
Bayesian Network based Predictions of Business
Processes

Stephen Pauwels1[0000−0002−0427−8945] and Toon Calders1[0000−0002−4943−6978]

University of Antwerp, Antwerp, Belgium
{stephen.pauwels,toon.calders}@uantwerpen.be

Abstract. Predicting the next event(s) in Business Processes is getting
more importance with more and more automated systems. Predicting
deviating behaviour early in a process can ensure that a possible error
can be corrected or that unwanted delays can be avoided. We propose
to use Bayesian Networks as a basis for predicting the next event. Us-
ing these models we capture the different dependencies between different
attributes within a log to gain a better and more fine-grained predic-
tion. We show that our model performs very well compared to existing
methods. Our model, due to its underlying Bayesian Network, is capa-
ble of providing a more comprehensible explanation of why a prediction
is made. We also show that the runtimes of our learning algorithm are
lower than these of other methods. In the experiments we perform an
elaborate comparison between different state-of-the-art methods using
different real life datasets.

Keywords: Business Process · Event Prediction · Dynamic Bayesian
Network.

1 Introduction

Process Mining [1] is the field that studies the creation of understandable mod-
els given data from a BP. With more and more automated systems and process
execution it becomes more and more important to be able to predict as soon
as possible some aspects of a running case. For example, we want to know as
fast as possible when deviations occur in a log or when we can already predict
that the deadline will be exceeded with high probability. Di Francescomarino
et al. [6] show the growing importance and interest in predicting events within
Business Processes. Different methods already have been proposed, using prob-
abilistic models, machine learning and Deep Learning. All these methods have
in common that they use historical data for creating a reference model that gets
used for determining the next activity. The commonly used process models, such
as workflow nets, however, are not suitable as they often give no accurate results
for predicting next events in a case.

Although widely used, Deep Learning methods have some issues. A first issue
is that training of the model often takes very long, often also needing specialised
hardware for efficient learning. Next, it is also important to have a sufficient
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amount of data available for training an accurate model. With an ever increasing
demand for giving explainable, comprehensible models neural networks also have
the disadvantage that they still work as blackboxes without any possibilities of
having a detailed explanation for the given output.

We propose a method for predicting the next event in Business Process (BP)
log that uses a comprehensible probabilistic model. Our proposed method tries
to solve most of the existing issues while still performing with high accuracy.

In this paper we start from our previously defined eDBNs that were developed
for detecting anomalies in BP logs [15]. Using Bayesian Networks and their
Conditional Dependencies we can create a probabilistic model that is able to
predict next events. The contributions of our paper are:

– We propose a fast and comprehensible algorithm that is able to accurately
predict the next events in a BP log. The learned model can easily be modified
by a domain expert.

– We performed an elaborated survey and comparison of some existing state-
of-the-art techniques, which was not yet done in literature. We compare
the methods proposed by Tax et al. [18], Camargo et al. [4], Lin et al. [14]
and Di Mauro et al. [7]. We both compare accuracy and runtimes for these
algorithms.

The remainder of the paper is structured as follows: in the next section we
explain existing methods and indicate some of their strengths and weaknesses.
Section 3 introduces some concepts we need in order to explain how we use
Dynamic Bayesian Networks for next event prediction. Section 4 explains the
prediction of the next events in detail. An extensive evaluation and comparison
is performed in Section 5, where we take a look at both the next event prediction
problem and the suffix prediction problem. Next to comparing the accuracies of
the different methods, we also compare the methods based on runtime for both
training and testing.

2 Related Work

There already exists ample research on applying probabilistic models for pre-
dicting events in Business Processes. Becker et al. [2] proposed a framework for
real-time prediction based on a probabilistic model learned from historical data.
They use Hidden Markov Models (HMM), which are state machines where the
next state depends on the current state and current event, and Probabilistic
Finite Automatons (PFAs). An advantage of these models is their explainability
and possibility to visualization, but on the other hand, their model does not take
multiple attributes into account and is not able to find long-term dependencies.

Explainability is a useful feature to convince domain experts who have no
technical knowledge about how the models get trained. Breuker et al. [3] propose
a very similar method where they start from a Probabilistic Finite Automaton
and further improve this model to work with event data.
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Lakshmanan et al. [13] propose an instance-specific Probabilistic Process
Model (PPM) which calculates the likelihood for all possible events to occur next.
When making some non-restrictive assumptions, they show that their model
can be transformed into a Markov Chain. Thus, they can use existing Markov
techniques. To create their model, they first mine a process model based on the
given traces, represented as a Petri Net. Starting from this model they look at
all the OR and AND splits to extend it to a probabilistic model that is able to
predict the next event.

An important factor in these probabilistic methods is that they are compre-
hensible, but take only a limited amount of information regarding the sequences
of events into account. Meaning that it is harder for them to detect and correctly
predict long-term dependencies, as they encounter the same challenges as most
process models.

In previous work we introduced the extended Dynamic Bayesian Networks
[15] (eDBN) which captures the different dependencies between attributes to
construct a Bayesian Network which describes a joint probability. The dynamic
aspect was introduced by transforming the input data so that every event is
represented by a vector containing next to the event itself, its attributes such as
resource, duration, etc, and those of previous events.

With the field of Deep Learning becoming more popular and achieving great
results in the field of Natural Language Processing (NLP), researchers also in-
vestigated the usage of Neural Networks in Business Processes, as these have
some properties in common with NLP. Most of the state-of-the-art methods use
Long Short Term Memory (LSTM) cells in their neural network [4, 11, 12, 14,
18]. LSTM cells are cells that are able to remember and use this memory for
determining the output. Most of these methods are very similar to each other.
Every method does use its own architecture, where extra LSTM cells can be
added or organised in different ways. Where probabilistic methods only predict
the next activity, the neural networks also predict the duration of an event. At
the moment, however, we are not interested in solving the problem of predicting
the duration of activities. Therefor we do not explain this aspect of the methods.

LSTMs have the downside of being hard to train, due to their sequential
nature. To counter this disadvantage, Di Mauro et al. [7] propose to use Convo-
lutional Neural Networks. These networks also take the sequence of events into
account but are more efficient to train.

Most methods use a one-hot encoding feature vector as input for the network.
Camargo et al. [4] create a feature vector by taking the dot product of the activity
and resource vectors and then reshaping it to a lower dimensionality, which is
based on, but lot smaller than, the amount of different values.

Lin et al. [14] have optimized their network to take multiple attributes into
account. In order to do so they introduced a new type of layer: the Modulator.
This modulator combines the values of all attributes and uses a weighted sum to
determine how much an attribute contributes to predicting another attribute.

Having a large amount of event attributes and event values is one of the
biggest challenges for Recurrent Neural nets. To tackle this problem, Hinkka et
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al. [12] propose a Recurrent Neural Net method were they first cluster events
according to their attribute values to lower the complexity.

To incorporate the sequential nature of the data, two approaches were used
by the different methods. Camargo et al. [4] divide the input log into windows
of 5 events each, they use padding with zeros for the first four events. The other
methods use the length of the longest trace in the log, also padding with 0 when
needed.

Paper Model Input Predict Predict Predict
type data Next Event Suffix Duration

Our paper DBN multivariate X X
Becker et al. HMM activity X
Breuker et al. PFA activity X
Lakshmanan et al. PPM activity X
Everman et al. LSTM activity and resource X X
Tax et al. LSTM activity and duration X X X
Lin et al. LSTM multivariate X X
Camargo et al. LSTM activity, resource X X X

and duration
Di Mauro et al. CNN activity and duration X X
Hinkka et al. Clustering multivariate X

RNN
Table 1. Overview of related work.

3 Background

Before we explain how we extended and used Bayesian Networks for predicting
the next activity, we introduce the basic problem setting and some concepts we
need to create the model. First, we formally define an event and a logfile:

Definition 1. Let e = (eID , aact, desc) be an event with a unique identifier eID,
an associated activity aact and an event-descriptor desc. The event-descriptor
is a tuple (a0, . . . , an) denoting the values of (possible) extra attributes A =
(A0, . . . , An), an ordered set of attributes. Value a0 of the event-descriptor cor-
responds with the value for attribute A0, etc. We use n to denote the number of
attributes.

A case c = (cID , [e0, e1, . . . , em])) has a unique identifier cID and consists of
an ordered list of events. The order in the list determines the order in which the
events were executed. We use mc to denote the number of events of a case c.

A logfile is a set containing different cases all originating from the same
process or institution.

We express the problem of finding the next activity as follows:
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Definition 2. Given a partially completed case C = (cID , [e0, . . . , ei]), with 0 <
i < mc, we want to predict the activity of event ei+1, which immediately follows
the last seen event in the case.

Predicting the suffix of a case is expressed as follows:

Definition 3. Given a partially completed case C = (cID , [e0, . . . , ei]), with 0 <
i < mc, we want to predict the list [ai+1

act , . . . , a
m
act] of all next events. ajact denotes

the activity of event ej.

In this paper we are primarily looking to predict the activities in a case.
Although we also predict other attributes when needed to correctly predict the
suffix of a case.

3.1 Dynamic Bayesian Network

We use Bayesian Networks (BNs) [16] to model the different conditional depen-
dencies between attributes present in a logfile. A BN is a directed acyclic graph
where every node represents an attribute and a directed edge (u, v) from node
u to v exists when attribute v depends on u. We call variable u the parent of
variable v and we denote it as Pa(v). A single variable v can depend on multiple
other attributes.

The BN represents the following joint probability :

P (X0, . . . , Xn) =

n∏
i=0

P (Xi|Pa(Xi)) (1)

To learn a BN we first learn the structure of the model (the different condi-
tional dependencies between attributes). At the same time we learn the Condi-
tional Probability Tables (CPTs) of the different attributes. These tables contain
the probabilities for all possible values given the occurrence of values of the par-
ents. In literature, there already exist algorithms that can learn the structure of
such a BN given a reference dataset.

Dynamic Bayesian Networks (DBNs)[17] introduce extra attributes that are
associated with previous time steps. In this paper, we use k to denote the number
of previous time steps we want to incorporate in the model. An example of a
DBN with k = 1 can be found in Figure 1. In this diagram one can easily see the
different time steps. Dependencies may exist within one time step (Activity →
Type) or between time steps (Activityprevious → Activitycurrent).

4 Predicting

First we use historical input data to train our probabilistic model, details about
how to learn the model can be found in [15]. Next we can use this learned model
to predict both the next event and the complete suffix for a partially completed
case.
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Fig. 1. Example Dynamic Bayesian Network

4.1 Next Event Prediction

To predict the next activity, we calculate P (xact) for all possible (known) values
of the activity attribute. Following Equation 1 we can describe the probability
for the activity as follows: P (Xact) = P (Xact|Pa(Xact)). Calculating the most
likely activity, given the values of the parent attributes, comes down to looking at
the CPT associated with the activity attribute. This table contains the known
combinations of values of parent attributes. Every combination is linked with
possible values for the activity with their respective probability. We then select
the activity which has the highest probability as the predicted next activity.

Example 1. Suppose our activity attribute depends on activity and resource from
the previous time-step. We then have a CPT describing P (activity |activity1, resource1)
as can be seen in Table 2.

Given the values b and resource3 for activity and resource respectively from
the previous time-step, we can see in the table that two possible values for
the next activity are possible: c (with a probability of 0.4) and end (with a

activity1 resource1 activity P(activity)

start resource1 a 1.0
start resource2 a 1.0

a resource1 b 0.7
a resource1 c 0.3
a resource2 d 1.0
b resource3 c 0.4
b resource3 end 0.6
c resource1 end 1.0
c resource3 end 1.0

Table 2. Example CPT given that activity depends on activity and resource from the
previous time step.



Bayesian Network based Predictions of Business Processes 7

probability of 0.6). We return the value with the highest probability, which is
end, as the prediction for the next event.

Because we use a table with all combinations which have occurred in the
training data, it is possible that the combination of parent values we encounter
in the test data does not occur in the CPT. In that case we have to make
an estimation based on the data and probabilities present in the CPT. We use
marginalization techniques in order to come up with the most likely next activity.
We make a distinction between two cases: the first one where there is at least
one parent value that we did not encounter in the training data and the other
where all values occur but did not occur together.

When there are unseen values for some attributes we calculate the marginal-
ized probability where we iterate over all seen values for these attributes. We let
the unseen attributes variate over all possible values, which occur in the CPT,
while we keep the seen attributes the same. The probability for an activity is
the sum of all probabilities of encountering this activity times the probability for
the substituted values for the unseen attributes. The probabilities for all single
values get learned during the training phase.

Consider the unseen attributes as Au and the seen attributes as As, for
determining the probability of the activities we need to calculate P (Xact|Au, As).
We thus calculate the marginalization which equals P (Xact|As). This probability
can be calculated as follows:

P (Xact|As) =
∑

au∈Au

P (au) ∗ P (Xact|au, As) (2)

Where au corresponds with the possible values for the unseen attributes.

Example 2. Consider the CPT from Table 2, suppose we have the values e and
resource3 for attribute and resource. The value for resource has already been
seen, the value for the activity is unseen. We thus marginalize over the activity
attribute. The seen attribute resource only occurs together with the values b and
c. We want to calculate the following formula for all possible values of activity,
note that we only take into account combinations of parent values that do occur
in the CPT:

P (Xact|e, resource3 ) = P (b) ∗ P (Xact|b, resource3 ) + P (c) ∗ P (Xact|c, resource3 )

Assume P (b) = 0.3 and P (c) = 0.4. We can now calculate the probabilities for
all activities as follows:

P (start |e, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 = 0

P (a|e, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 = 0

P (b|e, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 = 0

P (c|e, resource3 ) = 0.3 ∗ 0.4 + 0.4 ∗ 0 = 0.12

P (d|e, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 = 0

P (end |e, resource3 ) = 0.3 ∗ 0.6 + 0.4 ∗ 1 = 0.58
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From these results we can see that the next activity with the highest probability
is end.

When all values occur in the training data, we marginalize over all attributes
one by one and calculate the total sum of the probabilities. We use the following
formula:

P (Xact|Pa(X)) =
∑

A∈Pa(X)

∑
a∈A

P (a) ∗ P (Xact|a, Pa(X) \A) (3)

Again, we calculate the probability for every possible activity to determine the
most likely next activity.

Example 3. Consider again the CPT from Table 2, suppose this time we have
the values a and resource3 for activity and resource. Both values already occur
in the CPT but never together. We thus calculate the following formula for every
possible activity:

P (Xact|a, resource3 ) = P (b) ∗ P (Xact|b, resource3 ) + P (c) ∗ P (Xact|c, resource3 )

+ P (resource1 ) ∗ P (Xact|a, resource1 ) + P (resource2 ) ∗ P (Xact|a, resource2 )

Assume P (b) = 0.3, P (c) = 0.4, P (resource1 ) = 0.4 and P (resource2 ) = 0.2.
We then the following probabilities for the possible activities:

P (start |a, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 + 0.4 ∗ 0 + 0.2 ∗ 0 = 0

P (a|a, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 + 0.4 ∗ 0 + 0.2 ∗ 0 = 0

P (b|a, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 + 0.4 ∗ 0.7 + 0.2 ∗ 0 = 0.28

P (c|a, resource3 ) = 0.3 ∗ 0.4 + 0.4 ∗ 0 + 0.4 ∗ 0.3 + 0.2 ∗ 0 = 0.24

P (d|a, resource3 ) = 0.3 ∗ 0 + 0.4 ∗ 0 + 0.4 ∗ 0 + 0.2 ∗ 1 = 0.2

P (end |a, resource3 ) = 0.3 ∗ 0.6 + 0.4 ∗ 1 + 0.4 ∗ 0 + 0.2 ∗ 0 = 0.58

From these results we can see that in this case the next activity with the highest
probability is end.

4.2 Suffix Prediction

For predicting the suffix we recursively determine all attributes the activity
depends on. Apart from the parents of the activity attribute we also need to take
the parents of the parents etc. into account. To predict the suffix of activities
we also have to predict the other attributes, as we have to use them to further
predict the suffix.

Example 4. Consider the example from the previous section. In our example, the
activity depends on activity and resource in the previous time step. Assume now
that resource itself also depends on the activity and resource from the previous
time step. To be able to keep predicting the next activity, we also need to predict
values for the resource by using the activity and resource from the previous time
step.
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To predict the value for an attribute we use the same formulas as were intro-
duced in Section 4.1. As these formulas are attribute independent we can adapt
the formulas in a straightforward way to also predict other attributes. We also
use the same marginalization when new combinations of parent values occur.

Example 5. To predict the suffix for our example we have to predict values for
activity and resource. We thus need to calculate the following probabilities:

P (activity |activity1 , resource1 )

P (resource|activity1 , resource1 )

The disadvantage of always selecting the activity which has the highest prob-
ability is that we can get stuck in an infinite self-loop when the most likely next
activity is the same as the current one. We introduce a restriction on the size of
these self-loops. During the learning phase of the algorithm we count the length
of all self-loops for the activity. We use the average length of these self-loops as
the maximum size for self-loops in the prediction phase. When we predict the
same activity as the current activity, we increase a self-loop counter. When this
self-loop counter reaches the maximum size for self-loops we select the second
best activity as our prediction. When we predict a different activity we reset the
self-loop counter to 0.

Example 6. Consider a situation where activity only depends on the previous
activity. The CPT for activity is shown in Table 3. Assume we have [start ] as
the current prefix, when we would predict the suffix without limitations on the
self-loops we would get the following sequence: [start , a, a, a, a, a, . . . , a] until we
reach the maximum allowed suffix length. Suppose now we have a maximum
self-loop size of 3, then we get the following sequence: [start , a, a, a, b, end ].

activity1 activity P(activity)

start a 1.0
a a 0.6
a b 0.4
b end 0.8
b c 0.2

Table 3. CPT for activity used for example 6

5 Evaluation

In this section, we describe the datasets we used to evaluate our method. We
also perform some comparisons with state-of-the-art for the problems of next
event and suffix prediction. We perform both runtime and accuracy experiments
to fully compare the different methods.
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5.1 Datasets

For our evaluation we use four different datasets.

– BPIC12 [9]: a log from a Dutch financial institution, containing applications
for personal loans. The logfile contains three intertwined processes. We use
one of these processes to create an additional logfile (BPIC12W).

– BPIC15 [10]: a log containing building permit applications from five differ-
ent Dutch municipalities, where the data of every municipality is saved in a
single log file. We denote these datasets as BPIC15 1 to BPIC15 5.

– Helpdesk [19]: a log containing ticket requests of the helpdesk from an
Italian Software Company.

– BPIC18 [8]: a log containing applications for EU agricultural grants. Due to
the size of this dataset we do not use this dataset to compare with all other
methods. As initial experiments showed that training would be infeasible for
most datasets.

Following the same preprocessing steps as in [4], we first remove all cases from
the datasets with less than 5 events. Only for the Helpdesk dataset we put the
threshold to 3, because of the smaller average length of the cases in this dataset.
Table 4 gives the characteristics of the used datasets after preprocessing. The
table shows that we use a variety of datasets with different characteristics to
conduct an evaluation as complete as possible.

Dataset # Events # Cases # Activities Avg. activities Max. length
per case of a case

BPIC12 171,175 7,785 23 22.0 106
BPIC12W 61,449 4,848 6 12.6 74
BPIC15 1 52,217 1,199 398 43.5 101
BPIC15 2 44,347 829 410 53.5 132
BPIC15 3 59,533 1,377 383 43.2 124
BPIC15 4 47,271 1,046 356 45.2 116
BPIC15 5 59,068 1,153 389 51.2 154
Helpdesk 20,722 4,371 14 4.7 15
BPIC18 2,514,266 43,809 41 57.4 2,973

Table 4. Characteristics of the datasets after preprocessing

5.2 Method

We ran our experiments on compute nodes with 2 Xeon E5 processors, which
have 14 cores each, and 128 GB RAM. We also used GPU based nodes having 2
NVIDIA P100 with 16GB of memory for some of the experiments. Most of the
experiments where conducted using only CPU nodes, as our experiments showed
that training LSTMs on a GPU was less efficient than using a CPU. We include
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some of these results in our general runtime results. We explicitly mention it in
the results when the experiment was run on a GPU node.

We split all datasets into a training and testing part. We have chosen to split
the datasets as described by Camargo et al. [4]. The first 30% of cases are used
for testing and the remaining 70% for training.

In this paper we are only interested in predicting activities, not the duration
of the activities. Therefore, we first removed the time aspect of all methods we
compare to. We can safely assume that we did not alter the behavior of the
proposed methods, as the timing aspect was often not influencing the predic-
tion of the activity. Our method would however be able to cope with datasets
including timestamps of the events. But as we only use categorical attributes
most timestamps would be unique. And new predictions would have timestamps
that were not seen before, meaning we would always have to marginalize over
the timestamp for determining the next event.

All Neural Network learning algorithms use an early stopping method with
a patience of 42, meaning that when no improvement occurred for 42 epochs the
learning algorithm stopped. Increasing or decreasing this parameter has a direct
influence on runtimes, but has also an influence on the accuracy. The value of 42
was chosen because it was used in the original code of the other implementations.

To measure the performance of the next event prediction we use the accuracy,
which gives us the fraction of events that were predicted correctly. Events that
did not get a prediction, because of unknown values are considered to be wrong.
For the performance of the suffix prediction we use the Damerau-Levenstein [5]
distance between the predicted trace sp and the correct trace se as basis for our
measure. As we want a measure that gives 1 when two traces are completely
identical and 0 when they are completely different we use the following formula
for the accuracy of the suffix prediction:

S(sp, se) = 1− DL distance(sp, se)

max(len(sp), len(se))
(4)

An implementation of our method and code to execute the experiments can
be found in our GitHub repository1. The repository also contains the modified
implementations of all other methods, where all timing information and duration
prediction was removed.

5.3 Evaluation

First we examine the influence of the value of k, which determines how many
previous time steps we take into account, and try to find a single optimal value.
We test our method on all datasets with a varying k. We performed this test
both for the next event prediction and for the suffix prediction, where we let k
vary from 1 to 5.

Figure 2 shows that the best k value is equal to 3 for the next event prediction.
The k value has a direct impact on the complexity of our learning algorithm.

1 https://github.com/StephenPauwels/edbn
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Fig. 2. Next event prediction accuracy for different k values.

As the number of attributes grows linear with k. Using k = 3 for next event
prediction gives us the best accuracy with a relatively small impact on the overall
complexity. We can see that for some datasets the accuracy decreases with a k
set too high, this can be explained by the fact that we overfit the training data
with a higher k value, as a higher k value also means that the activity depends
on more attributes.
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Fig. 3. Suffix prediction accuracy for different k values.

For the accuracies of the suffix prediction in Figure 3 we again see degrading
results when we set k too high. Again this is due to overfitting of the data. The
suffix generation is more sensitive for overfitting, as a predicted value has its
consequences throughout the entire predicted sequence, therefor we see that the
ideal k for the suffix prediction is lower than the k for next event prediction.
This observation occurs across all different datasets, we can thus say with some
certainty that the choice of k = 2 is the most optimal for most datasets.
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5.4 Comparison

We compare our method with four state-of-the-art methods, all of which use neu-
ral networks. We used the implementations provided by Camargo et al. [4], Tax
et al. [18] and Di Mauro et al. [7]. We implemented the method described by Lin
et al. [14] as correctly as possible according to the paper, as no implementation
was available. All used implementations have been added to the GitHub reposi-
tory. We had to make some small adjustments to the existing code to match our
input format and to not use the time information available. We used the activity
and the resource of an event as input data for all datasets.

Accuracy When looking at Table 5 we see that our method can outperform cur-
rent state-of-the-art methods for predicting the next event. When outperformed
by some methods, we see that we still perform better than other methods. Im-
portant to note is that BPIC12, BPIC12W and Helpdesk are the most used
datasets for evaluating prediction algorithms. When comparing the results for
these datasets we see that all recent methods perform equally well. Only for
the BPIC15 datasets, which are more complex in nature, we can see a larger
difference in performance.

Dataset Our method Camargo et al. Lin et al. Tax et al. Di Mauro et al.

BPIC12 0.81 0.80 0.83 0.81 0.81
BPIC12W 0.82 0.80 0.81 0.80 0.80
BPIC15 1 0.59 0.50 0.60 0.64 0.58
BPIC15 2 0.57 0.45 0.45 0.56 0.54
BPIC15 3 0.34 0.35 0.38 0.46 0.35
BPIC15 4 0.57 0.48 0.52 0.59 0.52
BPIC15 5 0.56 0.47 0.61 0.64 0.56
Helpdesk 0.84 0.80 0.82 0.80 0.80

Average 0.64 0.58 0.63 0.66 0.62
Table 5. Comparison of the accuracies for next event prediction

In Table 6 we see that our method does not perform well for suffix prediction
in comparison with other state-of-the-art methods.

Runtimes When comparing the runtimes in Table 7 we can very clearly see that
our method need much less time than other methods. The training of our model
consists both out of learning the structure and populating the different CPTs
(which comes down to counting within the data). This also has the advantage
that when new data should be added to the model, we simply relearn the CPTs.
We do not have to entirely retrain the model as with the neural net methods.
The table also confirms that a convolutional neural network can be trained more
efficiently than the LSTM methods.
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Dataset Our method Camargo et al. Lin et al. Tax et al. Di Mauro et al.

BPIC12 0.26 0.58 0.18 0.15
BPIC12W 0.38 0.47 0.12 0.09
BPIC15 1 0.29 0.57 0.55 0.50
BPIC15 2 0.32 0.57 0.51 0.39
BPIC15 3 0.16 0.55 0.54 0.42
BPIC15 4 0.31 0.53 0.58 0.37
BPIC15 5 0.34 0.51 0.58 0.44
Helpdesk 0.91 0.90 0.62 0.87

Average 0.37 0.55 0.46 0.40 0
Table 6. Comparison of the accuracies for suffix prediction

We can conclude the same when looking at the runtimes for the evaluation
in Tables 8 and 9. Although the differences are much smaller in this case, often
they are still significant enough.

For the method of Di Mauro et al. we only report the runtimes for training the
best model. However, we did first perform a parameter search for determining the
best possible model for the dataset. To do so we learn 20 models with different
parameters and select the best model.

We also tested to train the models using GPU compute nodes. The runtimes
for one dataset can also be found in Table 7. As our compute time on the nodes
was limited we did not get results for some of the methods. But the results show
that using GPUs for LSTMs with our kind of data is not efficient.

Dataset Our method Camargo et al. Lin et al. Tax et al. Di Mauro et al.

BPIC12 66 16,681 - 13,251 5,736 14,123 1,418
BPIC12W 30 4,957 - 4,722 1,734 6,331 489
BPIC15 1 16 4,309 - 4,369 1,660 5,742 1,524
BPIC15 2 13 3,198 - 2,698 2,089 3,724 712
BPIC15 3 17 5,292 - 4,298 2,360 6,204 1,233
BPIC15 4 15 4,300 - 4,552 3,339 4,118 1,103
BPIC15 5 18 4,412 - 3,868 3,134 9,280 5,107
Helpdesk 11 1,951 - 3,516 730 1,273 45

BPIC12 (GPU) - > 21,600 > 21,600 13,969 328
Table 7. Comparison of runtimes to train the model (in seconds)

6 Conclusion

In this paper we used Dynamic Bayesian Networks in the context of modeling
known behavior in Business Processes. This method has the advantage of being
comprehensible and returning explainable results. This is due to the fact that
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Dataset Our method Camargo et al. Lin et al. Tax et al. Di Mauro et al.

BPIC12 23 447 - 456 204 902 12
BPIC12W 9 166 - 174 82 243 8
BPIC15 1 6 133 - 145 71 258 9
BPIC15 2 5 144 - 149 72 386 10
BPIC15 3 7 163 - 166 79 389 9
BPIC15 4 6 116 - 116 63 269 9
BPIC15 5 7 165 - 165 78 510 10
Helpdesk 4 56 - 61 37 27 6

Table 8. Comparison of runtimes to predict the next events (in seconds)

Dataset Our method Camargo et al. Lin et al. Tax et al. Di Mauro et al.

BPIC12 64 6,666 - 6,913 10,731 58,386
BPIC12W 21 2,369 - 2,586 3,833 66,752
BPIC15 1 19 1,113 1,014 778
BPIC15 2 16 1,090 - 1326 1,102 9,501
BPIC15 3 24 1,295 - 1,451 1,076 9,080
BPIC15 4 15 952 - 1,057 758 9,760
BPIC15 5 21 1,387 - 1,278 1,204 19,763
Helpdesk 8 50 - 54 67 76

Table 9. Comparison of runtimes to predict the suffixes (in seconds)

the DBN explicitly models dependencies between attributes. We used the DBN
both for predicting the next event and for predicting the suffix of a case.

We performed an elaborated comparison between different state-of-the-art
methods on a variety of datasets. This comparison showed that our method,
although it trains much faster than other methods, is competitive with state-
of-the-art methods, while requiring much less resources. Our comparisons also
show that most of the state-of-the-art methods perform equally well.

We also discovered some interesting avenues for further research. One of them
is an in-depth analysis of the used datasets for evaluating predictions. A better
understanding of why methods do perform well on some datasets but worse on
others is important when trying to improve predictions in Business Processes.

To further improve our DBN method we want to investigate the combination
of Neural Networks with probabilistic methods.
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