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PETSC: Pattern-Based Embedding for Time Series Classification

Len Feremans! - Boris Cule?® . Bart Goethals!*

Abstract Efficient and interpretable classification of time series is an essential data min-
ing task with many real-world applications. Recently several dictionary- and shapelet-based
time series classification methods have been proposed that employ contiguous subsequences
of fixed length. We extend pattern mining to efficiently enumerate long variable-length
sequential patterns with gaps. Additionally, we discover patterns at multiple resolutions
thereby combining cohesive sequential patterns that vary in length, duration and resolu-
tion. For time series classification we construct an embedding based on sequential pattern
occurrences and learn a linear model. The discovered patterns form the basis for inter-
pretable insight into each class of time series. The pattern-based embedding for time series
classification (PETSC) supports both univariate and multivariate time series datasets of
varying length subject to noise or missing data. We experimentally validate that MR-
PETSC performs significantly better than baseline interpretable methods such as DTW,
BOP and SAX-VSM on univariate and multivariate time series. On univariate time se-
ries, our method performs comparably to many recent methods, including BOSS, ¢cBOSS,
S-BOSS, ProximityForest and ResNET, and is only narrowly outperformed by state-of-the-
art methods such as HIVE-COTE, ROCKET, TS-CHIEF and InceptionTime. Moreover,
on multivariate datasets PETSC performs comparably to the current state-of-the-art such
as HIVE-COTE, ROCKET, CIF and ResNET, none of which are interpretable. PETSC
scales to large datasets and the total time for training and making predictions on all 85
‘bake off” datasets in the UCR archive is under 3 hours making it one of the fastest methods
available. PETSC is particularly useful as it learns a linear model where each feature rep-
resents a sequential pattern in the time domain, which supports human oversight to ensure
predictions are trustworthy and fair which is essential in financial, medical or bioinformatics
applications.
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1 Introduction

Time series classification is an important real-world problem as currently technology enables
the collection of huge volumes of temporal data from users and devices. Existing time series
classification methods often make stringent assumptions on the format of the time series
and require that time series start at the same time, are univariate, are of equal length or
only contain continuous values. However, in the real word, there is more variation in time
series. For instance, IoT devices collect sensor values and operating system events at the
same time and exhibit missing data and irregular sampling. Making accurate predictions on
this large variety of datasets remains a hard problem despite recent advances. This variety
of time series is illustrated in Figure 1.

In the active research area of dictionary- and shapelet-based time series classification,
patterns are fized-length continuous and contiguous subsequences referred to as shapelets,
motifs or words. Shapelet-based methods use subsequences of the raw numeric time series
with elastic distance measures (Ye and Keogh, 2011; Hills et al., 2014; Lucas et al., 2019).
Dictionary-based methods convert continuous time series data to a symbolic sequence us-
ing Symbolic Aggregate Approximation (SAX) after which fixed-length contiguous subse-
quences are extracted for classification (Lin et al., 2003, 2012; Senin and Malinchik, 2013).
Alternatively, time series are first transformed using Symbolic Fourier Approximation (SFA)
instead of SAX resulting in the best performing dictionary-based time series classification
method, Bag of SFA Symbols (BOSS) (Schéfer, 2015). Because of its good performance on
the ‘bake off” datasets of the UCR/UEA Archive (Bagnall et al., 2017), many extensions to
BOSS have been proposed recently, such as WEASEL, ¢BOSS, S-BOSS and TDE (Schifer
and Leser, 2017; Middlehurst et al., 2019; Large et al., 2019; Middlehurst et al., 2020b).
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Fig. 1: lustration of different use cases where PETSC is applicable. PETSC can dis-
criminate between different classes for univariate time series, multivariate time series and
mixed-type time series consisting of both event logs and continuous time series



However, since these methods combine the predictions of hundreds of individual BOSS clas-
sifiers and rely on the hard to interpret Symbolic Fourier Approximation representation,
the resulting predictions are not interpretable. Finally, nearest neighbours with Dynamic
Time Warping (DTW) have proven to be a remarkably strong baseline on both univariate
and multivariate datasets (Shokoohi-Yekta et al., 2017; Bagnall et al., 2017).

Many more methods have been proposed. Heterogeneous ensemble methods, such as
COTE (Bagnall et al., 2015), HIVE-COTE (Lines et al., 2018) and TS-CHIEF (Shifaz
et al., 2020) combine strong shapelet-, dictionary- and distance-based baseline methods.
High accuracy is also achieved by recent methods based on deep learning architectures,
such as ResNet (Wang et al., 2017) and InceptionTime (Fawaz et al., 2019, 2020). All of
the above mentioned methods mostly focus on increasing the accuracy on the UCR/UEA
time series benchmark, but they require significant resources to train and make predictions
and often do not scale to very large datasets and take days or weeks to complete on all
85 ‘bake off’ datasets of the UCR archive (Dau et al., 2018). More recently, ROCKET
(Dempster et al., 2020) achieves both high accuracy and efficiency, by completing on all
85 ‘bake off” datasets under two hours. Another interesting new development is MR-SEQL
(Le Nguyen et al., 2019) which is also accurate and, excluding the SFA representation, offers
an interpretable model.

For the related task of sequence (or event log) classification, many algorithms have been
proposed based on frequent pattern mining (Fan et al., 2008; Cheng et al., 2008; Zhou
et al., 2016). Given the wealth of algorithms for efficiently enumerating sequential patterns
(Aggarwal and Han, 2014; Zaki and Meira, 2014) and event log classification, one might
wonder why it is scarcely mentioned within continuous time series classification. We argue
this is due to the following causes. First, time series are highly autocorrelated, causing many
repetitive symbols afters discretisation. That is, autocorrelated time series often contain
long repetitive subsequences, e.g. aaaaaaaaaa or bbbbbbbbb, that occur frequently and as a
consequence, all shorter subsequences of such sequences are also frequent causing a large
output of less discriminative sequential patterns. Second, in contrast to irregular event
logs, the cohesion (in terms of time) of matching pattern symbols is more important for
regularly sampled continuous time series. For instance, sequential pattern ab matches with
window azrrrrrrrzb and we show that, without temporal constraints on matching, this
foils accurate classification. Thirdly, since frequency is anti-monotonic, shorter patterns are
more frequent than longer ones, causing a long list of patterns of length 1, 2 or 3, while in
dictionary-based methods discriminative subsequences are much longer, i.e., a length of 10
is more usual.

The traditional design choice of dictionary- and shapelet-based time series classifiers is
to limit patterns to a fixed length, duration and resolution. This makes sense given that
the space of sequential patterns grows exponentially with the length of the pattern and the
size of the alphabet. Our method, however, adopt a different approach. First, we consider
patterns of varying length, which is important, for instance, if pattern aaa is discriminative
for class A and pattern bbbcce for class B, limiting the candidate patterns to fixed length
inhibits optimally separating instances of both classes. Second, unlike related work into
varying length patterns for time series classification (Le Nguyen et al., 2017; Raza and
Kramer, 2020), we do not focus only on contiguous subsequences, but on sequential patterns
where the duration of the sequential pattern occurrences varies as we allow for gaps between
consecutive symbols when matching the pattern to a discretised subsequence, e.g., aaabbb



matches with sequence aaazrbbb. Third, we consider different resolutions when creating the
representations, which is determined by the choice of the sliding window parameter. If this
is set to a relatively high value, this smooths each segment and captures longer patterns,
e.g., trends or seasonal patterns. If the window is set to a relatively low value, we smooth
less and discover shorter and more diverse local shapes. We argue that choosing is losing
when committing to a fixed length, duration or resolution of patterns.

We propose PETSC, a new dictionary-based method that discovers candidate sequential
patterns of varying length and duration. The major steps of PETSC are illustrated in
Figure 2. Our method first transforms the time series dataset using a sliding window and
SAX. For discovery of sequential patterns we extend principled techniques from frequent,
discriminative and top-k pattern mining literature to reduce the number of candidates
dramatically (Fan et al., 2008; Fradkin and Morchen, 2015). Since the frequency of the
prefix is higher than or equal to the frequency of any sequential pattern starting with this
prefix, i.e., frequency is anti-monotonic, we use this to efficiently prune candidates. That
is, we enumerate candidate sequential patterns efficiently based on prefiz-projected pattern
growth (Pei et al., 2004) with respect to a novel constraint on relative duration. We propose
two mining algorithms that discover the top-k most frequent and top-k most discriminative
sequential patterns directly.

After discovering k sequential patterns we create an embedding matrix where each value
represents the frequency of a sequential pattern for a time series. For multivariate time series
we repeat this process and concatenate embedding vectors from each dimension indepen-
dently. Additionally, we create an ensemble method that discovers the top-k sequential
patterns in a limited number of SAX representations at multiple resolutions. Finally, for
classification we train a linear model using an elastic net trained on the pattern-based
embedding.
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Fig. 2: Overview of the different steps in PETSC. First we transform each continuous time
series to a symbolic sequence using SAX. Next we discover a set of varying-length frequent
sequential patterns. Next we create an embedding based on matching pattern occurrences
and finally train a linear model that assigns a different weight to each discovered pattern.
An extension of PETSC mines discriminative patterns and another extension is based on
near-matching patterns



In summary, we make the following key contributions:

— We classify time series using a white-box linear model based on an embedding of varying
length frequent sequential patterns. We show that this model is easy to interpret thereby
supporting applications such as medical diagnosis or financial applications, where ex-
plainable predictions and a transparent model are essential for asserting fairness or
building trust.

— We scale to much larger datasets and are on par with ROCKET (Dempster et al., 2020)
concerning runtime performance by taking only 2.7 hours to process all 85 ‘bake off’
datasets (Bagnall et al., 2017). Moreover, our model is small and supports real-time
applications, such as edge computation to handle the deluge of sensing data from IoT
devices.

— We outperform dictionary-based methods such as BOP and SAX-VSM even with default
hyperparameters and are competitive with BOSS. We also outperform distance-based
approaches on both univariate and multivariate datasets (Shokoohi-Yekta et al., 2017;
Bagnall et al., 2018). While out method performs slightly worse in terms of accuracy
than the state-of-the-art method ROCKET on average, we still outperform ROCKET
on 32 out of 109 univariate datasets and 10 out of 26 multivariate datasets.

— We explore and extend pattern mining research techniques to discover long, cohesive
and discriminative sequential patterns in time series directly. Additionally, we present
a novel temporal constraint on relative duration and an alternative to exact pattern
matching to deal with discretisation errors.

— We do not require stringent assumptions on the format of the time series and natu-
rally handle univariate, multivariate and mixed-type multivariate time series subject to
missing data or irregular sampling. This supports applications for classification of IoT
devices that log both sensor values and discrete operating events.

The remainder of this paper is organised as follows. We present an overview of the related
work in Section 2. In Section 3, we introduce the necessary preliminaries. In Section 4, we
provide a detailed description of our method for sequential pattern mining, creating the
pattern-based embedding and classification using a linear model. In Section 5 we present
several optimisations that result in three additional variants of our algorithm. In Section 6,
we present an experimental evaluation of our method and compare with state-of-the-art
methods before presenting conclusions in Section 7.

2 Related Work

In this section we present the relevant related work, starting off with various approaches to
time series classification, before discussing the fields of frequent pattern mining, event log
classification and explainability, which our work builds on.

2.1 Shapelet-based time series classification
Shapelet-based time series classification uses continuous subsequences to separate time se-

ries with different labels (Bagnall et al., 2017). Often Euclidean distance or an elastic
distance measure, such as dynamic time warping, is used in combination with the nearest
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Fig. 3: Illustrative example where we show 8 time series of different classes and highlight
occurrences for the top-2 sequential patterns with the highest support in each class. First,
we segment the time series using a sliding-window of length At = 120 and discretise each
segment using SAX with 4 symbols and a word length of 15. Next, we mine the top-200
frequent sequential patterns with a length between 5 and 15 and allow for 1 gap

neighbour classifier (Ye and Keogh, 2011) or other (binary and multiclass) algorithms such
as decision trees (Hills et al., 2014). A disadvantage of shapelets is that the nearest neigh-
bour search makes it relatively slow on larger datasets which has resulted in substantial
work on optimisation (Rakthanmanon et al., 2012; Petitjean et al., 2014; Yeh et al., 2016).

2.2 Dictionary-based time series classification

For dictionary-based time series classification, Lin et al. (2012) proposed bag-of-patterns
(BOP) where each time series is converted into segments using a sliding-window and then
converted to discrete subsequences, or words, using SAX. Senin and Malinchik (2013) ex-
tended BOP in SAX-VSM thereby computing TF-IDF weights for each word and label.
In both approaches, time series are assigned a label based on the nearest neighbour after
transformation to a dictionary of words.

In Figure 3 we show an illustrative example on a dataset provided by Lin et al. (2012)
where we ran PETSC and highlight 2 sequential patterns with high support in each class.
To make the visualisation clearer we removed overlapping pattern occurrences. In Figure 4
we show another illustrative example and compare BOP with PETSC. Each time series of
length 1000 is segmented with a sliding-window of length 50 and discretised using SAX into
words of length 12 consisting of 4 symbols. Using BOP we create a dictionary that contains
all unique subsequences of length 12. Using PETSC we mine the top-1000 most frequent
sequential patterns with a length between 6 and 12 and a relative duration of 1.2, meaning
that at most 2 gaps are allowed. We observe that if we compute the nearest neighbour using
Euclidean distance on the raw time series this is not an instance with the same label. The
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Fig. 4: Illustrative example where we show 16 times series of 8 different classes. In the sec-
ond column, we show the corresponding PETSC embedding that represents the frequency
of thousands of varying length sequential patterns. In the third column, we show the cor-
responding BOP embedding that represents the frequency of thousands of fixed-length
sequences. In addition we connect each time series to its nearest neighbour in each column
— if the line is green, the nearest neighbour is of the same class, and if the line is red, the
nearest neighbour is of another class.

nearest neighbour in the embedding space of both BOP and PETSC is much more reliable
for this dataset, however, BOP identifies S4 as the nearest neighbour of Si3, even though
the two time series belong to different classes.

Schéfer (2015, 2016) proposes BOSS which first transforms time series using Symbolic
Fourier Approximation (SFA) and then creates a dictionary of patterns, in this case (un-
ordered) sets of SFA symbols. BOSS offers high accuracy and has been extended to be
more efficient. BOSS achieves an accuracy on the UCR Benchmark (Dau et al., 2018) that
is within a critical distance of deep-learning based approaches, such as ResNet (Wang et al.,
2017) and ensemble methods such as Proximity Forests (Lucas et al., 2019).

2.3 Time series classification with variable length patterns

Most related to our method is SEQL (Le Nguyen et al., 2017) which mines varying length se-
quences, after transformation using SAX. SEQL tackles the large search space by employing
greedy search thereby mining the most discriminative subsequences directly. The authors
further extend their method and propose an ensemble MR-SEQL that combines multiple
resolutions of SAX and SFA representations which results in an accuracy competitive with
recent deep learning and heterogeneous ensemble techniques (Le Nguyen et al., 2019). Un-
like MR-SEQL, PETSC does not depend on SFA and uses non-contiguous patterns instead
of subsequences by allowing pattern occurrences with varying duration. Another difference



is that MR-SEQL combines m representations and linear models, while we propose a
single linear model based on log(|S|) representations. Another related method based on
varying length SAX patterns is MiSTiCl (Raza and Kramer, 2020). MiSTiCl tackles the
large subspace of varying length patterns using frequent (contiguous) string mining and
creates an embedding based on different SAX representations similar to SEQL. Key differ-
ences with PETSC are that we mine non-contiguous sequential patterns and use a linear
model for classification where MiSTiCl uses a random forest for classification making it
uninterpretable. Finally, using pattern mining we naturally handle a larger variety of time
series data sources, such as univariate time series with missing values, irregular sampling
and multivariate time series (possibly of mixed type). We experimentally compare with
MR-SEQL and MiSTiCl in Section 6.

2.4 Frequent pattern mining

Within the pattern mining community, there has always been a focus on interpretable asso-
ciation rules, based on itemsets and sequential patterns (Agrawal et al., 1994), also referred
to as parallel and serial episodes for sequential data (Mannila et al., 1997). Early algorithms
focused on how to generate many frequent patterns of varying length efficiently (Pei et al.,
2004; Chen et al., 2007). Others have investigated how to efficiently incorporate various
constraints (Pei et al., 2007). Others have adapted methods to produce less redundant pat-
terns, leading to various condensed representations, i.e., closed, maximal or non-derivable
(conjunctive) patterns. Finally, there have been attempts to directly report patterns ranked
on non-frequency based interestingness measures such as leverage (Petitjean et al., 2016)
and cohesion (Cule et al., 2019), or based on minimal description length to produce a set of
patterns that compresses the sequence best (Lam et al., 2014). A known problem with fre-
quent patterns is that they are often not interesting, which is even worse within the context
of time series. We circumvent these issues, by first computing sliding windows and using
SAX, which includes a local z-normalisation of each window, which is important in limiting
the diversity of patterns. Additionally, we demonstrate that setting constraints on minimal
length and relative duration is very important. We propose a new sequential pattern mining
algorithm in Section 4 that is related to prefix-projected pattern growth such as PrefixSpan
(Pei et al., 2004), mining with temporal constraints such as PG (Pei et al., 2007), algorithms
that mine the top-k most frequent sequential patterns directly such as TSK (Fournier-Viger
et al., 2013) and algorithms that mine the top-k most cohesive sequential patterns directly
such as QCSP (Feremans et al., 2018).

2.5 Event log classification

Frequent and discriminative pattern mining has been proposed for discrete sequence or event
log classification (Fan et al., 2008; Cheng et al., 2008; Zhou et al., 2016). In Section 5, we
propose a new sequential pattern algorithm that discovers the most discriminative patterns
directly where we rank patterns on contrast, defined as the difference in relative support
in time series with and without a certain label. We also investigate the use of sequential
covering to remove redundant patterns. In sequential covering we mine the best discrimina-
tive pattern and then remove all windows covered by this pattern. We repeat this process



iteratively until all time series windows are covered by at least one discriminative pattern.
In other works, authors have also proposed to create a representation based on occurrences
of sequential patterns before classification, such as in BIDE-DC (Fradkin and Morchen,
2015) and SQN2VEC (Nguyen et al., 2018). Similar to our proposed method, they consider
redundancy between patterns, gap constraints and a one-versus-all strategy for dealing with
multiple classes. A key difference, however, is that only discrete sequential datasets, typ-
ically with a small alphabet, are considered, thereby ignoring challenges specific to time
series classification.

2.6 Explainability

In practice, end-users of algorithms prefer the output to be explainable. Deep learning al-
gorithms are often seen as black box methods, and practitioners in many fields prefer to
use more interpretable methods, even if they produce lower accuracy. Recently, methods
have been developed within the deep learning community for visualising attribution, i.e.,
quantifying the contribution of each time series interval (Hsieh et al., 2021). Other general
algorithms have been constructed to explain individual decisions post hoc for black-box
models (Molnar, 2020). Most notably, algorithms such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) attempt to provide explanations for each individual clas-
sification on a point-by-point basis. This enables instance-based decision support, i.e., high-
light which parts of a test instance contribute the most to the assigned class label. However,
this is still a weaker form of interpretability, as it only allows to explain a decision for an
individual instance.

An intrinsically interpretable model (Molnar, 2020) consists of a linear model or decision
tree and a set of interpretable features (or patterns). With this type of white-box model, we
look at the model internals, such as the weights of the linear model or decision tree branches,
to trust decisions. That is, using an interpretable model it is possible for human experts to
inspect both the model and the features in order to trust decisions for any instance. Note
that it is always possible to train a global surrogate model post hoc thereby mimicking
the behaviour of a black-box model at the cost of slightly worse accuracy, however training
an interpretable model directly is far more straightforward and certainly preferable if high
accuracy is achieved.

Another important aspect of a good explanation is selectivity or complexity of the
model (Molnar, 2020). That is, having thousands of features in a linear model hinders
interpretation, and having fewer features or sparse linear models is better for providing
decision support towards human end-users interpreting the model. In general selecting the
top-k features with the highest information gain (Peng et al., 2005) can be employed to
reduce the number of features. We remark that pattern redundancy has been extensively
studied by the pattern mining community (Han and Kamber, 2006; Aggarwal and Han,
2014) and we can filter closed or maximal sequential patterns or patterns that are non-
discriminatory, i.e., having low contrast using sequential covering (see Section 5.2).

Within the context of time series classification, there also exist techniques that are reduc-
ing overlapping patterns, such as numerosity reduction (Lin et al., 2012). Another technique
is shapelet clustering, where the authors propose to reduce the number of shapelets using
a clustering of (equal-length) shapelets to increase model interpretation at the cost of a
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slight drop in accuracy (Hills et al., 2014). However, we remark that most existing methods
for time series classification are difficult to interpret and the employed models are unsuit-
able for human interpretation. That is, by adopting an SFA representation, random forests,
deep learning or an ensemble thereof, existing methods are extremely hard to interpret. A
notable exception is MR-SEQL (Le Nguyen et al., 2019) since its model consists of a linear
model of features. However, MR-SEQL depends on SFA and since SFA symbols represent
a complex-valued function of frequency this hinders interpretability.

In this work we discuss both instance-based decision support (by visualising attribution)
and learn an intrinsically interpretable model directly. Additionaly we present a use-case
where we reduce the number of patterns to further improve explanations in Section 6.3.

3 Preliminaries

In this section, we introduce the necessary concepts and notations, before formally defining
our problem setting.

3.1 Time series data

A time series is defined as a time-ordered sequence of measurements S = ({z1,t1),...,
{@p,tn)), where each measurement has a timestamp t; and V 4,5 € {l.n} : i < j = t; < t;.
For continuous time series x; € R. For discrete time series xj € {2 where {2 denotes the
finite domain of event types. We remark that for sequential pattern mining we do not
require a single event at each timestamp (i.e. t; = t;) nor that the sample rate is regular
(i.e. Vi : t;41 —t; is not constant). We use |S| to denote the length of the time series. If time
series are of different length we define |S| to be the minimal length of any time series.

A univariate time series dataset consists of multiple labelled time series, i.e. & =
{S:, i} . Each time series S; may be of different length, however, in the univariate case
we assume all measurements are of the same type. A class, or label, y; € Y where ) denotes
the finite domain of classes, which is either binary or multi-class if it consists of more than
two classes.

In a multivariate time series dataset, each labelled instance is composed of several time
series, or dimensions: S*+4 = {S1, ... 8% y;}™ . That is, there are m labelled instances and
each instance consists of d time series, S}, ..., S%. Like in the univariate case, we assume that
time series in each dimension d are of the same type, however, in different dimensions the
types may vary. The sampling and length of each time series can also vary. In the remainder
of this paper, we use the notation S¢ (or S) to refer to all time series in a single dimension
of a multivariate time series dataset. We remark that PETSC reduces a multivariate time
series dataset to d univariate time series datasets for extracting a sequential pattern-based
embedding.

3.2 Segmentation

A time series window Sk[tq,tp] is a contiguous subsequence of time series Sy and contains
all measurements {{z;,t;» € Sk | to < t; < t} in the univariate case. In this work, we use
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fized-length sliding windows. This means choosing a fixed time interval At (e.g. 5 seconds,
10 minutes or 1 hour) and creating windows starting at ti,...t,. For a time series of
length |S;| there are |S;| — At + 1 windows assuming an increment of 1. We denote the
resulting set of windows as §°. For multivariate datasets, we apply a sliding-window over
each dimension independently. It is known that the accuracy of time series classification is
heavily dependent on the value of At, since segments must be long enough to contain the
distinctive features, but also short enough to be informative! (Senin and Malinchik, 2013;
Le Nguyen et al., 2019). After transforming the time series data using a sliding-window,
the dataset consists of many small segments and we ignore the order between segments.
This enables us to mine local, phase-independent, patterns and is in contrast to interval-
based time series classification methods. We remark that sequential pattern mining specific
to intervals, i.e., by discovering and counting the frequency of sequential patterns in each
interval separately, is not explored to date, but seems a logical direction for future work.

3.3 Symbolic Aggregate Approximation

After a sliding-window transformation, we reduce and discretise each continuous segment,
or window, S*[t,,tp] using SAX (Lin et al., 2003). SAX has two parameters: the word
size w and the alphabet size «. First, we z-normalise each window resulting in values
distributed with a mean of 0.0 and a standard deviation of 1.0. If the standard deviation
is below a certain threshold, typically set to 0.01, we do not z-normalise to prevent that
noise is amplified. Next, the length of each window is reduced by computing the Piecewise
Aggregate Approximation (PAA), e.g., with a word size, or PAA window, of 8 we divide
the normalised segment into 8 equally sized subsegments and store the mean value for
each subsegment (Keogh et al., 2001). Finally, we convert each mean value to a letter (or
digit) using a lookup table into « equal-density regions assuming the Gaussian distribution.
Figure 5 from Lin et al. (2012) illustrates the transformation of a single segment. We remark
that parameters w and « have a large influence on the final classification accuracy. Lin et al.
(2012) propose to set a to 3 or 4 for most datasets and w from 6 to 8. Since we mine variable
length patterns, it makes sense to increase w, e.g., on some datasets setting w to 20 (and
« as high as 12) resulted in best accuracy as we will discuss in Section 6.

3.4 Sequential pattern mining

A sequential pattern X is a sequence of one or more items, denoted as X = (s1,...,$;),
where si € 2 and (2 is the finite domain of symbols. For continuous time series |2| = «
after transformation using SAX. A sequential pattern may contain repeating items and we
allow gaps (or unmatched symbols) between items. A sequential pattern X = (sq,...,s)
covers a segment Si[t,,tp] if:

X<S}z[ta,tb](i)3t1,...7tl€[ta,tb]Ztl <...<t:
VjE{l,...,l}I<ij,tj>€SASj:ij.

1 We remark that alternatives to sliding-window based frequency for sequential patterns have been investi-
gated that do not require choosing At (Cule et al., 2019). However, this is not compatible with window-based
normalisation performed by SAX.
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Fig. 5: lllustration of the SAX transform where the normalised continuous time series seg-
ment with length |S| = 128 is transformed using PAA with a word size of w = 8 and

discretised into o = 3 equal-density regions into the discrete sequence baabccbe (Lin et al.,
2012)

The cover and support of a sequential pattern X in a segmented time series dataset S° is
defined as:

cover(X,8°%) = {Sp[ta,ts] | Silta,ts] € S° A X < Si[ta,ts]}s
support(X,S*%) = |cover(X, S?)|.

A sequential pattern is frequent if its support is higher than a user-defined threshold on
minimal support, or min_sup. Note that frequency based on a sliding-window is somewhat
harder to interpret in the original time series since a sequential pattern often covers multiple
overlapping windows?. For example, given discretised time series Sy, = raxrabcrra we create
the following windows using At = 5: xxxab, xxabe, xabexr, abcxx and bexxx. Subsequently,
the support of sequential pattern X = (a,b,c) in this instance is 3. A sequential pattern
X is not closed if there exists a sequential pattern Z, such that X is a subsequence of
Z and support(X,S) = support(Z,S), e.g., if (a,b) and (a,b,c) have the same support
closed pattern mining would only keep (a, b, c). After segmentation and discretisation we
can use any sequential pattern mining algorithm to efficiently mine all frequent sequential
patterns in time series (Zaki and Meira, 2014; Aggarwal and Han, 2014). However, as
discussed previously, existing pattern mining algorithms have issues concerning continuous
time series.

3.5 Problem setting

Given a training dataset of time series Syqin (0r Siy:2) that is either univariate, multivariate
or mixed-type the task is to predict the correct class g, € ) for each test time series instance
in Spest = {Sg}ioy or Skt = {S),..., 53} _, for multivariate time series. We evaluate
PETSC on accuracy, execution time and interpretability and compare with state-of-the-
art time series classification methods on univariate and multivariate benchmark from the
UCR/UEA time series classification archive (Dau et al., 2018).

2 This observation has led to adaptations for numerosity reduction in time series classification (Lin et al.,
2012) or non-overlapping minimal windows in frequent pattern (or episode) mining (Zhu et al., 2010; Cule
et al., 2019).
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4 Pattern-based embedding for time series classification

In this section, we describe a method that constructs a pattern-based embedding for time
series classification (PETSC). PETSC has four major steps. First, the time series is seg-
mented and transformed using SAX. Second, a dictionary containing the top-k most fre-
quent sequential patterns with respect to temporal constraints is mined from S (or in each
dimension 8¢ for multivariate time series). Third, the sequential pattern dictionary is used
to compute the frequency of each pattern thereby creating a pattern-based embedding.
Fourth, we train a linear model with L1 and L2 regularisation to separate each class based
on the pattern-based embedding. In Section 5, we present three possible variants of our
base PETSC classifier which we experimentally evaluate in Section 6.

The main steps of our method are shown in Algorithm 1. For brevity, we show only the
version that takes as input a univariate time series. For multivariate (or mixed-type) time
series, we repeat lines 1-9 for each time series and then merge the resulting embeddings,
before constructing a classifier in line 10.

4.1 Preprocessing

Preprocessing is the first step in PETSC_TRAIN shown in Algorithm 1 (line 1-4). First, we
segment each time series in S using a fixed-length sliding window of length At. After this
transformation, we create equal length windows (in time). Note that these windows do not
necessarily contain the same number of items if sampling is irregular. Next, each continu-

Algorithm 1: PETSC_TRAIN(S, At, w, a, k, min_len, rdur) Pattern-based embed-
ding for time series classification

Input: Univariate time series S = {S;, y;}7* ,, sliding window interval (At), SAX word size (w)
and alphabet size («), number of patterns (k), minimum length pattern (min_len) and
temporal constraint (rdur)

Result: Set of patterns P, coefficients linear model ¢

// Preprocessing
S* « SEGMENT(S, At)
if S is continuous then
foreach S*[tq,t,] € S® do
| S%[ta,tp] < DISCRETISE(PAA(Z-NORM(S*[ta,1p]), w), @)
// Mine sequential patterns
5 P <« MINE_FREQ_SP(S®, k, min_len, rdur)
// Create embedding
0...0 |SIx|P|

AW N R

6 F «— )
0...0

7 for i < 1 to |S| do

for j «— 1 to |P| do

‘ fi,j = supportrdur(Xj’ SZS)

// Train linear model
10 ¢ < ELASTIC_NET(F, {y:}/%)
11 return (P, ¢)

© ®
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ous window S*[t,,tp] is z-normalised because time series have widely different amplitudes.
Frequent sequential patterns are often limited in length, i.e., traditionally a length of 5 is
quite high, therefore we reduce the length of each window using the Piecewise Aggregate
Approximation (PAA), such that a sequential pattern covers a large part of a window. For
example, a continuous time series of length 1000 is transformed to 1000 — 120 + 1 sliding
windows of length 120 (At = 2min). Each continuous window of length 120 is then reduced
to a length of 16 using PAA (w = 16) and consequently, the mean amplitude is discretised
to 4 symbols (a = 4).

We remark that for larger datasets we could increase the increment of the sliding window
to a larger value than 1, i.e., with a value of 2 (or 10) we decrease the number of windows
|S%| = |S]- (]S]— At +1) by a factor of 2 (or 10) thereby conserving memory and decreasing
execution time. Increasing the increment would mean skipping some overlapping segments,
which would clearly result in a considerable reduction in runtimes, but it would potentially
come at a cost of some important patterns not being discovered. In preliminary experiments
we found that increasing the increment has a large influence on runtimes and a limited
negative effect on accuracy, but since our algorithm is already very fast, we decided to set
the default value of the window increment to 1, and not to skip any segments.

4.2 Discover top-k frequent cohesive sequential patterns

To create a dictionary for time series classification we propose a method based on frequent
pattern mining to efficiently discover sequential patterns. Many different algorithms have
been proposed to discover sequential patterns. However, continuous time series have their
own challenges such as autocorrelation, the relatively small alphabet after the SAX trans-
form and the goal to discover long and cohesive patterns similar to subsequences found by
related dictionary-based methods. We propose the following goals for discovering patterns
in time series:

— Mine sequential patterns above a specified minimum length.

— Enumerate the top-k most frequent sequential patterns directly instead of fine-tuning
the threshold on minimal support (min_sup parameter) which is resource consuming.

— Only consider cohesive occurrences of sequential patterns which is known to be impor-
tant in literature on episode mining (Zimmermann, 2014; Cule et al., 2019).

Relative duration

Traditionally, temporal constraints bound the number of gaps or duration of a pattern
regardless of the length of the pattern (Pei et al., 2007). We propose a constraint on the
duration of a pattern occurrence relative to the length of the pattern (rdur). The cover and
support of a sequential pattern X in a segmented time series dataset S° with respect to
rdur are defined as:

cover pgur (X, S8%) = {Sita, to] | Silta,ts] € S A
Atar, ty € [ta,tb] sty — tyr < rdur - |X| ANX < S}:[ta/,tb/]},
support g (X, 8%) = |cover gur (X, S%)|.
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Algorithm 2: MINE_FREQ_SP(S?®, k, min_len, rdur) Discover top-k frequent cohe-
sive sequential patterns in S*

Input: Segmented univariate time series S°, number of patterns (k), minimum length pattern
(min_len) and maximum duration relative to pattern length (rdur)
Result: Top-k sequential patterns ranked on support with respect to rdur
Q « (2,5°, )]
P < MAKE_HEAP(k)
min_sup <« 0
while @ # & do
<X7PX7Y> A POP(Q)
if Y = J then
if support, g, (X,S8%) > min_sup and |X| = min_len then
PUSH(Pz <X7 suPportrdur(X’ Sg)>)
if |P| > k then
popP(P)
min_sup < MIN_HEAP(P)

© o N R ® N K

[
= O

Ise

"
N
o

if support, g, (X,S%) < min_sup then
‘ continue

S141 < FIRST(Y);

PUSH(Q, (X, Px, Y\{s141}))

Z (X7 sl+1)

Pz < PROJECT(S, Z, Px, rdur)

Y, < PROJ_CANDIDATES(S, Z, Py)

20 PUSH(Q,{Z, Pz,Yz))

21 return P

L
© ® N O G W@

That is, X must cover a subsequence of a segment that is at most rdur - | X| long. For
instance, if rdur is 1.2 this implies that we allow a maximal duration of |4 - 1.2] = 4 for
patterns of length 4, 6 for patterns of length 5 and 24 for patterns of length 20.

Algorithm

The algorithm MINE_FREQ_SP, shown in Algorithm 2, discovers longer, frequent and cohesive
sequential patterns. We start by creating an empty priority queue that stores all sequential
pattern candidates sorted on support (line 1). During recursion we maintain candidate
sequential patterns X = (s,...,$;) and construct sequential patterns Z of length | + 1
where X is the prefix and item s;4; is from the set Y of (unvisited) symbols, or candidate
items. For incrementally computing projections of supersequences Z we also maintain the
projection of X on S° denoted as Px. Next, we create a heap of patterns (line 2). Like
the queue, we also use a priority queue data structure, but this time sorted on descending
support. Initially, min_sup is 0 (line 3). However, after k candidates are discovered, the
current minimal support in the heap is used to prune future candidates (line 13) instead
of a fixed value for min_sup. In the main loop, we first retrieve the most likely candidate
sequential pattern, i.e., the one with the highest support, from the priority queue (line 5).
Next, we check if the set of candidate items is empty (line 6) and we have a leaf in our
search process. In this case, we add the current candidate pattern to the pattern heap if
its support is higher than min_sup and the length of the pattern is greater than or equal
to min_len (line 7-9). Since we want to return at most k sequential patterns, the pattern
with the lowest support is removed (line 10) and min_sup is updated (line 11). Remark
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that we do not assume a maximum length, but since we depend on SAX, the length of any
sequential pattern is limited by w. If the set of candidate items is not empty, we first check
if the current candidate prefix is frequent (line 13). Next, we create two nodes in the search
tree: the current sequential pattern X without the first item s;.1 in the set of candidate
items Y (line 16) and the sequential pattern Z = (sy,...,s;, s;+1) (Line 20).

Pseudo-projections

Crucial to performance of MINE_LFREQ_SP is how to compute the support with respect to
rdur and limit the number of candidates. We compute support (and candidates) using
incremental pseudo-projections. A projection of X on §* is denoted by Px and consists of
all windows S®[¢;,t;] covered by X with respect to rdur. The support for sequential pattern
X is then computed as | Px|. In the projection data structure we maintain the index of each
window and offsets (¢1,¢;) to the first (s1) and last symbol (s;) of X = (s1,...,s;) in the
covered windows. The projection Pz of supersequences Z = (s, ..., s}, S;+1) are computed
incrementally by checking if s;41 occurs in the suffix of each window S*[t;, ], i.e., starting
after the last offset of s; for each window in Px. For example, assume Sy = xzxzabcrxz
and we create the following windows using At = 5: wy = xxxab, we = xxabe, ws = xaber,
wy = abcxx and ws = bexxx. After projection on X = (a,b) we keep references to windows
and store Px = {w; : (4,5), wa : (3,4), w3 : (2,3, wy : (1,2)} in memory. For supersequence
Z = (a,b,c) we construct Pz = {wsy : (3,5),ws : (2,4, wy : {1, 3)}.

Restricting projections using relative duration
Since we only consider cohesive occurrences, we use the relative duration rdur to further
restrict the projection by translating this constraint to a constraint on the absolute duration
and a limit on the number of gaps.

Firstly, there is limit on the maximum duration:

maz_duration = |max_len - rdur|.

As a consequence, we limit the search for s;41 in each window in Px with offsets {t1,;)
and range [¢;,t;] to indexes ty € [t; + 1,t1 + maz_duration] which might be smaller than
[tl +1, tj].

Secondly, the maximal number of remaining gaps is given by:

maz_gap_total = max_duration — mazx_len,
current_gaps = (t; —t1 + 1) — | X|,

maz_rem_gap = mazx_gap_total — current_gaps.

As a consequence we limit the search in each suffix to indexes ¢ € [t;+1, t; +max_rem_gap +
1]. For example, assume we have X = (a,b), Z = (a,b,c), maz_len = 5, rdur = 1.2 and
wy = abxrrxrrxrc and wy = axbxe. Z covers both windows, however for w; the duration
would be 10, but maz_duration of 6 is preventing a match with respect to rdur. For wy the
duration would be 5, however, max_gap_total = 1 and current_gaps = (3 —1+1) — 2 =1,
so mazx_rem_gap = 0 and since c¢ is at index 5 and not 4 this would also not be a match.
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4.3 Constructing the pattern-based embedding

Having obtained a dictionary P, i.e., a set of varying length patterns for the segmented time
series §°, PETSC maps S° to a pattern-based embedding. In the embedding space each
time series S; is represented by a vector of size |P|, where each value is associated with the
support of pattern Xy, ..., X in S;. This is shown in Algorithm 1 (line 6-9) where we first
initialise the embedding matrix F to |S| x |P| dimensions. Next, we compute the support
of each pattern in each time series, computed as the number of sliding windows covered
by the pattern with respect to the constraint imposed by rdur. Note that by using the
support as feature, we regard both the (cohesive) occurrence of a pattern and its frequency
as important components for discriminating classes. For instance, a pattern might occur on
average 10 times in each time series of class A, while occurring only once in class B.

Naive algorithm

We implemented a naive algorithm that computes the support of every pattern X in P
in each time series S; (in both the training and test database). The time complexity of
constructing the pattern-based embedding of S is O(|P|-|S]). Since the number of patterns
|P| is controlled by the hyper-parameter k the total runtime is still reasonable since k
is limited to a few thousand in practice for high accuracy. However, we remark that this
results in a runtime that is an order of magnitude worse than the discovery of the top-k
most frequent sequential patterns and might impede real-time applications. For example, in
preliminary experiments on UCR datasets we found that computing the embedding takes
minutes while mining the patterns only takes seconds.

Efficient algorithm

We can improve the naive algorithm for computing the embedding based on the observa-
tion that the embedding matrix produced by PETSC is sparse and the density is often less
than 1% on many datasets, similar to related dictionary-based methods such as BOP or
SAX-VSM. For efficiently computing the sparse embedding we use prefix-projected pattern
growth to identify all segments matching the pattern X without the cost of matching
the full pattern X = (s1,...,s;). First, we compute the projection Py, for each pre-
fix X, = (s1,...,8p) for p from 1 to ! incrementally. The number of segments match-
ing in each successive projection, Px,, grows smaller (since support is anti-monotonic),
thereby discarding segments that do not match prefix (s1,...,s,) before considering them
for (s1,...,Sp,Sp+1)- By matching the pattern X with respect to rdur using incremental
prefix-projections and given that in practice most patterns cover only a few time series with
respect to rdur, most windows are discarded early on without the computational cost of
matching the complete pattern. In preliminary experiments on UCR datasets we found that
constructing the embedding with this algorithm took seconds where the naive algorithm
would take minutes.

4.4 Constructing the time series classifier

The final step of PETSC (line 10 of Algorithm 1) is to construct the model for classifying
time series. In principle we could use any classification algorithm such as a random forest or
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k-nearest neighbours, but given that we are interested in interpretable results and because
of its simplicity we adopt a simple linear model. For each label y € ) we learn a linear model
that separates time series S; based on its pattern-based embedding F; (after normalisation):

]Q=’LUO+’LU1'Fi)l-l-...-i-w;c-Fi’k.

The model coefficients W = (wo,...,w;) are learned by minimising the following loss
function:

k k
,C()\l,)\Q,W) = |y—FTW\2+)\QZwZQ+)\12|wl\
i=1 i=1

The loss function combines regression with L1 and L2 regularisation referred to as an
elastic net (Zou and Hastie, 2005). L1, or LASSO, regularisation is particularly useful since
frequent pattern-based features that are not discriminative have a high likelihood of a
zero coefficient making the model more condensed and improving overall interpretability.
Meanwhile, combining it with L2, or ridge, regularisation overcomes limitations by adding a
quadratic part to the penalty which makes the loss function convex and a unique minimum is
guaranteed. We remark that for multi-class time series datasets we use a one-vs-all approach.

5 Optimisations

In this section, we discuss possible optimisations of the PETSC algorithm presented above.
Concretely, we develop three additional variants of the algorithm. First, we propose MR-
PETSC, an ensemble method that combines patterns discovered in different resolutions.
Second, we propose PETSC-DISC, a method that mines the top-k most discriminative
patterns directly. Third, we present PETSC-SOFT that relaxes the requirement of an exact
match to deal with discretisation errors. Next we discuss the use of common transformations
to the original time series before applying dictionary-based methods. We conclude this
section with an analysis of the time and space complexity of PETSC and variants.

5.1 Ensemble of multiresolution frequent sequential patterns

A disadvantage of PETSC is that, like related dictionary-based methods, its accuracy is
highly dependent on the hyper-parameter At. Additionally, PETSC ignores discriminative
patterns at different resolutions. Both of these issues are addressed by the MR-PETSC
variant, shown in Algorithm 3 and illustrated in Figure 6. In this approach, we still mine
patterns with the same constraints and the same parameters for the SAX representation,
but we do this recursively starting with a single segment equal to the length of the time
series (or the minimum length in varying length time series) (line 3) and recursively divide
the sliding window by two until the segment length is lower than the SAX word size (line
4 and 12). At each resolution, we join the embedding vectors (line 5-11) and train a linear
model on the final embedding vector where we combine pattern-based feature values from
different resolutions (line 13). The overhead of MR-PETSC is limited since we create at
most log(|S|) representations. For instance, if the original time series length is 128, we first
create a single segment with At = 128, then At is equal to 64, 32 and finally 16 (assuming
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Algorithm 3: MR_PETSC_TRAIN(S, w, «, k, min_len, rdur) Multiresolution
pattern-based embedding for time series classification

Input: Univariate time series S = {S;, y;}

m
=1

Result: Set of patterns P, coefficients linear model ¢

1 P

2 F—J

3 At<—mln{|sz||SZ€S}
4 while At > w do

8% « SEGMENT(S, At)

© 0 g4 o o

// join
10 P—PuPas
11 F «— F ™ Faz
12 At — At /2
// Train linear model
18 ¢ < ELASTIC_NET(F, {y:}/%,)
14 return (P, ¢)

foreach S*[tq,t,] € S® do

| S%[ta,ts] — SAX(S®[ta,tp], w, )
PAt < MINE_FREQ_SP(S%, k, min_len, rdur)
F At < CREATE_EMBEDDING(S*%,PA¢)

// PETSC embedding at At

other parameters similar to PETSC

w is 15). In the embedding vector we will have k x 4 pattern-based feature values from 4

different resolutions.

We remark that MR-PETSC produces high accuracy with default parameters, i.e., if
we mine the top-200 sequential patterns with a minimum length of 5 and a constraint

on relative duration of 1.1 on SAX strings consisting of 4 symbols (a =

4) and a fixed

length of 15 (w = 15). However, for optimal performance we tune the hyper-parameters.
We experimentally validate the accuracy of this ensemble method in Section 6.

Y Y
e |
SAX abc abc F(abc)
At bad badb F(badb)
bbd bbdb F(bbdb)
~ ~
M1 M
SAX aaaab aaa F(aaa) w F(abc)
A2 bbacc bbaccd F(bbacc) +w;, F(badb)
bbbcd bbb F(bbb) + w, F(aaa)
~_ ~
Database of < J K 3 Linear model based on
time sories SAX aaaaa aaaaaa F(aaaaa) sequential patterns in
At/a bbbcb bbbee ™| F(bbbee) each resolution
bcbchb bcbebe F(bcb)
~ ~
Database of Cohesive Embedding
short symbolic sequential based on pattern
seguences patterns occurrences

Fig. 6: Illustration of MR-PETSC where we first create different symbolic representations
by varying the fixed-length sliding window (At) and then combine sequential patterns
discovered in each representation in a single linear model
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5.2 Direct mining of the most discriminative patterns

In PETSC we mine all frequent patterns and rely on the elastic net classifier to select
patterns that are frequent in one class rather than over different classes. We now propose
PETSC-DISC, an alternative mining algorithm that discovers the most discriminative se-
quential patterns directly. Given a segmented time series dataset S®, label A, time series
windows with label A (denoted by S5.) and any other label (denoted by S5_), we define
discriminative support, or contrast, as

| support g, (X, S5.)
|53+

support g, (X, S85_) |
|S3-1

contrast(X,8%) =

The algorithm for mining discriminative patterns directly is shown in Algorithm 4. A key
difference with Algorithm 2 is that we employ heuristic search using contrast and visit
candidates with high contrast first. However, since contrast is not anti-monotonic we cannot
prune on contrast nor guarantee that after 4 iterations the current discovered top-k patterns
have the highest contrast overall.

Algorithm 4: MINE_DISCR_SP(S®, A, k, min_len, rdur, min_sup) Discover top-k
discriminative sequential patterns in &°

Input: Segmented univariate time series 8%, target class (A), threshold on minimal support
(min_sup), other parameters similar to MINE_FREQ_SP
Result: Top-k sequential patterns ranked on contrast

Q < [(@,85,.55, )]

-

2 P « MAKE_HEAP(k)

310

4 while Q # & or sTopr(i) do

5 (X, Px y+,Px -, Y) < POP(Q)

6 if Y = & then

7 if |X| = min_len then

8 PUSH(P, (X, contrast(X,S%)))

9 if |P| > k then

10 | por(P)

11 i1+ 1
12 else

13 if support, g, (X,S8°) < min_sup then
14 | continue

15 Sy4+1 < FIRST(Y);

16 PUSH(Q, (X, Px x+, Px x> Y\{s141}))
17 Z — (X, s141)

18 Py y+ < PROJECT(S)\+, Z, Py \+, rdur)
19 Py \— < PROJECT(S, -, Z, Px -, rdur)
20 Yz < PROJ_CANDIDATES(S)+, Z, Py 5+ ) U PROJ_CANDIDATES(S) -, Z, Py 5 )
21 pUSH(Q,{Z, PZ,A+,PZ’>\,,YZ>)

22 return P
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We start by creating an empty priority queue that contains all sequential pattern can-
didates sorted on contrast and a heap of discovered patterns sorted on descending con-
trast (line 1-2). Like before, during recursion we maintain candidate sequential patterns
X = (s1,...,5) and construct sequential patterns Z of length [ + 1 where X is the prefix
and item s;,1 is from the set Y. For efficiently computing contrast we maintain separate
projections of X on time series instances with and without label A, i.e., computed on S35,
and S5_, and denoted as Px y+ and Px -. In the main loop, we first retrieve the candidate
sequential pattern with the highest contrast from the priority queue (line 5). If the set Y of
candidate items is empty, we add the current candidate (if | X| = min_len) to the pattern
heap. As soon as k patterns have been found we remove the pattern with the lowest con-
trast from the heap (line 9-10). If the set of candidate items is not empty, we also remove
discriminative patterns that are too infrequent overall, using the min_sup parameter (line
13). Next, we create two nodes in the search tree: the current sequential pattern X without
the first item s;41 in the set of candidate items Y (line 16) and the sequential pattern
Z = (s1,...,51,814+1) (line 21). Here, we compute incremental pseudo projections on both
S)+ and Sy~ (line 18-20). The main loop stops if the queue is empty, meaning we have
enumerated all frequent sequential patterns. Alternatively, we stop after a fixed number
of iterations i (line 4) or dynamically, i.e., when no new patterns with high contrast are
discovered in the last k iterations. For multiclass datasets we run MINE_DISCR_SP for each
label and join all patterns resulting in a set of at most |Y| - k patterns. We then return the
top-k patterns with the highest contrast for any label. We remark that we also experimented
with sequential covering to remove redundant patterns (Cheng et al., 2008). However, in
preliminary experiments, we found that the increase in accuracy was too marginal to justify
the additional complexity and runtime of sequential covering.

5.3 Relaxing exact pattern matching

Several alternatives have been proposed to create an embedding based on sequences, shapelets
or sequential patterns. Laxman et al. (2007) proposes to compute frequency based on non-
overlapping occurrences for discrete patterns. Hills et al. (2014) propose to compute the min-
imal Euclidean distance between each contiguous (and continuous) pattern and continuous
segment in the time series and Senin and Malinchik (2013) propose to compute class-specific
weights using TF-IDF. From a quality perspective we argue that for matching discrete pat-
terns small differences might be ignored, e.g., given the pattern X = (a,a,a,b,b,b,b) and
the segment S; = (a,a,a,b,b, b, c) the distance is small and the mismatch possibly due to
noise. Especially as the discretisation error grows with long patterns, e.g., for a pattern of
length 14 and an alphabet of size 3 the average rounding error accumulates to 14-1/(2-3).
Based on this observation, we propose to count near matching occurrences as an alternative
to exact matching and propose another variant of PETSC, namely PETSC-SOFT. For a
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pattern X and segmented time series S° we define the soft support as:
support .,q (X, 8%, 7) = [{Silta: to] | Silta,ts] € S*A
X
min_dist(X, Sp[ta, ts]) < T - 2‘—|H,
e

min_dist(X, Sp[ta, tp]) = min({ dist(X, Sp[ta,tr]) |

SZ[ta/,t(,/] = S}i[tmtb] Aty —ty = |X|})
Here % returns the average rounding error and dist is the Euclidean distance®. For in-
stance, in our previous example, with 7 = 1.0, X would match segment S; since dist(X,Sy) =
1 is lower than the expected rounding error of 7/(2-3) = 1.166. We introduce the parameter
7 to allow user-defined control for soft matching, e.g. given a = 4 and 7 = 1.0, we would
allow a distance of 0 for patterns of length 7, 1 for patterns of length 8 and 2 for patterns
of length 16. For 7 equal to 2 or 3 matching is more relaxed. Remark that when using soft
matching, we assume the relative duration to be 1.0, as the method’s complexity would
severely increase otherwise. In Section 6 we experimentally validate support .

5.4 Basic time series transformations

While the original authors of both BOP and SAX-VSM report more wins over 1-NN DTW
on their selection of datasets, the opposite is reported by Bagnall et al. (2017) on the
complete UCR benchmark. We remark that both methods have their own biases and that
performance will vary depending on the type of dataset, akin to the No Free Lunch The-
orem (Wolpert and Macready, 1997). Nearest neighbour with DTW will miss correlation
of discriminative subsequences at different locations. Inversely, BOP misses overall correla-
tion of two time series by extracting only local phase-independent patterns. Consequently,
ensemble methods that combine both approaches such as DTW-F (Kate, 2016) result in
an overall increase in accuracy. We conclude that applying the following basic time series
transformations (Hyndman and Athanasopoulos, 2018) on S; = (x1,...,x,) may result in
improved performance:

Derivative (or lagn =1): & = x; — x4
Second derivative (or lag n = 2): z; = & — T4
— Logarithm: z; = In

Logarithm of derivative: x; = In 2,

Especially, in the context of the UCR benchmark that contains many smaller datasets of
synthetic and/or sine-like nature with a strong overall correlation, applying dictionary-
based methods on both the original time series and after each transform might enhance the
ability to discover local discriminative patterns. For instance, on the UCR Adiac dataset
the error of DTW is 0.376 and the error of PETSC is 0.381. However, after transforming
this dataset using the logarithm the error of PETSC drops to 0.350. However, to be fair
to all methods, we did not apply any time series transformations on the data used in our
experiments in Section 6.

3 We use the ordinal values for SAX symbols when computing Euclidean distance, that is b — a is 1 and
c—ais 2.
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5.5 Time and Space Complexity

Since PETSC mines sequential patterns on each dimension independently the execution
time is linear in the number of dimensions d for multivariate time series. The total number
of windows in the sequential database for mining in each dimension is dependent on the
number of instances |S|, the time series length |S| and the sliding-window interval At, i.e.
|S®| = |S]-(]S|—At+1). If we assume that top-k frequent cohesive sequential pattern mining
is linear in |S*| the complexity of MR-PETSC for multivariate datasets is approximately
O(d - |S]]S|1og(|S]))*-

For univariate time series PETSC is thus linear in both the training set size and time
series length while MR-PETSC is quasilinear in the time series length since we consider
at most log(|S]) SAX representations. Similar to MR-PETSC, MR-SEQL is also linear in
the training set size and quasilinear in the time series length. However, for high accuracy
MR-SEQL uses \/|?| different SAX and SFA representations, resulting in a slighly worse
complexity of O(d-|S]|S]21og(]S])). Other scalable multivariate time series methods include
Proximity Forests and TS-CHIEF that are based on an ensemble of decision trees are
quasilinear in the training set size, but quadratic in the time series length. Finally, ROCKET
is only linear in the time series length, i.e. the complexity on multivariate time series is given
by O(d - k|S||S|). However the constant k that specifies the number of different kernels to
train on is high, i.e. the suggested default is 10 000.

From a space complexity perspective, the proposed pattern mining algorithms relies
on a depth-first search strategy to enumerate candidate sequential patterns and as such
has manageable memory requirements, i.e. the mining algorithm only has to keep at most
max_len candidate sequential patterns in memory, which is limited by w. Likewise the
size of heap is limited by the maximal number of patterns k. Furthermore, by relying on
incremental pseudo-projections of the sequential database, the space complexity is bounded
by the representation of the sequential database itself which is linear in the training set size
and linear in the time series length. The embedding data structure is linear in the training
set size and in the number of patterns. Since the number of patterns k is limited to 1000
in practice and by adopting sparse data structures (since most pattern occurrences will be
0) this is efficient. Overall, for MR-PETSC, the space complexity is O(d - k - log(|S])|S])
since we concatenate |S| embedding vectors of length k for each dimension d in different
resolutions log(|S]) in memory.

For large multivariate datasets, we see that in practice out-of-memory errors can occur,
since a space complexity of O(|S|-|S|) for the sequential database can be problematic for very
large datasets. In this case, we suggest to limit memory consumption by selecting a larger for
the window increment i. For instance, for Eigen Worms |S%| = 128-(17984—20+1) ~ 2.2-10°
for At = 20. By selecting a larger window increment (or stride) than 1, we can reduce the
size of the sequential database by a constant factor. For instance, given an increment i

4 Note that pattern mining has a worst-case time complexity which is exponential in the size of the
pattern and the alphabet size. That is, with a pattern size (or word size) of w and « different symbols,
there are a® possible sequential patterns of length w. However, we assume parameters such as w, «a, k
and rdur are constants. That is, we argue that in the context of time series classification, and not pattern
mining, it is less relevant to perform a detailed analysis of the efficiency of our method for large values of
k or rdur, since we do not observe an increase in time series classification accuracy for large values of both
k and rdur
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equal to At (i.e. non-overlapping sliding windows), the number of windows in each time
series drops with |S|/i. For instance, for Eigenworms |S®| = 128 - (17984)/20 = 115098 for
i = At = 20. For large multivariate datasets this can lead to a speed-up proportional to
1, however the frequency of patterns is then computed only approximately, as we require
overlapping sliding windows to compute the exact count of pattern occurrences.

6 Experiments

In this section, we compare PETSC and its variants with existing state-of-the-art methods.

6.1 Experimental setup

Datasets

We compare methods against univariate and multivariate datasets from the UCR/UEA
benchmark (Dau et al., 2018). In Table 1 we show the details on a subset of 19 univariate
datasets from the UCR archive (Senin and Malinchik, 2013). In Table 2 we show the details
on 19 multivariate datasets from the UCR archive (Bagnall et al., 2018). We selected mul-
tivariate time series where |S| was at least 30 and the total file size was not too large (i.e.,
< 300 MB). We also compare totals against the 85 ‘bake off” univariate datasets (Bagnall
et al., 2017; Dau et al., 2018), and 26 ‘bake off’ equal-length multivariate datasets (Bagnall
et al., 2018; Ruiz et al., 2020). Time series are from different domains and applications,
i.e., time series extracted from images (such as shapes of leaves), resulting from a spectro-
graph or medical devices (ECG/EEG) and various sensors, simulations, motion detection
and human activity recognition (HAR).

Dataset Y| [Strain] |Stest| |S| Type
Adiac 37 390 391 176 Image
Beef 5 30 30 470 Spectro
CBF 3 30 900 128  Simulated
Coffee 2 28 28 286 Spectro
ECG200 2 100 100 96 ECG
FaceAll 14 560 1690 131 Image
FaceFour 4 24 88 350 Image
Fish 7 175 175 463 Image
GunPoint 2 50 150 150 Motion
Lightning2 2 60 61 637 Sensor
Lightning7 7 70 73 319 Sensor
OliveOil 4 30 30 570 Image
OSULeaf 6 200 242 427 Image
SyntheticControl 6 300 300 60 Simulated
SwedishLeaf 15 500 625 128 Image
Trace 4 100 100 275 Sensor
TwoPatterns 4 1000 4000 128  Simulated
Wafer 2 1000 6164 152 Sensor
Yoga 2 300 3000 426 Image

Table 1: Details on 19 UCR univariate datasets
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State-of-the-art methods

We compare the accuracy of PETSC and its variants with base learner such as 1-NN with
DTW and comparable interpretable dictionary-based methods such as BOP, SAX-VSM
and MR-SEQL (Le Nguyen et al., 2019) for univariate datasets. We also compare with
non-interpretable dictionary-based methods based on a Bag of SFA Symbols, such as BOSS
(Schéfer, 2015), cBOSS (Middlehurst et al., 2019), S-BOSS (Large et al., 2019) and TDE
(Middlehurst et al., 2020b), methods based on deep learning such as ResNet (Wang et al.,
2017) and InceptionTime (Fawaz et al., 2020) and heterogeneous ensemble methods such
as Proximity Forests (Lucas et al., 2019), ROCKET (Dempster et al., 2020), HIVE-COTE
(Lines et al., 2018) and TS-CHIEF (Shifaz et al., 2020).

For multivariate datasets we compare with base learner such as 1-nearest neighbour clas-
sification using either Euclidean distance (1-NN ED), dimension independent dynamic time
warping (DTWi) and dimension dependent dynamic time warping (DTWp) (Shokoohi-
Yekta et al., 2017). We also compare with ensembles of state-of-the-art univariate classi-
fiers that train a separate classifier over each dimension independently, such as ROCKET,
HIVE-COTE, ResNet, cBOSS, Shapelet Transform Classifier (STC) (Hills et al., 2014) and
methods based on random forests using shapelet-based and other time series features, such
as Time Series Forest (TSF) (Deng et al., 2013), Generalized Random Shapelet Forest
(gRSC) (Karlsson et al., 2016) and Canonical Interval Forest (CIF) (Middlehurst et al.,
2020a). In univariate and multivariate experiments we use the publicly reported results
from the UCR/UEA benchmark and ‘bake off’ studies (Bagnall et al., 2017, 2018; Ruiz
et al., 2020).

Dataset V] |Strain| d |S] Type
ArtWordRec 25 275 9 144 Motion
AtrialFibr 3 15 2 640 ECG
BasicMotions 4 40 6 100 HAR
CharTraject 20 1422 3 60+ Motion
Cricket 12 108 6 1197 HAR
FEigenWorms 5 128 6 17984 Motion
ERing 6 30 4 65 HAR
Epilepsy 4 137 3 206 EEG
EthanolConc 4 261 3 1751 Spectro
FingerMov 2 316 28 50 EEG
HandMovDir 4 160 10 400 EEG
LSST 14 2459 6 36  Simulated
Libras 15 180 2 45 HAR
NATOPS 6 180 24 51 HAR
RacketSports 4 151 6 30 HAR
SelfRegSCP1 2 268 6 896 EEG
SelfRegSCP2 2 200 7 1152 EEG
SWalkJump 3 12 4 2500 ECG
UWaveGestLib 8 120 3 315 HAR

Table 2: Details on 19 UCR multivariate datasets
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Parametrisation of methods

All dictionary-based methods have the same preprocessing steps which include setting an
appropriate window size for segmentation (At) and setting the word (w) and alphabet
() length for the SAX (or SFA) representation. BOP and SAX-VSM have no additional
parameters. BOSS has an additional parameter that controls if normalisation should be
applied. For mining patterns PETSC has three additional parameters, namely the number
of patterns (k), minimum length of a pattern (min_len) and a constraint on the duration
(or cohesion) of pattern occurrences (rdur). PETSC-SOFT has an additional parameter 7
to control soft matching. PETSC-DISC has an additional min_sup parameter to control the
minimal support for discriminative patterns which we set to 3. For MR-PETSC we report
the results with default parameters (i.e., w = 15, a = 4, k = 200, min_len = 5 and rdur =
1.1) and varying parameters. For all PETSC variations we set the regularisation parameters
A1 and Ag for linear regression to default values (i.e. . We remark that the implementation
and experimental scripts for PETSC are implemented using Java and Python and are open

SOUT’C€5 .

Hyper-parameter optimisation

For optimising preprocessing parameters At, w and o we use random search on a validation
set (Bergstra and Bengio, 2012). That is, we iterate through a fixed number of randomly
sampled parameter settings and keep the parameter setting with the best accuracy after
100 iterations. Here, At is randomly sampled between 10% and 100% of the time series
length. For SAX, w is between 5 and 30 and « between 3 and 12. For all PETSC variants, k
is between 500 and 2500, min_len in {0.1w, 0.2w, 0.3w, 0.4w} and rdur in {1.0,1.1,1.2,1.5}.
For PETSC-SOFT, 7 is in {1/2«, 2/2a, 3/2a}.

6.2 Effect of hyper-parameters on the accuracy of PETSC

We begin our experimental analysis by having a closer look at the effect various hyper-
parameters have on the accuracy of our algorithm.

Window and SAX parameters.
In this experiment we run PETSC on a grid with varying window, SAX word and alphabet
length on Adiac and Beef. Figure 7 shows the test error for varying w and a for PETSC
on Adiac when At is 0.5 - |S| and Beef when At is 0.1 - |S]. Default values for mining are
k = 1000, min_len = 0.3w and rdur = 1.0. First, we observe that accuracy deteriorates for
small values of either w or a. Next, we observe that for Adiac and Beef the error is minimal
for high values of o and medium values for w, or the other way around with medium values
for o and high values for w, but slightly worse if both parameters are set to high values.
In Adiac the optimal parameters result in frequent patterns of length 5 to 19 consisting
of 12 distinct symbols and cover almost half the time series (At = 0.5-|S|), which is sensible
since in Adiac time series are overall similar long sine-like waves, where subtle differences
result in a different label. In Beef the optimal parameter for At is 10% and for At = 0.25-]5]|
and At = 0.5 - |S| the minimal error (for any combination of w and «) increases with 6%

5 Source code of PETSC: https://bitbucket.org/len_feremans/petsc.
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and 10%. This suggests that short patterns are far more discriminative for this dataset and
explains the high accuracy of PETSC on this dataset.

alphabet
alphabet

3 3

10 19 28 10 19 28

Fig. 7: Impact of varying w and « on the classification error of PETSC on Adiac (left) and
Beef (right). The minimal error on Adiac is 0.299 (w = 19, a = 12 and At = 0.5 - |S]) and
0.133 on Beef (w =19, « =8 and At =0.1-|5])
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Fig. 8: Impact of varying k and min_len on the classification error of PETSC on Adiac
(left) and Beef (right). The minimal error on Adiac is 0.360 ( k = 901, min_len = 19 and
rdur = 1.0) and 0.166 on Beef (k = 701, min_len = 4 and rdur = 1.0)

min_len
min_len

Pattern mining parameters.

In this experiment we run PETSC on a grid with varying &k, minimum length and relative
duration on Adiac and Beef. Figure 8 shows the test error for varying k and min_len when
rdur is 1.0 with optimal window and SAX parameters. First, we observe that setting k too
low or min_len too high (i.e. more than w/2) results in lower accuracy. Second, we observe
that the error (for any combination of k and min_len) increases with 4% and 10% with a
relative duration of 2.0. We remark that it only took a couple of seconds to run PETSC
for each parameter setting with a maximum of 30s for high values of rdur and k and low
values of At.

Based on these and further experiments we conclude that:

— The parameter At is domain-specific and ranges from 0.1 - |S| to 0.5 - |S| and has a
severe impact on accuracy. For short time series (i.e. |[S| < 50), we set At = |S], but
this invalidates the use-case of discovering local phase-independent patterns.
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— SAX parameters a and w should be sampled together and have a severe impact on
accuracy. Too low values might degrade performance, while setting both values high
causes too much entropy.

— The parameter rdur is domain-specific and has impact on accuracy. On Adiac and Beef
a value of 1.0 works best, however, we see that on most datasets the error is lowest
if rdur is 1.1 or 1.5. If rdur is set too high (i.e., 2.0 or more) this results in degraded
performance.

— For mining, k£ has less influence on accuracy but should be set sufficiently high, i.e., 1000
is a good default value. We experimented with k& up to 5000, but this did not improve
results. Finally, min_len should be lower than w/2, but not lower than 3.

6.3 Explaining PETSC and MR-PETSC

In this section we first discuss how we can use our model for instance-based decision support
by visualising attribution and how to visualise and learn from the intrinsically interpretable
model. We also provide a use-case where we discuss techniques to reduce the number of
patterns to further improve explanations.

2.0 2.0
15 15
1.0 1.0
0.5 05
0.0 0.0
-0.5 -0.5
-1.0 -1.0

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Gun Point
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0 ]
-1 -1
2 -2
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Normal Ischemia
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0.5 0.5
0.0 0.0
05 -0.5
-1.0 -1.0
-15 -15
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Pattern A Pattern B

Fig. 9: The first two time series with different class from the GunPoint, ECG200 and
TwoPatterns dataset. We use MR-PETSC to discover patterns in different resolutions and
highlight regions that are more important for making predictions with MR-PETSC
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6.3.1 Instance-based decision support

For interpretability, we can compute the influence, or attribution of each sequential pattern
occurrence weighted by the coefficient of the linear model. We use this attribution to high-
light regions of the time series that lead to predicting each label y or not. First, we determine
for each sequential pattern X} its occurrences in the segmented SAX representation of a
time series .S;. Next, we compute the inverse transform that maps each occurrence back to
the original raw time series based on the window offset and the scaling factor At/w. Next,
we compute the attribution of a pattern at each location in \S; which is wy/support g, (Xk)
where wy, is the corresponding coefficient of pattern X in the linear model. We remark this
only includes patterns that occur at least once in S; and have a non-zero coefficient wy.
For interpretability, we make sure the intercept of the linear model (wg) is 0 and that the
embedding vector is mean-centred, such that the weights multiplied by the feature values
(feature effects) explain the contribution to the predicted outcome (Molnar, 2020). The sum
of the attribution of each pattern at each location indicates the relative importance of a
location and the sign indicates if is a positive or negative for class y. For MR-PETSC the
sum of attributions is composed of patterns at each resolution, but this does not impede
interpretation compared to PETSC, since we still employ a single linear model of patterns.
In Figure 9 we show the first two time series with different label for the GunPoint, ECG200
and TwoPatterns dataset where we highlight discriminative regions by visualising the sum
of pattern attributions at each location. In the visualisation, the colour and the thickness
of the line are determined by the sign and the absolute value of the sum of attributions. We
observe that for discriminating between the Gun-drawn and Point gestures in the GunPoint
dataset, the small dip after the main movement is discriminative for the Point gesture which
confirms existing work (Ye and Keogh, 2011; Le Nguyen et al., 2019).

6.3.2 Global explanations

PETSC learns an intrinsic sparse interpretable model, consisting of k weights wy, ... wy of
the linear model and the corresponding k sequential patterns. We can inspect this model,
visually or otherwise, and provide decision support instance-based as explained previously,
on a feature level, i.e., by rendering all occurrences of a single pattern, or globally, for
instance by rendering the most discriminative patterns directly as shown in Figure 3.

In Table 3 we show the top-5 patterns with the highest absolute weight wy in each
resolution on the Gunpoint dataset where MR-PETSC has an error of 0.04 (w = 20, a = 12,
k = 250, min_len = 6 and rdur = 1.0). We remark that there is redundancy between the
patterns and we will discuss techniques to handle this in the next section. A positive weight
and a large absolute value indicate that the first pattern is specific to class Gun, meaning the
gesture of drawing a gun and holding it, instead of pointing a finger. Note that our model
is sparse, which is beneficial for explanations (Molnar, 2020), and that the first pattern
only occurs in 8% of time series windows. We conclude that PETSC and MR-PETSC offer
a transparent model (Molnar, 2020) and enable human experts to inspect each pattern
specific to class A or B and trust decisions for any possible instance.
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At Weight Seq. Pattern Support
0.715 ejllll 0.08

-0.656 ddddddfklll 0.04

|S| -0.656 ddddddf 0.04
-0.656 ddddddfkll 0.04

-0.656 ddddddfkl 0.04

-0.796 hjkkkkkkk 0.02

-0.794 bbbbbccce 0.02

|S|/2 -0.764 bbbbbcc 0.03
-0.742 bbbbbc 0.04

0.730 bbbbbbbb 0.04

-1.000 aaaabc 0.02

-0.926 bbbbbc 0.01

|S|/4 0.799 eeeeeeeeee 0.01
0.793 ccceceecce 0.04

-0.749 ddcccee 0.01

Table 3: Top-5 most discriminative patterns for each resolution of MR-PETSC for Gunpoint

6.3.3 Interpretation use-case

While the SAX representation is interpretable, as are the resulting sequential patterns, it
is not obvious how to explain real-world use-cases, especially since MR-PETSC discovers
thousands of patterns in multiple resolutions. Therefore we further illustrate this based on a
use-case. We consider the BeetleFly dataset from the UCR/UEA benchmark. The BeetleFly
dataset consists of 20 training images of either a beetle or fly transformed to a time series

as illustrated in Figure 10.

ey
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Fig. 10: Top figure shows instances of the BeetleFly and BirdChicken datasets. Bottom
figure illustrates the outline of a beetle represented as a time series where a subsequence is
highlighted in blue (Hills et al., 2014). With optimised pre-processing parameters and after
removing redundant patterns based on Jaccard similarity PETSC achieves an accuracy of
80% and the model consists of a single subsequence which can subsequently be highlighted
in each image outline to facilitate trivial interpretation.
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Identifying optimal hyper-parameters

We used a random search to identify that the optimal SAX representation consists of 12
bins (o = 12) and words of size 30 (w = 30). For pattern mining the optimal parameters
are k = 1000, min_len = 8 and rdur = 1.0. Note that using random search we identified
multiple parameter settings at which the error on the validation set was 0.0. The total
time for running MR-PETSC 100 times with random parameters was 10 minutes using 8
cores. Note that using our open-source code it is easy to identify optimal parameters using
random search on a validation set (using multiple threads) and then run the method with
the optimal parameters on the test set.

Accuracy

We find that MR-PETSC achieves state-of-the-art performance with a large relative in-
crease over ROCKET on many datasets originating from the shapelet tranformation method
(Hills et al., 2014), such as BeetleFly where the accuracy is 100%. Shapelets and sequen-
tial patterns are both based on rotational-invariant subsequences, so it is not surprising
that both approaches work well on similar datasets. The relative improvements achieved by
MR-PETSC over ROCKET on such datasets is significant, i.e., BeetleFly (+13%), Herring
(+12%), Lightning2 (+12%), CinCECGTorso (+10%), FaceFour (+7%) and BirdChicken
(+2%).

Multi-resolution pattern visualisation

The benefit of our model is that at each resolution we have the sequence of symbols of each
pattern. Moreover, we can match each sequential pattern to the time series and inspect the
individual occurrences. In Figure 11 we show 4 resolutions of the same time series of a fly
and a beetle. With a window of 512 the window size is equal to the time series length. In the
last subfigure each window has size 64 or 1/8 of the time series. Remark that by using the
same SAX parameters on different windows results in more fine-grained patterns matching
more closely a shorter piece of the time series. For visualisation purposes we normalise the
entire time series instead of applying window-level normalisation.

NV DUBABUWAALY ﬂ 4
[\ N WM VAL N

Fig. 11: Example of two time series of a fly and a beetle using a window of 512 (= |S]), 256,
128 and 64. Note that by using the same SAX parameters on different windows results in
more fine-grained patterns matching more closely a shorter piece of the time series
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Reducing the number of patterns

A problem is that by having 4 resolutions with 1000 patterns each, interpretation becomes
difficult. We propose to reduce the number of varying length patterns in each resolution
significantly by removing redundant patterns, thereby removing patterns while maintaining
high accuracy. Pattern redundancy has been extensively studied in the pattern mining com-
munity (Han and Kamber, 2006; Aggarwal and Han, 2014). We chose to remove redundant
patterns based on Jaccard similarity, defined as:

cover(X1,8%) n cover(Xa,S*)

~ d(X1, X2,8%) = '
Jaccard(X1, Xo,8%) cover(X1,S%) U cover(Xa, S*)

Next we create a non-redundant pattern set Pfy such that no two patterns in the set have
Jaccard similarity higher than -, that is we add X; to Pfy if and only if 3X; € ”P,’Y :
i # j A jaccard(X;, X;,S8%) > ~. For instance, with v = 0.9 we remove patterns where
90% of occurrences overlap. The Jaccard similarity is of particular interest because of the
sliding window-based preprocessing which results in many patterns that overlap within a
small delay, i.e., given the SAX sequences (a,a,a,b,b) and (a,a,b,b,b) we have frequent
sequential patterns X7 = (a,a), X2 = (a,b), X3 = (b,b) and X4 = (a,a,b,b) which all make
each other redundant, and it is safe to remove all but one of them.

The number of patterns after filtering on BeetleFly are shown in Table 4. We also show
the number of patterns with a non-zero weight after training the linear model using an
elastic net (see Section 4.4). We observe that, when the window size is set to 512, 256 or
32 the number of patterns that are non-redundant w.r.t. v = 0.9 becomes very small. In

Window |P| non-zero [P’ |v=1.0 [P’ |y=0.9 [P’ |y=0.5
weight

512 1000 1000 20 20 20

256 1000 998 73 73 26

128 1000 997 714 641 70

64 1000 995 477 286 10

32 1000 998 142 75 1

Table 4: Number of non-redundant patterns in BeetleFly in each resolution. The setting for
~ that results in the lowest number of patterns is considered best and shown in bold, the
second best setting is underlined

Window P Pl_1o Pl o9 Pl o5
512 0.500 0.500 0.500 0.500

256 0.450 0.400 0.400 0.250

128 0.250 0.200 0.200 0.250

64 0.100 0.150 0.050 0.250

32 0.150 0.100 0.100 0.200
Combined 0.05 0.05 0.100 0.250

Table 5: Error after filtering non-redundant patterns in BeetleFly for different window sizes
and values of v and by combining patterns in all windows. The setting with the lowest
error is shown in bold, the second best settings are underlined. The best result misclassifies
only 1/20 test instances using 286 patterns. However, using just a single pattern we have a
setting that misclassifies only 4/20 test instances
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Table 5 we show the corresponding error of PETSC for each setting for different values of
~v. We observe that on BeetleFly using the complete series with a window size of 512 results
in an error of 0.5, which is meaningless since we only have two classes (we also observe
this when plotting the attribution since the mean attribution accumulates to zero). The
lowest error is 0.05 when the window is 64 and v is 0.9, meaning that 1/20 time series is
misclassified. Using a window of 32 and 7 equal to 0.5 we have a single pattern and only
misclassify 4/20 time series, which is interesting. We remark that we can further reduce the
number of patterns by increasing the regularisation weights A(; 21 (see Section 4.4).

Interpretation of outline images

For interpretation of the BeetleFly patterns, we created a version of the dataset starting
from the original images enabling us to render pattern occurrences in the original 2D space
for easy interpretation®. We applied the radial distance method to convert the original
MPEG-7 images to time series (Bober, 2001; Adamek and O’Connor, 2003). That is, we
extract the outline and then compute the distance between the centre and each point in
the outline.
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Fig. 12: Visualisation of the top-20 patterns on the BeetleFly dataset where we have an
accuracy of 0.85 meaning 3/20 test images are misclassified. We show the top-20 patterns
with the highest weight, where blue patterns are discriminative for beetles (i.e., part of
legs) and red patterns for flies (i.e., part of wings). Here, each image is first converted to
a time series using the radial distance method. For classification we learn a linear model
using PETSC and subsequently remove redundant patterns resulting in 38 patterns. For
visualisation we map each pattern occurrence from the SAX representation to the original
time series and then back to the original 2D outline

6 We remark that there are differences in our creation of BeetleFly dataset compared to the UCR version
due to small changes in the pre-processing of the original MPEG-7 source images.
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First we run PETSC with parameters as discussed previously (window = 64, w = 30,
a =10, k = 1000, min_len = 8, rdur = 1) thereby discovering 315 frequent patterns with a
non-zero weight. Using this setting 15/20 images are correctly classified. Next, we remove
redundant patterns using a Jaccard similarity threshold of 0.5 resulting in 119 patterns
of which only 38 have a non-zero weight. Surprisingly, the accuracy increases to 17/20 in
this case. Finally we render each pattern in the original representation. First, we compute
occurrences of each pattern in the SAX-based sliding window representation. Next, we map
each occurrence to the original time series representation and then back to the outline. The
top-20 patterns with the highest weight are shown in Figure 12. We observe that patterns
correspond to important discriminative features such as the legs of a beetle or the wings of a
fly. We remark that a similar approach can be used to visualise the top-20 (non-redundant)
patterns discovered in multiple resolutions using MR-PETSC.

We find that by reducing the number of patterns using a threshold on Jaccard similarity
we can drastically filter the number of patterns and make the model extremely comprehen-
sible. However, often a larger amount of patterns may result in higher accuracy, so there a
trade-off to be made between model complexity and accuracy as is expected. We find that
by removing redundant patterns it is straightforward to make a trade-off between model
comprehension and accuracy.

6.4 Comparing PETSC variants
6.4.1 Comparing accuracy of PETSC variants

In this experiment, we compare the accuracy of PETSC with PETSC-SOFT, PETSC-DISC
and MR-PETSC. We also compare with BOP, since the fixed-length SAX sequences used
by BOP are a special case of the patterns in PETSC, i.e., if we set rdur to 1.0, min_len to
w and k to a large number (to include all patterns with a support greater than 0), PETSC
and BOP produce the same patterns and embedding. To avoid that results are biased by
the random search for hyper-parameter optimisation for BOP, PETSC and its variants we
employ cross-validation and report the mean error on the publicly available train/test split
pairs after 5 runs.

Table 6 shows the error on 19 univariate datasets. We see that some methods work
better on some datasets. However, overall MR-PETSC produces the lowest average error.
Moreover, even with default parameters MR-PETSC has an average error of only 0.139,
which is lower than other variants even with optimised parameters. By considering varying
length patterns PETSC (and all its variants) outperforms BOP by +3%. By considering
patterns of both varying length and resolution, MR-PETSC outperforms BOP by +6.5%.
When comparing PETSC with PETSC-SOFT we observe that near matching patterns
results in best results on 5/19 datasets which is promising. The results for PETSC-DISC
are on par with PETSC, however on datasets such as GunPoint and TwoPatterns where
the presence of clear local patterns is well known, PETSC-DISC performs slightly better.
However, on other datasets PETSC is better which would suggest that frequent cohesive
sequential patterns are as useful as sequential patterns with high contrast. To limit the
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number of experiments, we only compare MR-PETSC with the state-of-the-art methods. We
decided not to study all possible combinations, i.e., using multiresolution or discriminative
patterns in combination with support,, for constructing the embedding, or combining
discriminative patterns mined in different resolutions.

6.4.2 Comparing execution time of PETSC variants

In this experiment, we compare the execution time of BOP, PETSC and its variants. We in-
cluded time for both training and testing using random search with 100 iterations and report

Dataset BOP PETSC PETSC- PETSC- MR-

SOFT DISC PETSC
Adiac 0.403 0.398 0.391 0.420 0.375
Beef 0.367 0.360 0.287 0.373 0.287
CBF 0.033 0.026 0.014 0.019 0.017
Coffee 0.064 0.057 0.064 0.079 0.043
ECG200 0.198 0.184 0.153 0.184 0.178
FaceAll 0.252 0.257 0.240 0.265 0.225
FaceFour 0.123 0.030 0.050 0.032 0.005
Fish 0.112 0.064 0.069 0.097 0.026
GunPoint 0.027 0.076 0.028 0.059 0.063
Lightning2 0.298 0.266 0.256 0.295 0.203
Lightning7 0.466 0.301 0.356 0.332 0.266
OSULeaf 0.328 0.207 0.146 0.188 0.036
OliveOil 0.167 0.142 0.313 0.120 0.047
SwedishLeaf 0.250 0.140 0.154 0.158 0.108
SyntheticControl 0.031 0.022 0.027 0.034 0.029
Trace 0.014 0.006 0.004 0.004 0.004
TwoPatterns 0.034 0.018 0.006 0.015 0.024
Wafer 0.008 0.014 0.008 0.011 0.005
Yoga 0.178 0.217 0.205 0.219 0.188
avg. error 0.177 0.147 0.146 0.153 0.112
avg. rank 4.0 3.1 2.4 3.6 1.6

Table 6: Classification error of BOP, PETSC and its variants on 19 univariate time series
from the UCR. PETSC and its variants outperform BOP on most datasets

Dataset BOP PETSC PETSC- PETSC- MR-

SOFT DISC PETSC
FaceAll 2047 1071 1279 1859 6400
TwoPatterns 6313 1272 1957 1961 4683
Wafer 1350 1076 2135 1578 3920
Yoga 1108 1709 1927 2120 10052
avg. time 786 619 836 1065 3976
total. time 14938 11763 15 886 20240 75548

Table 7: Runtime in seconds of BOP, PETSC and its variants on the four largest datasets,
and average and total runtimes on all 19 univariate datasets from the UCR archive (average
over 100 runs using random search)
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the mean and total time after 5 runs. The execution times are reported in Table 7 where we
report individual results on the 4 largest datasets. We observe that PETSC is faster than
BOP. Considering that PETSC creates variable length patterns thereby covering, in theory,
an exponentially large search space, this is surprising. However, BOP requires the nearest
neighbour search at test time which explains why it starts to slow down on datasets with
many instances, e.g., on TwoPatterns which consists of 1000 training instances. Compared
to PETSC, PETSC-SOFT is a slower because we must use the naive algorithm for comput-
ing the embedding using support,,n. In contrast, PETSC uses a more efficient algorithm
for computing the embedding based on support,,,, thereby leveraging sparse optimisations.
Finally, MR-PETSC runs PETSC at most log(|.S|) times and is about 7 times slower than
PETSC. We conclude that all PETSC variants are extremely efficient in absolute time.
MR-PETSC takes on average 1.1h to run 100 random parameter settings and the total
time on all 19 datasets is 3.2h for PETSC and 20.9 hours for MR-PETSC using a single
core.

6.5 Comparing against state-of-the-art methods

In this section, we compare our algorithm to a variety of existing classifiers in terms of
accuracy and runtime on both univariate and multivariate datasets. To avoid congested
figures and huge tables, we report a selection of comparisons here, while the complete raw
experimental results are available at our website’.

6.5.1 Comparing accuracy on univariate datasets

In this experiment we compare MR-PETSC against comparable interpretable base learners
and current state-of-the-art methods, such as HIVE-COTE, ROCKET, TS-CHIEF and
InceptionTime. Hyper-parameters for MR-PETSC were optimised using random search
with 100 iterations on a validation set. Since MR-PETSC often finds multiple parameter
settings at which the error is 0.0 on the validation set, we ran the parameter optimisation
3 times and report the best of 3 runs thereby assuming an Oracle. For all state-of-the-
art methods we use the reported results available from the UCR archive (Bagnall et al.,
2017; Dau et al., 2018). If no data was available, we ran experiments ourselves using sktime
(Loning et al.).

The results are shown in Figure 13 where we compare the average rank of MR-PETSC
with other methods on 85 ‘bake off” datasets of the UCR archive using a critical difference
diagram. Tests are performed with the Wilcoxon signed-rank test using the Holm correction
(Demsar, 2006). We see that MR-PETSC outperforms baseline methods such DTW, BOP
and SAX-VSM. MR-PETSC performs comparably to MR-SEQL, ¢cBOSS, BOSS, S-BOSS,
ProximityForest and ResNet, but ranks significantly lower than the current state-of-the-art
methods Inceptiontime, TS-CHIEF, ROCKET and HIVE-COTE, none of which are inter-
pretable. In Figure 14 we compare the accuracy of MR-PETSC with ROCKET, ResNET,
BOSS and MR-SEQL on a subset of UCR/UEA datasets where both methods produced
results. MR-PETSC outperforms ROCKET on 32/109 datasets (ROCKET does better on

7 Full experimental results: https://bitbucket.org/len_feremans/petsc/src/master/Results.html
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Fig. 13: Average rank of MR-PETSC compared to 13 time series classification methods on
a subset of the 85 "bake off” univariate datasets. A solid bar indicates there is no significant
difference in rank. The top clique of four classifiers represent the current state-of-the-art
(Dau et al., 2018).
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Fig. 14: Comparison of accuracy between MR-PETSC and 4 univariate methods. Each dot
is one of the (at most) 112 univariate datasets from the UCR/UEA repository. A dot below
the diagonal line indicates MR-PETSC is more accurate

64/109 datasets, while the others were ties), ResNET on 42/112 datasets, BOSS on 50/112
datasets and MR-SEQL on 31/85 datasets. This shows that while ROCKET ranks sig-
nificantly higher on average, MR-PETSC still outperforms ROCKET on 29% of datasets,
which is excellent for an interpretable method. Finally, in Table 8 we report details on 19
univariate datasets from the UCR archive. On 9 out of 19 datasets MR-PETSC reports the
best results compared to DTW, BOP, SAX-VSM and BOSS. Even with suboptimal default
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parameters MR-PETSC has an average error of 0.129 which is lower than other methods
except BOSS.

Dataset MR- DTW BOP SAX-VSM BOSS
PETSC
Adiac 0.350 0.376 0.408 0.543 0.251
Beef 0.200 0.533 0.497 0.504 0.385
CBF 0.013 0.007 0.037 0.042 0.002
Coffee 0.000 0.214 0.056 0.062 0.011
ECG200 0.110 0.120 0.214 0.165 0.110
FaceAll 0.225 0.189 0.061 0.035 0.026
FaceFour 0.000 0.024 0.052 0.057 0.004
Fish 0.017 0.051 0.109 0.059 0.031
GunPoint 0.020 0.013 0.030 0.041 0.006
Lightning2 0.230 0.213 0.303 0.256 0.190
Lightning7 0.247 0.247 0.447 0.404 0.334
OliveOil 0.067 0.167 0.153 0.154 0.130
OSULeaf 0.029 0.248 0.300 0.140 0.033
SyntheticControl 0.020 0.023 0.074 0.131 0.032
SwedishLeaf 0.112 0.102 0.216 0.294 0.082
Trace 0.000 0.050 0.023 0.008 0.000
TwoPatterns 0.021 0.001 0.056 0.111 0.009
Wafer 0.008 0.004 0.003 0.004 0.001
Yoga 0.176 0.130 0.138 0.164 0.090
avg. error 0.097 0.142 0.167 0.167 0.090
avg. rank 2.3 3.1 3.9 4.1 1.6

Table 8: Classification error of MR-PETSC compared to DTW, BOP, SAX-VSM and BOSS
on 19 univariate time series from the UCR archive. We observe that MR-PETSC improves
on both BOP and SAX-VSM and is not significantly worse than BOSS

6.5.2 Comparing execution time on univariate datasets

In a first experiment, we compare the execution time of MR-PETSC with DTW and BOSS.
The average execution time for training and making predictions on the 19 UCR datasets
is 16s for DTW, 34s for MR-PETSC and 2218s for BOSS®. BOSS takes minutes or hours
where both MR-PETSC and DTW require seconds or minutes to complete. DTW is overall
faster, but MR-PETSC is 30% faster than DTW on the two largest datasets consisting of
a 1000 training instances, that is, on TwoPatterns and Wafer DTW took 94s and 151s,
while MR-PETSC took 69s and 107s. We remark that our implementation is partially in
Java and Python and that we do no take advantage of low-level optimisations available in
CH++.

In a second experiment we ran MR-PETSC with default parameter settings on the 85
‘bake off’ datasets of the UCR archive one by one using a single core. We compare the
total execution time of both training and testing and compare with recent state-of-the-art

8 We use the implementations available in the sktime library (Léning et al.).
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methods focusing on faster training, namely ROCKET, cBOSS which is an optimisation of
BOSS, MR-SEQL, MiSTiCl, InceptionTime, Proximity Forest and TS-CHIEF. In Table 9
we show the results. We see that ROCKET is faster since it took 1.4 hours to complete,
while MR-PETSC took 2.7 hours to complete. However, MR-PETSC is substantially faster
than other aforementioned methods.

ROCKET MR- cBoss  MiSTiCL MR-SEQL  INCEPTION PROXIMITY TS-CHIEF
PETSC TIME FOREST
total 1.4h 2.7h 19.5h 20.2h 23.7h 6d 11d 11d

time

Table 9: Total execution time in hours for training and predictions on all 85 ‘bake off’
UCR/UEA datasets for MR-PETSC and state-of-the-art methods (Dempster et al., 2020)

6.5.3 Comparing accuracy on multivariate datasets

In this experiment we compare MR-PETSC with baseline distance-based methods and
current state-of-the-art multivariate time series classification methods such as HIVE-COTE,
ROCKET, CIF and ResNet (Ruiz et al., 2020). For optimising hyper-parameters for MR-
PETSC we used grid search and report the best results after evaluating 27 parameter
settings, w in {10,15,20}, « in {4,8,12} and rdur in {1.0,1.1,1.5} and assume an Oracle
that selects the best parameters settings. On large datasets we chose default parameters.
For all state-of-the-art methods we used the reported results available from Ruiz et al.
(2020) or ran experiments ourselves using sktime (Loning et al.) if no data was available.
The results are shown in Figure 15 where we compare the average rank of MR-PETSC
with other methods on 26 ‘bake off” multivariate datasets using a critical difference dia-
gram. We observe that MR-PETSC is ranked above the state-of-the-art method ResNet
and performs significantly better than DTW;. ROCKET is ranked first and is significantly
better than DTWp, RISE, ¢cBOSS, TSF, DTWp and gRSF, but not significantly better
than CIF, HIVE-COTE, MR-PETSC, ResNET and STC. In Figure 16 we compare the

12 11 10 6 5 4 3 2 1
L | ] PN I T [ T N T |
DTW_| 88462 I'I_l-l'l-|—373°8 ROCKET
RISE 2202 L% HIVE.COTE
CB(?rng: 7.7500 5.1346 MR_PETSC
DTW_D 7.0769 5.9615 ReSNet
gRSF 7.0385 6.3077 STC

Fig. 15: Average rank of MR-PETSC compared to 11 time series classification methods on
26 ’'bake off’ equal-length multivariate datasets. A solid bar indicates there is no significant
difference in rank. In previous studies, the state-of-the-art methods were ROCKET, HIVE-
COTE, CIF and ResNet (Ruiz et al., 2020)
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Fig. 16: Comparison of accuracy between MR-PETSC and 4 multivariate methods. Each
dot is one of the 26 ‘bake off” multivariate datasets. A dot below the diagonal line indicates
MR-PETSC is more accurate

accuracy of MR-PETSC with ROCKET, ResNET, DTWp and DTW;j on 26 datasets. We
observe that MR-PETSC outperforms ROCKET 10/26 datasets (ROCKET does better on
15/26 datasets with one tie), ResNET on 16 datasets, DTWp on 17 datasets and DTWj
on 23 datasets. We conclude that our interpretable method produces comparable results to
the best-performing state-of-the-art methods, all of which are non-interpretable.

Table 10 shows the error on 19 multivariate datasets for both MR-PETSC and distance-
based baselines on 19 multivariate datasets. We observe that distance-based methods work
better on some datasets, e.g., on LSST the error is 1.5% lower and on Libras the error is
4.9% lower, possibly since for these datasets |S| is quite small. However, on 14/19 datasets
the inverse is true and on ERing the error drops by more than 80% and on EthanolConc
by more than 20% compared to the best distance-based approach. This suggests that for
these datasets using whole time series distances is less useful as a feature and there is a
clear benefit in using local sequential pattern occurrences as features. We conclude that
MR-PETSC improves on distance-based baselines on multivariate datasets and is not sig-
nificantly worse than current state-of-the-art methods. We remark that even with default
parameters MR-PETSC has an average error of 0.329 and is still on par with distance-based
approaches.
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Dataset MR- 1-NN ED 1-NN 1-NN

PETSC DTW| DTWp
ArtWordRec 0.003 0.030 0.020 0.013
AtrialFibr 0.600 0.733 0.733 0.800
BasicMotions 0.000 0.325 0.000 0.025
CharTraject 0.059 0.036 0.031 0.010
Cricket 0.000 0.056 0.014 0.000
ERing 0.055 0.867 0.867 0.867
FEigenWorms 0.229 0.450 0.450 0.382
Epilepsy 0.000 0.333 0.022 0.036
EthanolConc 0.445 0.707 0.696 0.677
FingerMov 0.390 0.450 0.480 0.470
HandMovDir 0.662 0.721 0.694 0.769
LSST 0.440 0.544 0.425 0.449
Libras 0.155 0.167 0.106 0.128
NATOPS 0.083 0.150 0.150 0.117
RacketSports 0.092 0.132 0.158 0.197
SelfRegSCP1 0.212 0.229 0.235 0.225
SelfRegSCP2 0.467 0.517 0.467 0.461
SWalkJump 0.600 0.800 0.667 0.800
UWaveGestLib 0.200 0.119 0.131 0.097
avg. error 0.245 0.388 0.334 0.343
avg. rank 1.5 3.1 2.5 2.4

Table 10: Classification error of MR-PETSC compared to distance-based baseline methods
1-NN ED, 1-NN DTW; and 1-NN DTWp on 19 multivariate time series from the UCR.
MR-PETSC outperforms distance-based baseline methods

6.5.4 Comparing execution time on multivariate datasets

In this experiment we compare MR-PETSC with distance-based approaches on multivariate
datasets. On most of the 19 multivariate UCR datasets MR-PETSC requires a couple of
seconds or minutes and is slower than DTW if the number of instances is low. We remark
that on SelfReg(ulation)SCP1 we ran out of memory using a limit of at most 8GB, using
the hardest parameters setting during grid search, i.e. w = 15, a = 12, rdur = 1.5 and
min_len = 5. On Eigen Worms MR-PETSC took about 3 hours to process 262MB of data
in sktime format. Figen Worms consists of 128 instances, but each instance consists of 6
dimensions of length 17984. Segmenting long time series with a small window results in
large sequential databases making MR-PETSC slower. However, since the pattern mining
algorithms employ a depth-first strategy, they are memory efficient. To validate MR-PETSC
performance on large datasets we ran it on FaceDetection (|S| = 5890, d = 144, |S| = 62,
file_size = 804MB), PEMS-SF (|S| = 267, d = 963, |S| = 144, file_size = 420MB) and
MotorImagery (|S| = 278, d = 64, |S| ~ 1000, file_size = 537TMB) and the total execution
time was respectively 1.5h, 1.8h and 7.5h using a single core. We remark that Bagnall
et al. (2018) did not report results of DTW on EigenWorms or FaceDetection since it
did not complete in time for publication. Ruiz et al. (2020) also report missing values for
HIVE-COTE, DTWp, gRSF, RestNet, MR-SEQL and RISE due to out-of-memory issues
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or failing to finish within a copious 7 day limit. We conclude that MR-PETSC successfully
scales to very large multivariate time series datasets.

7 Conclusions

PETSC leverages decades of research into pattern mining to discover long cohesive sequen-
tial patterns. We have shown that varying length sequential patterns with gaps are a new
type of important feature in time series classification. Additionally, we studied soft sup-
port of patterns to deal with discretisation errors and direct mining of sequential patterns
with the highest contrast. We find that MR-PETSC, that combines PETSC on different
resolutions, is the best performing variant. On univariate datasets, MR-PETSC is more
accurate than related interpretable dictionary-based methods, such as BOP and SAX-VSM
and is on a par with MR-SEQL. More importantly, MR-PETSC achieves comparable per-
formance to recent non-interpretable methods, such as BOSS, cBOSS, S-BOSS, Proximity-
Forest and ResNet, but is narrowly outperformed by the current state-of-the-art methods
InceptionTime, TS-CHIEF, ROCKET and HIVE-COTE, none of which are interpretable.
On multivariate datasets MR-PETSC does even better, and achieves performance that is
not significantly different than that of non-interpretable state-of-the-art such as ROCKET,
CIF and HIVE-COTE.

In the design of MR-PETSC we use the same parameters for the SAX representation
and pattern mining in its ensemble and combine only a small number of base PETSC
learners in different resolutions (typically fewer than 10). In contrast to state-of-the-art
methods our predictions are easy to interpret, enabling us to highlight important patterns
for predicting time series or to inspect local discriminative patterns. We have shown how
our model enables instance-based decision support by visualising attribution and presented
a use-case where we reduce the number of patterns and enable human oversight of our
intrinsically interpretable model before making any decision.

Moreover, MR-PETSC consists of efficient algorithms to discover patterns, create the
embedding and train a linear model for making final predictions. On univariate time series
the runtime performance of MR-PETSC is slightly slower than that of ROCKET by taking
2.7 hours to complete on the 85 ‘bake off” datasets, but still orders of magnitude faster than
BOSS, TS-CHIEF, HIVE-COTE and about 5 times faster than ¢cBOSS and MR-SEQL. MR-
PETSC scales to large multivariate time series between 200 and 800MB where it completes
training and predictions in hours using a single core while improving on accuracy compared
to baseline distance-based methods and performing comparably to state-of-the-art in terms
of accuracy.

Since PETSC builds upon pattern mining, it naturally handles a large variety of time
series formats, including both univariate, multivariate and mixed-type time series of varying
length and containing missing data or non-contiguous sampling. Additionally, the linear
model and sequential patterns discovered in the time domain, allow for predictions that
are fully interpretable and explainable, which is essential in many domains and a cause of
growing concern in recent times. This is in contrast with existing methods with comparable
accuracy and speed that rely on difficult to interpret techniques such as random forests,
SFA-based representations, deep learning or large heterogeneous ensembles thereof. For
future work we want to investigate applications, such as resource-constrained classification
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of time series from IoT devices that contain both continuous sensor values and discrete
events.
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