use of variables. The advantage of FDs
as compared to ProbLog is that ProbLog is a general purpose prob-
abilistic modeling language, and learning ProbLog programs is a
harder task than learning FDs. An interesting avenue for future
work is to mine, next to functional dependencies, other specialized
patterns and use ProbLog as a language to express all patterns
together and its powerful inference mechanism to exploit them.

FDs allow for enforcing constraints on unseen values, unlike
ARs and DTs. Indeed, suppose that we discover a FD user ID→ user
name. Such rule would allow for spotting the inconsistency of two
events with the same user ID but different user name, even if they
were never observed before. An unseen value that satisfies all de-
pendencies can be part of a correct event. To overcome the problem
of assigning 0 to these values, as CPTs would do, smoothing can be
used, but this may be inappropriate for attributes that allow for new
values to appear frequently. Therefor we use a known technique
used in the area of Probabilistic Databases (PDBs) as presented by
Ceylan et al. [9]. They return an interval of probabilities for a given
query that contains known facts (seen values) and unknown facts
(unseen values). We show in Section 4 that our way of handling
these values is closely related to their proposed solution.

3.3 Extending the Dynamic Bayesian Networks
Combining all these elements, we extend the definition of a DBN
as follows:
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Definition 3.10. An extended DBN (eDBN) with memory k over
A is a tuple:

(G, FDR,CPT ,FD,new_value,new_relation,violation) where:

• G(V ,E) is a directed acyclic graph withV = Ak ∪ . . .∪A1∪
A whereAi = {Ai |A ∈ A} for i = 1, . . . ,k , and E ⊆ V ×A.
Ai represents the attributes of the ith event before the cur-
rent event.
E expresses dependencies of the attributes of the current
event on the other attributes in its context.

• FD ⊆ E denotes the set of functional dependencies.
• For each variable A ∈ A, Parents(A) denotes the set of
variables {B ∈ V |(B,A) ∈ E \ FD}.

• CPT consists of a Conditional Probability Table
CPT (A|Parents(A)) for each A ∈ A

• FD consists of a Mapping FDA→B for each (A,B) ∈ FD
• new_value(A) is a function A → [0, 1] representing the
probability of encountering an unseen value

• new_relation(A) is a function A → [0, 1] representing the
probability of encountering an unseen combination of parent
values for the CPT.

• violation(X ,Y ) is a function A × A → [0, 1] representing
the probability that FDX→Y is broken.

Figure 1 shows a possible eDBN based on our example.

Figure 1: eDBNwith conditional (full) and functional depen-
dencies (dotted)

3.3.1 The joint distribution of an eDBN. An eDBN with memory k
represents a joint distribution over sequences as follows:

P(⟨e1, . . . , em⟩) =
∏

e ∈⟨e1, ...,em ⟩

P(e |Hk (e)) (1)

=
∏

e ∈⟨e1, ...,em ⟩

∏
A∈A

P(e .A| Ck (e)|Parents(A)) (2)

The probability for an attribute in an event consists of three
different parts. The first part checks for new values and is defined
as:

valueA(x) =

{
1 − new_value(A) if x ∈ a_dom(A)

new_value(A) otherwise
(3)

The probability for the Conditional Dependency is given as fol-
lows:
Relation(xi |Parents(Xi )) =

new_relation(Parents(Xi ) if new combination
of parent values.

(1 − new_relation(Parents(Xi ))∗
CPT (xi |Parents(Xi )) otherwise

(4)

The probability for a Functional Dependency is expressed as
follows:
FDMX ,Y (y |x) ={

1 −violation(X ,Y ) if FDX→Y (x) = y or x < a_dom(X )

violation(X ,Y ) otherwise
(5)

To incorporate all the new elements we introduced in our model
we extend the way of determining the probability in contrast to
original BNs.

P(e .A| Ck (e)|Parents(A)) =valueA(e .A) · Relation(e .A|Parents(A))

·
∏

(X ,A)∈FDR

FDMX→A(e .A|Ck (e).X ))

Example 3.11. The probability for an event e in the model given in
Figure 1 is equal to:

value(Activity1)Relation(Activity1 |Activity0)value(Type1)

· FDM(Type1 |Activity0)FDM(Type1 |Activity1)

· FDM(Type1 |Type0)value(U ID1)FDM(U ID1 |UName1)

· value(UName1)FDM(UName1 |U ID1)value(URole1)

· Relation(URole1 |Activity1)FDM(URole1 |U ID1)

· FDM(URole1 |UName1)

The value for the attributeUserRole1 for the event with ID 2 is:

value(URole1)Relation(URole1 |Activity1)

∗ FDM(URole1 |U ID1)FDM(URole1 |UName1)

= (1 − 0.2) ∗ (1 − 0.4) ∗ 1 ∗ (1 − 0) ∗ (1 − 0) = 0.48

This score can be decomposed to find the root cause for any
anomaly in the data. This will be further elaborated in future work.

3.4 Anomaly detection
To find anomalous sequences of events we use a score-based ap-
proach. The score is obtained by calculating the probability for
a case ⟨e1, . . . , en⟩ given a modelm. We normalize the result us-
ing the n-th root, with n the number of events in the case. This
normalization makes sure that longer cases are not penalized.

Score(⟨e1, . . . , en⟩) =
n√
P(⟨e1, . . . , en⟩) (6)

Sequences with a high score thus have a high probability of occur-
ring and are most likely to represent normal behavior, whereas low
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scores indicate higher chances of being an anomaly. We return a
sorted list of cases, sorted by their scores. The idea is that a user
can only handle the first k anomalies detected. Since we can score
any sequence of events, we do not have to wait for a complete
case before we can score it. The model can thus be used to detect
anomalies in ongoing cases.

4 LEARNING THE STRUCTURE AND
PARAMETERS OF THE MODEL

We build our model using a reference dataset containing only nor-
mal executions of the process. Our experiments show that the
performance of our algorithm is, however, not influenced when the
dataset contains a small amount of noise. In order to incorporate the
timing aspect we replace every event in the log with its k-context.
We refer to this log as the k-context log.

We can use the k-context log as input for traditional Bayesian
Network learning algorithms that have no specific knowledge about
the different time steps to find the conditional probability tables.
Afterwards we interpret the different attributes in their appropriate
time slice. The complete algorithm for computing the structure can
be found in Algorithm 1.

1 Function LearnEDBN
Data: variables, FDThreshold
Result: The learned eDBN

2 V = variables
3 FD = {X → Y : X ,Y ∈ V ,U (X |Y ) > FDThreshold}

4 blacklist = {X → Y : X ∈ Vi ,Y ∈ Vj with i ≥ j > 0}
5 whitelist = FD
6 G(V, E) = LearnBayesianNetwork(variables = V, blacklist,

whitelist)
7 FDM = ConstructFunctionalDependencyFunctions(FD)
8 CPT = ConstructConditionalProbabilitiesTables(E \ FD)
9 NV = {X 7→

|a_dom(X ) |

| L |
: ∀X ∈ V }

10 NR = {X 7→
|a_dom(Parents(X )) |

| L |
: ∀X ∈ V }

11 VIOL =
{X × Y 7→

| {e ∈L:FDX→Y (e .X ),e .Y } |

|L | : ∀(X ,Y ) ∈ FD}

12 return eDBN(G(V, E \ FD), FD, CPT, FDM, NV, NR, VIOL)
Algorithm 1: Algorithm for learning the structure and param-
eters of eDBNs

First the algorithm searches for Functional Dependencies in the
data. In order to discover them, the Uncertainty Coefficient [25]
is applied to the k-context log, which is defined as follows for the
random variables X and Y :

U (X |Y ) =
I (X ;Y )
H (X )

,

with H (X ) the entropy [29] of X and I(X;Y) the Mutual Information
[11] given as:

I (X ;Y ) =
∑

y∈a_dom(Y )

∑
x ∈a_dom(X )

p(x ,y) log
p(x ,y)

p(x)p(y)

H (X ) = −
∑

x ∈a_dom(X )

p(x)loд(p(x))

The Uncertainty Coefficient is the normalized form of Mutual In-
formation. It gives information about how much the values of an
attribute depend on another attribute. We use it to determine what
attributes are related to each other and howmuch they relate to each
other. The measure ranges from 0 (no correlation between the two
attributes) to 1 (completely correlated attributes, thus indicating the
existence of a Functional Dependency) [34]. IfU (X |Y ) > threshold ,
we will assume that the FD Y → X holds. This threshold has to
be chosen according to the amount of noise in the data. A higher
threshold means a more strict Functional Dependency is used that
is less able to cope with noise.

For an attribute A in log L, new_value(A), new_relation(A) and
violation(X ,Y ) are defined as follows:

new_value(A) :
|a_dom(A)|

| L |
,

new_relation(A) :
|a_dom(Parents(A))|

| L |

violation(X ,Y ) :
|{e ∈ L : FDX→Y (e .X ) , e .Y }|

| L |

This choice reflects the main idea as proposed by Ceylan et al.
[9], where they add unseen tuples to their PDB, each with a certain
probability, possibly depending on the values of other attributes.
We consider all unseen values as equally likely and the probability
they receive should reflect only the behavior of the attribute itself,
therefor we assign every unseen value of an attribute the probability
of encountering a new value for this attribute in the database.

With a standard Bayesian Network learning algorithm we can
discover the Conditional Dependencies present in the data. It is
possible to use any learning algorithm that uses data to learn its
structure. We chose to use a Greedy algorithm that finds a local
optimum for the Akaike Information Criterion (AIC) [1].

The relations present in our model should only indicate a causal-
ity relation; events in the present cannot influence events in the
past. Therefore edges that do not represent a causal relation are
blacklisted. This blacklist is created by adding all edges that do not
end in the current time step.

We do not want the algorithm to find edges already labeled
as FDs, therefor we add these edges to a whitelist. The Bayesian
Net learning algorithm should always include the edges from the
whitelist in the model. This way the learning algorithm takes ad-
vantage of the information we already know about these FDs.

After running the greedy algorithm we have found the Con-
ditional and Functional Dependencies that define the structures
present in our data. We can then combine them into one single
model. These steps give us the structure of the eDBN-model. The
next step in building the model is filling in all the different Condi-
tional Probability Tables (CPTs) and constructing the Functional
Dependency functions for all nodes.

5 EXPERIMENTS
To evaluate our extended model we use two different datasets.
The first dataset is a synthetically generated multi-dimensional
dataset. The second is the BPI Challenge 2015 (MUNIS) [31] data.
This data consists of applications for building permits in 5 Dutch
municipalities, we refer to each individual municipality as MUNI1
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to MUNI5. Table 3 summarizes all the dataset used in this section.
We use the same amount of attributes and anomalies as described
by Bohmer et al. [6] to best compare our approaches.

We use the synthetic dataset to test the overall performance of
our algorithm, where we try different ratios of anomalies in both
training and test set. Next we perform a more in-depth comparison
with the Likelihood Graphs proposed by Bohmer et al. [6] using the
reduced subset of the MUNIS data. As a last experiment on anomaly
detection we compare our approach to a variety of algorithms
available in the ELKI - tool [28], using both the synthetic data
and the reduced MUNIS data. The ELKI - tool contains most of
the existing anomaly detection algorithms in a uniform way. The
Area Under the Curve (AUC) is used to compare the algorithms.
Finally we add an extra evaluation were we show the usefulness
of the model to detect Concept Drift. All code used to perform the
experiments and generate the datasets can be found on our GitHub
repository.1.

5.1 Testing with synthetic data
We built a data generation tool that allows us to create log files con-
taining different relations between events. In order to do so we first
create a model of sequential activities with depending attributes.
The model is based on a BP for shipping goods. Goods can have
a value and an extra insurance can be taken. Goods with an extra
insurance need a different workflow from goods without extra in-
surance. The data consists of 13 attributes. We create one model for
normal execution and one model for anomalous execution, where
we explicitly changed the order of events or use the wrong flow of
events according to the insurance chosen. Next we introduce some
extra attributes where some of these attributes depend on other
attributes. For the anomalous cases we added random values on
random places. We generated multiple set-ups with a variable num-
ber of anomalies in both training and test data. We added anomalies
in our training data to check and show that our approach does not
require a flawless log file as training data but is able to deal with a
small amount of unexpected behavior in the data. To minimize the
impact of the random generation of the data we run every test 10
times and report the mean AUC value of all runs.

The AUC-scores for different amounts of anomalies in both
training and test data can be found in Table 4. This test shows that
our algorithm is able to find the relations mentioned in Section 3,
even when the training set contains a small amount of noise or
anomalies.

1https://github.com/StephenPauwels/edbn

Dataset # cases Average case length # Activities # Attributes
Synthetic 10000 6 8 13
MUNI1 1199 43.5 398 3
MUNI2 832 53.3 410 3
MUNI3 1409 42.3 383 3
MUNI4 1053 44.9 359 3
MUNI5 1156 51.0 389 3
GRANTS 43809 57 41 23

Table 3: Description of the BPIC datasets

Test
% Anomalies 0.1 0.5 1.0 2.5 5.0 10.0 25.0 50.0

Training

0.0 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
0.5 0.95 0.89 0.90 0.91 0.91 0.91 0.90 0.91
1.0 0.95 0.90 0.90 0.90 0.90 0.91 0.91 0.91
2.5 0.93 0.92 0.90 0.90 0.90 0.91 0.91 0.91

Table 4: AUC values for different combinations of anom-
alies.

5.2 Comparison
5.2.1 Comparison with Likelihood Graphs. In order to compare
our approach to the solution presented by Bohmer et al. we first
implemented the algorithm found in [6]. Next we generated data
as described by Bohmer et al. starting from the reduced MUNIS
data. Therefor we randomly split the original data in two equal
data sets, one for training and one for testing. In the test data we
introduced anomalies according to the description in Bohmer et
al. The statistics for the generated files can be found in Table 5.
Normal input will, however, never contain this many anomalies.

The Likelihood graph calculates the likelihood for the ongoing
case and compares this with a baseline score in order to indicate if
a case is an anomaly. Since our method works with giving scores
and sorting all anomalies, we slightly changed the way we compute
the scores for the different activities within a case in order to best
capture the ideas of the Likelihood Graphs. The lower the difference
the more likely it is that this case contains an anomaly. We use both
the precision/recall-curve and the ROC-curve to compare the two
approaches. The results can be found in the graphs in Figure 2 and
3 for each of the five different municipalities. Since all five munici-
palities have different ways of performing the different processes
we also created one file containing all data of all municipalities.
Then we introduced anomalies in the same way as we did for the
other files. This combined dataset allows us to test how well each
approach can handle different processes in a single log file.

We can see that our method always outperforms the likelihood
graphs using theMUNIS data. Especially in the casewerewemerged
all five datasets. We can conclude that our model is better in scoring
the different anomalies in the data, especially when the number of
processes present in the data becomes larger.

5.2.2 Comparison with other anomaly detection methods. We also
tested our method against other anomaly detection methods (not
necessarily methods that take into account the sequential or Busi-
ness Process nature). We used the k-context format as input for all
the algorithms. The best parameters were chosen after performing
some experiments. We performed the experiments using the ELKI -

File Training size Test size # Anomalies in Test set
MUNI1 589 610 291 (47.7%)
MUNI2 408 423 214 (50.5%)
MUNI3 723 686 356 (51.8%)
MUNI4 522 530 257 (48.4%)
MUNI5 595 561 283 (50.4%)

Table 5: Number of cases present in the different log files.
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(a) MUNI1 (b) MUNI2

(c) MUNI3 (d) MUNI4

(e) MUNI5 (f) Full MUNIS

Figure 2: Comparison of precision/recall-graphs.

tool [28]. Since none of these methods uses a different (clean) train-
ing dataset we used the same file to generate our model as to test the
model. The results can be seen in Table 6. We see that only ALOCI
outperforms us on the MUNIS data, this is due to the fact that we
used the same file for training and testing. Our method and Bohmer
et al. performs best when having a clear training dataset. For some
algorithms we were not able to get results for both datasets (due to
runtimes and memory usage).

AUC
Method Synth data MUNIS data Remark
eDBN 1.00 0.89 no FDs were found for MUNIS
eDBN without FD 0.69 0.83
Bohmer et al. [6] 1.00 0.85
FastABOD [15] 0.50 0.56
LOF [8] 0.49 0.55
SOD [13] 0.53 0.60
Feature Bagging [17] 0.75 0.57
SimpleCOP [37] 0.53 0.60
LibSVMOneClass [27] 0.51 0.46
COP [14] 0.81 0.63
DWOF [20] 0.51 0.44
OpticSOF [7] 0.53 0.46
ALOCI [22] - 0.86
Bertens et al. [2] - - not able to get a complete run

Table 6: Overview of results for different Anomaly detection
techniques.

(a) MUNI1 (b) MUNI2

(c) MUNI3 (d) MUNI4

(e) MUNI5 (f) Full MUNIS

Figure 3: Comparison of ROC-graphs.

5.3 Root Cause Analysis in Concept Drift
To further show the usefulness of eDBNs we show how we use
them to detect deviations in the form of Concept Drift and use the
score to find the cause(s) of the drifts. The data we used is from the
BPI Challenge 2018 [32] and consists of applications for agricultural
grants over a period of three years. Between the years changes may
occur as legislation and documents change. We refer to this dataset
as GRANTS. For a more detailed analysis of this data we refer our
work in [24].

The basic workflow that is being followed is to train the model
on the first cases of the data. Next we score all cases in the data
using the trained model. Instead of using the formula introduced
in Section 3.4 we use the mean score of all event-scores in the
case. We made this choice because we want to find the degree of
deviation of a case from the reference training set rather than the
indication that something is wrong. To detect drifts we plot all
these case-scores in a single graph as shown in Figure 4a. Using the
Kolmogorov-Smirnov statistical test we can, in detail, determine the
possible drift points. The found drift points are indicated with red
lines on the graph. To explain the drifts we decompose the scores
per attribute and plot the median value for every drift period as in
Figure 4b. This graph shows large differences between drift periods
in the attributes area, doctype and subprocess which is in line with
the expectations that are given as part of the dataset.
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(a) Case scores
(b) Median values of the decom-
posed scores for every year

Figure 4: Concept drift detection

6 CONCLUSION
In this paper we extended Dynamic Bayesian Networks using other,
existing techniques in order to create a new model that allows us
to better and in more detail describe the structure and properties
of a log file generated by process-aware information systems. As
standard DBNs have shortcomings for analyzing these logs we
added some elements to cope with these shortcomings. We added
Functional Dependencies for a better description of the structure
of a log file. Since DBNs cannot cope with unseen values we also
improved the way our model deals with these unseen values. Next
we described our algorithm for creating models that reflect the
multidimensional and sequential nature of log files. We conducted
different types of experiments: the first experiment confirmed that
our algorithm achieves high performance in different settings with
different amounts of anomalies in both training and test sets. Next
we compared our approach with existing solutions. Finally we
showed the broader range of problems that could be solved using
our extended model. In the future we would like to extend our
model with other promising (existing) techniques like Inductive
Logic Programming [16]. Also the incorporation of the time aspect
in our model that can model the duration of activities and gaps
between activities is an extension we like to investigate further.
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