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ABSTRACT
Recommender systems are typically evaluated in an offline setting.
A subset of the available user-item interactions is sampled to serve
as test set, and some model trained on the remaining data points
is then evaluated on its performance to predict which interactions
were left out. Alternatively, in an online evaluation setting, multiple
versions of the system are deployed and various metrics for those
systems are recorded. Systems that score better on these metrics,
are then typically preferred. Online evaluation is effective, but
inefficient for a number of reasons. Offline evaluation is much more
efficient, but current methodologies often fail to accurately predict
online performance. In this work, we identify three ways to improve
and extend current work on offline evaluation methodologies. More
specifically, we believe there is much room for improvement in
temporal evaluation, off-policy evaluation, and moving beyond
using just clicks to evaluate performance.
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1 INTRODUCTION
Traditionally, recommender systems research focused on rating
prediction from explicit feedback. The best known example of this
setting is probably the Netflix Prize competition, where researchers
were challenged to predict which ratings users had given to certain
movies, based on millions of other user-item-rating triplets [3].
User-item pairs that were predicted to have high ratings, were then
assumed to make up good recommendations. In recent years, a shift
has occurred towards item prediction from implicit feedback [15,
29, 31, 38]. These systems no longer rely on a set of explicitly
generated ratings, but can learn to infer personal preferences from
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logged feedback such as click behaviour on a newswebsite, listening
behaviour on a music streaming service, video watches on video
streaming websites, and many more. As logged feedback is much
easier to obtain than explicit ratings, these systems are gaining
more and more popularity. Netflix has even moved on from their
star rating system, favouring binary preference expressions [11].

Implicit-feedback recommender systems can be evaluated either
off- or on-line. In the offline setting, the data is split into a training
and testing subset, as is often the case in classical supervised learn-
ing contexts. Models learn from the training set, and are evaluated
on their ability to predict the samples that are part of the test set.
Those models that perform best on some chosen metric, are then
assumed to be the optimal performers in an online setting as well.
Online evaluation methods often relate to some form of A/B-testing:
multiple different models are deployed, and their performance is
measured according to some Key Performance Indicator (KPI), such
as click-through rate (CTR), sales revenue, dwell time, retention
rate, and so on. The biggest advantage of online evaluation methods
is that they are very effective: interaction between users and the sys-
tems is directly measured, and if done properly, online experiments
provide a fair and unambiguous view of system performance. They
are, however, much more expensive than offline alternatives for a
number of reasons [1, 10, 33]. Because of this, offline evaluation
methods that can accurately predict online performance remain
imperative. However, multiple recent works show time and again
that offline evaluation results from traditional procedures are often
contradictory compared to the results of live A/B-tests [2, 9, 32].
The scientific aspirations of this research are to identify which as-
pects are at the root cause of the fact that current offline evaluation
procedures are often ineffective, and alleviate these aspects during
the training as well as the evaluation phase of live recommender
system deployment. Specifically, we wish to research novel offline
evaluation procedures that are much more tightly coupled with the
inherent characteristics of these live recommender systems, such
as dynamic deployment, user interaction, temporal information,
and self-induced presentation bias in the data. The rest of this work
broadly corresponds to the following research questions:

(1) What is the importance and the role of temporal informa-
tion in an offline evaluation stage? How do we handle the
sequential order of events and the absolute time between
interactions and predictions correctly?

(2) What impact does a live recommender system, in place dur-
ing data collection, have on the resulting logged feedback?
How do we mitigate biases they induce?

(3) Can we use more information about user (in-)activity, be-
yond just clicks, during the offline evaluation process? How
do we exploit information about impressions, dwell time,
scrolling,. . . to effectively distinguish between missing and
negative feedback?
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2 TEMPORAL EVALUATION
In its simplest form, supervised learning systems are evaluated on a
hold-out test set. A subset of the available data is randomly sampled
and held out when training amodel. Then, themodel is evaluated on
its performance when predicting the labels for the unseen, held-out
test set. k-fold cross validation and bootstrap sampling are the most
well known and widely used methods [20]. As the recommender
systems field emerged from the broader machine learning field,
adaptations specific to the recommender systems use case were
proposed. Leave-one-out cross-validation (LOOCV) is a commonly
recurring scheme in the literature, where one item for every user is
randomly sampled to be part of the test set. The training set then
consists of all remaining user-item pairs. Every model generates a
set of top-N recommendations, and those that can rank the missing
sampled items highest in the set of recommendations are assumed
to be the best performers in an online environment as well. This
process is repeated with different random seeds and samples, and
results are averaged in an attempt to reduce variance from different
runs. While this technique has been used widely and recently to
present new models as the state of the art [7, 8, 13, 24–27, 41, 43], it
entirely disregards the sequential nature of user-item interactions. It
should come as no surprise that positively rewarding the prediction
of past interactions from future data leads to a distorted picture of
algorithmic performance in an online environment. Because of this,
temporal evaluation has recently gained traction as well [17, 18, 39].
Zhao et al. [44] use a temporal leave-one-out scheme that we will
refer to as last-one-out: instead of randomly sampling an item for
every user, the last item is left out for every user. By doing this, no
information about future preferences of a user can be used by the
model when generating recommendations for said user, avoiding
look-ahead bias. However, as the model is still trained on future
interactions from other users, time-constraints remain violated and
biases remain inevitable. Li et al. [23] propose an evaluation protocol
called replay, aimed towards contextual-bandit news recommenders.
Their work is extended into StreamingRec, a recently introduced
offline evaluation framework for news recommenders [18]. They
focus on model recency and incremental updates, which are of vital
importance in the news domain. Nevertheless, incremental learning
is not trivial for many state-of-the-art algorithms, nor is it always
necessary. Further work for broader recommendation domains still
needs to be conducted.

A novel temporal evaluation technique was proposed by Jeunen
et al. [17], using a sliding window technique to adhere to the chrono-
logical ordering of interactions in the data, and aggregatingmultiple
measurements to provide a robust estimate (Sliding-Window Evalu-
ation, or SW-EVAL). The authors show that taking the sequentiality
of the data into account at evaluation time has a significant impact
on evaluation results, in terms of (1) absolute values of evaluation
metrics, (2) ratios of evaluation metric values among competing
algorithms, and (3) rankings of evaluation metric values among
competing algorithms. Figure 1 provides some visual intuition into
the differences of these methods. Here, u,v ∈ U are users and
a,b, c,d, e ∈ I are items they have interacted with. The x-axis
represents time. In this trivial example, the test windows used by
SW-EVAL hold only one interaction per user. However, this pa-
rameter t∆ can be tuned freely. We find that SW-EVAL has room
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Figure 1: A visual representation of the differences between
several offline evaluation procedures. u,v ∈ U are users,
a,b, c,d, e ∈ I are items they have interacted with, and the
x-axis represents time.

for several extensions which could prove beneficial as future work.
Currently, all user-item interactions that occur within the test win-
dow are taken into account with equal importance, and those that
occur later are entirely ignored. Because of this, the impact of the
window size t∆ should be further investigated. Furthermore, a dis-
counted importance function could be used to place higher weight
on interactions that occur near the prediction time (i.e. the start of
the test window), and lower weight on interactions that occur later
in time. Additionally, until now, SW-EVAL has only been evaluated
on a single dataset, with a modest selection of traditional baseline
algorithms and the Recall@k metric. More thorough analysis needs
to be done, by exploring the impact temporal evaluation has on
clearly time-dependent use-cases (e.g. news recommendation) ver-
sus those that might seem less time-dependent on first look (e.g.
movie recommendation). We wish to investigate the impact on var-
ious types of metrics as well, such as Mean Reciprocal Rank (MRR)
or Normalised Discounted Cumulative Gain (NDCG). Finally, to
validate the effectiveness of the evaluation procedure, a correlation
study comparing results with those obtained from live A/B-tests
needs to be conducted as well.

3 DEBIASING LOGGED FEEDBACK
Most recommender systems datasets are collected from logged
user-item interactions on some website: be it e-commerce, news,
media, and so on. Moreover, most of these websites have some
form of live recommender system running that influences user be-
haviour. As user behaviour is logged after these users have been
exposed to algorithmic recommendations, this generates severe
biases in the resulting datasets [5, 36]. When these datasets are
subsequently used to train models that are in turn deployed on the
website, vicious feedback loops can occur [34]. The biases present
in these datasets pose a significant challenge when the data is used
to evaluate other competing algorithms in an offline manner. Un-
der the presence of A/B tests, where multiple algorithms influence
behaviour for different subsets of the data [1], or for fast-changing
environments that suffer from concept drift [16], these issues be-
come even more poignant. This problem of predicting how a certain
algorithm would have performed when we only have data that orig-
inates from a different algorithm, is a specific instance of the more
general problem of counterfactual evaluation in the reinforcement
learning literature. Importance weighting or inverse propensity
scoring (IPS) is a well-known statistical technique, often used in
these types of situations [4]. In this setting, a stochastic logging
policy π0 is assumed, that assigns a probability to an action, given
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some context: π0(i |x). Here, the action corresponds to recommend-
ing an item i ∈ I, and the context is a feature vector that can be
of arbitrary dimensionality d : i.e. x ∈ Rd . When evaluating a new
target policy πt on data collected under π0, the weights for samples
(i,x) are then given by

w(i |x) =
πt (i |x)

π0(i |x)
. (1)

It can be proven that, under mild assumptions, this weighting func-
tion results in an unbiased estimator. Its variance, however, is essen-
tially unbounded. When π0 and πt differ greatly, the ratio of their
assigned probabilities will allow for some samples to be weighted
disproportionately. Multiple techniques have been proposed to alle-
viate these issues, such as normalising or capping the weights [10].

However, for the case where π0 or πt are deterministic policies
(i.e. π (i |x) ∈ {0, 1}), these weighting techniques lose all practical
value. Moreover, even when the policies are truly stochastic, the
propensity scores for every recommendation-context pair (i,x)
need to be known beforehand. Although this is somewhat trivial for
the target policy, this is certainly not the case for the logging policy1.
Yang et al. [42] tackle this issue by modelling popularity bias as
an exponential function to mimic the typical long-tail distribution.
They then use this model to estimate propensity scores, and use
those in turn to debias their evaluation procedure. The model is
user- and context-independent, and assumes a single propensity
score for every item i . Furthermore, they assume the probability of
a user interacting with an item, is independent from whether that
item has actually been recommended to and impressed upon the
given user. Naturally, these assumptions do not hold in real-world
situations. We identify two possible directions of future research:

(1) By clustering users based on either meta-information (lo-
cation, age-group, et cetera) or their historical sequence of
logged items, the propensity of user-item pairs could more
accurately be modelled in a cluster-local model. These mod-
els could then, stand-alone or in combination with a global
model following the paradigm of [8], be used to improve
upon their offline evaluation procedure, in combination with
the SW-EVAL procedure.

(2) The independence assumption between impressions and
interactions is clearly oversimplified for real-world envi-
ronments and data. For datasets that include impression
information, this effect can be studied. When properly quan-
tified, it can be used to improve upon the accuracy of the
estimated propensities. Examples of such datasets include
the Outbrain [28] and Plista [19] datasets. We discuss the
benefit of using datasets enriched with this information in
Section 4.1.

We believe more realistic propensity scores can be estimated
through more nuanced modelling, which can in turn help in im-
proving the effectiveness of IPS-based estimators in settings where
propensities are unknown beforehand. In the case where not a
single item, but a list of N items is recommended, Chen et al. [6]
propose an adaptation of the IPS estimator. As propensity scores
for the logging policy are also unknown beforehand in their setting,

1For the problem of computational advertising, a dataset containing logged propensities
has been released by Lefortier et al. [22].

they propose to learn these alongside with the target policy via a
recurrent neural network.

Preliminary results from SW-EVAL on logged feedback origi-
nating from different logging policies confirm that such biases are
indeed present, and significantly impact offline evaluation results
when not taken into account properly [17]. As future work, we
wish to incorporate such a weighting procedure into the evaluation
method, even when logging policy propensities are unknown in
advance. Recent work used an adapted IPS-estimator to evaluate an
algorithm for music playlist recommendation in an offline way [12].
They show that their offline evaluation results correlate with their
online results, obtained through a series of live A/B tests. Multi-
armed bandit models were used, with logged propensities. However,
their work deals with an idealised environment, making it unclear
whether the methodology can be readily applied other domains. Ex-
tending their work for generality, to include larger sets of available
items, and towards ranking-based metrics is a promising direction
for future research.

4 BEYOND JUST CLICKS
4.1 Missing vs Negative Feedback
Awell-known issue in implicit-feedback recommender system liter-
ature is the difficulty in distinguishing betweenmissing and negative
feedback: if a user-item pair (u, i) is missing from the dataset, does
this mean that u disliked i , or was simply unaware of it? Many
different algorithms have been proposed to address this problem,
e.g. by sampling negatives or focusing only on positive preference
expressions [15, 29, 31]. These works are limited, however, in that
they only take a single type of feedback into account: clicks, sales,
likes,. . .while typically much more interaction data is available to
the entities providing the recommendations. The combination of
clicks, add-to-cart actions and sales, page dwell times, not interact-
ing with an impression, et cetera are all rich but largely neglected
feedback signals. The work of Wan and McAuley [40] focuses on
monotonic behaviour chains, where different levels of feedback are
all jointly taken into account into the resulting model. We wish
to study whether these different types of feedback can be used to
distinguish between missing and negative feedback, in order to
improve offline evaluation accuracy. If we know a user clicked on
an item i , but later in the same session clicked on and bought an
alternative item i ′, this might be interpreted as a negative feedback
signal for the (u, i)-pair. Analogously, if i is shown as a recommen-
dation to u without any resulting interaction, certain conclusions
might be appropriate. After 1 impression, one can give the benefit
of the doubt. After a large number of impressions, however, we
might be able to infer a negative relation between u and i . This
issue has been tackled in the modelling stage of the recommender
system, by effectively discounting the score for the item and push-
ing it downwards the top-N list as it is recommended again and
again [21]. However, this information is mostly neglected when
evaluating newmodels. In a broader sense, the problem of interpret-
ing user in-action to better understand how users interact with live
recommender systems in the movie domain was studied by Zhao
et al. [45]. They identify various reasons why a user would not click
on a given recommendation, and try to infer from context which of
those reasons might explain a given sample. Further research for
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better understanding user interactions in various other domains
would very much help with answering this research question in
more general environments.

When the distinction between missing and negative feedback is
facilitated, more involved objective functions such as Generalised
Area under the Curve (GAUC) from the two-class collaborative
filtering field [30, 35], can be exploited for use in the positive-only
use-case [38]. Furthermore, multiple pairwise learning algorithms
for recommender systems utilise the information that a given user
has interacted with item i , but not with item j, to model prefer-
ences and similarities [14, 31]. These methods assume that the
relation between u and j is less strong than u and i , and that u
effectively prefers item i over j . Although this is a plausible assump-
tion for datasets with large numbers of items, it cannot be assured.
By sampling known, or assumed with high probability, negative
items instead of missing items, we believe the performance of these
existing algorithms can be significantly boosted.

4.2 Impression-data for Presentation Bias
Impression-data further has its use in the off-policy evaluation set-
ting described in Section 3. Assume we have a dataset consisting
of logged feedback from multiple loggers (e.g. collected from a live
A/B test): D = Dπ0 ∪ . . . ∪ Dπn , where Dπ refers to the subset
of D that was generated under policy π , and D is a set of user-
item-timestamp triplets. This is the same setting as tackled in the
work of Agarwal et al. [1], where they propose two provably unbi-
ased variants of IPS that limit the variance in these environments.
However, it is assumed that all propensities are known beforehand,
and the loggers are effectively stochastic multi-armed contextual
bandits. When this is not the case, and the policies are possibly
unknown, applying IPS-like methods gets troublesome. To this end,
we propose a model-agnostic way of quantifying the biases among
policies. By computing the overlap in their generated recommenda-
tions, we believe the presentation bias that is inherent to the data
can be normalised and alleviated. We denote the set of impressions
generated under the various logging policies byR = Rπ0∪. . .∪Rπn .
For every context-vector x in the logging data, a set of top-N rec-
ommendations is logged. As D and R usually originate from a
live A/B-test, the context-vectors x will be disjoint for different
logging policies. Suppose we want to evaluate a new policy πt on
D; we can now compute Rπt for every logged impression: the set
of recommendations that would have been shown, had πt been
in effect. Through Rπi , we can quantify the similarity between a
logging policy πi and the target πt . Although more sophisticated
measures can be used, a simple first option is to use the Jaccard
index to compute the intersection of the generated recommenda-
tions. Assuming Rπi and Rπt hold the same number of generated
top-N recommendations, for an identical set of context-vectors x ,
the similarity between these two policies then becomes

sim(πi ,πt ) =
|Rπi ∩ Rπt |

|Rπi |
. (2)

If the logging and target policy are identical, i.e. πi = πt , offline
evaluation of πt on Dπi is effectively an online evaluation, as Rπt
does not hold hypothetical recommendations, but those that were
actually shown to the user. On the other hand, if πi and πt generate
entirely disjoint sets of recommendations, evaluating πt on Dπi

will yield heavily biased results that disfavour πt . Intuitively, the
effect of this bias is correlated with sim(πi ,πt ). A similarity of 0.5,
indicates that 50% of the recommendations were actually shown
at the time of data collection2. For a given evaluation function
f (D,R,πt ) that intends to evaluate the recommendations of πt
usingD, we propose a variant f ′, obtained by partitioning the data
according to the logging policies and normalising according to their
similarity with the target policy:

f ′(D,R,πt ) =
1
n

n∑
i=0

f (Dπi ,Rπi ,πt )

sim(πi ,πt )
. (3)

This formula can be decomposed even further, when normalising
on a sample-by-sample basis instead of once for every logging
policy. We intend to investigate this approach further from a the-
oretical basis, as well as empirically. Ideally, we wish to validate
whether this approach can debias results obtained through off-
policy evaluation, in situations where classical IPS weighting is
not straightforward. This can be achieved by studying the correla-
tion between results of our proposed approach, and those obtained
through live A/B tests. Analogous to the IPS estimator presented in
Equation 1, our proposed Equation 3 is prone to several of the same
pitfalls. As sim(πi ,πt ) approaches 0, these estimators will tend to
over-compensate. It might prove beneficial, as is the case in IPS, to
clip similarities to a given range or normalise them, with the goal
of decreasing the variance. Since these approaches share the same
intuitions, many of the proposed extensions to IPS can be studied
with regards to their applicability in this setting [4, 10, 12, 16]. The
work of Steck [37] on tackling popularity bias is also based on mod-
elling bias, and normalising it in the evaluation phase. When our
proposed approach is theoretically and experimentally fine-tuned
and validated, interesting future work directions might open up
on deriving novel learning and optimisation procedures that are
unbiased as well. Furthermore, by studying the overlap between D

and R, we can disambiguate organic user behaviour (i.e. behaviour
that was not instigated by a recommendation) and influenced user
behaviour (i.e. behaviour that was instigated by a recommendation).
We believe a better understanding of these different types of user
behaviour will be useful to the research field as well.

5 CONCLUSION
In this paper, we have presented the key differences between on-
and offline evaluation methodologies for implicit feedback recom-
mender systems. We have motivated the need for more effective
offline evaluation strategies that are successful in predicting online
performance. To this end, we have formulated and discussed three
main research objectives: (1) temporal evaluation, (2) off-policy or
counterfactual evaluation, and (3) the use of more involved inter-
action data to improve upon currently existing offline evaluation
methods. For each of those areas, we summarised and discussed the
state-of-the-art, identifying shortcomings and proposing promising
areas for future work. In the near future, we wish to incorporate
the above-mentioned extensions into our SW-EVAL approach [17].

2A possible extension would be to include the rank of the item in the recommendation
list, instead of representing the recommendations as bags-of-items. In this case, Jaccard
index could be replaced by e.g. Spearman’s rank correlation coefficient.



Revisiting Offline Evaluation for Implicit-Feedback Recommender Systems RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

REFERENCES
[1] A. Agarwal, S. Basu, T. Schnabel, and T. Joachims. 2017. Effective Evaluation

Using Logged Bandit Feedback from Multiple Loggers. In Proc. of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
’17). ACM, 687–696.

[2] J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and B. Gipp. 2013. A Compar-
ative Analysis of Offline and Online Evaluations and Discussion of Research
Paper Recommender System Evaluation. In Proc. of the International Workshop
on Reproducibility and Replication in Recommender Systems Evaluation (RepSys
’13). 7–14.

[3] J. Bennett, S. Lanning, et al. 2007. The Netflix prize. In Proc. of the KDD cup and
workshop, Vol. 2007. 35.

[4] L. Bottou, J. Peters, J. Quiñonero-Candela, D. Charles, D. Chickering, E. Portugaly,
D. Ray, P. Simard, and E. Snelson. 2013. Counterfactual reasoning and learning
systems: The example of computational advertising. The Journal of Machine
Learning Research 14, 1 (2013), 3207–3260.

[5] A. Chaney, B. Stewart, and B. Engelhardt. 2018. How Algorithmic Confounding
in Recommendation Systems Increases Homogeneity and Decreases Utility. In
Proc. of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM,
224–232.

[6] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H. Chi. 2019. Top-K
Off-Policy Correction for a REINFORCE Recommender System. In Proc. of the
12th ACM International Conference on Web Search and Data Mining (WSDM ’19).
ACM, 456–464.

[7] E. Christakopoulou and G. Karypis. 2016. Local Item-Item Models For Top-N
Recommendation. In Proc. of the 10th ACM Conference on Recommender Systems
(RecSys ’16). ACM, 67–74.

[8] E. Christakopoulou and G. Karypis. 2018. Local Latent Space Models for Top-N
Recommendation. In Proc. of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’18). ACM, 1235–1243.

[9] F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. 2014.
Offline and Online Evaluation of News Recommender Systems at Swissinfo.Ch. In
Proc. of the 8th ACM Conference on Recommender Systems (RecSys ’14). 169–176.

[10] A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham, and S. Dollé. 2018. Offline A/B
Testing for Recommender Systems. In Proc. of the Eleventh ACM International
Conference on Web Search and Data Mining (WSDM ’18). ACM, 198–206.

[11] C. A. Gomez-Uribe and N. Hunt. 2015. The Netflix Recommender System: Al-
gorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4,
Article 13 (Dec. 2015), 19 pages.

[12] A. Gruson, P. Chandar, C. Charbuillet, J. McInerney, S. Hansen, D. Tardieu, and
B. Carterette. 2019. Offline Evaluation to Make Decisions About Playlist Recom-
mendation Algorithms. In Proc. of the 12th ACM International Conference on Web
Search and Data Mining (WSDM ’19). ACM, New York, NY, USA, 420–428.

[13] R. He, W. Kang, and J. McAuley. 2017. Translation-based Recommendation. In
Proc. of the 11th ACM Conference on Recommender Systems (RecSys ’17). ACM,
161–169.

[14] C. Hsieh, L. Yang, Y. Cui, T. Lin, S. Belongie, and D. Estrin. 2017. Collaborative
Metric Learning. In Proc. of the 26th International Conference on World Wide Web
(WWW ’17). International World Wide Web Conferences Steering Committee,
193–201.

[15] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit
Feedback Datasets. In Proc. of the 8th IEEE International Conference on Data
Mining (ICDM ’08). 263–272.

[16] R. Jagerman, I. Markov, and M. de Rijke. 2019. When People Change Their Mind:
Off-Policy Evaluation in Non-stationary Recommendation Environments. In Proc.
of the 12th ACM International Conference on Web Search and Data Mining (WSDM
’19). ACM, 447–455.

[17] O. Jeunen, K. Verstrepen, and B. Goethals. 2018. Fair Offline Evaluation Method-
ologies for Implicit-feedback Recommender Systems with MNAR Data. In Proc. of
the REVEAL 18 Workshop on Offline Evaluation for Recommender Systems (RecSys
’18).

[18] M. Jugovac, D. Jannach, and M. Karimi. 2018. Streamingrec: A Framework for
Benchmarking Stream-based News Recommenders. In Proc. of the 12th ACM
Conference on Recommender Systems (RecSys ’18). ACM, 269–273.

[19] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz. 2013. The Plista Dataset. In Proc.
of the 2013 International News Recommender Systems Workshop and Challenge
(NRS ’13). ACM, 16–23.

[20] R. Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proc. of the 1995 International Joint Conference
on Artificial Intelligence, Vol. 14. 1137–1145.

[21] P. Lee, L. Lakshmanan, M. Tiwari, and S. Shah. 2014. Modeling Impression
Discounting in Large-scale Recommender Systems. In Proc. of the 20th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
’14). ACM, 1837–1846.

[22] D. Lefortier, A. Swaminathan, X. Gu, T. Joachims, and M. de Rijke. 2016. Large-
scale validation of counterfactual learning methods: A test-bed. arXiv preprint
arXiv:1612.00367 (2016).

[23] L. Li, W. Chu, J. Langford, and X. Wang. 2011. Unbiased Offline Evaluation of
Contextual-bandit-based News Article Recommendation Algorithms. In Proc. of
the 4th ACM International Conference on Web Search and Data Mining (WSDM
’11). ACM, 297–306.

[24] X. Li and J. She. 2017. Collaborative Variational Autoencoder for Recommender
Systems. In Proc. of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’17). ACM, 305–314.

[25] X. Ning and G. Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recom-
mender Systems. In Proc. of the 2011 IEEE 11th International Conference on Data
Mining (ICDM ’11). IEEE Computer Society, 497–506.

[26] Y. Ning, Y. Shi, L. Hong, H. Rangwala, and N. Ramakrishnan. 2017. A Gradient-
based Adaptive Learning Framework for Efficient Personal Recommendation. In
Proc. of the 11th ACM Conference on Recommender Systems (RecSys ’17). ACM,
23–31.

[27] R. Otunba, R. Rufai, and J. Lin. 2017. MPR: Multi-Objective Pairwise Ranking.
In Proc. of the 11th ACM Conference on Recommender Systems (RecSys ’17). ACM,
170–178.

[28] Outbrain. 2017. Kaggle Click Prediction Dataset. https://www.kaggle.com/c/
outbrain-click-prediction/data. (2017).

[29] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. 2008. One-
Class Collaborative Filtering. In Proc. of the 8th IEEE International Conference on
Data Mining (ICDM ’08). 502–511.

[30] B. Paudel, T. Haas, and A. Bernstein. 2017. Fewer Flops at the Top: Accuracy,
Diversity, and Regularization in Two-Class Collaborative Filtering. In Proc. of the
11th ACM Conference on Recommender Systems (RecSys ’17). ACM, 215–223.

[31] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR:
Bayesian personalized ranking from implicit feedback. In Proc. of the 25th Con-
ference on Uncertainty in Artificial Intelligence (UAI ’09). AUAI Press, 452–461.

[32] M. Rossetti, F. Stella, and M. Zanker. 2016. Contrasting Offline and Online
Results when Evaluating Recommendation Algorithms. In Proc. of the 10th ACM
Conference on Recommender Systems (RecSys ’16). ACM, 31–34.

[33] G. Shani and A. Gunawardana. 2011. Evaluating Recommendation Systems. In
Recommender Systems Handbook, Francesco Ricci, Lior Rokach, Bracha Shapira,
and Paul B. Kantor (Eds.). Springer US, 257–297.

[34] A. Sinha, D. Gleich, and K. Ramani. 2016. Deconvolving Feedback Loops in
Recommender Systems. In Proc. of the 30th International Conference on Neural
Information Processing Systems (NIPS’16). Curran Associates Inc., 3251–3259.

[35] D. Song and David A. Meyer. 2015. Recommending Positive Links in Signed
Social Networks by Optimizing a Generalized AUC. In Proc. of the 29th AAAI
Conference on Artificial Intelligence (AAAI’15). AAAI Press, 290–296.

[36] H. Steck. 2010. Training and Testing of Recommender Systems on Data Missing
Not at Random. In Proc. of the 16th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’10). ACM, 713–722.

[37] H. Steck. 2011. Item Popularity and Recommendation Accuracy. In Proc. of the
5th ACM Conference on Recommender Systems (RecSys ’11). ACM, 125–132.

[38] K. Verstrepen, K. Bhaduriy, B. Cule, and B. Goethals. 2017. Collaborative Filtering
for Binary, Positiveonly Data. SIGKDD Explor. Newsl. 19, 1 (Sept. 2017), 1–21.

[39] J. Vinagre, A. Jorge, and J. Gama. 2015. Evaluation of recommender systems
in streaming environments. CoRR abs/1504.08175 (2015). arXiv:1504.08175
http://arxiv.org/abs/1504.08175

[40] M. Wan and J. McAuley. 2018. Item Recommendation on Monotonic Behavior
Chains. In Proc. of the 12th ACM Conference on Recommender Systems (RecSys ’18).
ACM, 86–94.

[41] J. Yang, C. Chen, C. Wang, and M. Tsai. 2018. HOP-rec: High-order Proximity for
Implicit Recommendation. In Proc. of the 12th ACM Conference on Recommender
Systems (RecSys ’18). ACM, 140–144.

[42] L. Yang, Y. Cui, Yuan X., C. Wang, S. Belongie, and D. Estrin. 2018. Unbiased
Offline Recommender Evaluation for Missing-not-at-random Implicit Feedback.
In Proc. of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM,
New York, NY, USA, 279–287.

[43] Y. Zhang, H. Lu, W. Niu, and J. Caverlee. 2018. Quality-aware Neural Complemen-
tary Item Recommendation. In Proc. of the 12th ACM Conference on Recommender
Systems (RecSys ’18). ACM, 77–85.

[44] Q. Zhao, J. Chen, M. Chen, S. Jain, A. Beutel, F. Belletti, and E. H. Chi. 2018.
Categorical-attributes-based Item Classification for Recommender Systems. In
Proc. of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM,
320–328.

[45] Q. Zhao, M. C. Willemsen, G. Adomavicius, F. M. Harper, and J. A. Konstan. 2018.
Interpreting User Inaction in Recommender Systems. In Proc. of the 12th ACM
Conference on Recommender Systems (RecSys ’18). ACM, 40–48.

https://www.kaggle.com/c/outbrain-click-prediction/data
https://www.kaggle.com/c/outbrain-click-prediction/data
http://arxiv.org/abs/1504.08175
http://arxiv.org/abs/1504.08175

	Abstract
	1 Introduction
	2 Temporal Evaluation
	3 Debiasing Logged Feedback
	4 Beyond Just Clicks
	4.1 Missing vs Negative Feedback
	4.2 Impression-data for Presentation Bias

	5 Conclusion
	References

