
A Sampling-based Approach for Discovering
Subspace Clusters

Sandy Moens1, Boris Cule1�, and Bart Goethals1,2

1 University of Antwerp, Belgium {firstname.lastname}@uantwerpen.be
2 Monash University, Australia

Abstract. Subspace clustering aims to discover clusters in projections
of highly dimensional numerical data. In this paper, we focus on discov-
ering small collections of interesting subspace clusters that do not try to
cluster all data points, leaving noisy data points unclustered. To this end,
we propose a randomised method that first converts the highly dimen-
sional database to a binarised one using projected samples of the original
database. This database is then mined for frequent itemsets, which we
show can be translated back to subspace clusters. In our extensive ex-
perimental analysis, we show on synthetic as well as real world data that
our method is capable of discovering highly interesting subspace clusters.

1 Introduction

The main task of clustering is to group similar objects together, while keeping
sufficiently different objects apart. However, due to the curse of dimensionality,
traditional clustering methods struggle with high-dimensional data. In short,
with high-dimensional data, the distances between pairs of objects, measured
over all dimensions, become increasingly similar. As a result, no proper clusters
can be formed, as all objects end up almost equally distant from each other.

Subspace clustering attempts to solve this problem by discovering clusters of
objects that are similar in a limited number of dimensions. However, given the
exponential complexity of the search space, identifying the relevant set of dimen-
sions is computationally demanding, which is why existing subspace clustering
methods suffer from long run-times [1]. Furthermore, some existing approaches
produce full clusterings, thereby ensuring that each object is assigned to exactly
one cluster. This is not always desirable: 1) the data may contain a lot of noise,
that should ideally not be assigned to any cluster and 2) there is no reason why
a particular object should not be assigned to multiple clusters, especially if the
sets of dimensions that define these clusters are entirely different.

In this paper, we take a similar approach as CartiClus [2]: we first convert
a numeric database to a transactional one and then use frequent pattern mining
to extract subspace clusters. Our method can efficiently produce highly interest-
ing subspace clusters, along with the dimensions that define them. We avoid the
computational complexity of existing methods by deploying a randomised algo-
rithm. We first take a large number of samples from the original data, such that

each sample consists of a number of objects in a fixed (random) set of dimen-
sions. In each sample, we then cluster the objects, and subsequently assign all
objects in the original data to the nearest cluster centroid. This produces a set of
objects per centroid, which we interpret as a transaction. By merging the trans-
actions produced for all different samples, we obtain a transaction database. We
then sample maximal frequent itemsets from this database to obtain potential
clusters. Finally, we identify the relevant dimensions for each discovered cluster.

The main contributions of this paper can be summarised as follows: we pro-
pose a randomised sampling algorithm that efficiently identifies localised clus-
ters and their relevant dimensions, we allow data objects to be part of multiple
clusters, and we leave noise objects unclustered, and we perform a theoretical
evaluation to show the efficiency of our method and an extensive experimental
evaluation to demonstrate the quality of our output.

2 Background

Subspace clustering Let D = {D1, . . . ,Dm} be a set of m dimensions. Each
dimension Di comes with a domain dom(Di). An m-dimensional data point
p = (d1, . . . , dm) is a tuple of values over D, such that di ∈ dom(Di) for each i =
{1, . . . ,m}. The input database P = (p1, . . . , pq) contains a collection of q such
m-dimensional data points. Furthermore, each dimension Di comes with a dis-
tance function δDi

: dom(Di)× dom(Di)→ R. Additionally, we assume that for
any subset of dimensions D = {D1, . . . , Dl}, with 1 ≤ l ≤ m and D ⊆ D there exists
a distance function δD : (dom(D1)×. . .×dom(Dl))×(dom(D1)×. . .×dom(Dl))→ R.
All used distance functions must satisfy the usual conditions (non-negativity,
identity, symmetry and the triangle inequality). Given a subset of dimensions
D ⊆ D, we denote by pD a data point, and by PD a set of data points, projected
onto the given dimensions. A subspace cluster S is a tuple containing a subset
of datapoints and dimensions, i.e., S = (P, D), with P ⊆ P and D ⊆ D.
Frequent itemset mining Let I = (i1, ...in) be a finite set of n items. A
transaction t is a subset of items. We denote by T = (t1, ..., to) a database of
o transactions. An itemset I is also a subset of items. A transaction t is said
to support an itemset I if I ⊆ t. The set of all transactions that support an
itemset is called the cover of that itemset, i.e., cov(I) = {t | t ∈ T ∧ I ⊆ t}.
The support of an itemset is the size of its cover, i.e., sup(I) = |cov(I)|. Given
a minimal support threshold σ ≥ 0, an itemset I is considered frequent if its
support is larger than or equal to σ, i.e., sup(I) ≥ σ. An itemset I is called
maximal if there exists no superset of I that is also frequent with respect to
σ. The anti-monotonic property of the support of itemsets guarantees that all
subsets of a frequent itemset are also frequent.

3 Randomised Subspace Clusters

Existing methods for discovering subspace clusters from numeric data often fo-
cus on the complete raw dataset to compute subspace clusters using a bottom-

c1 c2

c3 c4

p1 p2

p3
p5

p4

p6

p10

p11p9

p8
p7

0.0 0.5 1.0
0.0

0.5

1.0

(a)

centroid id items

c1 1, 2, 3

c2 4, 5, 6

c3 7, 8, 9

c4 10, 11

(b)

Fig. 1. (a) A fictitious example dataset with 2 dimensions, 11 data points (black dots)
and 4 centroids (red circles). (b) Binarised dataset in short format for the toy dataset.

up [3,1] or a top-down approach [4]. In this paper we introduce Rascl, which
uses randomised subsets of the data (both in the data points and in the dimen-
sions) as a starting point for detecting subspace clusters. The discovered clusters
are then checked for occurrence in multiple subsamples of the data. If a cluster
occurs frequently enough in the set of samples we output it as a subspace clus-
ter. Our algorithm relies on two simple premises: 1) higher dimensional subspace
clusters also form subspace clusters in lower dimensions; 2) if we take enough
samples and use them to detect clusters, a lot of similar subclusters of the same
true cluster will be found in different projections. Moreover, by repeating such
a randomised procedure many times we end up with a stable solution.

3.1 Randomised data transformation

Data binarisation To binarise a numeric database P into a transaction database
T we use the indices of data points as the items for T , resulting in |P| items. In
addition, we obtain a mapping between data points and items. Ideally, a trans-
action contains data points that are close together in some set of dimensions.
Then an itemset (essentially a set of data points) that occurs in a large fraction
of transactions can be seen as a subspace cluster over some set of dimensions.

We define a randomised process for constructing a single transaction database.
We repeat this process n times and concatenate all transactions into a single
database T ∗. We first sample a small subset of data points P and a small subset
of dimensions D (the sampling strategy is explained below). The data points are
projected onto the subset of dimensions and used as input for the K-means clus-
tering algorithm. The resulting cluster centroids are used to partition the original
data points, assigning each data point to the closest centroid. As such, each cen-
troid represents one transaction and its items are the data points assigned to it.
Formally, for a set of centroids C D the closest centroid for a projected data point
pD is given by cp

D

= argmincD∈C D(δD(p
D, cD)).

Example 1: Fig. 1(a) shows a toy database of 11 data points in a 2D space.
A red circle represents a synthetic cluster centroid and the surrounding square
visually shows data points closest to that centroid. When constructing the bina-
rised database, the index of a data point is added to the transaction of the nearest
cluster centroid. The resulting transaction database is shown in Fig. 1(b).
Generating data samples As mentioned previously, our binarisation strategy
requires a sample of data points and a sample of dimensions. The main question

now is how we can bias the sampling procedure to obtain samples that will have
a higher potential to contain cluster structures.

For the data points, we can sample k data points uniformly at random. By
repeating this a large number of times, we expect each cluster to be represented
by a sufficient number of data points in a high enough number of samples.

For the dimensions, a naive solution would be to sample uniformly at ran-
dom a subset of dimensions of size x, with 1 ≤ x ≤ |D|. However, since the
number of combinations larger than 2 can blow up, a random sample of dimen-
sions will likely be too large to contain a meaningful cluster. Sampling just one
dimension may result in discovering cluster structures that do not span multiple
dimensions. Our empirical results (omitted due to space constraints) have shown
that sampling 2 dimensions results in higher quality clusters. We apply weighted
sampling to boost the probability of sampling dimensions that contain cluster
structures. Similar to Moise et al. [1], we assume that uniformly distributed di-
mensions do not contain any cluster structure. As such, to detect non-uniformity
of a dimension we create a histogram using the Freedman-Diaconis’ rule [5] to
compute an appropriate number of bins for the data. This rule is robust to out-
liers and does not assume data to be normally distributed. Let us denote by
BD the bins for a given dimension using the Freedman-Diaconis’ rule and let
|b| denote the number of data points falling in bin b. We compute how many
bins contain less than the number of expected data points under uniform data
distribution. The unnormalised sampling potentialW of a dimension is given by

W(D) =

√√√√ |{b ∣∣ b ∈ BD ∧ |b| ≤ |P|
|BD|}|

|BD|
. (1)

The resulting distribution favours dimensions with more cluster potential.
Time complexity The worst case complexity of our binarisation method is
mostly dependent on K -means. However, we use only a small subset of data
points, typically |P| � |P|, to compute cluster centroids. For this small subset
the complexity for clustering is O(n× (|P| × |D| ×K× i)) with n the number of
database samples and i the number of iterations. Generation of samples for both
data points can be done in O(|P|) and for dimensions can be done in O(|D|).
Assignment of data points to cluster centroids is done in a single sweep, i.e.,
O(K×|P|). The total time complexity for generating samples and binarising the
database is O(K× |P|+ |D|+ n× (|P| × |D| ×K× i)).

3.2 Extracting subspace clusters

We previously constructed a binarised database T ∗ by concatenating n binarised
ones built using random samples of data points and dimensions. The premise is
that transactions represent cluster centroids and their items are indices of data
points in their close proximity for the set of dimensions. Since we generated n
samples, we know that each index occurs n times within T ∗. If then a set of items
occurs often together in the database, i.e., it is a frequent itemset with high sup-
port, then we know that in many sets of dimensions the same set of data points

occur in close proximity, which is exactly the objective for a subspace cluster.
However, typically the number of frequent itemsets is huge (largely because all
subsets of frequent itemsets are frequent). To alleviate this problem we use max-
imal itemsets and, more particularly, our algorithm samples µ maximal frequent
itemsets from the binarised database. The resulting itemsets are the data points
for subspace clusters. An effective method for sampling maximal frequent item-
sets was introduced by Moens and Goethals [6]. It iteratively extends an itemset
with new items, until the set is found to be maximal given a threshold τ and a
monotonic quality measure (e.g., support).

After extracting a collection of data points, we have to discover the dimen-
sions in which the data points form a cluster. In contrast to some existing meth-
ods [1,4], we do not require to go back to the data itself to check each dimension
individually, since our binarisation process preserved some essential information
that can guide us here. That is, our algorithm previously sampled collections of
dimensions which can be reused to determine a valid subset of dimensions. We
denote by dims(t) a map that for a transaction returns its linked dimensions, i.e.,
the dimensions that were used for its construction in the binarisation process.
For a maximal itemset I we can use the transactions in its cover to determine its
relevant dimensions, i.e., the set containing all linked dimensions for transactions
in cov(I). Formally, dims(I) = {d|d ∈ D∧ d ∈ dims(t)∧ t ∈ cov(I)}. An itemset
I, mapped to the data points P, forms together with its relevant dimensions the
subspace cluster S = (P, dims(I)).

3.3 Selecting the best subspace clusters

After discovering a large number of subspace clusters (depending on parameter
µ), we finally select a small collection of r clusters that can be deemed the
most interesting subspace clusters. The number of data points that is present
in the subspace cluster is an indication that the same set of data points are
often related even in different subsets of dimensions (experiments omitted due
to space constraints). In our method we will employ this heuristic (i.e., the
larger the cluster, the better) for sorting discovered subspace clusters. Finally,
to reduce redundancy in the cluster results, we sequentially evaluate each cluster
and select those clusters that have less than 25% cluster overlap with previously
selected ones. Note that when sorting clusters using the number of objects, this
results in smaller clusters as r increases. Finally, we exclude very small clusters
with less than 10 data points.

4 Experiments

In our experiments, we use synthetic data provided by Günnemann et al. [7].
The dataset characteristics are shown in Table 1. To measure the performance
we use precision and recall scores on object level, as well as their harmonic
mean F1. Additionally we use their dimensionality aware counterparts which
are indicated by the subscripts D (for scores about the dimensions) and SC (for

#rows #dimensions #clusters #objects/cluster #dimensions/cluster
dbsizescales1500 1,595 20 10 166.3 14.0
dbsizescales2500 2,658 20 10 276.5 14.0
dbsizescales3500 3,722 20 10 385.8 14.0
dbsizescales4500 4,785 20 10 496.2 14.0
dbsizescales5500 5,848 20 10 608.5 14.0
dimscaled05 1,595 5 10 182.6 3.5
dimscaled10 1,595 10 10 181.5 6.7
dimscaled25 1,595 25 10 180.9 16.9
dimscaled50 1,595 50 10 181.6 33.5
dimscaled75 1,595 75 10 181.9 50.4
noisescalen10 1,611 20 10 166.5 14.6
noisescalen30 2,071 20 10 166.1 14.6
noisescalen50 2,900 20 10 166.3 14.6
noisescalen70 4,833 20 10 166.8 14.6

Table 1. Main characteristics of the synthetic datasets.

scores about the combination of objects and dimensions) [7]. Finally, we also use
ME4SC [7], a measure to assess the quality of clusterings. Note that unless stated
otherwise, we assign just one discovered cluster to each ground truth cluster.

We compare two variants1: Rascl sets k > K and RasclR sets k = K which
essentially skips the clustering step. For each dataset we use the ground truth
and select the ground truth cluster with the largest overlap with the cluster being
evaluated to compute its quality. We run each experiment 10 times and report
the average results for the first r subspace clusters. Less than r clusters may be
reported. Unless stated otherwise, we fix the following parameters: n = 1000,
k = 100, K = 20, σ = 200, µ = 100 and r = 10. We provide the following
guidance: n should be set high enough to obtain a representative sample, k
should be sufficiently larger than K for the clustering to make sense, r should be
set to the desired number of clusters, µ should be high enough so no information
is lost due to randomisation. K and σ are more difficult to set, but we show that
the performance of Rascl is not overly sensitive to changes in their values.

Cluster quality We compare our methods to CartiClus [2] and ProClus [4].
We used different instantiations of Rascl and RasclR by varying K and σ. For
CartiClus we use the parameter settings as selected by the authors [2] as basis
for this experiment. For ProClus we set parameters following the ground truth.

Object quality results are shown in Fig. 2 (a-f). All algorithms perform
very well with respect to precision except ProClus, and setting K = 20 and
σ = 200 we slightly outperform CartiClus. RasclK10σ100

R , RasclK10σ100 and
RasclK20σ200 outperform the competitors on recall, while RasclK20σ200

R of-
ten fails to deliver good results. This is due to the introduced randomness: using
random centroids leads to more partially similar transactions. Combined with a
high support this results in small subclusters of the true ground truth clusters.

Results for the dimension quality are shown in Fig. 2 (g-l). We see that our
algorithms generally outperform the competitors by quite a margin and we see
that our simple solution of using linked dimensions (Section 3.2) works really
well. For smaller subspace clusters with lower precision, the dimension quality

1 Source code and experiments are available via https://gitlab.com/adrem/rascl

s1500 s2500 s3500 s4500 s5500
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(a) precision dbsizescale

d05 d10 d25 d50 d75
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(b) precision dimscale

n10 n30 n50 n70
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(c) precision noisescale

s1500 s2500 s3500 s4500 s5500
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(d) recall dbsizescale

d05 d10 d25 d50 d75
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
RaSClK10, 100

R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(e) recall dimscale

n10 n30 n50 n70
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(f) recall noisescale

s1500 s2500 s3500 s4500 s5500
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(g) precisionD dbsizescale

d05 d10 d25 d50 d75
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(h) precisionD dimscale

n10 n30 n50 n70
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(i) precisionD noisescale

s1500 s2500 s3500 s4500 s5500
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(j) recallD dbsizescale

d05 d10 d25 d50 d75
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(k) recallD dimscale

n10 n30 n50 n70
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

RaSClK10, 100
R

RaSClK20, 200
R

RaSClK10, 100

RaSClK20, 200
CARTICLUS
PROCLUS(l) recallD noisescale

RaSClK10, 100
R RaSClK20, 200

R RaSClK10, 100 RaSClK20, 200 CARTICLUS PROCLUS

Fig. 2. Object quality (a-f) and dimension quality (g-l) scores for different datasets.

decreases as a result. Comparing (K = 10, σ = 100) to (K = 20, σ = 200), the
latter produces better results, mostly because there are more linked dimensions
tied to the cover of the maximal itemset, boosting recallD.

Parameter sensitivity We test the influence of K and σ on the dimscaled25
dataset and show the ME4SC scores. Note that even though our algorithm is
not meant for producing full clusterings, it produces very high quality results
on this metric. Fig. 3 shows scores for the first 10 subspace clusters using var-
ious parameter settings for the algorithms. For our algorithm we use a window
around the default parameters. For CartiClus we use a grid around the opti-
mal parameters and for ProClus we define sensible grids. We see that Rascl is
not overly susceptible to parameter changes and that, in general, the default pa-
rameters produce good and stable results. In contrast, RasclR can still produce
very good results, but the quality diminishes quickly when the parameters are
not too far from the optimal parameters. Increasing K or σ results in subclusters
of the true clusters, thus decreasing the overall score. We see that finding good
settings for CartiClus and ProClus is much harder. For ProClus l cannot

20 80 140 200 260 320 380
2
8

14
20
26
32
38

K

0.0

0.2

0.4

0.6

0.8

1.0

(a) RasclR d25

20 80 140 200 260 320 380
2
8

14
20
26
32
38

K

0.0

0.2

0.4

0.6

0.8

1.0

(b) Rascl d25

2000 2300 2600 2900
100

250

400

550

K

0.0

0.2

0.4

0.6

0.8

1.0

(c) CartiClus d25

3 9 15 21 27 33 39
l

2
8

14
20
26
32
38

k

0.0

0.2

0.4

0.6

0.8

1.0

(d) ProClus d25

Fig. 3. Grid search quality results for various methods on the dimscaled25 dataset.

Fig. 4. Subspace cluster 1 for the pendigits datasets using Rascl.

exceed the number of dimensions in the data, resulting in lots of 0 scores in the
figures. The experiments on other datasets produced similar results.
Real world datasets We tested our method on the pendigits dataset, a classifi-
cation dataset found in the UCI machine learning repository2. Using Rascl with
n = 1000, k = 100, K = 10, σ = 100, µ = 100 and r = 10 we discover multiple
subspace clusters for each class. A general trend we found was that the discov-
ered clusters have a very high precision of approx. 91%, but they have rather
low recall averaging around 20%. We evaluate the largest subspace cluster in
Fig. 4. The silhouette plot shows high similarity for points in the cluster (red)
and a much lower score for points outside the cluster (blue). A similar trend is
found in the scatter plots, which are obtained using t-SNE transformation [8]
based on the relevant dimensions. The left scatter plot shows all data (blue)
together with the subspace cluster (red), while the right scatter plot shows only
data points not in the cluster. This shows that using our method we do not miss
many data points that are within the region of the subspace cluster according
to this transformation. The plot on the right is the Andrews plot [9], which is
a smoothed parallel coordinates plot, showing cluster structures more clearly.
Similar plots are found for the remaining clusters.

5 Related Work

Subspace clustering attempts to find clusters in subsets of dimensions. However,
some traditional clustering models, unsuited to this setting, have been adapted
for this purpose. ProClus [4], one of the first methods for subspace clustering,
adapts K-means [10] to this setting. The analogy to our work is the initialisation:

2 https://archive.ics.uci.edu/ml/datasets.html

a two-step randomised procedure is used to obtain an approximation to a piercing
set, i.e., a set of points each from a different cluster, which are refined to clusters.

DOC [11] is an algorithm that finds subspace clusters using a Monte Carlo
method to sample a random point from a cluster as well as a discriminating set
of points. It then extends the random point to a full subspace cluster using a
bounding box around that point. Its extension MineClus [12] uses the same
medoid points for expanding the cluster, but it drops the randomised procedure.
Similar to our approach, it also converts the data to a binarised dataset. Other
clustering algorithms, such as DBSCAN [13], have also been adapted for the
subspace clustering task [14]. Recently, more general techniques have been pro-
posed for searching the subspace [15], where the discovery of clusters is left to
specialised algorithms. However, all of the above methods are computationally
very expensive as they search in an exponential set of subspaces.

FIRES [16] is a generic framework for finding subspace clusters, employ-
ing existing clustering techniques to compute a set of base clusters in single
dimensions. These base clusters are then merged based on their similarity, and
the resulting clusters are then pruned and refined to optimise accuracy. The
CartiClus algorithm [2], like our method, creates a binarised dataset. However,
in CartiClus, the dimensions are defined during the construction of transac-
tions (or carts), such that all carts rely on the same dimension sets. Finally, the
carts are mined for frequent itemsets which are then translated back to subspace
clusters. Bi-clustering [17] also simultaneously clusters rows and columns of nu-
meric matrices. However, bi-clusters allow for more general clusters as they, for
instance, group rows with constant values for a set of columns or group columns
that decrease similarly over a set of rows. Typically, such methods are used for
analysis of biological data such as gene expression data.

6 Conclusion

In this paper, we present a novel method for discovering interesting clusters in
high-dimensional data. We started by converting the original data into a trans-
action database by selecting a small number of random data objects, projecting
them to a small number of random dimensions, then clustering them, and, fi-
nally, building transactions by assigning all data objects to their closest cluster
centroids. We repeat this procedure many times and merge the results. We then
sample maximal itemsets randomly from the resulting transaction database, and
consider each such itemset to be a potentially interesting cluster of objects. Fi-
nally, for each discovered cluster, we identify a relevant set of dimensions.

A major advantage of our method is that, by using the two randomised
procedures, we avoid both the combinatorial explosion of possible dimension
sets, and the computational cost of frequent itemset mining. In addition, we do
not attempt to produce full clusterings, and we allow data objects to be part
of multiple clusters, while noise objects will not be part of any cluster at all.
Experimentally, we demonstrate that our method produces quality clusters and

is not overly sensitive to changes in the parameter settings, which is crucial for
an unsupervised learning task.

References

1. G. Moise, J. Sander, and M. Ester, “P3c: A robust projected clustering algorithm,”
in Sixth Int. Conf. on Data Mining (ICDM’06). IEEE, 2006, pp. 414–425.

2. E. Aksehirli, B. Goethals, E. Muller, and J. Vreeken, “Cartification: A neighbor-
hood preserving transformation for mining high dimensional data,” in Data Mining
(ICDM), 2013 IEEE 13th International Conference on. IEEE, 2013, pp. 937–942.

3. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clus-
tering of high dimensional data for data mining applications. ACM, 1998, vol. 27,
no. 2.

4. C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast algorithms
for projected clustering,” in ACM SIGMoD Record, vol. 28, no. 2. ACM, 1999,
pp. 61–72.

5. D. Freedman and P. Diaconis, “On the histogram as a density estimator: L 2
theory,” Probability theory and related fields, vol. 57, no. 4, pp. 453–476, 1981.

6. S. Moens and B. Goethals, “Randomly sampling maximal itemsets,” in KDD
Workshop on Interactive Data Exploration and Analytics. ACM, 2013, pp. 79–86.

7. S. Günnemann, I. Färber, E. Müller, I. Assent, and T. Seidl, “External evaluation
measures for subspace clustering,” in Proc of the 20th ACM international confer-
ence on Information and knowledge management. ACM, 2011, pp. 1363–1372.

8. L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

9. D. F. Andrews, “Plots of high-dimensional data,” Biometrics, pp. 125–136, 1972.
10. J. MacQueen et al., “Some methods for classification and analysis of multivari-

ate observations,” in Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

11. C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. Murali, “A monte carlo algo-
rithm for fast projective clustering,” in Proceedings of the 2002 ACM SIGMOD
international conference on Management of data. ACM, 2002, pp. 418–427.

12. M. L. Yiu and N. Mamoulis, “Frequent-pattern based iterative projected cluster-
ing,” in Data Mining, 2003. ICDM 2003. Third IEEE International Conference
on. IEEE, 2003, pp. 689–692.

13. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34,
1996, pp. 226–231.

14. K. Kailing, H.-P. Kriegel, and P. Kröger, “Density-connected subspace clustering
for high-dimensional data,” in Proceedings of the 2004 SIAM International Con-
ference on Data Mining. SIAM, 2004, pp. 246–256.

15. H. V. Nguyen, E. Müller, J. Vreeken, F. Keller, and K. Böhm, “Cmi: An
information-theoretic contrast measure for enhancing subspace cluster and out-
lier detection,” in SIAM Int. Conf. on Data Mining. SIAM, 2013, pp. 198–206.

16. H.-P. Kriegel, P. Kroger, M. Renz, and S. Wurst, “A generic framework for effi-
cient subspace clustering of high-dimensional data,” in Fifth IEEE international
conference on data mining (ICDM’05). IEEE, 2005, pp. 8–pp.

17. S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological data anal-
ysis: a survey,” IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB), vol. 1, no. 1, pp. 24–45, 2004.

