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Abstract 

Offshore wind turbine installations are rapidly spreading around Europe and all over 
the world. These turbines are typically installed in large wind farms combining turbines 
of the same type. Farm owners target maximal performance of the farm in general and 
particularly predictability of behaviour. The latter is getting increasingly important 
since offshore wind farms are being managed more and more as conventional power 
plants driven by the electricity market supply and demand considerations. The context 
of zero subsidy farms exposes farm operators to fluctuations in electricity market prices. 
As such, deep understanding of farm behaviour is essential to come up with a good 
strategy to deal with these fluctuations.  

This paper focusses on the automated extraction of farm-wide response to storm 
conditions. The input data for the analysis are status logs and SCADA 1-second data. 
The status logs record the important turbine controller events. Typically they consist of 
a number, a time of occurrence, and a time of deactivation. The number is linked to a 
detailed description. The SCADA data consists of time series of the most important 
sensors in the turbine: power produced, RPM, wind speed,… The advantage of the 1-
sec data over the traditional 10-minute averages is that the dynamic event content is 
much more preserved. Data of several offshore wind farms is used in the analysis to 
have a solid dataset. In total, 5 years of data of more than 50 turbines is used.  

We show a novel farm-wide pattern mining approach that extracts events occurring for 
multiple turbines in the same time period. This allows us to identify those events that 
are predominantly driven by global wind excitations (e.g., gusts) or grid events (e.g., 
low voltage ride through). From the extracted events we lift out the storm conditions. 
For these conditions a further investigation of the time series data is done. Using event 
detection algorithms we extract the signatures of the stop events that each turbine is 
performing from the time series data. We show that the extreme change in wind speed 
and wind direction leads to an excessive misalignment of the turbines in the farm, 
followed by a stop of those turbines. The extracted patterns are compared to the time 
signatures to show their correlation and complementarity. As such, the typical turbine 
response to this event is identified. This can serve as input for identification of novel 
controller approaches by the farm owner and turbine manufacturer to deal with this 
problem.  

  



 

 

1 Introduction 

Wind turbines target a typical lifetime of 20 years. During those years the machine 
should produce as much energy as possible, while keeping downtime due to failure 
minimal. As such predictability of future behaviour is key. On the one hand, condition 
monitoring approaches are investigated extensively to achieve better failure predictions 
and thus increased uptime [1,2,3]. A variety of sensor types can be used for turbine 
condition monitoring ranging from accelerometers, current sensors to oil particle count 
devices. An increasing attention has been given in literature to the use of data of the 
supervisory control and data acquisition (SCADA) system as input data for performing 
condition monitoring, since this would avoid the need to place additional sensors on the 
turbine [4,5,6]. On the other hand performance analysis, e.g. through power curve 
modelling, target an increase of turbine output [7,8,9]. Today, performance analysis is 
typically performed on data of the SCADA system of the turbine sampled at 10 minute 
intervals. These values are highly interesting to keep an overview of general trends. 
However, the 10-minute interval is challenging if one intends to investigate the dynamic 
events the turbines are exposed to, such as emergency stops. Another data source also 
provided by the SCADA system offers potential in this regard: the status logs [10]. 
These logs provide a record of the most important turbine controller actions. Typically, 
they are characterized by a status code number, a descriptive message, a time of 
activation, a time of de-activation and a duration. Since the trigger times are registered 
directly this data source is very limitedly influenced by time-shifts linked to limited 
sampling rates. As such the status logs show high potential for event sequence 
investigations to better understand turbine response to  triggers for the controller. 
Gonzalez et al. define an optimized taxonomy for categorizing the status logs and 
investigate the relation between component faults being followed by failure 
occurrences in others [11]. Pattern mining techniques are currently being explored to 
get detailed insights in these sequences. Kusiak et al. used frequent pattern mining 
techniques to identify and predict sequences in the status logs [10]. Giu et al. define 
two methods for alarm analysis: a time-based and probability-based approach and 
illustrate this approach on 2 years of field data from two populations of onshore turbines 
[12]. Feremans et al. similarly determined frequent item sets and used those to derive 
association rules to determine patterns near alarms [13]. These investigations show that 
there is potential for the use of pattern mining approaches for status code analysis to 
determine and better understand the sequences governing the turbine controller 
responses to different triggers. This paper builds further on this and introduces the fleet 
concept. Instead of focussing on individual turbines, we target the detection of patterns 
over multiple turbines in the farm. In other words similar responses of multiple turbines 
in the farm to joint or individual triggers.  

In addition to the status logs and SCADA 10 minute data, for newer turbine types the 
complete SCADA tag set or at least a subset is becoming available at sampling rates of 
1 second. The finer granularity of this data sources makes it a complementary data 
source for event understanding to the status log data. Event detection algorithms allow 
to extract and classify the dynamic events based on their time-series signatures [14]. 
This paper uses this approach to extract events from the SCADA 1 second data of the 
different turbines in the farm. This data is then combined with the interesting patterns 
mined from the status logs.   

 



 

 

2 Methodology 

2.1 Overview 

This paper suggests a method building on the identification of fleet-wide patterns in the 
status logs and in the dynamic events detected in the SCADA 1-second data, illustrated 
in Figure 1. It comprises of three parts. First, event detection is done on the SCADA 1-
second data to extract turbine start and stop events. Second, patterns are extracted 
separately from status logs to detect event sequences that are present in multiple 
turbines in the farm. Finally the results of the two are brought together in an event 
fusion step. The following subsections will discuss the different components of the 
methodology in detail. In the next section the methodology is illustrated by means of 
an experimental example.  

 

Figure 1: Farm-wide approach for event sequence extraction 

Step 1: Pattern mining of status log data 

Prior to the discussion of the pattern mining approach targeting itemsets used in the 
proposed approach some terminology is introduced. To make it more intuitive the 
analogy is made to analysis of customer baskets in a supermarket context. 

• Itemset: All status log windows in the database are considered the set of all items: I = 
{i1,i2,…,in}. A subset of I is defined as an itemset. In comparison, in the field of 
supermarket market basket analysis the set of items consists of all the products that the 
supermarket is selling.  

• Transaction: A transaction is defined as a unique tuple that is comprised of a 
transaction identifier and an itemset. Thus a transaction is noted by the tuple Ti = 
(tid,X). In this tuple tid is a unique transaction identifier. X is an itemset and thus a 
subset of I. Again, for the supermarket basket analysis a transaction is a set of items or 
products that one customer has in his basket.  

• Transaction database: The transaction database contains all transactions. For the 
supermarket basket analysis the transaction database contains all baskets that were sold 
to customers during the period of investigation.  

• Support: Support is linked to an itemset. It represents the number of transactions in the 
transaction database in which a certain itemset occurs. Typically a minimum support is 
defined: min_sup.  

• Frequent pattern: Only frequent itemsets with a support higher than this minimum are 
considered. Similarly, a maximum support can be defined. The pattern mining 



 

 

approaches used in this paper pose a threshold to the minimum support neglecting all 
patterns below the minimum support.  

• Closed itemset: One of the main challenges for pattern mining approaches is the fast 
growth of frequent patterns. Many of the identified itemsets have subsets. An itemset 
of size n has 2n subsets. If the support of the itemset is high and above the min_sup 
threshold, then also that of the subsets will be high, which means that it will be above 
the min_sup threshold too. Therefore, we target closed itemsets. An itemset can be 
defined to be closed if no superset is present with the same support.   

2.2 Frequent pattern mining 

Frequent pattern mining algorithms target the discovery of all itemsets in the transaction 
database with a support higher than the defined minimum support. This cannot be done 
brute force since it would result in enumerating 2|I| subsets to check all possible subsets 
and count occurrences. To overcome this, most frequent itemset mining algorithms 
exploit the anti-monotonic property of itemset support in a branch-and-bound 
algorithm. For any superset of an itemset, it holds that if the support of the itemset is 
smaller than the minimum support, this will also be the case for the superset. This 
property can be intuitively explained as follows. Assume we have three items x, y and 
z and assume x to occur in 8 transactions, y in 4 transactions and z in 2 transactions. In 
case we mine for patterns with minimum support of 3, then only itemsets of size 1 {x} 
and {y} are frequent. For the itemsets of size 2 possibilities are {x,y}, {x,z} and {y,z}. 
We can deduct that definitely the support of {x,y} will be smaller or equal to that of 
{x} and {y} individually. It could be that {x,y} is present in all 4 transactions containing 
y which would make it a frequent itemset. However, for itemsets of length 2 containing 
z it is already known that the frequency will not be big enough for making them 
frequent.   

Most popular itemset mining algorithms build further on this property. The Apriori 
algorithm introduced by Agrawal et al. uses a breadth-first approach similar to the 
concept introduced above [15]. Zaki defined the Eclat algorithm to exploit a depth-first 
approach, which is based on re-arranging the transactional database and computing the 
set of transactions for each item [16]. This allows to calculate the support by computing 
a set of intersections. Han et al. developed the FP-growth algorithm based on a divide-
and-conquer strategy to keep an efficient data structure for the database [17]. For each 
recursive step the database is filtered by the current itemset prefix, which shrinks its 
size, and speeds up support computation. In this paper, the Eclat algorithm is used, more 
specifically the method by Borgelt [18]. We are not sure about the fact that indeed the 
correct sequence in which the status codes occur is kept when they are stored. As such 
we opt to use itemset based mining approaches and not take the sequence in the 
identified itemsets into account.  

2.3 Data-windowing 

Status log data is time series data. The activation and de-activation time of each status 
log is recorded. As such each status code will be part of an activation time series and a 
de-activation time series. For simplicity the number of the status code is used as 
value. As such two time series of status values and corresponding timestamps are 
generated. To make these time series compatible with the pattern mining algorithms 
itemsets need to be created. This is done by windowing the data using a sliding 
window. In previous work on single turbine pattern mining, we used overlapping 



 

 

fixed windows spanning 2 hours [13]. However, overlapping windows result in higher 
support values than there are occurrences in the original time series, and need 
correcting. For farm-wide event mining we therefore use non-overlapping sliding 
windows spanning 24 hours.  
 
2.4 Farm-wide support 

We provide two definitions for computing farm-wide support that are applicable, in 
general, to a fleet’s of devices, where each device logs events over a long period of 
time.  
 
Vertical support is the number of windows where the patterns occurs in a single 
turbine. The farm-wide vertical support of a pattern, is the none-zero average of the 
vertical support for each wind turbine in the farm.  
For example, if we create windows spanning 1 day, an  average vertical support of 50 
for the extreme wind direction singleton pattern, means this pattern occurs 50 times 
on average in a turbine. 
 
Horizontal support measures the number of time the pattern occurs in different wind 
turbines during the same window, or period.  
The mean non-zero horizontal support is computed by averaging the horizontal 
support over all windows.  
For example, if we create windows spanning 1 day, an average horizontal support of 5 
for the extreme wind direction singleton pattern, means this pattern occurs on average 
in 5 wind turbines. 
 
We remark that certain patterns, such as pattern related to lightning, have very low 
vertical support, and high horizontal support. 
 
For mining patterns having a high non-zero mean value of vertical support, we create 
a vertical transaction database for each wind turbine. We then mine closed itemsets in 
each transaction database (or turbine) and set a constraint on minimal vertical support. 
We then compute the non-zero mean of vertical support for each pattern in the entire 
fleet by looking at the the number of occurrences in all vertical transactional 
databases. For example, assumining 10 turbines, a total span of 1 year and a window 
of 1 day, we create 10 databases, each consisting of 365 transactions. 
 
For mining patterns having a high none-zero mean value of horizontal support, we 
create a horizontal transaction database for each day, thereby creating a transaction 
for all wind turbines. We then mine closed itemsets in each horizontal transaction 
database and set a constraint on minimal horizontal support.  We then compute the 
non-zero mean of horizontal support for each pattern in the entire fleet by looking at 
the number of occurrences in all horizontal transactional databases. For example, 
assuming 10 turbines, a total span of 1 year and a window of 1 day, we create 365 
databases, each consisting of 10 transactions. 
 
We remark that mining many small databases with constraints requires moderate 
resources, assuming the usage of an efficient algorithm for mining closed itemsets.  
The result of this step will be a set of farm-wide patterns together with their farm-



 

 

wide support. In addition the time of occurrence and turbine of occurrence of each 
pattern is stored. 
 
Step 2: Event detection in SCADA 1-second data 

In this paper we focus on start and stop behaviour of wind turbines. As such these event 
types are extracted from the SCADA 1-second data. For this, we use an identification 
and classification approach we previously developed and documented [14]. In essence, 
this approach learns the time signature of typical annotated start and stop events. After 
this training step, it is able to automatically extract these events from time series data.  

Step 3: Event fusion 

In this paper, we aim to gain better insights into the co-occurrence of turbine response 
throughout a wind farm. To do this we merge the event sequences identified by the 
pattern mining approaches with the events extracted from the time series. The goal is 
to use the time series data as a way to go deeper in phenomenon understanding. We use 
the pattern mining to scan through large datasets of several years to identify farm-wide 
events. Once the events are identified we validate them using the events detected in the 
time series and perform an in-depth root-cause analysis using the raw SCADA 1-second 
data.   

3 Experimental case 

3.1 Overview 

The experimental case follows the philosophy described in the method section. We use 
multiple years of data of multiple offshore wind farms. The dataset consists of 5 years 
of status log data of one farm with more than 40 turbines and 6 months of status log 
data and SCADA 1-second data for a farm with more than 40 turbines. The 
experimental case consists of two steps. First, the 5 years of status log data of the first 
farm is used to identify interesting farm-wide events. For this paper, we specifically 
target the example of a heavy storm. Once the farm pattern for a storm is identified, that 
specific farm pattern is searched in the status log data of the second farm. This implies 
transfer learning: patterns identified on one farm are transferred to another farm. To 
make it additionally challenging the turbines types and brands of the two farms are 
different. Once the storm pattern is identified, it is verified based on the events of the 
SCADA 1-second data that indeed a storm took place. Then the turbine response is 
further investigated in detail using the SCADA 1-second data.  

3.2 Pattern mining on farm 1 

The status log data has a long tail distribution. A very limited part of the status log data 
forms 99% of the total data. These status logs typically lead to trivial patterns, as we 
illustrated in [19]. Thus we aim to filter these trivial operational codes out. All status 
log data was first cleaned by removing standard operational messages depicting 
instantaneous values of power produced, rpm, pitch,… Moreover, to avoid trivial 
patterns only closed patterns with a minimal length of 5 were retained. Additionally, a 
non-zero mean horizontal support of 10 is required. Windows of one day are 
considered. 



 

 

Code Description 

410 Yaw cable twist has been reset to a specified value° 
412 Yaw cable was untwisted  
460 Automatic restart after predefined time [s] 
552 Start of automatic yawing action 
560 Yaw control setting has been changed 
568 Stop of automatic yawing action 

712 Extreme direction of the wind with angle° at Wind 
speed x m/s 

426 Nacelle position has been reset unexpectedly 
 Table 1: Pattern linked to storm conditions identified in status log data of farm 1 

Table 1 illustrates an important pattern found from the fleet-wide pattern mining 
analysis. The pattern showed a non-zero mean horizontal support of 11. This means 
that the pattern was showing up at 11 turbines at the same time. Moreover, it occurred 
on a non-zero mean vertical support of 9.5 times with a standard deviation of 9 over 
the five-year data span. We expect the pattern might be occurring close to storm 
conditions. To validate this hypothesis, we try to find similar patterns in the data of 
farm 2.     

3.3 Pattern searching in farm 2 

The turbines of farm 2 are from a different manufacturer who uses a different 
ontology/taxonomy for defining his status log tags. This implies that the status codes 
of the first farm cannot be directly used in the pattern query for farm 2. To overcome 
this, generic text components were extracted from the status log descriptions in Table 
1. These so-called key words were then used for the search in the status log data of farm 
2. In the status log data of farm 2 the pattern illustrated in Figure 2 was found that links 
closely to the pattern of Table 1. Again, the subcomponents of excessive deviation 
between the wind direction and nacelle direction are found (orange dot in Figure 2). 
This links to the tag “Extreme direction of the wind with angle° at Wind speed x m/s” in 
Table 1. Moreover, there is extreme deviation between the needed and current yaw 
angle requiring to start yawing (green dot in Figure 2). This links to the tag “Nacelle 
position has been reset unexpectedly”. These two indicate that the turbines are completely 
misaligned to where the wind is coming from. As such the turbines perform a yawing 
action, indicated by the tag “Yaw speed high” in Figure 2 and the tags “Start of automatic 
yawing action”, “Stop of automatic yawing action” and “Yaw control setting has been 
changed”. Finally, it seems that in many cases the targeted yaw angle is not achievable 
without prior unwinding of the power cable. In Table 1 this is identified by the tags 
“Yaw cable was untwisted” and “Yaw cable twist has been reset to a specified value°”. In 
Figure 2 this is identified by the tag “Cable auto unwind”.  The comparison of the tasks 
shows that there is a high correlation between the status code pattern that was found in 
farm 1 and in farm 2.    



 

 

 

Figure 2: Status code representation for a subset of the turbines of farm 2 over the 
course of 1 day. 

3.4 SCADA 1-second event analysis on farm 2 

The status codes were thus used to identify the time stamps of the interesting events. 
As mentioned before, we expect the event sequence that was identified using the pattern 
mining approach to be linked to storm conditions. In Figure 3 it can been seen that 
although the majority of the turbines shows a certain behavior not all turbines are 
showing exactly the same response. This means that there must be local differences 
between the loading the turbines are exposed to. These local changes are investigated 
further using the time series SCADA 1-second data. Figure 3 shows the different start-
up and shutdown events identified from the SCADA 1-second data. The blue zone 
indicates the time period for which the farm event is expected to take place. The 
shutdown events are clearly present for all turbines in the farm in contrast to the status 
codes where only a limited set of machines were showing events. This is due to the fact 
that the status log for stop is only recorded if the blade pitch evolves to 90°. Moreover, 
from the events in Figure 3 it is clear that several other farm-wide events occur later on. 
Once the turbines perform their final start-up no more events occur. This indicates that 
the event sequence is located in this limited time window.  
  



 

 

 

Figure 3: Events detected from SCADA 1-second data using signature detection. 

3.5 Event fusion 

To understand the different events that are taking place and why they result in the 
sequence that they do, we investigate the SCADA 1-second time series deeper. A 
representative turbine is taken that was showing identified pattern. Figure 4 illustrates 
the characteristic signals during the event: rpm, wind speed, wind direction and yaw 
angle. Based on the wind direction and yaw angle, it can be seen that there is a rapid 
change in wind direction causing an important misalignment of the turbine to the wind. 
This causes the machine to perform a stop. As shown in Figure 5, some turbines are 
experiencing a large rapid wind speed increase in addition to the sudden direction 
change. Many turbines are becoming strongly misaligned towards the wind at that 
particular moment. This matches with the presence of the tag type “Extreme wind 
direction angle °” in the status codes. The machine attempts to correct for the yaw 
misalignment by performing yawing action, as was indicated in the pattern. However,  

 

Figure 4: SCADA 1-second data of rotor speed, wind speed, wind direction and yaw 
angle for period of 2 hours to provide an overview of the response to storm condition.  



 

 

 

 

Figure 5: SCADA 1-second data of rotor speed, wind speed, wind direction and yaw 
angle for period of 1 hour to illustrate extreme yaw misalignment.  

the misalignment remains substantial. After the sudden increase of the wind speed, the 
wind reduces significantly in speed. For certain turbines, as shown in Figure 4 the 
turbine is not able to reach the required yaw angle due to cable winding constraints. 
Thus, the turbine remains in idling condition and performs a cable unwinding procedure 
as was identified in the pattern. Figure 6 illustrates this cable unwind. The yaw angle 
changes linearly over time as the turbine unwinds itself. After this action the machine 
can again meet the required yaw angle. These actions match with the sequences 
identified using the pattern mining approach.  

 

Figure 6: SCADA 1-second data of rotor speed, wind speed, wind direction and yaw 
angle for period of 1 hour to illustrate cable unwind. 

 

 



 

 

4 Conclusions 

This paper showed a methodology for identification of event sequences governing the 
response of wind turbines in wind farms. It comprised of farm-wide pattern 
identification and SCADA 1-second based event detection to determine the typical 
event sequences following farm-wide triggers. The methodology was illustrated by a 
storm event. Patterns were learned on the status logs of one farm and used to identify 
the storm event in a second farm with turbines from a different manufacturer. Moreover, 
SCADA 1-second data was used to show the validity of the identified pattern and to 
further understand the way the turbines reacted to the storm event.  
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