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The important thing is not to stop questioning. Curiosity has its own reason for
existence. One cannot help but be in awe when he contemplates the mysteries of
eternity, of life, of the marvellous structure of reality. It is enough if one tries merely to
comprehend a little of this mystery each day.

— Albert Einstein
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CHAPTER

Introduction

Over three decades ago, the “Information Revolution” began [175]. Sparked by
exponential advances in computing technology and fuelled by the rise of the internet,
access to information on the web quickly became widespread. In addition to that,
the rate at which new information in the form of data is being generated has now
grown to be higher than it has ever been before. Today, backed up by massive
advances in machine learning, it is safe to say that the revolution is still going strong.

Access to a wealth of information is one thing, but being able to effectively and
efficiently explore or filter information quickly becomes crucial. And so, not long af-
ter the start of the revolution, the problem of “Information Overload” rapidly gained
in importance and research interest [18]. Indeed, what good is an encyclopedia if it
is entirely unstructured and missing its typical back-of-the-book index?

The field of Information Retrieval (IR) aims to solve these problems, with web
search engines as their most visible embodiment that we now all use on a daily basis.
These systems take in queries like “presidential elections 2020”, “is a Ph.D. worth
it?” or “can doctoral juries be bribed?” and produce an ordering of web pages as the
result to that query. Search engines are by no means restricted to text, and diverging
applications such as multimedia retrieval to search audio, image or video catalogues
spawned over the years as well. Nowadays, all “Big Tech” companies have some
search functionality on their platform that is often central to their business. Whether
we are browsing retail products on Amazon, musical artists on Spotify or Apple
Music, TV series on Netflix, friends’ profiles on Facebook or websites via Google or
Bing, IR applications are ubiquitous and touch upon many people’s daily lives.

An interesting question to ask is then: what happens when we don’t actually have
an explicit query? What if I'm just browsing a retail store? What happens when I do
not know which musical artist I want to listen to or which movie I want to watch?
This is where the field of “Recommender Systems” comes into play.
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1.1 A Brief History of Recommender Systems

It may be unfair to introduce the field by summing up its present-day industrial
applications, as we did above. Although they are indeed widespread and industrial
recommenders are arguably the ones we interact with so often, the research field
was originally not designed with business cases or profiteering in mind. As Resnick
and Varian so eloquently put it [172]:

“It is often necessary to make choices without sufficient personal experience of the
alternatives. In everyday life, we rely on recommendations from other people either
by word of mouth, recommendation letters, movie and book reviews printed in news
papers, [...]. Recommender systems assist and augment this natural social process.”

This focus on the utility of the recommendation to the recipient is what sets it
aside from related sub-fields like computational advertising [137], although many
algorithmic approaches to either of these problems can be applied interchangeably.

One of the first recommendation systems was called “Tapestry”, and it was
motivated by the information overload that stemmed from an increasing use of
electronic mail at the time. Modelling the recommendation algorithm to mimick the
above-described social process, the authors coined the term “collaborative filtering”
to denote that information distilled from other users’ interactions would be used
to figure out what we should recommend to you [50]. These days, collaborative
filtering is still the most widely adopted paradigm behind modern approaches to
recommendation [39].

Not much later, the “GroupLens” architecture was proposed, which framed the
task of recommendation as that of predicting the rating that a user would give
to an item [173]. If we have a dataset consisting of interval-scale ratings from
users to items, we can represent it in a user-item rating matrix R where the value
at R,,; holds the observed rating for user u and item i. Figure 1.1(a) visualises
this, with an example rating matrix R that highlights a 5 star rating for the item
atindex n — 1, from user number 2. Generally speaking, we do not have access to
a full user-item matrix. When the size of the item catalogue grows, this becomes
increasingly cumbersome to obtain. Additionally, the goal of the recommendation
algorithm is to figure out which items a certain user might rate highly without
explicitly eliciting this information from the user. As such, the task at hand is
to predict the missing ratings from an incomplete user-item matrix, as shown in
Figure 1.1(b). A rating prediction model generates predicted ratings for ever user-
item pair, and its output can be seen as a reconstruction of the rating matrix R = R.
Competing models are then often evaluated on the Root Mean Squared Error (RMSE)
between the true and approximated ratings for some held-out test set [199]. Because
the reconstructed rating matrix R holds predictions for all the items for which we
do not know the user’s rating, we can use these to obtain a sorted recommendation
list to show to the user. The assumption here is that higher predicted ratings imply
improved recommendation quality. As this modelling approach requires us to
explicitly prompt users to provide ratings on an interval scale, it is often referred to
as the “explicit feedback” setting. This framework has been hugely successful, and
dominated the field for many years. Perhaps the most famous example is that of the
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(a) Full user-item matrix. (b) Missing ratings.

Figure 1.1: An example of rating prediction. (a) We build a user-item matrix R that
holds the rating for user u and item i at R,, ;. (b) Typically, some ratings are missing,
and the recommendation task is defined as the prediction of these missing ratings.

Netflix Prize competition, where the eponymous video streaming service pledged a
USD 1000000 prize to the team that could achieve a minimal RMSE at the end of
the competition [13, 11].

Nevertheless, obtaining a suitable dataset with explicit ratings can be a hurdle, as
repetitively prompting users to rate items can be detrimental to the user experience.
Furthermore, studies have shown that ratings obtained through such online rating
systems do not always reflect users’ true evaluations of the items at hand [250].

These observations combined with the reality that users’ interactions on online
platforms were being logged and stored, gave rise to the “implicit feedback” setting
which then took over [158, 65]. By exploiting the information that is inherent to a
user interacting with an item, we can avoid the need for explicit ratings. Indeed, we
can reasonably assume that a user will mostly view retail product pages of items they
are interested in, or movies and series that they enjoy. The implicit-feedback rec-
ommendation setting quickly gained in popularity, and is now far more widespread
than its explicit counterpart. Even Netflix has moved on from their 5-star ratings to
a simpler feedback mechanism, predominantly focusing on signal acquired from
interaction data [51]. When purely focusing on deduplicated “views”, “clicks”, “pur-
chases” et cetera, this setting is referred to as binary, positive-only [221]. This setting
is visualised in Figure 1.2 where we build a user-item matrix based on a sequence of
user-item interactions, and frame the task of recommendation as predicting missing
interactions. Note that there are several differences between the item and rating pre-
diction tasks, most notably that there’s an absence of explicit negative information in
the former (hence, positive-only). When a user-item interaction is missing from the
dataset, we often do not know whether this means that the user is simply unaware of
the item, or whether it is irrelevant to the user. This inability to distinguish between
“missing” and “negative” feedback has motivated several modelling approaches such
as Bayesian Personalised Ranking [169] and Weighted Regularised Matrix Factorisa-
tion [65, 158]. Furthermore, the data is typically Missing-Not-At-Random (MNAR),
and this characteristic remains important to take into account when learning or
evaluating recommendation models [197]. In contrast with the RMSE metric often
used in rating prediction, the item prediction setup is typically evaluated with IR-
inspired metrics such as precision, recall or Normalised Discounted Cumulative
Gain (NDCG) [199, 20, 215].
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u 1n L 0 1 1 ? 1 1 ?

u ip B 1 1 1 0 1 1 1 7

u 13 I3 v
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(a) Interactions for u. (b) Full user-item matrix. (c) Missing interactions.

Figure 1.2: An example of item prediction. (a) We observe a sequence of items a user
u has interacted with, and wish to predict which item completes the sequence. (b)
We build a user-item matrix X that holds binarised interactions for user u and item
iat X, ;. (c) Typically, many interactions are missing, and the recommendation task
is defined as the prediction of which user-item interactions actually occur in the
data.

Many approaches to recommendation from implicit-feedback data find their
roots in the explicit-feedback setting. In what follows, we give a brief introduction to
the most common families of approaches, and the rationale behind them.

Latent Factor Models

Latent factor models assume a low-rank generating process behind the user-item
interaction data, and they explicitly model this by optimising low-rank user- and
item-factor matrices U € R"**, v e R¥*" if we assume to have m unique users, n
unique items, and k latent factors [98]. Figure 1.3 visualises this type of approach.
The intuitive idea is that the learnt latent factors will represent common concepts
such as genres, and the values in U and V encode users’ and items’ affinities to those
genres respectively. The recommendation score for a user © and an item i, is then
computed as the dot-product between their low-rank embeddings, as shown by
Equation 1.1.

Xyui=Uy.-V.i=) Uyp- Vi, (1.1
k

Lower values of k restrict the model’s capacity and might result in underfitting,
whereas for larger values of k we can eventually exactly reconstruct the user-item
matrix X. Note that the latter is equally undesirable, as a model that correctly
identifies all zeroes in Figure 1.2(b) does not provide any actionable information
for personalisation. For these reasons, a regularisation term is often added to the
optimisation problem at hand. Earlier methods learn the factorised matrices via
singular value decomposition, and many extensions to this have been proposed
over the years [181, 31, 40]. Latent factor models are one of the oldest classes
around, and are often still surprisingly effective when compared to more complex
alternatives [170, 171].
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XeR™"  UeR™k  verkr

Figure 1.3: Latent factor models explicitly learn common latent factors that describe
users and items, in an attempt to reconstruct the user-item matrix via a low-rank
bottleneck. The transitivity that comes from the low-rank assumption helps to
generalise and predict affinity scores between users and unseen items.

X e R X e R SeR™"

Figure 1.4: Item-based recommendation models learn an item-item similarity matrix
to reconstruct values in the user-item matrix based on the values in other columns.
The diagonal of the matrix can be restricted towards zero, as to avoid the trivial
solution where § is the identity matrix.

Item-Based Models

Item-based models are — generally speaking — a type of full-rank model. The rationale
is that we can predict the affinity from a user towards an item by considering the
other items a user has already interacted with in the past. We effectively learn an
item-item similarity matrix § € R"*", and use these similarities in a weighted sum
with items in the users’ history to predict relevance. This is shown in Figure 1.4 and
Equation 1.2.

XyimXy.-Si=) Xuj-Sji (1.2)
i

When the item-item matrix is constructed with an analytically computable
similarity measure between the high-dimensional yet sparse columns of the user-
item matrix X (such as cosine similarity, Jaccard index or conditional probabilities),
this type of approach is often called “nearest neighbours”-based [34]. Although
technically correct, this is not the most descriptive terminology. Indeed, latent factor
models are also “nearest neighbours”-based, albeit in a projected low-dimensional
space instead of the one represented directly by the user-item matrix X. Many
extensions to the item-based paradigm have been proposed [147, 30], and posing
the computation of S as a simple linear optimisation problem is often sufficient to
obtain highly competitive results [200]. When the item-item similarities are learnt
directly, this model is referred to as full-rank. It is however not uncommon to model
§ itself as the factorisation of two lower-dimensional matrices [90].
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Sequence-Aware Models and Beyond

The two families of approaches introduced above operate on the bare minimum of
information: the presence of an interaction between user u and item i. For many
practical use-cases, more information will be available as well. Consider the set-up
we introduced in Figure 1.2, by generating a binarised user-item matrix from the
sequence of interactions, we effectively threw away all temporal information. Natu-
rally, this information can encode many implicit sequential relations among items,
and advanced methods can exploit these relations for enhanced recommendation
accuracy [167]. Many more examples can be thought of, where we additionally have
information about item content, contextual information about item consumption,
browsing sessions et cetera [2, 74, 124].

Contextual Bandits

The “contextual bandit” framework is a general machine learning paradigm where
an agent observes a certain context and can perform an action [102]. We can re-
place these abstract concepts with a recommendation system that observes a user
visiting the system, and then chooses which items to recommend to this user. As
such, real-world recommendation systems can be referred to as contextual bandits.
Nevertheless, general bandit algorithms and recommendation approaches tend to
differ quite a bit. Bandit algorithms were introduced as a general framework for
decision-making under uncertainty, and they typically update their model based on
the outcome of their actions [23, 37]. Traditional approaches to recommendation,
in contrast, focus on predicting the occurrence of interactions between users and
items, and do not take into account the outcomes of the recommendations them-
selves. Several recent works have tried to bridge this gap [112, 114, 136, 140], but
these fields have largely evolved independently of one another.

The recommender systems research space is broad and vast, and it is by no means
our ambition to provide an extensive survey in the introductory Chapter to this
thesis. Nevertheless, we have now introduced the reader to the tools necessary to
contextualise the research contributions that make up the rest of this manuscript.
The contributions presented in this thesis can be broadly categorised into three
disjoint parts. In what follows we briefly introduce these sub-fields, and provide an
outline of the chapters that follow. The common theme uniting our research contri-
butions, is that we aim to bridge the gap between the (often static) recommendation
problem that is prevalent in academic research, and the more complex dynamic
systems that are typically faced by practitioners in industry.

1.2 Efficient and Incremental Computations

Recommendation models that are deployed into the real world are far from static.
They need to be updated periodically as new data comes in to account for shifting
user preferences and item popularities. This incurs a computational cost that we
would naturally like to reduce as much as possible. The first goal is to reduce the
initial computation time for the recommendation model to a minimum, that is,
make model training efficient. Second, we wish to reduce the time needed for
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subsequent updates to the model. By targeting those model parameters that need
to be updated instead of blindly recomputing the entire model, we obtain models
that can be updated incrementally.

 In Chapter 2, we present Dynamic Index: a novel algorithm for efficient and
exact similarity computation between sparse, high-dimensional vectors. The
algorithm is tailored towards the implicit-feedback data setting that widely
occurs in recommender systems, learns incrementally, and is easily parallel-
lisable. As such, it is naturally suited for item-based collaborative filtering
approaches that are deployed in dynamic environments, where updates need
to be performed in real-time. We additionally explore the concept of item rec-
ommendability, and show that our method can exploit this naturally occurring
concept efficiently and effectively.

* In Chapter 3, we present Dynamic EASE® (DYN-EASE®): a novel algorithm for
incrementally updating ridge regression models as new data arrives, mak-
ing use of the Dynamic Index algorithm to incrementally update the item
co-occurrence matrix, and subsequently leverage well-known identities from
linear algebra to incrementally compute its inverse. Our exact updating algo-
rithm significantly improves the efficiency of the state-of-the-art recommen-
dation approach EASEF [200]. Moreover, we present approximate variants of
DYN-EASER, providing a tuneable trade-off between the exactness of the model
and the efficiency with which it can be computed. Approximate DYN-EASE®
can further improve the recommendation accuracy of its exact counterpart,
by exploiting transitivity relations that arise in low-rank representations when
the data is sparse.

1.3 Offline Evaluation Methodologies

Machine learning models are typically evaluated on offline datasets, where a random
split divides the data into a train and test set, and a model that has learned from
the samples in the training set is evaluated on its ability to predict (labels for) the
samples in the test set [96]. This well-validated and established paradigm has
found widespread adoption in the recommender systems community as well, and is
often used to report empirical gains in recommendation accuracy in the literature.
Nevertheless, such evaluation procedures generally conflate improved prediction
capabilities with improved recommendations, due to the assumption made by the
item prediction paradigm that they are equivalent.

In contrast, recommendation algorithms deployed in the real world have a dis-
tinct advantage: they get to actually show recommendations to users and observe
whether the user interacts with them. Metrics based on click-through-rate, page
dwell time, session length, subscription renewal, et cetera are then often used as
proxies for user satisfaction, which still remains the paramount and overarching
target. The downside here is that online experiments are generally much more ex-
pensive than offline procedures, and are often out of reach for academic researchers.

Current offline evaluation methodologies are notoriously uncorrelated with
online success metrics, and the reasons why are often only superficially understood.
Understanding when and why offline evaluation results diverge from online success
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metrics can be an important step to ensure that empirical gains in the literature
translate to better recommendations being presented to users.

* In Chapter 4, we present results from an empirical study that compares vari-
ous offline evaluation methodologies on real-world data collected on a retail
website with a deployed recommendation algorithm. We present a novel
evaluation procedure called Sliding Window Evaluation (SW-EVAL), which
much more tightly adheres to the use-cases deployed recommendation al-
gorithms encounter than random train-test splits. We show how taking the
sequential nature of user-item interactions into account provides much more
reliable offline estimates of performance, and show how alternative meth-
ods provide conflicting results. Finally, we show that the selection bias from
the deployed recommendation algorithm significantly biases results towards
recommendations that were shown by the logging policy, and underline that
Missing-Not-At-Randomness (MNAR) in the data is crucial to model.

* In Chapter 5, we review the differences and commonalities between online
and offline evaluation strategies, and present a research agenda to bring
them together. Online evaluation methods are effective but inefficient, and
offline alternatives are efficient yet ineffective. We highlight the importance of
temporal evaluation to model sequentiality in the data, off-policy evaluation
to de-bias the item selection bias that occurs from deployed recommenders,
and argue in favour of exploiting information related to impressions and user
inaction in offline metrics, to distinguish missing interactions from negative
feedback.

1.4 Effective Learning from Bandit Feedback

The assumption behind the item prediction paradigm is that accurately predicting
which interactions between users and items will occur in the absence of the recom-
mender, makes for a good recommendation algorithm. This is rooted in the many
observational datasets containing organic user-item interactions that are widely
available and adopted by the research community, and has proven its worth for
many years. The online paradigm, in contrast, does not focus on merely predicting
which items a user will interact with. Crucially, there is an interactive component
where we show a recommendation to the user, and we observe any subsequent
interactions. This interventionist view departs from many classical approaches to
recommendation, but is a fundamental component of any practical recommenda-
tion use-case.

If metrics related to online interventions are what we wish to optimise, it makes
sense to use datasets containing logged recommendations and their outcomes. Such
data is often called bandit feedback, as we only observe the outcome for actions
taken by the contextual bandit that was deployed at data collection time. This
contextual bandit is referred to as the logging policy, and it will often be biased
towards performing actions that it deems successful (i.e. showing recommendations
that are likely to lead to user satisfaction). This arm selection bias can severely skew
the data if not taken into account properly, making effective learning from bandit
feedback a highly non-trivial task.
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Datasets consisting of bandit feedback are abundant in industrial recommen-
dation applications. It is exactly the data that is being used to evaluate the online
performance of recommendation algorithms, and it comes naturally that this data
should be used to provide meaningful offline estimates of online performance. Nev-
ertheless, these datasets are rarely publicly available, and counterfactual evaluation
procedures using them often lack the statistical power to conclusively reject hy-
potheses [49]. There is a fundamental divide here between the bulk of academic
research and the recommendation use-cases that arise in practice.

 In Chapter 6, we present an overview of the state-of-the-art in learning from
bandit feedback, with an eye on the recommendation task. We present results
from the first broad empirical study of counterfactual learning methods for
recommendation, using reproducible simulation environments. We highlight
how existing methods tend to fail due to stochastic and sparse rewards, and
propose the use of a logarithmic lower bound on the traditional importance
sampling estimator to mitigate these issues. Moreover, we show that the two
contrasting families of value- and policy-based methods can be modelled with
an identical parameterisation, which allows for a model that jointly optimises
a hybrid objective. We show that this Dual Bandit approach achieves state-
of-the-art performance in a wide range of scenarios, and that its gains over
competing methods are most outspoken in the realistic and complex settings.

 In Chapter 7, we focus on improving the performance of reward models that
are learned from bandit feedback. We present a general-purpose framework
for pessimistic decision making under model uncertainty, and show how it can
be used to obtain state-of-the-art performance in off-policy recommendation
tasks. Our decision-making approach exploits Bayesian uncertainty estimates
to know what the reward model does not know, and takes decisions with a
maximal worst-case outcome. This form of principled scepticism leads to
a significant and robust increase in online recommendation performance.
We additionally show how our method limits post-decision disappointment,
implying that it can also be used to accurately forecast model performance by
practitioners.

Chapter 8 summarises the research contributions presented throughout this
thesis, and those presented in additional related work by the author. We conclude by
presenting a scope for future research to further bridge the gap between academia
and industry in recommendation research.
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Efficient and Incremental
Computations



IfI have seen further, it is by standing on the shoulders of Giants.

— Isaac Newton



CHAPTER

Efficient Similarity
Computation for Collaborative
Filtering in Dynamic
Environments

The problem of computing all pairwise similarities in a large collection
of vectors is a well-known and common data mining task. As the number
and dimensionality of these vectors keeps increasing, however, currently
existing approaches are often unable to meet the strict efficiency require-
ments imposed by the environments they need to perform in. Real-time
neighbourhood-based collaborative filtering (CF) is one example of such
an environment in which performance is critical.

In this work, we present a novel algorithm for efficient and exact simi-
larity computation between sparse, high-dimensional vectors. Our ap-
proach exploits the sparsity that is inherent to implicit feedback data-
streams, entailing significant gains compared to other methods. Fur-
thermore, as our model learns incrementally, it is naturally suited for
dynamic real-time CF environments. We propose a MapReduce-inspired
parallellisation procedure along with our method, and show how even
more speed-up can be achieved. Additionally, in many real-world sys-
tems, many items are actually not recommendable at any given time, due
to recency, stock, seasonality, or enforced business rules. We exploit this
fact to further improve the computational efficiency of our approach. Ex-
perimental evaluation on both real-world and publicly available datasets
shows that our approach scales up to millions of processed user-item in-
teractions per second, and well advances the state-of-the-art.!

1 This chapter is based on work published in the Proceedings of the 2019 ACM RecSys Conference as
“Efficient Similarity Computation for Collaborative Filtering in Dynamic Environments” by Olivier Jeunen,
Koen Verstrepen and Bart Goethals [83].

13
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2.1 Introduction

Many important recommender system use-cases are highly dynamic in nature: news,
movie, music or retail recommenders all want to incorporate new behaviour into
their models as quickly as possible. With new user-item interactions arriving at high
rates, the need for dynamic models that can efficiently handle incremental updates
in approximately real time becomes more and more apparent [92]. In the context
of highly dynamic environments where items have limited lifetimes, this issue be-
comes even more pressing. News websites typically only want to recommend recent
articles, and interactions with newly written articles need to be incorporated into
the model as quickly as possible. Auction websites frequently deal with items that
are only available for a few days and face the same concerns. Many more examples
exist. Traditional Collaborative Filtering (CF) approaches fall short in this setting,
as frequent model updates often become too time consuming. Typically, the entire
CF model will be retrained at certain fixed points in time, after which the updated
model is then deployed. For highly dynamic use-cases, the time between subsequent
model updates should ideally be kept minimal, in order to allow information from
new incoming user-item interactions to be incorporated into the recommendation
process as soon as possible. However, as more and more data arrives, the iterative
recomputation of the entire model becomes more and more costly as well, putting
a hard upper limit on the frequency with which model updates can be performed.
We see a fundamental divide here, and such a trade-off is unacceptable for many
present-day applications. A clear need arises for CF models that can instantaneously
process new transactions and incorporate them into the model in an incremental
manner, while avoiding the periodical re-processing of old data.

In this paper, we present a novel exact algorithm to tackle the problem of efficient
similarity computation for high-dimensional and fast changing sparse implicit
feedback data streams. Such algorithms are at the basis of nearest-neighbour-based
CF techniques, which have recently been shown to attain competitive results with
more advanced state-of-the-art approaches, such as recurrent neural networks [73].
On top of this, they provide naturally explainable recommendations [220]. As a
consequence, they remain a popular approach to recommendation. Currently
existing alternative methods for efficient similarity computation often make use
of approximations, sacrificing accuracy for efficiency [144, 66, 207]. Our algorithm,
on the other hand, computes all exact item-item similarities. The algorithm learns
incrementally, making it naturally suitable for real-time CF environments. We exploit
the data’s sparsity to avoid unnecessary iterative computations and propose the use
of an inverted index to quickly identify affected pairs of items when updates arrive.
Our approach is presented in a MapReduce-inspired formulation, demonstrating its
scalability.

As the number of users and items in present-day real world systems quickly
scales up to hundreds of thousands and millions, it often becomes undesirable or
unnecessary to keep updated recommendation scores for all catalogued items in the
database. Again, in the case of a news website recommendation engine, scores for
old articles will be irrelevant as only recent items are allowed to be recommended.
Or, in the case of a retail environment: recommending items that are currently out
of stock is to be avoided. Media recommenders that deal with expiring licenses
encounter the same issues. As such, for many different use-cases, the set of recom-
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mendable items at a given time is a much smaller subset of the full item collection.
This imbalance is exploited by our algorithm, as we compute and maintain rec-
ommendation scores only for those items that are recommendable. We show that
incorporating this natural aspect into our algorithm has dramatic effects on system
throughput.

To summarise, the main contributions of this paper are:

1. We introduce a novel algorithm, called “Dynamic Index”, for efficiently com-
puting all pairwise similarities in a collection of sparse high-dimensional
vectors, which are typical for recommender systems.

2. Our approach learns incrementally, making it suitable for real-time environ-
ments.

3. We further exploit non-recommendable items to improve the computational
efficiency of our method.

4. By presenting our algorithm in a MapReduce-inspired formulation, it is easily
parallellised and scalable.

5. Experimental results on real-world data demonstrate the efficiency and per-
formance of our methodology.?

2.2 Related Work

Nearest-neighbour or similarity join processing is not a new problem, and has been
thoroughly investigated in the last 15 to 20 years. Most recent trends for speeding
up computation tend to either focus on approximate solutions [144], distributed
algorithms [248, 246] or incremental approaches [237, 243]. The first notable work
in the latter area is the kNNJoin* algorithm [243], which uses the iDistance sim-
ilarity measure [241, 242] and a Sphere-tree index to efficiently reduce the high-
dimensional search to a single dimension. However, when updating two points i
and j, the distance between these two points still needs to be re-evaluated in the
high-dimensional space before the index can be updated to enable efficient nearest
neighbour search. Moreover, this work was aimed at a dimensionality ranging from
20 to 50 and only 100000 data points, whereas we focus on much larger but very
sparse datasets consisting of millions of dimensions, as is typical for recommender
systems.

Yang et al. propose a method called HDR-tree for incrementally updating near-
est neighbour joins in the context of recommender systems [237], exploiting the
distance-preserving properties of Principal Component Analysis (PCA). Their algo-
rithm focuses on content-based filtering with a strict window size of recent items that
they consider for recommendations, whereas our algorithm focuses on collaborative
filtering with a much more flexible set of recommendable items that can change
over time. Furthermore, they require a fixed set of users, which is too restrictive for
the more typical setting we consider. In the context of CF algorithms for streaming
scenarios, multiple online learning approaches for matrix factorization, learning-
to-rank and neural network models have been presented as well [168, 60, 232, 231].

2Code available at: https://github.com/olivierjeunen/dynamicindex
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Several incremental or online learning algorithms specifically for nearest-neighbour-
based CF models have also been published in recent years. Liu et al. propose an
incremental learning algorithm that includes temporal information in their novel
similarity measure to tackle concept drift in users’ preferences over time [119]. The
work of Luo et al. focuses on reducing model storage complexity and increasing rat-
ing prediction accuracy by incrementally learning biases on top of similarities [125].
TencentRec is a framework implementing several well-known recommendation
algorithms in a streaming environment to provide real-time recommendations [66].
Their variant prunes probable dissimilar items, leading to an approximate solution
instead of an exact one. Another neighborhood-based approach is proposed by Sub-
bian et al., where a probabilistic data structure is used to approximate item-item
similarities and provide recommendations in a real-time manner [207]. Sreepada
and Patra present a novel similarity measure that is incrementally learned more
easily than other common similarity measures, called item tendency [196].

However, most of the above-mentioned methods [119, 125, 207, 196] rely on
explicit-feedback data, which is vastly different than the implicit-feedback data
use-case we tackle with this work in terms of similarity measure computation as
well as general aspects of the dataset. Moreover, several of these methods [66, 207]
use approximations to speed up computation time, at the cost of similarity- (and as
a consequence recommendation-) accuracy. In this work, we focus on the task of
exact nearest-neighbour and similarity computations from implicit-feedback data,
without the use of any approximations or need of explicit rating data. In addition,
with our approach, non-relevant items or users are not considered at computation
time, which allows us to work directly on the high-dimensional space, as we can take
maximal advantage of the highly sparse nature of the data. Finally, as our algorithm
only needs a simple inverted index to efficiently identify affected pairs of items when
updates arrive, we can formulate it in accordance with the MapReduce paradigm,
ensuring scalability through parallel processing [33].

2.3 Background

Preliminaries

Let U be a set of m users and I a set of n items. Our work focuses on transactional
data with implicit feedback. More specifically: we work with a set of user-item pairs
(u, i) € U x I denoting that user u has consumed item i, be it in the form of a product
purchase, a movie streaming, a click on a news article or otherwise. We call such
preference expressions pageviews, and represent them as a tuple (u, i, t;), where f,
denotes the consumption time. The set of all pageviews up to, but not including
time ¢ is denoted by 22;. We can represent these pageviews in the form of a sparse
user-item matrix P; € {0, 1}"**" for m unique users and 7 unique items. We omit the
timestamp ¢ when it is clear from context. Rows in this matrix are users represented
by the items they have consumed, and vice versa for columns: P, ; = 1 if and only if
user u has consumed item i and P, ; = 0 otherwise. When we represent an item i by
the i-th column-vector of the matrix P;, we denote it as i. The set of users that have
consumed a specific item i € I is denoted as U;. Vice versa, the set of items that a
certain user u € U has consumed is denoted as I;,.
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Algorithm 1 Naive Baseline

Input: A set of pageviews |Z7;].
Output: An inverted index from items to users £, a matrix of item similarities S.
K —@0,S—1
: for (u,i,t.) € %; do
K i) = A [i]u{u}
: forie # do
for j e % do

if i < j then

| [{INA [

S, — ——— L
b T 1
8: return £ ,S
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Between items i, j € I, similarity is expressed as the well-known cosine similarity:
cos(i, j). The goal at hand is to efficiently and incrementally compute and store
the similarity cos(i, j) for every such item-pair. In a worst-case scenario, this would
incur a memory overhead of % item similarities that need to be stored. In
many real world datasets, the user-item matrix P is extremely sparse. For many
implicit-feedback datasets, this can lead to sparsity in the item co-occurrence matrix
M. We denote the sparsity of any matrix by the function o (-). Partially to allevi-
ate spatial complexity issues, and partially to exploit this inherent sparseness and
avoid unnecessary iterative computations on zero-values, we propose the use of
sparse data-structures throughout the algorithms presented in the following sec-
tions. Finally, familiarity with item-based nearest neighbour collaborative filtering
approaches is assumed [183].

Baseline Approaches

The naive approach to computing cosine similarities between pairs of items occur-
ring in a given set of pageviews 27, is laid out in Algorithm 1. First, an inverted index
from every item i to the set of users that have seen that item, U;, is constructed.
Subsequently, the algorithm iterates over said sets of users for every item-pair i, j € I
and computes the sparse dot-product i - j, which is equivalent to the intersection of
their user-sets |[U; N Uj|. Because of the symmetric nature of our similarity measure,
only half of the iterations lead to actual computations (line 6). Note that only the size
of the intersection needs to be computed, and not the set intersection itself. Efficient
algorithms with linear time complexity exist for this operation over sorted inverted
indices. However, the naive baseline approach explicitly computes all ”'(’;’D sparse
vector dot-products, even when a significant amount of them are irrelevant. For
many (sparse) real world datasets, this is extremely inefficient.

An improved baseline, specifically tuned to the setting of sparse data is presented
in Algorithm 2. On top of the original item-to-user inverted index, we now construct
a user-to-item inverted index as well. As a result, we can deconstruct the sparse
vector dot-product, and iteratively count which item-pairs i, j € I also appear in
I, for every user u € U;. As |U;| < |U| in sparse datasets, this entails a significant
efficiency advantage. Note that this baseline is less memory efficient than the naive
baseline, as it needs a second inverted index to efficiently exploit the sparse nature
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Algorithm 2 Sparse Baseline

Input: A set of pageviews |Z7;].
Output: An inverted index from items to users £, an inverted index from users to
items £, a matrix of item similarities S.
=P, L —9,S—1
: for (u,i,t;) € 2, do
K i) = A il uiu}
Llul = Llu) uii}
: forie # do
for ue % '[i]l do
for j € L[u]l do
if i < j then
Sij+=1
10: for i, jeSdo
11: ifSi,j > 0 then
12: Si,j /= \/m m
13: return £, %,S

L e N2 DR Wy

of the data. In both baseline algorithms, the square roots of the item-norms /| U;|
can be pre-computed for improved efficiency.

2.4 Methodology

Recommendable Items

Traditionally, recommender systems are seen as functions that predict some rele-
vance score specific to a user-item pair: fp: U x I — [0, 1]. Here, the recommender
system represented by the function f is dependent on the user-item matrix P, hence
the subscript. In real-world present-day systems, the number of users and items
can quickly scale up to hundreds of thousands and even millions. It is clear that the
model represented by the function fp becomes much more complex to compute and
will take up much more memory to store in the case of ever-growing user- and item-
sets and the matrix P. We identify two possible methods to alleviate this issue: either
reduce the size of the training matrix P, or reduce the complexity of fp by putting
restrictions on the set of items to compute recommendation scores for. Although
the first option opens up interesting directions for future research in how datasets
can be optimally summarised with minimal loss of information, we focus on the
latter. We define our model as follows: fp: U x R— [0, 1], where R < I denotes the
set of recommendable items. This set can be highly dynamic, and depends on any
number of factors such as recency, seasonality, stock and much more. Throughout
the rest of this manuscript, R; will represent the set of recommendable items at time
t. When omitted, all items are considered recommendable (R; = I).

Incremental Similarity Computation

Papagelis et al. present an incremental user-based CF method, focused on explicit
feedback [160]. This work has later been adapted by Yang et al. to allow incremental
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updates of item-based CF methods relying on explicit feedback [240]. Inspired
by their work, our work focuses on incremental updates with implicit feedback.
We split cosine similarity into three key components and incrementally update
these components instead of recomputing the entire similarity after every update.
Equation 2.1 shows the formula for computing the cosine similarity between two
item vectors, where i} represents whether user k has consumed item i.

g..
1
ij ) :lk]k

. k
lillz || 7], m o, |m o,
Z i 2

In the case of implicit feedback (0’s and 1’s) from transactional data and the use
of sparse data-structures, this formulation can be rewritten as shown in Equation
2.2. Here, items i and j are no longer explicitly represented by vectors in a user-
dimensional space, but rather as sets of users that have consumed these items. These
sets can be easily computed from the aforementioned historical transaction data, as
they are effectively a sparse column-wise representation of the binary preference
matrix P.

cos(i, j) =

(2.1)

|U; nUj

VIU;il-/1Uj]
Thus, item similarities can be directly computed when the set-intersection between
their respective user sets and their set sizes are known. We exploit this formulation
to reduce the problem of incrementally updating item similarities to continuously
updating |U;l|, |U;| and |U; n Uj| for every pair of items i, j € I. We denote the
vector containing all item-vectors’ /; —norms and the matrix containing all item-pair
intersections at time ¢ as follows:

cos(i, j) = (2.2)

N;eN":N; ;= |Uj (|, and

Mt € Nnxn : Mi,j,t = |Ui,t N Uj,tl-
The final formula for computing the similarity between two items i, j at time ¢ then
M
VNN
Since M is a symmetrical matrix, we can further improve performance by using
appropriate data structures.

becomes the following: cos(is, j;) =

The Dynamic Index Algorithm

Suppose we have a set of recommendable items R; at time ¢. Define U; < U as the
set of all users u that have ever seen an item that is recommendable at time t:

Ur ={ul3(u,i,5) € Py Ni € Ry}
Define «f; < 27; as the set of all pageviews by users in that set:
.Q{t ={(u, i,S) € ,@tlu € U[}

<f; now holds all pageviews that are relevant to the intersections |U; n U;| where
either i or j is a recommendable item. Naturally, when R; = I, «/; = 2?;. Using
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Algorithm 3 Dynamic Index
Input: A set of pageviews Z;, a set of recommendable items R;.
Output: A matrix of item intersections M, a vector of items’ /y —norms N, an inverted
index of users to rec. items %, an inverted index of users to non-rec. items %,.
: M—0O,N<—O
22 VueU: % ul — @, %Lnlul — @
3: for (u,i,s) € 2 do

4: for je % (u]ldo

5 M;;+=1

6: ifi € R;then

7: for j € £, [ul do

8 Mi,j +=1

9 Lrlul = £ ul u i}
10: N; +=1

11: else

12: ZLnlul = Lylul u i}
13: return M,N, %, %,

Algorithm 3, we can compute the co-occurrence matrix M, and thus all pair-wise
similarities, efficiently. The algorithm dynamically builds two inverted indices for
every user: one for all items recommendable at time ¢ and one for all other items.
The idea of dynamically indexing the data rather than doing this in a preprocessing
step, is adopted from the work of Sarawagi and Kirpal [182]. This approach enables
us to exploit the sparsity that is inherent to the data as we quickly identify those pairs
of items that are of interest, i.e. (i, j) where 1. either i or j € Ry, and 2. |U; n U;| > 0,
while avoiding unnecessary computations on all other pairs of items. Note that
this proposed algorithm is more space-efficient than the Sparse Baseline shown in
Algorithm 2: 22, is indexed only once instead of twice.

As the inverted indices are dynamically built, the core algorithm consists of a
single for-loop over the set of pageviews. Consequently, when a set of new user-item
interactions AZ? arrives, the model can be updated by executing lines 3-12 from
Algorithm 3 on top of the already initialised model computed on the data 2?;. As |2?|
grows, this benefit becomes increasingly important. Figure 2.1 provides some visual
intuition into this phenomenon.

As we have hinted at before, M is a symmetrical matrix. We avoid explicitly
incrementing M; ; when incrementing M; ; since they will be represented as one
number in an efficient implementation. Additionally, the dynamically constructed
inverted indices £, and .¥,, do not need to store the sets of items in an ordered
manner, improving further on runtime efficiency.

From an existing model .# = {M,N, %;, £,,}, we can compute all recommend-
able neighbours j of i with their respective cosine similarities as follows: cos(i, j) =

\/:g_:‘ﬂ:;% = \/FI\:I;J\/N_] It should be noted that |U;| cannot simply be extracted from
N, since we have only computed these item norms from «/; € &?;. By definition, this
vector of item norms will be up to date for recommendable items, but it might not
be for non-recommendable items. However, retrieving |U;| from 27, is only needed

when the actual cosine similarity is important and not just the internal ranking
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Figure 2.1: A visualisation of incremental computation, in comparison with the
classical iterative variant. As more data becomes available, iterative models need
to be retrained from scratch, with computation time #;,,. In contrast, online or
incremental methods, can update the existing model after |]AZ?| new user-item
interactions occur, requiring only At time.

among neighbours. Since all similarities are divided by the constant factor /|U;], it
is trivial to see that the internal ordering will not be impacted by this.

Parallellisation Procedure

From Algorithm 3, we can see a clear independence between the contribution of
different users to the similarity of an item-pair. As i - j equals the number of users
that have consumed both i and j, it is easy to see that a pageview (u, i, s) only has to
be correlated with other items j seen by user u. This insight, albeit trivial, allows
the computation of Algorithm 3 to be easily and efficiently parallellised following
the MapReduce paradigm [33]: if the sets of users processed by every map-process
are mutually disjoint, the reduce-process effectively consists of a summation of the
different matrices M and vectors N.

Let 4 = {M,N, %;, %} be a model, as obtained through Algorithm 3. Figure 2.2
visualises the MapReduce-inspired parallellisation procedure we adopt in this work.
With 7 available cores, Algorithm 3 generates 7 different models in parallel, as shown
in the top row of Figure 2.2. As this step is embarrasingly parallel, this is the so-called
Map-procedure. We then go on to recursively merge models in parallel, until we
obtain one final model. This is visualised in the subsequent rows of Figure 2.2, and
correlates with the Reduce-procedure. Algorithm 4 presents the process to correctly
merge two models .4 and .#’. After i iterations of parallel reduce-processes have
been completed, 2(1_711) models remain. Ergo, log, (n) iterations of parallel reduce
steps are required to obtain a single final model.

From Algorithm 4, it is clear to see that most of the complexity comes from
correlating items that a given user has seen in model .#’ with items the same user
has seen in .#. When parallellising the initial similarity computation, we therefore
ensure that the data used for all map-processes and models {4, ..., .4} consists of
entirely disjoint sets of users: |U N U’| = @. However, for incremental model updates,
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Algorithm 4 Merging two models (reduce)
Input: M,M',N,N', &, &}, %Ln, &5
Output: M, N, Z;, Z.
cM+=M
N+=N
: forue & do
forie £/(ul do
for j € £/ (ul do
M;;+=1
for j € £, [ul do
Mi,j +=1
: forue &, do
forie %) (ul do
for j € £;(u] do
M;;+=1
cVue U: Zrlul = L lulu L) ul
:Vue U: Zylul = Llulu %) ul
: return M, N, 4, £,

© PN D TR dh

— e e e e
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Figure 2.2: A visualisation of the MapReduce-inspired parallellisation proce-
dure adopted in this work. Assuming n independent map-processes, n mod-
els {/,..., 4} are obtained through Algorithm 3, and subsequently recursively
merged through Algorithm 4. After i iterations of the reduce step, 2(l—’i1) models
remain. Consequently, log, (n) reduce iterations are required.

this is less straightforward: as the new model .#’ is trained on newly incoming
interactions, we have no way of ensuring that the intersection between U and U’ is
kept minimal. As a consequence, the computational complexity of the reduce-step
grows significantly, and with it the overhead of the parallellisation procedure.

Incremental Model Updates with Dynamic Recommendability

At time ¢ + 1, the model needs to be updated for a new set of recommendable items
R;11. As the set of recommendable items changes, the set of users with interactions
that are relevant to these items needs to be re-evaluated as well. We compute
U,+ analogous to the previous iteration: Uy = {u|(u, i, 1) € P10 € Reg1}. ytn
is initialised as the empty set @. Three different possibilities for every user u in
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U;U Uy emerge:

Case u € U;\U;+1: The user u was relevant in the previous iteration, but no
longer is. Since their inverted indices Z,[u] and £, [u] will not be needed during
this iteration, we remove them out of memory.

Case u € U;N Uzy1: The user u was relevant and still is. As all u’s interactions
up until time ¢ were already incorporated in the model, we only need to take into
account new interactions between time ¢ and ¢+ 1:

A1 = A1 U, 0, 1) € Pryi\Prlu e U1 0 UL

Case u € U1\ U;: The user u was not relevant during the previous iteration, but
has become now. As the model has no record of any interactions by this user, we
need to take into account their full history:

A1 = A1 U, 0, 1) € Pryilue U\ Uy

At this point, an updated set of pageviews «/;,; to be incorporated into the
model has been computed analogous to Algorithm 3. However, some precautions
still need to be taken with relation to the recommendability of items over time. For
every item i in R; U R;41, three analogous cases to the ones outlined above occur:

Case i€ R;\R;+1: The item i was recommendable in the previous iteration, but
no longer is. We drop all entries in the matrix M; ; where j ¢ R;;. This is important
to ensure consistency when the item i would later become recommendable again,
otherwise increments might not start at 0. Additionally, we move item i from £, [u]
to £, lul.

Case i € R;N Ry +1: The item i was recommendable and still is, nothing needs to
be done here.

Case i € Ry1\R;: The item i was not recommendable during the previous
iteration, but has become recommendable now. Since item i might have already
been included in the index, we should compute possible intersections M; ; that
were not included in the matrix before. This is true for all users u who have seen
item i before time ¢: {ul(u, 1, t;) € &; : I = i}. For every non-recommendable item
J € £ylu] seen by those users, we increment M;, ;. Afterwards, item i has to be
deleted from %, [u] and inserted into £, [u].

If recommendability of items is a monotonically decreasing function over time,
one does not have to worry about these issues: {(u,1, t;) € &; : | = i} will be the
empty set for items i € R;11\Ry, since items that become recommendable are per
definition new in this context. In, for example, a news recommendation setting this
makes perfect sense: older articles should not be considered for recommendation.
In a retail environment, however, this is not the case: recommendability will often
depend on seasonality and current stock.

2.5 Experimental Results

Table 2.1 shows the characteristics of the datasets we used to experimentally vali-
date the efficiency of our proposed approach. Movielens is the latest well-known
Movielens dataset [57], Netflix refers to the full dataset that was used for the famous
Netflix-Prize [13]. For both movie datasets, we converted explicit ratings to binary
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Table 2.1: Experimental dataset characteristics. Datasets denoted by an asterisk (*)
are binarised from explicit-feedback, to mimick the implicit-feedback setting.

Movielens* Netflix* News Outbrain

|| 20e6  100e6 96e6 200e6
|U| 138e3  480e3 5e6 113e6
] 27e3 18e3  297e3 le6
1L 144.41  209.25 18.29 1.76
101 747.84 5654.50 242.51 184.50
a(P) 99.46%  98.82% 99.99%  99.99%
a(M) 59.90%  0.22% 99.83%  99.98%
Sij:8i,;>0 0.050 0.037  0.027 0.012

implicit feedback, entirely disregarding the actual ratings. Outbrain is a dataset
containing logs from users and articles they read, published in a recent Kaggle
competition [155]. We use a deduplicated version of the first 200 million logged
user-item events in our experiments: in the case of recurring user-item pairs, we
keep only the earliest entry. News is a proprietary real-world dataset consisting of
roughly 96 million user-item pairs originating from article reads on the website of a
large Belgian newspaper. Our algorithm, as well as the baseline methods, are imple-
mented in C++ and compiled with all the available optimisation flags. Experiments
ran on a single Intel Xeon processor. We aim to answer three research questions,
respectively covered in the following sections:

RQ1 Is the proposed Dynamic Index algorithm more efficient than the state-of-
the-art in computing similarity between pairs of high-dimensional sparse
vectors?

RQ2 Is the proposed MapReduce-inspired parallellisation procedure effective in
reducing the necessary computation time?

RQ3 What is the impact of restrictions on the set of recommendable items on the
efficiency of the algorithm?

Efficiency of Dynamic Index (RQ1)

To validate the efficiency of our proposed algorithm, we report computation time
for the sparse baseline and Dynamic Index, as shown in Figure 2.3. Both algorithms
run on a single computational core. The naive baseline presented in Algorithm 1
is not included in these results, as it is orders of magnitude slower than the Sparse
Baseline or Dynamic Index on every dataset we consider. We do not consider other
algorithms in our comparison, as other proposed exact approaches in the literature
were demonstrated only on dense datasets, covering a few hundred dimensions at
most [241, 242, 243, 237]. Our method, aimed towards sparse datasets, can efficiently
handle millions of dimensions. Additionally, to the best knowledge of the authors,
no competing exact methods or implementations are available at the time of writing.
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All datasets were chronologically sorted, and we gradually retrained every algo-
rithm with more data, in order to provide a realistic view of the benefits of online
or incremental computation. We can see that for all datasets but Movielens, our
proposed algorithm significantly outperforms the sparse baseline. Movielens has
the highest average non-zero similarity between any item-pair, which might make
it more suited to Algorithm 2. However, as our method learns incrementally, the
potential efficiency gains are much more tangible than merely shown by the area
between the two lines in the plot. The improvement of Dynamic Index is most
apparent for the largest dataset: our algorithm provides a speedup factor larger
than four when all available user-item interactions are considered. Looking at the
average number of pageviews processed by Algorithm 3 per second at every point
in the plots in Figure 2.3, we observe throughputs ranging from 14 500@ for the

Netflix dataset, to more than 834 000%| for Outbrain. These numbers effectively
represent an upper bound on the number of new incoming pageviews per second
the single-core streaming model could process in real-time, assuming a constant-
rate influx. From Table 2.1 and the nature of Algorithm 3, we can deduce interesting
observations about the efficiency of our approach. First, as the throughput is highest
for those datasets with large ||, it seems this is not an important factor. This may
seem counter-intuitive at first, as more unique items will lead to more similarities
that have to be computed. However, the sparsity of the co-occurrence matrix o (M)
is more significant than its absolute dimensions, as we effectively leverage this by
avoiding computations on zero-values. The second decisive factor is |L,l. As most
of the complexity of the algorithm lies in iterating over inverted indices containing
user histories, it should come as no surprise that shorter lists imply faster iterations.

Efficiency of Parallellisation Procedure (RQ2)

To validate the efficiency of our proposed parallellisation procedure, we report
runtime results for the same experimental setting as laid out in Section 2.5, for a
varying number of available cores. Results from this experiment are visualised in
Figure 2.4. We see a clear benefit from parallellising the computation over multiple
cores, over all datasets. For the Netflix and News datasets, using 8 cores provides
a speedup larger than factor 4 compared to the single-core variant. The Outbrain
dataset, which gains the least from the parallellisation scheme, was also the dataset
on which the highest throughputs for the single-core algorithm were reported.

As mentioned in Section 2.4, the reduce-step for merging two models in Al-
gorithm 4 is especially efficient when both models were generated from logged
interactions by mutually disjoint sets of users. When this condition can not be guar-
anteed, it becomes significantly more complex. Therefore, when the batch-size |[AZ?|
is small, the single-core variant proves to be more efficient at incremental updates
than the parallellised version. However, for sufficiently large |AZ?|, the bulk of com-
putation time needed to incrementally update the existing model will come from
dynamically indexing the new data using Algorithm 3 to generate the new model
M1, contrary to merging the old model .4; with .4, using Algorithm 4. In these
cases, the multi-core variant proves itself to be advantageous. Moreover, in cases
where the influx of new data is limited, periodically retraining the model in parallel
or performing the incremental updates batch-wise might be more cost-efficient than
performing incremental updates in a streaming fashion. Simplistically: if the entire
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model can be retrained in 20 minutes and an hour of new data can be processed in
1 minute, these options are respectively 3 and 60 times more cost-efficient than a
24/7 streaming solution.

Efficiency of Restricted Recommendability (RQ3)

Up until now, we have assumed no restrictions on the set of recommendable items.
However, as we have argued before, we believe that this will often not hold in real-
world applications. Whether based on recency, seasonality, available stock, business
rules or any other reason, the set of items that actually should not be recommended
can grow to be of significant size.

To demonstrate the effect that a varying set of recommendable items R; can
have on the Dynamic Index algorithm, we focus on the news recommendation
application. We define ¢ as the recommendability threshold in this recency-focused
setting: when a new item arrives, it remains recommendable for 6 hours. After
this period has passed, the item is no longer considered newsworthy and should
no longer be recommended. Figure 2.5 shows runtime (top plot) and the number
of reccommendable items (bottom plot) when the model is retrained iteratively on
more data, using the Dynamic Index algorithm with varying thresholds 6. Note that
both y-axes are logarithmically scaled. We focus on the case where ample data is
available, and show results for the last week in the News dataset, where the entire
model is iteratively retrained on a growing set of user-item interactions.

Clear performance gains are observed when comparing the results from the
restricted-recommendability variants to the unrestricted algorithm (6 = c0). First,
absolute runtimes are decreased massively when focusing on a smaller, yet more
relevant, set of items. For § = 48h, the algorithm computes the exact similarity
for all relevant item-pairs in < 10% of the time needed for 6 = co. The number
of recommendable items, however, still exceeds 17000, leaving plenty of room
for personalisation. With § = 24h, runtime reduces to < 5%, with more than 8000
recommendable items. Atd = 6k, these numbers turn to 1.6% of the original runtime,
retaining an average of 2100 recommendable items. The sinusoid pattern that
emerges in the bottom plot for low values of ¢ is an artefact originating from the
data: as fewer news articles are published at night, the number of recent items drops
and rises periodically.

Second, looking at the slope of the runtime of the unrestricted variant compared
to that of all restricted variants, we observe that the latter variants all suffer far less
from ever-growing dataset sizes in terms of reduced efficiency. Last, the model size,
number of recommendable items, and runtime are highly correlated with 4.

A reasonable question to ask might be how the restricted recommendability
impacts the accuracy of the generated recommendations. We did not further explore
this due to the following reasons: 1. When recommendability depends on recency,
seasonality or available stock, these are often hard-imposed business rules. As a
result, restricting recommendability is often not a choice in real-world settings. Our
approach deals with this in a flexible way, and effectively exploits the imbalance
for improved efficiency. 2. In offline experiments on logged feedback data, a mul-
titude of biases is consistently present [80, 239, 52]. As users are often presented
with only recent articles on news websites, offline experiments will heavily favour



2.6. CONCLUSIONS 29

News (n=8)

103

5 L

)

£ 10%-

+—

C

S W

- \/—W

M—N/\/\/_M

10t- | ‘ i i ‘ | | |
105 -

< 104

0 25 50 75 100 125 150 175
time (h)
—— 65=6h 5=18h 5=48h 5=168h
— 6=12h —— 6=24h 5=96h - 6=

Figure 2.5: Computation time (top) and number of recommendable items (bottom)
for varying recommendability thresholds in the News dataset (n = 8). 6 denotes how
long a new item remains recommendable after its first appearance, mimicking the
real-world application of news recommendation where recency is critical. Note that
both y-axes are logarithmically scaled.

recency-based approaches. On the other hand, presenting users with irrelevant and
old news in an online experiment is also inappropriate for obvious reasons.

2.6 Conclusions

In this paper, we have motivated and discussed the need for highly dynamic collab-
orative filtering algorithms that are incrementally updateable in near real-time, to
keep up with the highly dynamic environments these algorithms need to perform in.
As a step towards this goal, we proposed a novel parallel approach to incrementally
compute similarity among high-dimensional vectors, specifically tuned to the in-
herent sparsity of real-world datasets in a nearest-neighbour collaborative filtering
recommender system setting. Our algorithm uses simple inverted indices to quickly
identify relevant pairs of items when updates arrive, and as a consequence avoids
further unnecessary computations. Moreover, we have formulated our method in
accordance with the MapReduce paradigm, making it readily parallellisable and
distributable. We have shown that our approach easily scales up to millions of
pageviews, and is able to process industrial-sized datasets in a matter of minutes on
non-specialised hardware. Attainable processing throughputs vary with configura-
tion and data, but can easily range from tens of thousands to millions of pageviews
per second. Our approach is highly scalable and flexible in terms of new users and
items arriving over time. We introduced the concept of item recommendability and
how it can be exploited to avoid wasting unnecessary computation time for the right
use-cases. In our experiments, we effectively increased system throughput by a fac-
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tor of up to 60 when considering a smaller, yet more relevant set of recommendable
items.

As future work, we intend to further experimentally validate the efficiency of
incremental updates to our model with non-monotonic recommendability con-
straints. In an attempt to further improve upon the scalability of CF systems, sum-
marisation algorithms to compress a transactional dataset with minimal information
loss, specifically in the context of recommender systems, would be an interesting
direction for future research. Furthermore, we intend to look into other similar-
ity functions to determine whether they can be decomposed and incrementally
computed as well. As Jaccard Index, Pointwise Mutual Information and Pearson’s
correlation coefficient all depend on the co-occurrence matrix M, we believe this
to be an attainable extension of our work. Throughout this manuscript, we have
focused on item-to-item nearest-neighbour collaborative filtering as the main ap-
plication of our work. When changing the terminology from “users” and “items” to
“terms” and “documents”, we believe that our approach is applicable to more general
information retrieval use-cases as well. Nevertheless, in these settings, extensions
for non-binary data (by including a term-value pair in the inverted indices instead
of just the term) would be appropriate. Naturally, when these inverted indices keep
growing in size, compression techniques might be convenient to improve on space
efficiency. However, most state-of-the-art compression techniques do not support
incremental updates, and random access would be imperative [153, 166].

Reflections

This Chapter has focused on incremental similarity computation for item-based
nearest-neighbour models, but has largely ignored the inseparable problem of
nearest-neighbour querying based on the acquired similarities. The latter is largely
an open problem, as indices for querying typically need to be rebuilt from scratch
when new data arrives. Tackling these two problems jointly could give rise to fully in-
cremental, end-to-end recommendation pipelines. Nevertheless, the contributions
presented in this Chapter represent an important step in this direction.

Furthermore, this Chapter has dealt with analytically computable similarity
metrics, such as cosine similarity (or those that consist of the same building blocks).
Several important extensions have been made to this modelling approach, where
the item-item matrix is trained to minimise some objective function on the data
(e.g. SLIM [147] and EASE® [200]). As these extensions yield significantly improved
recommendation accuracy, a natural question to ask is whether we can provide an
incremental update procedure for these methods. This question provides the main
motivation for the work presented in Chapter 3.



CHAPTER

Embarrassingly Shallow
Auto-Encoders for Dynamic
Collaborative Filtering

Recent work has shown that, despite their simplicity, item-based models
optimised through ridge regression can attain highly competitive results
on collaborative filtering tasks. As these models are analytically com-
putable and thus forgo the need for often expensive iterative optimisation
procedures, they have become an attractive choice for practitioners. Com-
puting the closed-form ridge regression solution consists of inverting
the Gramian item-item matrix, which is known to be a costly operation
that scales poorly with the size of the item catalogue. Because of this
bottleneck, the adoption of these methods is restricted to a specific set
of problems where the number of items is modest. This can become es-
pecially problematic in real-world dynamical environments, where the
model needs to keep up with incoming data to combat issues of cold start
and concept drift.

In this work we propose Dynamic EASE®: an algorithm based on the
Woodbury matrix identity that incrementally updates an existing regres-
sion model when new data arrives, either approximately or exact. By
exploiting a widely accepted low-rank assumption for the user-item in-
teraction data, this allows us to target those parts of the resulting model
that need updating, and avoid a costly inversion of the entire item-item
matrix with every update. We theoretically and empirically show that
our newly proposed methods can entail significant efficiency gains in the
right settings, broadening the scope of problems for which closed-form
models are an appropriate choice.!

I This chapter is based on work under submission to the User Modeling and User-Adapted Interaction
(UMUAD Special Issue on Dynamic Recommender Systems and User Models (DyRSUM) as “Embarrassingly
Shallow Auto-Encoders for Dynamic Collaborative Filtering” by Olivier Jeunen, Jan Van Balen and Bart
Goethals.

31
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3.1 Introduction

Recommender systems are information retrieval applications that aim to mitigate
the problem of “information overload”, by matching users to certain items [18]. They
have become ubiquitous on the world wide web, and have found applications in
many different areas where these items can represent anything from news articles
and musical artists to retail products and social media accounts. Most modern ap-
proaches to recommendation are based on some form of collaborative filtering [39],
a family of methods that aim to model user preferences and learn them from a
dataset of user behaviour. These methods have known widespread success over
the years, and are the cornerstone of modern recommender systems research. As
a consequence, the quest for more effective collaborative filtering algorithms is a
very lively research area, where significant strides forward are being made every year.
Many novel methods are based on deep and non-linear neural networks, and the ex-
pressiveness of this model class has made them ubiquitous in the field [116, 40, 189].
Recent work casts doubt on the reproducibility of evaluation strategies that are often
adopted to empirically validate research findings [32, 170, 171], making it harder
to conclude whether these complex model classes are what the field needs moving
forward.

In a parallel line of research, the effectiveness of simpler linear models for the
collaborative filtering task has been shown time and again [147, 109, 187, 201, 202,
203]. Most notably and recently, Embarrassingly Shallow Auto-Encoders (reversed:
EASER) have been shown to yield highly competitive results with the state-of-the-
art, whilst often being much easier to implement, and much more efficient to
compute [200]. The closed-form solution that is available for ridge regression models
is at the heart of these major advantages, as EASE® effectively optimises a regularised
least-squares problem. Recently, EASE® has been extended to incorporate item
metadata into two variants: CEASER and ADD-EASER [85]. These extensions improve
the capabilities of closed-form linear models to deal with issues such as the “long
tail” (very few items account for the large majority of interactions) and “cold start”
(new items do not have any interactions) [186, 161, 190].

The main benefit of EASE® and its variants over competing approaches, is their
computational efficiency. As the core algorithm consists of a single inversion of
the Gramian item-item matrix, it is often many times more efficient to compute
than models relying on iterative optimisation techniques. As reported in the original
papet, the algorithm can be implemented in just a few lines of Python and is typically
computed in the order of minutes on various often used publicly available bench-
mark datasets [200]. Nevertheless, matrix inversion is known to scale poorly for large
matrices, and EASE®’s reliance on it does inhibit its adoption in use-cases with large
item catalogues. In such cases, methods that rely on gradient-based optimisation
techniques are still preferable.

To add insult to injury, real-world systems rarely rely on a single trained model
that is trained once and then deployed. To make this concrete: suppose we operate
a hypothetical retail website, and we wish to send out an e-mail with a top-N list
of personalised recommendations to our subscribed users every few days. Natu-
rally, the model that generates these recommendation lists should evolve over time,
preferably incorporating new user-item interactions that occurred over the past days.
The importance of a dynamic model like that is threefold: 1. it will generate more
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novel and diverse recommendations than its static counterpart [21], 2. it will be able
to combat concept drift in the data (due to shifting item popularity or seasonality
trends in preferences) [47], and 3. it will have a means to handle cold-start prob-
lems when either with new items or news users appear [186]. Many modern digital
systems generate new data at increasingly fast rates, and this is no different for our
hypothetical retail website. This is important to take into account when choosing a
recommendation algorithm. Models that are already inefficient to compute initially,
will only see these problems exacerbated when the predominant approach every few
days is to recompute them iteratively on more and more data. This puts a theoretical
limit on how often we can update the model, and incurs a computational cost that
we would like to reduce. Instead, it would be much more preferable to have models
that can be updated with new information when it arrives, but do not require a full
retraining of untouched parameters for every new batch of data that comes in. This
is not an easy feat, and the field of “online recommender systems” that are able to
handle model updates more elegantly has seen much interest in recent years [225].
More generally, the problem of “lifelong” or “continual” learning in the machine
learning field deals with similar issues [24].

In this work, we present a novel algorithm to incrementally update the state-of-
the-art item-based linear model EASE®, which is naturally extended to include recent
variants that exploit side-information: CEASE® and ADD-EASER. EASER consists of two
major computation steps: (1) the generation of the Gramian item-item matrix, and
(2) the inversion of this matrix that yields the solution to the regression problem.

We propose Dynamic EASE® (DYN-EASE®), consisting of incremental update rules
for these two steps that leverage the recently proposed Dynamic Index algorithm [83]
and the well-known Woodbury matrix identity [55] respectively. As such, DYN-EASER
provides a way to efficiently update an existing EASE®-like model without the need
of recomputing the entire regression model from scratch with every data update.

A theoretical analysis of the proposed algorithm shows that the highest efficiency
gains can be expected when the rank of the update to the Gramian is low, an assump-
tion that has been widely adopted in the recommender systems literature before [98].
We show how this quantity can be bounded using simple summary statistics from the
new batch of data, and support our findings with empirical results. Further experi-
ments confirm that DYN-EASER is able to significantly cut down on computation time
compared to iteratively retrained EASE®, in a variety of recommendation domains.
Finally, we show how we can update the model with low-rank approximations when
the new batch of data itself is not low-rank; providing a tuneable trade-off between
the exactness of the solution and the efficiency with which it can be kept up-to-date.
Empirical observations show how this approximate variant of DYN-EASER® still yields
highly competitive recommendation performance, with greatly improved update
speed. As a result, our work broadens the space of recommendation problems to
which the state-of-the-art linear model EASE® can efficiently be applied. To foster
the reproducibility of our work, all source code for the experiments in Section 3.4 is
publicly available at github.com/olivierjeunen/dynamic-easer/.

This Chapter builds upon and combines parts of our previously published work
on incremental models [83], and our preliminary work on closed-form models that
exploit side-information [85].

The rest of this Chapter is structured as follows: Section 3.2 introduces our use-
case, with mathematical notation and relevant related work; Section 3.3 introduces
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DYN-EASE® and presents a theoretical analysis of its inner workings; Section 3.4
presents empirical observations from a wide range of experiments and shows where
DYN-EASER can provide meaningful improvements, findings that are in line with what
the theory suggests. This work is concluded in Section 3.5, where we additionally
present a scope for future research.

3.2 Background and Related Work

We first formalise our use-case, and present relevant mathematical notation used
throughout the rest of this work. We are interested in the “binary, positive-only”
implicit feedback setting [221], where we have access to a dataset consisting of
preference indications from users in %/ over items in .# at time ¢ € N, assumed
from a set of interaction data 2 < % x .# x N. Ignoring temporal information,
these preferences can be represented in a binary user-item matrix X € {0, 1}/%*171,
where X, ; = 1 if we have a click, view, purchase,...for user u and item i in 22, and
X,,; = 0 otherwise. With 27;, we denote the set of all interactions up to time t:
{(u,i,t") € 2|t < t}. Consequently, X, is the user-item matrix constructed from the
set of interactions 2?;. We will refer to the set of all items seen by user u as ., < .4,
and vice versa %; < % for an item i. The Gramian of the user-item matrix is defined
as G := X' X; itis an item-item matrix that holds the co-occurrence count for items
i and j atindex G;,j. The goal at hand for a recommendation algorithm is to predict
which zeroes in the user-item matrix X actually shouldn’t be zeroes, and thus imply
that the item would in some way “fit” the user’s tastes and consequently make for a
good item to be shown as a recommendation.

In some cases, additional information about items can be available. Such “side-
information” or “metadata” often comes in the form of discrete tags, which can for
example be a release year, genre or director for a movie, an artist or genre for a song,
a writer for a book, or many more. Incorporating item metadata in the modelling
process can help mitigate cold-start and long-tail issues, where the preference
information for a given item is limited [186, 161]. We will refer to the set of all such
tags as the vocabulary 7. In a similar fashion to the user-item matrix X, a tag-item
matrix T € R”1*1#l is constructed. Note that this matrix is real-valued, as it will often
contain pre-computed values such as tf-idf weights instead of binary indicators.

In what follows, we present a brief introduction to item-based recommenda-
tion models, most notably ITEM-KNN [183], SLIM [147] and EASE® [200]. We then
additionally introduce CEASE® and ADD-EASE® as extensions of EASER that incorpo-
rate item side-information whilst retaining a closed-form solution [85], as these are
most relevant to the dynamic EASE® algorithm we will present in Section 3.3. This
section is concluded with an overview of related work in the field of incremental
collaborative filtering approaches.

Item-based Models, SLIM & EASER

Item-based collaborative filtering models tackle the recommendation task by defin-
ing a conceptual similarity matrix § € R~’1*I, The score given to a potential recom-
mendation is then computed as the sum of similarities between items in the user’s
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history and the item at hand:

score(u,i) = Y 8j;i=(X,.8); 3.1)
j€Su

Here, X,,. denotes the u™ row of X. Note that computing recommendation
scores for all training users and all items simply consists of computing the matrix
multiplication XS, an operation that is made more efficient when the matrix S
is restricted to be sparse. Scores for items i already present in the user history
%, are often ignored, and the remaining items are ranked and presented in a top-
N recommendation list or slate to the user. Early seminal works would define
the similarity matrix S as all pairwise cosine similarities among items in the high-
dimensional but sparse user-item matrix X [183]. This has then been extended to
include slightly more advanced notions of similarity such as Pearson’s correlation
or conditional probabilities [34]. Recent work has introduced the “Dynamic Index”
algorithm to incrementally compute the Gramian of X, additionally showing that
several conventional similarity metrics such as cosine similarity or Jaccard index
can be readily computed from G when it is up-to-date [83].

Methods for actually learning an optimal item-item similarity matrix have been
proposed for the task of rating prediction [97], as well as for pairwise learning from
implicit feedback [169]. Ning and Karypis were the first to propose to learn a sparse
weight matrix S through a pointwise optimisation procedure, aptly dubbing their
approach the Sparse LInear Method (SLIM) [147]. SLIM optimises a least-squares
regression model with elastic net regularisation, constrained to positive weights:

§* = argmin | X - XSII% + A1 ISI + A2 1S1%,
N

subject to diag(S) =0and $=0. (3.2)

The restriction of the diagonal to zero avoids the trivial solution where § = I.
Many extensions of SLIM have been proposed in recent years, and it has become
a widely used method for the collaborative filtering task [148, 109, 29, 187, 30, 200,
202, 203, 26]. In practice, the SLIM optimisation problem is often decomposed into
|-#| independent problems (one per target item). Although these can then be solved
in an embarrassingly parallel fashion, this renders the approach intractable for
very large item catalogues. Indeed, as they aim to solve |.#| regression problems,
their computational complexity is in the order of @ (|.#|(|.#| - 1)?373), assuming they
exploit the recent advances in efficient matrix multiplication and inversion [104, 7].
The computational cost of the original SLIM approach is a known impediment for
its adoption in certain use-cases; related work has reported that hyper-parameter
tuning took several weeks on even medium-sized datasets [116] 2

Steck studied whether the restrictions of SLIM to only allow positive item-item
weights and their /; -regularisation-induced sparsity were necessary for the result-
ing model to remain competitive, and concluded that this was not always the
case [200, 203]. The resulting Tikhonov-regularised least-squares problem can then
be formalised as:

§* = argmin | X — XS|% + A[|SI|%, subject to diag(§) = 0. (3.3)
N

21t should be noted that the authors have since released a more performant coordinate-descent-
based implementation of their method [149].
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The main advantage of simplifying the optimisation problem at hand, is that
the well-known closed form solutions for Ordinary Least Squares (OLS) and ridge
regression can now be adopted. Including the zero-diagonal constraint via Lagrange
multipliers yields the Embarrassingly Shallow Auto-Encoder (EASER) model:

§=1- P-diagMat(1 o diag(P)), where P:= (X" X + AD L. (3.4)

As this model consists of a single regression problem to be solved and thus a
single matrix inversion to be computed, its complexity is orders of magnitude smaller
than that of the original SLIM variants: @ (.#|%>373). EASE® no longer yields a sparse
matrix, possibly making Equation 3.1 much less efficient to compute. Nevertheless,
the author reported that there was only a marginal performance impact when simply
sparsifying the learnt matrix by zero-ing out weights based on their absolute values
up until the desired sparsity level. As an additional advantage, EASE® has only a
single regularisation strength hyper-parameter to tune compared to the two needed
for SLIM’s elastic net regularisation. We refer the interested reader to [200, 201] for a
full derivation of the model and additional information.

Another recent extension of the sSLiM paradigm proposes to use Block-Diagonal-
Regularisation (BDR) to obtain a block-aware item similarity model [26]. The block-
diagonal structure in the learnt matrix inherently represents clusters among items.
As inter-block similarities are penalised, BDR has a sparsity-inducing effect that pos-
itively impacts the efficiency of the recommendation-generating process. Because
the block-aware model presented by [26] no longer has an analytically computable
solution readily available, further comparison with their method is out of scope
for the purposes of this work. The item-based paradigm and its closed-form in-
stantiations have also recently been adapted for bandit-based recommendation
use-cases[78].

Item-Based Models with Side-Information

The EASER definition can be further extended to incorporate side-information in ei-
ther a “collective” (CEASE®) or “additive” (ADD-EASE®) manner [85]. The first method,
inspired by collective SLIM [148], intuitively treats discrete tags equivalent to how
users are treated, and re-weights their contribution to the solution of the regression
problem by the diagonal weight-matrix W € RU%!+VDx(Z1+17D.

§* =argmin [V (X'~ X'8) ”i +AISIZ,
N

X
subject to diag(S) = 0, where X' = [ T] . (3.5)

The closed-form solution is then given by Equation 3.6, where @ denotes element-
wise division, diag(-) extracts the diagonal from a matrix, diagMat(-) generates a
square diagonal matrix from a vector, and 1 is a vector of ones.

§=1-P-diagMat(1 @ diag(P)), where P := (X" "WX' + A~} (3.6)

The second method, ADD-EASEF, treats the regression problem on the user-item
matrix X and the one on the tag-item matrix T as two fully independent problems
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to solve in parallel; combining the two resulting item-item weight matrices Sx and
St in an additive fashion later down the line.

§* = aargmin (H VWx(X - XSx) Hi +Ax ||sX||§)
X

+(1 — @)argmin (H VWr(T-TSry) HZF +Ar ”ST”%); 5.7
s

T

subject to diag(Sx) = diag(St) =0.

ADD-EASE® doubles the amount of parameters used by EASE® and CEASER, increasing
its degrees of freedom at learning time at the cost of having to solve two regression
problems instead of one. Note, however, that these are fully independent and can
be computed in parallel. Equation 3.8 shows the analytical formulas to obtain the
two independent models, and combine them with a blending parameter 0 < a < 1.

Sx = I - Py - diagMat(1 @ diag(Px)), where Px := (XTWx X + Ax D)™
8t = I- Py -diagMat(1 @ diag(P1)), where Py := (T"TW1T +ArD)~} (3.8)

S=aSx+1-a)87

The computational complexity of CEASE® and ADD-EASE® remains in the order of
0(.#1>373), which is equivalent to the original EASE? approach. As such, these
methods allow item side-information to be included into the model without a
significant added cost in terms of computational complexity. The main reason for
this, is that we adapt the entries in the Gramian G, but do not alter its dimensions.

Incremental Collaborative Filtering

Collaborative filtering techniques that can be incrementally updated when new data
arrives are a lively research area in itself. Vinagre et al. propose incremental Stochas-
tic Gradient Descent (SGD) as a way to dynamically update matrix factorisation
models based on positive-only implicit feedback [222]. Their methodology has first
been extended to include negative feedback [224], and then to a co-factorisation
model that is more complex than traditional matrix factorisation, but also leads to
superior recommendation accuracy [8]. He et al. propose an incremental optimi-
sation procedure based on Alternating Least Squares (ALS), and also show how it
can be applied to efficiently and effectively update matrix factorisation models [60].
More recently, Ferreira et al. propose a method that personalises learning rates on
a user-basis, reporting further improvements. In contrast, our work focuses on
item-based similarity models that come with closed-form solutions, as these have
been shown to be highly competitive with the state-of-the-art in many collaborative
filtering use-cases.

Instead of just incorporating new data into the model, Matuszyk et al. propose
to forget older data that has become obsolete, reporting significantly improved per-
formance for collaborative filtering approaches [133]. The dynamic EASE® method
we propose in Section 3.3 fits perfectly into this paradigm, as it can incorporate
new data just as easily as it can forget irrelevant information in a targeted manner.
This type of de-cremental learning has the additional advantage of being able to
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avoid complete retraining in privacy-sensitive application areas, where specific user
histories need to be removed from the model upon request.

Neural Auto-Encoders

The Auto-Encoder paradigm of which EASE® is a specific instantiation, has gained
much popularity in recent years. The Mult-VAE method proposed by Liang et al. [116],
consists of a variational auto-encoder with a multinomial likelihood, and has been
a strong baseline for several years [32]. Khawar et al. propose an architecture that
first learns a grouping of items and leverages this structure when learning the auto-
encoder, reporting significant gains over the original Mult-VAE method [93]. As
these methods rely on gradient-based optimisation of often highly non-convex
objective functions, they rely on software packages with automatic differentiation
capabilities, and typically require significant computational resources, in the form
of several hours of training on machines equipped with GPUs. The methods we
consider in this work are computed in the order of minutes on CPUs, and we do not
include neural approaches in our comparison for this reason. Furthermore, among
others, the work of Steck [200] and Dacrema et al. [32] have repeatedly shown that
linear item-based models can attain highly competitive recommendation accuracy
compared to neural alternatives.

3.3 Methodology and Contributions

We have given a brief history of item-based collaborative filtering models, and have
discussed why EASER and its variants are computationally often more efficient than
their counterparts based on sLIM. For very large item catalogues, however, its more
than quadratic computational complexity in the number of items still becomes a
very tangible issue. Because of this, the demand for an algorithm that can efficiently
update EASE"-like models when new data arrives, is still very real, and a necessity
for these methods to obtain widespread adoption in practice. Recent work proposes
the “Dynamic Index” algorithm as a way to incrementally update item similarities in
neighbourhood-based models that adopt cosine similarity [83]. A crucial building
block of this metric and the algorithm is the efficient and incremental computation
of the Gramian matrix G = X7 X. By storing G in low-overhead sparse data-structures
such as inverted indices, they minimise memory overhead whilst still allowing for
an amortised constant lookup time when querying .#,, which is a requirement for
incremental updates. From Equations 3.4, 3.6 and 3.8, it is clear to see that EASE®
and its variants are dependent on this Gram-matrix as well. In fact, it is the only
building block needed to be able to compute the resulting item-item weight matrix
S. As such, we adopt parts of the Dynamic Index algorithm proposed by Jeunen et al.
to first efficiently compute and then incrementally update the Gramian matrix G.
Once we have an up-to-date matrix G, we need to compute its inverse to obtain P
and the eventual model § from that. The matrix inversion to go from G to P is the
workhorse behind EASEF that takes up the large majority of the computation time, as
this step corresponds to solving the regression problem formulated in Equation 3.3.
Iterative re-computation of this matrix inverse every time we wish to incorporate
new data into the model, is thus to be avoided if it can be.
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Algorithm 5 DYN-GRAM
Input: P, £
Output: Gp, £

1: GA=0

2: for (u,i) € 25 do

3:  for je £luldo
4 GA,i,j +=1
5 GA,j,i +=1
6: Gpii+=1
7
8

Llul = Llul U i)
: return Gp, &

Low-Rank Model Updates with the Woodbury Matrix Identity

Equation 3.9 shows the Woodbury matrix identity, which posits that the inverse of a
rank-k correction of some n x n matrix A can be computed by performing a rank-k
correction on the inverse of that matrix A [55].

(A+ucv)'=a'-Alucct'+valu)tlval 3.9)

So, given A~!, U, C and V, there is no need to re-compute the inversion on the
update of A, but it is sufficient to multiply a few matrices and compute the inverse
of (C™ 1+ VA™1U) e Rk*F, Naturally, for large n and k <« n, the efficiency gains will
be most significant. Note that the inversion of C is trivial and consists of just k
operations, as C is a diagonal matrix.

In our setting, suppose we have an up-to-date model at a certain time ¢ with X;,
G;, P, and §,. At a given time ¢ + 1, suppose we have an updated user-item matrix
X:+1, but we wish to compute G4, IA’HI and the resulting S ++1 as efficiently as
possible. As we mentioned before, computing G, incrementally can be achieved
easily and efficiently by adopting parts of the Dynamic Index algorithm. In fact,
because of the incremental nature of the algorithm, we can easily just store the
difference in the Gramian matrix instead of its entirety: Go = G111 —G; =X I X1 —
X IX ¢. Given a set of user-item interactions &2 c % x .# to include into the model
and an inverted index £; mapping users u to their histories .#,,, Algorithm 5 shows
how to achieve this. Note that the indices holding .#, are just a sparse representation
of the user-item matrix X and don't require any additional memory consumption.
Furthermore, Algorithm 5 is easily parallellisable through the same MapReduce-
like paradigm adopted by [83]. Naturally, an efficient implementation will exploit
the symmetry of the Gramian Ga to decrease memory consumption as well as the
number of floating point operations needed at every update.

Now, having computed Ga, we can rewrite what we need as follows:

P =G+ AD ' = (G, + AT+ Gp) L. (3.10)

The form on the right-hand side already begins to resemble Woodbury’s formula
in Equation 3.9. All that’s left is to decompose Ga € R**" into matrices U € R"*¥,
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C e RF*F and v e RF*", As G, is the difference of two real symmetric matrices
G:+1 and Gy, it will always be a real symmetric matrix as well. This means that
the eigenvectors of G, can be chosen to be orthogonal to each other: QT = Q1.
Consequently, an eigendecomposition always exists, where k is the rank of Ga:

Ga=QAQ™!
= A T
QAQ (3.11)

k
=) 1AiQ. Q.
i=1

As such, we can plug Equation 3.11 containing the eigendecomposition of Ga
into Equations 3.9 and 3.10 to obtain our final update rule in Equation 3.12:

P =G+ AT+ Gp) ™!
= (G +AI+QAQ")™! (3.12)
=P,-P,QA'+Q"P,Q)T'QP,.

The full DYN-EASE® procedure is presented in Algorithm 6. If the updates to the
Gramian matrix are low-rank, this procedure will be much more computationally
efficient than re-computing the inverse of the entire Gramian matrix from scratch, as
we will shown in the following subsection. The assumption that the data-generating
process behind user-item interactions is generally low-rank, has been exploited far
and wide in the recommender systems literature [98].

It is interesting to note that EASE® does not follow the low-rank assumption
that motivates the popular family of latent factor models for collaborative filtering.
Indeed, EASE® is a full-rank model, combatting overfitting with Gaussian priors on its
parameters rather than reducing the dimensionality of the problem. The low-rank
assumption we adopt here is on the update to the Gramian G, instead of the full
Gramian G. As we will show further on, both theoretically and empirically, this
assumption holds in a variety of settings.

The fact that G is symmetric and will often be very sparse in nature can be
exploited when computing the eigendecomposition on line 3 of Algorithm 6, as
we will show in the following section. Many modern software packages for scien-
tific computing implement very efficient procedures specifically for such cases (e.g.
SciPy [227]). Note that alternative algorithms to factorise G into lower-dimensional
matrices exist, often relying on randomised sampling procedures [131, 56]. These
algorithms are reportedly more efficient to compute than the traditional eigen-
decomposition, but often not geared specifically towards the high-dimensional yet
sparse use-case we tackle in this work, or not equipped to exploit the symmetric
structure that is typical for the Gramian. As they compute two dense matrices of
Q’s dimensions — their improvement in computation time comes with the cost of
increased memory consumption. Furthermore, these methods are often focused on
approximate matrix reconstructions whereas we are interested in an exact decom-
position of the update to the Gramian. As the eigen-decomposition fulfils our needs,
the study of alternative factorisation methods falls out of the scope of the present
work.
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Algorithm 6 Exact DYN-EASE®

Input: 13,, Pp, Ly

Output: P, Li+1.

: GA, ZLr+1 = DYN-GRAM(Pp, %) /1 (Algorithm 5)
: k =estimate-rank(Gp) // [117, 214]

A, Q = eigen-decomposition(Ga, k)

Pia= iit -P QAT +QP,Q'QTP,

: return Py

a s e Ny

Throughout this section, we have focused on DYN-EASE" as a general extension
of EASER. Naturally, our approach is trivially extended to include CEASE®, ADD-EASER
or a weight matrix W different from the identity matrix I as well, as these variants
only change the input to Algorithms 5 and 6, but bear no impact on the procedures
themselves.

Computational Complexity Analysis of Eigen-Decomposition

The computational complexity of EASE® is determined by the inversion of the
Gramian, whereas the complexity of DYN-EASEF is dictated by that of the eigen-
decomposition of the update to the Gramian. The computational complexity of
matrix inversion, as well as that of solving the eigen-problem of a matrix, can be
reduced to that of matrix multiplication [159, 104]. Given a square matrix of size
n x n, this is generally thought of as an @ (n®) problem. Nevertheless, specialised
methods that provide improved bounds on the exponent exist, the most recent one
being G (n?>37286) by [7].

In practice, it is easily seen that more efficient algorithms can be applied to
specific cases instead of the general approach. Indeed, the inversion of a diagonal
matrix consists of just n operations, and algorithms to multiply sparse matrices
are often much more efficient than their dense counterparts. In what follows, we
provide a brief theoretical analysis of the complexity of DYN-EASE®, giving rise to
an improved estimate for its computational complexity in practical settings. This
bound explains the efficiency improvements of DYN-EASE® over EASER, and recovers
the equivalence of eigen-decomposition to matrix inversion in the general case.

A first important thing to note is that the Gramian is symmetric, and so is Ga.
This allows us to use the iterative method proposed by [101] to compute its eigen-
vectors and -values.® The core algorithm proposed by Lanczos consists of k steps —
one per non-zero eigen-value-vector pair — which in turn consist of several vector
and matrix manipulations. We refer the interested reader to an excellent analysis of
the Lanczos algorithm provided by [157], showing how it works and why it converges.
The computational complexity of every step in the method is determined by that of
a matrix-vector product between the input Ga and an |.#|-dimensional vector. In
the general case, such an operation is G (|.¥ [2). In our specific case, however, Gj is

3In our experiments we use an efficient SciPy implementation of a variant called the Implicitly
Restarted Lanczos Method [107, 227]; the analysis remains valid.
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often of an extremely sparse nature. This allows us to describe the complexity of the
product as G(m-|.#]), where m is the average number of non-zero values in every
column of Ga. Repeating these steps for every non-zero eigen-value-vector pair
yields a final computational complexity of @' (k- m - |.#]). When we wish to do a full-
rank update on a dense matrix (i.e. k = m =|.#|), this recovers the computational
complexity of general matrix inversion: 0 (|.¥ 13). In the cases where either the
rank of the update is low (k <« |.#|) or the update to the Gramian is highly sparse
(m < |.#]), the eigen-decomposition will be most efficient and as a consequence, the
performance benefits of DYN-EASER over EASE® will be most apparent too. Note that
although low-rankness and sparsity will often come in pairs in the practical settings
we deal with, this does not have to be the case in general. As a counter-example: the
identity matrix I is highly sparse yet full-rank.

Efficient Estimation and Upper Bounding of the Update’s Rank

In order to compute the eigen-decomposition on line 3 of Algorithm 6, the numerical
rank of Gao would need to be known a priori. Furthermore, as we have shown,
the efficiency of the update procedure is highly dependent on the assumption
that this rank is much smaller than the dimensionality of the Gram-matrix itself:
k < |.#]. It is known that matrix ranks can be estimated efficiently through the
use of randomised methods [117, 214]; when dealing with sparse and symmetric
matrices, these methods tend to attain extremely efficient performance.* Being able
to estimate rank(Ga) of course does not guarantee that this quantity will be low. In
practice, however, we notice that it is often the case. We can see that the rank of the
update Ga depends on (1) the number of unique users in the update &2, denoted
by |%Aa| , and (2) the average number of items in the entire history of these users:
|-#a, 1. This can be intuitively seen from the fact that an index i, j in the Gramian
matrix represents the number of co-occurrences between the items i and j in the
dataset. As such, a new user-item interaction (u, i) € 2, affects G;;,V j € #,.

Now, let X[, ] be the user-item matrix containing all (including historical) user-
item interactions from only the users that appear in the update. This means we can
rewrite the updated Gramian matrix as follows:

G =G —X X+ X[, X111

— T T
=G~ X[@(A,.],tX[%A,']J + X[%A,.]’HlX[WIAw],Hl'

The update then becomes: Ga = X[, . Xy, 1,041~ Xy 1 X1ua 1

Lemma 1. Given al|%|x |.#| user-item matrix X, its Gramian matrix G, and updates
to X; the rank of the update of the Gramian matrix Ga can be upper bounded by two
times the number of unique, non-zero rows in X p: rank(Gpa) < 2|%al|.

Proof. As the rank of a matrix is defined as its number of linearly independent row
or column vectors, a (possibly loose) upper bound for rank(X/4, ) is given by its
number of non-zero rows |%|. Consequently, the rank of the Gramian matrix has
the same bound: rank(X[T%A,_]X [#a,1) < 1%al. It is well known that the rank of the

“In the SciPy package for Python, an implementation of the randomised method presented by Liberty
et al. can be found under scipy.linalg.interpolative.estimate_rank [117, 227].


UMUAI21:https://docs.scipy.org/doc/scipy-1.4.1/reference/linalg.interpolative.html
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Algorithm 7 Approximate DYN-EASE®
Input: P, Pn, Ly k
Output: P, Li+1.
1: GA, Z1+1 = DYN-GRAM(Pp, Zy) /1 (Algorithm 5)
2: A\, Q = truncated-eigen-decomposition(Ga, k)
3 P =P,—P,QA'+Q"P,Q)'QTP,
4: return P,

sum of two matrices is less than or equal to the sum of the ranks of the individual
matrices. Bringing those together, we have that rank(Ga) < 2|%Aa|. O

This upper bound on rank(Gx) holds for any update to X. When users in the
update are disjoint of those in X, the bound can be tightened to |%%a|. For general-
purpose use cases, it is not be feasible to ensure that users in the update do not
appear with partial histories in previous iterations of the model. For specific appli-
cations such as session-based recommendation, however, it is common practice to
train models on the session-item matrix, which satisfies this assumption by defini-
tion [124].

Lemma 2. Givenal%|x|¥#| user-item matrix X, its Gramian matrix G, and updates
to X that only consist of adding new rows or altering previously zero-rows; the rank of
the update of the Gramian matrix Ga can be upper bounded by the number of rows
being added or altered: rank(Ga) < |%a|.

Proof. When the update only pertains to new users, this ensures that rank(Ga) =
rank(X ). Because rank(Xa) is bounded by || per definition, so is rank(Ga):
rank(Ga) < |%Aa|. O

We have provided bounds for rank(Ga) by focusing on the number of users that
have contributed interactions in the new batch of data that we wish to include into
the model. Analogously, in some settings, it might be easier to bound the number of
unique items that are being interacted with. In a news recommendation setting, for
example, a new batch of data might consist of only a very limited number of items (in
the order of hundreds) being read by a much higher number of users (hundreds of
thousands). In this case, we can straightforwardly extend Lemmas 1 and 2 to bound
the rank by the number of independent columnsin X as opposed to its rows. The
further reasoning and results follow trivially, bounding rank(Ga) by 2|.#A| and |.#a |
respectively. Whereas the original EASE® approach and the need to iteratively retrain
would make it a poor choice for applications with possibly vast item catalogues but
smaller active item catalogues, such as catalogues of news articles, the presented
upper bounds theoretically show why DYN-EASEF can provide an efficient updating
mechanism.
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Approximate DYN-EASE® Updates via Truncated Eigen-Decomposition

Naturally, the rank of the update will not always be low in general recommendation
use-cases. The easiest counter-example to think of is the case where we wish to
include k user-item interactions that pertain to k new and unique users as well as
k unique items. This will lead to a diagonal-like structure of X and rank(Xx) = k,
which is problematic for large values of k. However, it is also not hard to see that
incorporating such a batch of data into our model will not affect any of our personal-
isation capabilities. Indeed, as EASE" exploits signal from item co-occurrences, data
where no item co-occurrences are present is practically useless, even though it is
full-rank. Although this is a contrived example, it serves to illustrate that the rank of
the update is not necessarily synonymous with its informational value.

In these cases, we can still resort to updating our model P with a low-rank ap-
proximation of Ga without hurting the performance of the updated model. Instead
of computing the rank and a full eigen-decomposition of the Gramian as shown in
Algorithm 6, we can choose the rank k at which we wish to truncate, and update P
with a low-rank approximation G, instead of the real thing. The resulting algorithm
is shown in Algorithm 7, and it provides a tunable trade-off between the exactness
of the acquired solution and the efficiency of incremental updates.

Interestingly, this type of approximate update is closely related to yet another
extension of the SLIM paradigm: Factored Item Similarity Models (Fism) [90]. In
FISM, the similarity matrix S is modelled as the product of two lower-dimensional
latent factor matrices. The resulting low-rank model is shown to be increasingly
effective as the sparsity in the user-item interactions it learns from increases, high-
lighting that this type of approximation does not necessarily imply a decrease in
recommendation accuracy. In approximate DYN-EASE®, we do not directly model
the similarity matrix S as factorised, but we update S with a factorised version of
the update to the Gramian Ga. Factorised models such as FISM or approximate
DYN-EASER also bear resemblance to models that are often used in natural language
processing applications. Indeed, the well-known WORD2VEC algorithm to train word
embeddings implicitly learns to factorise a matrix holding the (shifted positive)
pointwise mutual information between word-context pairs [141, 110].

Although our motivations for approximate DYN-EASE® are rooted in improving
the computational cost of exact DYN-EASEF, the advantages of transitivity that come
from adopting low-rank representations can significantly impact recommendation
performance as well. Imagine items a, b, c € .# where (a, b) and (b, ¢) co-occur in
the training data of user histories, but (a, ¢) does not. Full-rank EASE® cannot infer a
correlation between a and c in such a setting, whereas low-rank models can learn
a latent factor that unifies a, b and c. This explains the advantage that low-rank
models have in sparse data environments. For further insights on the advantages,
differences and analogies between full-rank and low-rank models, we refer the
interested reader to the work of Van Balen and Goethals [216].

As we are factorising G by its truncated eigen-decomposition, we are guaran-
teed to end up with the optimal rank-k approximation with respect to the mean
squared error between G and Ga. Naturally, with the highly sparse nature of Ga,
this optimal approximation will focus on reconstructing entries with large values,
and rows or columns with many non-zero values. This corresponds to focusing on
the items that occur most often in the new incoming batch of user-item interactions
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Name nnz(X) |%| £ 1% |#,| Timespan (6)
MovieLens-25M (ML-25M) 16M 162k 30k 524 96 25 years
YooChoose 10M 1.3M 28k 359 8 6 months
RetailRocket 593k 115k 49k 12 5 4 months
Adressa 39M 14M 54k 725 28 3 months
Microsoft News (MIND) 16M 696k 62k 266 24 5 days
SMDI 738k 10k 7k 41 31 4 months

Table 3.1: Datasets we adopt throughout the experiments presented in this work,
along with their source and summary statistics that describe the user-item interac-
tions and their sparsity. nnz(-) denotes the number of non-zero entries.

25. Because of this, we can expect approximate DYN-EASER to favour recently popu-
lar items, which can give an additional performance boost in the right application
areas. Nevertheless, an in-depth discussion or validation of the efficacy of factorised
EASER-like models falls outside the scope of this work, as we focus on the efficiency
with which the model can be updated. If the cut-off rank k is lower than the true
rank of the update, approximate DYN-EASE® guarantees an improvement in terms of
the computational complexity of the update procedure.

3.4 Experimental Results and Discussion

The goal of this section is to validate that the methods we proposed in earlier sec-
tions of this manuscript work as expected, and to investigate whether expectations
grounded in theory can be substantiated with empirical observations. Concretely,
the research questions we wish to answer are the following:

RQ1 Can exact DYN-EASER provide more efficient model updates in comparison
with iteratively retrained EASE®?

RQ2 Can our theoretical analysis on the correlation between rank(Ga) and the
runtime of DYN-EASER set realistic expectations in practice?

RQ3 Do the phenomena we describe for bounding rank(Ga) occur in real-world
session-based or news recommendation datasets?

RQ4 Can approximate DYN-EASEF provide a sensible trade-off between recommen-
dation efficiency and effectiveness?

Table 3.1 shows the publicly available datasets we use throughout our experi-
ments in an attempt to provide empirical answers to the above-mentioned research
questions. The well-known MovieLens dataset [57] consists of explicit ratings (on a
1-5 scale) that users have given to movies, along with the time of rating. We drop
ratings lower than 3.5 and treat the remainder as binary preference expressions.
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Additionally, we only keep users and items that appear at least 3 times throughout
the dataset. This type of pre-processing is common, and ensures we are left with
positive preference expressions that carry enough signal for effective personalisa-
tion [116, 9]. We take the newest and largest variant of the dataset as our starting
point: MovieLens-25M.

Many recommender systems applications are based on shorter browsing ses-
sions rather than full user histories that might span years [124]. As laid out in
Section 3.3, these set-ups can be especially amenable to our approach, as the adop-
tion of these shorter sessions instead of longer user histories naturally decreases the
rank of the update to the Gramian. We adopt two well-known datasets for session-
based recommender systems: the YooChoose dataset, released in the context of the
2015 ACM RecSys Challenge [12]; and the RetailRocket dataset [91]. These datasets
consist of implicit feedback (clicks) from users on retail products, and we compute
the 3-core for users and items in the same manner we did for MovieLens-25M, after
removing repeated user-item interactions. To validate our intuitions regarding DYN-
EASER and the rank of the Gramian in news recommendation setups, we use the
Adressa and Microsoft News datasets (MIND) [53, 235]. These datasets contain im-
plicit feedback inferred from browsing behaviour on news websites; we pre-process
them anaologously to the other datasets.

Some datasets have prohibitively large item catalogues for EASER to compute
the inverse Gramian at once. However, the large majority of items are often at the
extreme end of the so-called “long tail”, only being interacted with once or twice.
We prune these items to keep the EASE? computation feasible but still highlight the
advantages of DYN-EASE®.

Note that these pruning operations on rare items significantly cut down com-
putation time for EASE® (directly dependent on |.#|), but do not pose an unfair
advantage for DYN-EASER. Items that appear just once in the dataset blow up the size
of the Gramian, but do not significantly impact the rank of the Gramian updates.
Indeed, in these situations we get that k <« |.#], and the computational advantages
of DYN-EASE® over EASE® become even more pronounced. We adopt such pruning
as it is common practice and keeps the computational needs for reproducing our
experiments reasonable. The reason we do not further explore other commonly
known datasets such as the Million Song Dataset (MSD) [15], is that these do not
include logged timestamps that indicate when the user-item interactions occurred.
Because of this, they are unsuited for evaluating a realistic scenario where models
are incrementally retrained over time.

The final dataset we adopt is the SuperMarket Dataset with Implicit feedback
(SMD]) introduced by Viniski et al. [226]. Because this dataset has a comparatively
small item catalogue, the computation time for all EASE® variants is in the order
of seconds and largely dominated by variance and system overhead. We adopt
the SMDI dataset to study the recommendation performance of approximate DYN-
EASER, as it exhibits a distribution shift that is largely absent in the other datasets we
consider.

To foster the reproducibility of our work, all source code for the experiments we
have conducted is publicly available at github.com/olivierjeunen/dynamic-easer/,
under an open-source license. All code is written in Python 3.7 using SciPy [227].
Reported runtimes are wall-time as measured using an Intel Xeon processor with 14
cores. The rest of this section is structured to follow the research questions laid out
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above.

Efficiency of exact DYN-EASE® (RQ1)

To verify the gains in runtime from exact DYN-EASE® over iteratively retrained EASE®,
we chronologically split the user-item interactions based on a fixed timestamp ¢,
yielding all user-item interactions up to ¢, and all those after ¢. The Microsoft News
Dataset comes with user’s reading histories and clicks on shown recommendations,
but the former type of interaction does not include timestamps. Because of this,
we treat these historical interactions as “early data” included in the original EASE®
computation, and incorporate the timed clicks chronologically into DYN-EASER in
the procedure described below.

We train an EASE® model on the early batch, and report the runtime in seconds
needed for this computation. This operation is repeated over 5 runs, and we report
a 95% Gaussian confidence interval. As new incoming user-item interactions do
not affect the dimension of the Gramian matrix that needs to be inverted, the
runtime needed to compute EASE® remains fairly constant when adding new user-
interactions.

Over the newer batch of data, we employ a non-overlapping sliding window
technique that chronologically generates batches of data to be included in the ex-
isting model via our proposed exact DYN-EASE® procedure. The size of this window
§ is varied to study the effects on the runtime of DYN-EASE®. Larger values of §
imply larger update batch sizes, which will often lead to an increase in rank(Ga).
Naturally, when 6 becomes too large, a point is reached where the overhead induced
by our incremental updating method becomes prohibitively large, and it becomes
favourable to fully retrain the EASE® model. Sensible values of § come with a restric-
tion: when the runtime of the model update is larger than 9, this would indicate that
the procedure cannot keep up with incoming data in real-time. We do not encounter
this issue for any of the values of § explored in our experiments - suggesting that
DYN-EASER can be a good fit for various configurations.

Figure 3.1 visualises the resulting runtimes from the procedure laid out above,
on all five considered datasets. The time for the sliding window increases over the
x-axis, and runtime for varying values of § is shown on the y-axis. The explored
values of 4 differ based on the dataset and use-case: for the 25-year spanning
MovieLens dataset, daily updates might be sufficient; for the 3-month spanning
news recommendation dataset Adressa, more frequent 5-minute updates might be
more appropriate, to keep up with the highly dynamic nature of the environment.

We included values of § that push the runtime for DYN-EASER up to that of EASER
to highlight the limitations of our approach. Provided that the computing power
and infrastructure is available, however, 6 can be decreased to bring DYN-EASE®’s
runtime into the desirable range. Note that this limitation on ¢ is general for online
learning approaches from user-item interactions, and not specific to the methods
we propose in this work.

From the runtime results, we can observe that our proposed method entails
significant performance improvements compared to iterative model retraining, for
a wide range of settings. Over all datasets, we observe a clear trend towards lower
runtimes for shorter sliding windows and more frequent updates, as is expected
from our theoretical results.
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As the MovieLens-25M dataset spans several decades, the amount of new user-
item interactions to be incorporated on a daily basis remains modest. Exploring
lower values of § would not provide any additional insights into the performance of
DYN-EASER because of this. As a consequence, we obtain a clean separation between
the runtime for DYN-EASE® on batches of different length.

The remaining four datasets represent session- and news-based recommenda-
tion environments, which are known to be much more fast-paced and dynamic.
Because we focus on smaller sliding window lengths § here, we clearly see daily
seasonal patterns emerging. Indeed, DYN-EASE" runtime peaks coincide with peaks
in website traffic. As the rank of the update is typically correlated with the num-
ber of user-item interactions in the update, this phenomenon is to be expected. It
highlights that DYN-EASE® is able to effectively target those model parameters that
need updating, and does not spend unnecessary computing cycles on unchanged
parts of the model. Note that § does not need to be a fixed constant in real-world
applications. An effective use of computing power might decrease and increase 6
during traffic peaks and valleys respectively.

Correlating the rank of the update with the runtime of DYN-EASE® (RQ2)

The runtime of the incremental updates shown in Figure 3.1 is visualised against the
rank of the updates in Figure 3.2. We clearly observe a strong correlation between
the rank of the update to the Gramian and the runtime of DYN-EASER, with a trend
that is consistent over varying values of §.

We fit a polynomial of the form f(x) = a- x"” 4+ ¢ on a randomly sampled subset
of 90% of measurements, and assess its performance in predicting the runtime for
DYN-EASER based on rank(Ga) on the remaining 10% of the measurements. Table 3.2
shows the optimal parameters, the number of samples (runtime measurements)
and the Root Mean Squared Error (RMSE) on the test sample for every dataset.
Figure 3.2 qualitatively shows that we are able to to predict the runtime for DYN-
EASE® updates with reasonable accuracy when we know the rank of the update.
Combined with the bounds on this quantity laid out in Section 3.3, we can use
this to set an expected upper bound for the computation time of our incremental
updates through DYN-EASE®. Table 3.2 quantitatively shows the magnitude of the
errors, reassuring our qualitatively obtained insights. Note that whereas the absolute
RMSE increases with the datasets with larger item catalogues, the relative error of
the model remains fairly constant. Indeed, a mean error of 5 seconds on a prediction
of 10 seconds is not equivalent to being 5 seconds off when the order of magnitude
is 1000 seconds. These empirical observations together with the theoretical analysis
presented in Section 3.3 highlight the efficiency and favourable scalability of the
proposed DYN-EASE® procedure.

b

Analysing bounds for the rank of the update (RQ3)

Figure 3.3 shows the rank of the incremental updates from Figure 3.1 compared
to summary statistics for the batches of user-item interactions. This visualisation
shows the effectiveness of the upper bounds laid out in Section 3.3 in order to assess
their utility and provide a better understanding of the underlying dynamics for every
dataset.
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Dataset RMSE N a b c
MovieLens-25M (ML-25M) 2.34 1457 3.59e-4 1.83 6.28
YooChoose 2.01 4200 5.78e-4 1.79 9.01
RetailRocket 2.11 1302 1.43e-3 1.72 18.81
Adressa 5.88 2580 1.03e-3 1.75 26.35
Microsoft News (MIND) 8.77 3000 5.98e-3 1.52 28.32

Table 3.2: Resulting polynomial model to predict runtime from rank(Ga ), along with
the Root Mean Squared Error (RMSE) it attains and the number of observations
it was fitted on. We observe that the models attain good performance in terms of
RMSE, indicating that they can set realistic expectations for DYN-EASE® runtime.
Furthermore, the exponent b in the model is lower than quadratic, indicating good
scaling properties for DYN-EASE® with respect to rank(Ga).

We observe that both for general purpose MovieLens-25M and the session-based
datasets, the user-focused bound performs reasonably well in approximating the
rank of the update to the Gramian. This is in line with our theoretical expectations,
and confirms that the number of unique users in any given batch of user-item in-
teractions are the main driving factor for rank(Ga). We further see that the upper
bound becomes looser as the number of unique users grows. This as well is expected
behaviour, as it becomes less likely for new users’ behaviour to be linearly inde-
pendent of other users in the batch as the batch size grows. As mentioned in 3.3,
the upper bound of 2|%| could be tightened to |%]| if we did not perform a hard
split on time but rather divided user sessions into a “finished” and “ongoing” set.
This phenomenon occurs naturally for the YooChoose dataset, where we clearly
see that the 2|%| bound is much looser. Note that the tight bounds for Movielens
might change if this dataset would include timestamps for item consumption rather
than rating, as the majority of users might watch a smaller set of current series or
movies. Such a recency bias would decrease the active item catalogue, favouring the
item-based bounds.

In contrast with the user-focused datasets, the bound on the number of unique
items is much tighter for the news datasets, providing an almost perfect approxi-
mation in many cases. This confirms our intuition that the rank of the update in
these settings is fully determined by the number active items in the catalogue and
virtually independent of the number of users or interactions in a given batch. This
in turn makes these environments especially amenable to our DYN-EASER approach.

The number of unique users or items in a batch can give rise to reasonably tight
upper bounds on the rank of the update in realistic scenarios, using real-world
datasets. The absolute number of user-item interactions |2?| provides another
(impractical) bound on the rank of the update; indeed, in a worst-case scenario,
every user-item interaction would pertain to a unique user and a unique item. We
include the visualisation of the relation between rank(Ga) and |?| to intuitively
show that our proposed approach scales favourably with respect to the size of the
data, a property that is most appreciated in highly dynamic environments with
ever-growing dataset sizes.
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Efficiency and effectiveness of approximate DYN-EASE® (RQ4)

Finally, we wish to validate the efficiency and efficacy of approximate updates
to EASER-like models. Specifically, we wish to understand the trade-off between
runtime and recall for models that are iteratively updated as new data comes in. We
report experimental results for runtime and recommendation accuracy for both the
Adressa and SMDI datasets. This experiment is not repeated on the other datasets, as
they do not favour this type of experimental evaluation procedure. MovieLens-25M
spans a too long time period, and we observe insignificant effects of model retraining
on recommendation accuracy. YooChoose and RetailRocket focus on shorter user
sessions, which are also unfavourable for SW-EVAL to reach statistically significant
conclusions. Lastly, the Microsoft News Dataset contains bandit feedback, which is
different to the organic user-item interactions we tackle in this work. This was not
an issue when evaluating models’ computational cost, but is prohibitive to properly
evaluate recommendation accuracy in a common manner.

To illustrate the advantages of approximate DYN-EASER, we make use of the
Sliding Window Evaluation (SW-EVAL) technique [80, 75]. We train a model on all
user-item interactions that have occurred up to time ¢. For a fixed sliding window
width 8pdate, we periodically update the model with new incoming data, both for the
exact and approximate DYN-EASE® variants. A concurrent sliding window with width
Oeval dictates the evaluation period where every competing model is evaluated on
its ability to predict with which items users interacted with next. This experimental
procedure is formalised in Algorithm 8. We set §ypdate = 60min and d ey, = 120min
for the Adressa dataset and evaluate over the final 24 hours, and §ypdate = 6h and
Oeval = 3d for the final 120 days of the SMDI dataset. This difference in order of
magnitude is to keep the overall runtime of the experiments reasonable, and to
ensure statistically significant results from sufficiently large evaluation sample sizes.

Computation time for approximate DYN-EASER

Figure 3.4 shows computation time for exact DYN-EASEF, as well as several approxi-
mate model variants with varying cut-off ranks k. In terms of runtime improvements,
we observe very favourable results for approximate updates. As is expected, the com-
putational cost of DYN-EASER’s updates can largely be attributed to the computation
of all eigen-pairs, and limiting the rank has a significant impact on the efficiency
of said updates. At cut-off rank k = 250, the computational cost for the updates is
decreased by a factor 3 or 65%.

As we have mentioned above, the computation time for all EASE® variants on
the SMDI dataset is in the order of seconds and largely dominated by variance
and system overhead. As a result, runtime results on this dataset do not provide
significant insights, and we do not report them.

Recommendation accuracy for approximate DYN-EASE®

Figure 3.5 visualises Recall@K for K € {1,5,10,20} over time on the Adressa and SMDI
datasets. The SMDI dataset has large variance on the number of active users over
time, which heavily influences the statistical significance of some of the evaluation
results, as they are based on insufficient samples. We do not include evaluation
results where the evaluation set consisted of less than 100 users. The denominator
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for our Recall measure is min(K, IJ,EEStI) instead of the number of held-out items
|.#tes!], to ensure that a perfect value of 1 can theoretically be attained at all cut-offs
k.

Additional to several approximate model variants, we include recommendation
accuracy results for a model that is not updated over time, yielding a lower bound
on the accuracy we can expect from approximate updates. On the Adressa dataset,
we observe that such a model quickly deteriorates over time. This is to be expected,
as the Adressa dataset and news recommendation application are heavily biased
towards recent items and interactions. This bias is less clear on the SMDI dataset at
lower cut-off ranks K, but clearly manifests itself for Recall@20 near the end of the
evaluation period.

For both datasets, we observe that the accuracy of approximate DYN-EASE®
variants for high values of k, is statistically insignificantly different from exact DYN-
EASE®. This highlights that the N-fold improvement in terms of computational
cost can come with a negligible impact on recommendation accuracy, showing the
advantages of approximate computations. For Adressa, we observe a statistically
significant improvement over exact DYN-EASER for low values of k. This can be
attributed to the reasons laid out in Section 3.3, as the low-rank approximation
handles sparsity, transitivity, and favours recently popular items. These model
characteristics are highly favourable in news recommendation settings — but might
have smaller influence on supermarket data. Nevertheless, the results highlight that
many efficient low-rank updates can yield highly competitive models compared to
more costly full-rank updates.

All runtime and recommendation accuracy measurements are aggregated in
Table 3.3, providing further insights on the trade-off between runtime and recom-
mendation accuracy for approximate DYN-EASE®. We denote the Recall@K measure
as R@K for improved spacing. On the SMDI dataset, the differences in recommen-
dation accuracy among exactly or approximately update model variants were not
found to be statistically significant at the p = 0.05 level. The differences between the
stale EASE® and DYN-EASE® models are significant.

The size of the Adressa dataset yields more statistical power, and both the differ-
ences between stale EASE® and DYN-EASE® and those between exact DYN-EASE® and
approximate DYN-EASE® with k € {1,5} were found to be statistically significant.

3.5 Conclusions

Linear item-based models are an attractive choice for many collaborative filtering
tasks due to their conceptual simplicity, interpretability, and recommendation accu-
racy. Recent work has shown that the analytical solution that is available for ridge
regression can significantly improve the scalability of such methods, with a state-of-
the-art algorithm called EASE® [200]. EASE® consists of a single matrix inversion of
the Gramian. As its computational complexity does not rely on the number of users
or even the number of user-item interactions in the training set, it is particularly
well suited to use-cases with many users or interactions, with the sole constraint
that the size of the item catalogue is limited.

When deployed in real-world applications, models often need to be periodically
recomputed to incorporate new data and account for newly available items and
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shifting user preferences, as well as general concept drift. Iteratively retraining an
EASE®-like model from scratch puts additional strain on such real-world applications,
putting a hard upper limit on the frequency of model updates that can be attained,
and possibly driving up computational costs. This especially limits the application
of EASER in domains where item recency is an important factor deciding on item
relevance — such as in retail or news recommendation.

In this work, we propose a novel and exact updating algorithm for embarrassingly
shallow auto-encoders that combines parts of the Dynamic Index algorithm [83] and
the Woodbury matrix identity [55]: Dynamic EASE® (DYN-EASER). We have provided a
thorough theoretical analysis of our proposed approach, highlighting in which cases
it can provide a considerable advantage over iteratively retrained EASE®, and in which
cases it does not. These theoretical insights are corroborated by empirical insights
from extensive experiments, showing that DYN-EASEF is well suited for efficient and
effective online collaborative filtering in various real-world applications.

DYN-EASEF exploits the sparse and symmetric structure of the Gramian to effi-
ciently compute the eigen-decomposition of the Gramian update. When the rank
of the update is large, however, this operation can still become prohibitively ex-
pensive. To mitigate this problem, we have additionally proposed an approximate
DYN-EASE® variant that uses a low-rank approximation of the Gramian update as
opposed to its exact decomposition. Empirical results highlight further efficiency
improvements at a small cost for recommendation accuracy. Our work broadens the
scope of problems for which item-based models based on ridge regression are an
appropriate choice in practice. To foster the reproducibility of our work, the source
code for all our experiments is publicly available under an open-source license at
github.com/olivierjeunen/dynamic-easer.

A promising area for future work is to further improve DYN-EASER’'s computa-
tional efficiency by looking at alternative (approximate) matrix decompositions
that exploit efficient random sampling [56, 131], as the bottleneck of our current
approach lies in the computation of the exact eigen-decomposition of the update
to the Gramian. Furthermore, we would like to explore applications of our efficient
incremental updating scheme to more general multi-label regression tasks beyond
the collaborative filtering use-case we tackle in this work.

Reflections

This Chapter has provided an elegant solution for incremental updating of closed-
form regression models for collaborative filtering. Although effective and efficient,
this model class only represents a fraction of those available. In many real-world
applications, the size of the item catalogue will be prohibitively large for item-
based models to be an appropriate choice. Keeping this in mind, the impact of our
proposed dynamic updating algorithm might remain fairly limited.

Thoroughly analysing and characterising under which circumstances either
the closed-form solution, or gradient-descent-based alternatives would be more
efficient, is an interesting line of future work that could crystallise when closed-form
models are an appropriate choice.


https://github.com/olivierjeunen/dynamic-easer/
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Figure 3.1: Runtime results for DYN-EASE® updated with different intervals (sliding
window width &), as compared to iteratively retrained EASE® over the final N days of
the datasets.
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Figure 3.3: Upper bounds for the batches of incremental updates from Figure 3.1
plotted against the rank of the update to the Gramian matrix Ga. We observe that
different applications that imply different data characteristics bound the rank of the
update in different ways.
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Algorithm 8 Sliding Window Evaluation Procedure

Input: Pageviews &2, evaluation period timestamps (f, fmax), update intervals
Oupdate, €valuation sliding window width 8eyqy, list K of cut-off ranks k to con-
sider.

Output: Recommendation accuracy measurements 2.

1: P, :=EASE}(2?))
2: for ke K do

33 Pp,:=P;

4 t=t+ 6update

5: while ¢’ < tax do

6

7

8

9

. R
P := EXACT DYN-EASE (Ptr,(gupdale,%,r,gupdam,ﬂ))
for k€ K do
— R
Pj. 1 = APPROXIMATE DYN-EASE" (P, -5, date’*@(ﬂ—ﬁup dater )1 K

. if (' — 1) mod §eya =0 then
10: R — SW-EVAL(P(, P11, Py o/, P11 1146 o)
11: t=t+ 6update
12: return %
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Figure 3.4: Runtime results for exact and approximate DYN-EASER variants, with
varying cut-off ranks k. We observe a quick and steady decline in computation time
needed for lower values of k, which can be attributed to less computation time spent
finding eigen-pairs.
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Offline Evaluation Methods



Our comforting conviction that the world makes sense rests on a secure foundation:
our almost unlimited ability to ignore our ignorance.

— Daniel Kahneman



CHAPTER 4 .

Fair Offline Evaluation with
Missing-Not-At-Random Data

Recommender systems are traditionally evaluated using historical data,
partitioned into a training- and test-set. The system is trained on the
user-item interactions available in the training set and evaluated on its
performance to predict which interactions are part of the test set. Leave-
One-Out Cross-Validation (LOOCV) is a commonly recurring evaluation
procedure, widely used to present novel algorithms as the state-of-the-art.
However, the temporal aspect that is inherent to many recommender
system use cases is entirely neglected with this technique, as well as po-
tential biases in the data (i.e. interactions are Missing-Not-At-Random
(MNAR)).

In this paper we propose and experimentally validate an alternative
method to perform offline evaluation using real-world data from a live
recommender system. Our novel approach adheres to the aspects that are
inherent to web-based recommender systems in e.g. e-commerce much
more tightly than LOOCV. Experimental results indicate that LOOCV is
prone to overestimate model performance in general, underestimate the
power of popularity-based baselines, and generally rank algorithms dif-
ferently than our methodology. Furthermore, we study the impact of live
recommendation algorithms in place during the time of data gathering
on the offline evaluation of other algorithms on said data. We exper-
imentally validate that such impact is indeed significant. Finally, we
propose a scope for future research to model these MINAR biases and take
them into account during training and evaluation to provide unbiased
recommendations.!

IThis chapter is based on work published in the Proceedings of the 2018 REVEAL Workshop (co-
located with the ACM RecSys Conference) as “Fair Offline Evaluation Methodologies for Implicit-Feedback
Recommender Systems with MNAR Data” by Olivier Jeunen, Koen Verstrepen and Bart Goethals [80].
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4.1 Introduction

Over the past decades, personalisation has played an ever-growing role in how we
consume content online. News websites, movie or music streaming services, retail
stores, etc. can all greatly benefit from recommendation systems that accurately
pair items with users and suggest them. Users can be guided towards the subset of
catalogued items they are interested in, leading to more satisfying experiences and
an increase in user engagement.

When recommender systems first gained traction, the field focused on the task
of rating prediction. This assumes that a dataset with explicit feedback from users is
available, which is often hard to collect. The goal was then to predict users’ ratings
for unseen items, with the rationale that items with higher predicted ratings make
up better recommendations. In recent years, a shift has occurred towards item
prediction from implicit feedback. These methods do not require explicit ratings by
users, but rather take into account logged interactions between users and items to
model inherent preferences and correlations. Throughout our work, we will focus
on this task, as implicit feedback data is more prevalent in present day e-commerce.

Specific goals of recommender systems can vary greatly depending on their re-
spective applications. Where some systems will be more focused on maximising user
engagement in terms of time spent browsing a website, others might only focus on
clicks or sales. User satisfaction, serendipity or diversity of the recommended items
are only a few examples of many more possible objectives. We focus on maximising
user engagement through clicks for the rest of this work, but our methodology is
easily extended towards maximising sales. Analogously, this work focuses on, but is
not limited to, collaborative filtering (CF) algorithms.

Traditionally, the performance of recommender systems (learning from implicit
feedback) is evaluated on historical transactional data. As is often the case with
classification problems and supervised learning in general, a portion of the data is
split off and used as a test or validation set to assess algorithmic performance [96].
Leave-One-Out Cross-Validation (LOOCYV) is a commonly recurring technique in
the literature, where for every user one item-interaction is randomly selected to be
part of the test set. The training set then consists of all remaining user-item pairs.
Common metrics such as the hit-rate-at-k (HR@k) then compute the fraction of
users for whom the removed item occurs in the top-k recommendations computed
by the system, or the normalised discounted cumulative gain (NDCG®@k) which
evaluates the ranking of the removed item in the recommendation-list, or others.
This process is repeated with different training-test splits, and performance metrics
are subsequently aggregated over different runs in order to get a stable final result.
Algorithms that can generate more promising metrics are then assumed to generate
more revenue in an online setting than their competitors. This technique has been
used widely and recently to present new algorithms as the state-of-the-art [169, 147,
30, 58, 150, 154].

Online evaluation methods such as live A/B-testing have been shown to paint a
clearer and more honest image of an algorithm’s performance in providing mean-
ingful and interesting recommendations, but are generally more expensive and
complex to realise [188]. During an A/B-test, the user-base is divided into groups.
Every user in one of those groups is presented with recommendations generated
by a different algorithm, specific to the group they belong to. Metrics such as the
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click-through-rate (CTR) are then often used to compare which algorithm gener-
ates the most clicks, and thus is the most successful in generating revenue. Online
evaluation is often favoured over its offline counterpart, as it directly correlates
with the inherent goal of the system: to maximise user-interaction with the shown
recommendations.

Crucial differences between live A/B-tests and LOOCYV are two-fold: first there
is a clear temporal dimension in many recommender systems use cases that is
inherently taken into account in the first, but often neglected in the latter. Predicting
past preferences based on future interactions is in many cases a considerably easier
task than vice versa, and as a consequence their performances are not necessarily
representative for each other.

Second, the goal of the evaluation technique is inherently dissimilar; where A/B-
tests can present and evaluate a wide range of recommendations and evaluate how
the user interacts with them, LOOCV is entirely restricted to predicting which items
the user has already interacted with in the past. A top-k recommendation list might
be clicked in an A/B-test because it sparks the user’s interest, but it won't increase
the hit-rate of LOOCYV if the user has no recorded interactions with these items in the
historical dataset. This distinction between negative and missing feedback is taken
into account in the training phase of several well-known algorithms [65, 158, 169],
but is much less studied in the context of offline evaluation.

Furthermore, if the available historical user-item interactions were collected
with a live recommender system in place, this indicates the data are Missing-Not-At-
Random (MNAR) [197]. We show that the algorithm presenting recommendations
to the user significantly impacts offline evaluation results of different algorithms on
the collected data. We adopt the terminology used by recent work in counterfactual
estimation for recommender system evaluation and call such a live recommender
system algorithm the logging policy. These counterfactual estimators have been
shown to act as fast offline alternatives for more classical online methods such as
A/B-testing, and are proven to be more correlated with online metrics than classical
offline alternatives. As a consequence, improving these estimators has become a
lively research direction in recent years [3, 49].

Related work has studied the correlation of the above-mentioned off- and on-
line evaluation methods. Comparison research studies do exist for the specific fields
of research paper recommendation [10], movie recommendation [177] and news
recommendation [48], but none for the more general case. What these studies have
in common however, is that they shed doubt on the assumption being made in many
research papers that offline evaluations are good indicators of online performance.
A discussion of how recommendation systems should be evaluated in an offline
manner is presented by Herlocker et al. [62]. The authors identify a range of different
goals the recommendation system and subsequently the evaluation method might
need to be tuned to. A comparison of various evaluation metrics suggests that
different metrics can be highly uncorrelated and make the evaluation procedure
even less deterministic.

The contributions presented in this paper are the following:

1. We present a novel offline evaluation procedure that is more tightly coupled
with the inherent goals of live recommender systems, and call it SW-EVAL.
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2. We show that SW-EVAL generates very different results than LOOCV in terms
of absolute metrics, ratios among algorithms and rankings among algorithms.
We experimentally validate our findings on real-world data from a live e-
commerce recommender system.

3. We show that the algorithm behind the live recommender system (or logging
policy) induces a significant bias on collected data and as a consequence,
severely influences offline evaluation results on said data.

The rest of this paper is structured as follows: we provide an overview of our
alternative evaluation strategy in Section 4.2, and motivate our research questions.
The data and algorithms we used for our experiments are presented and discussed
in Section 4.3, along with their results. Our work is concluded in Section 4.4, where
we finalise with a scope for future research.

4.2 Methodology

In what follows, we provide an overview of our methods. The following subsection
focuses on preliminaries, after which we present our evaluation procedures and
metrics. We then go on to motivate the research questions we aim to answer with
this work, and how we achieve this.

Preliminaries

Throughout this paper, we assume to work with a set of historical transactional data,
containing de-duplicated and timed logs of user-item interactions. U denotes the
set of m unique users appearing in the dataset, and I the set of n unique items. A
transaction is represented as a tuple (i, i, t) € U x I x R* where u is a user, i an item,
and ¢t a timestamp. 9 is the set of all available transactions. These transactions
denote that user u has in some way consumed or interacted with item i at time ¢, be
it in the form of a product purchase, a movie streaming, a click on a news article or
otherwise. We represent these interactions in the form of a sparse user-item matrix
R e {0,1}"*", often called the rating or preference matrix. Rows in this matrix are
users represented by the items they have consumed, and vice versa for columns:
R,,; = 1 if and only if user u has consumed item i and R, ; = 0 otherwise. For a
given item 7, we define the set U; as consisting of all users u that have consumed
item i, thatis U; ={u € U:R,,; = 1}, and I,, analogously for a given user u: I, = {i €
I:R,; =1}. When we represent an item i or a user u as their respective column-
or row-vectors in R, we write them as i or u. Time-intervals are characterised by
subscripts: 2, is the set of all interactions up to but not including time 7, Ryz,1,) is
the preference matrix containing all transactions (u, i, t) € 2 where 1 < ¢ < 1;,. The
timestamp of the latest transaction in & is denoted by fiax.

Finally, as logged interactions in our setting originate from a system running
live A/B-tests, we distinguish 27 as the set of transactions generated under logging
policy 7. In the trivial case where only one logging policy 7 is implemented, 2 = 27.
Note that sets of transactions generated under different logging policies typically
contain disjoint sets of users, but the same sets of items.
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Evaluation Procedure

As we have mentioned in Section 4.1, LOOCYV is one of the most commonly recurring
evaluation techniques in recommender system literature. For every user u, one item
j is sampled uniformly at random from I, to be used in the validation phase; all other
remaining item-interactions {(«,i,t) € 2 : i € I,\{j}} are used to train the model and
generate predictions. The model is then evaluated on its ability to predict which item
was left out. This process is repeated several times with different random seeds, and
results are then aggregated over runs. In this way the approach generates statistically
stable results, covering every user in the dataset. We argue that what impedes
this approach from being a good proxy for online behaviour, is that it completely
ignores the chronological ordering of events. Not only does the model use future
interactions to predict past interactions for a given user, future information about
item correlations will be used as well to predict an interaction at a given earlier time.

As all transactions are timed, the fairest method to perform the train-test split
would be a hard cut on a certain timestamp ¢: all interactions in &; are used for
training, and all interactions in 9y;,;,,.; can be used for testing. This process can
be repeated, splitting on different times ¢ and aggregating results in order to get
statistically stable results over the full dataset. It is important to note that not all
users are included in the evaluation at every split: to properly evaluate a user u, she
should have recorded historical interactions to base recommendations on (we do
not consider the extreme cold-start case [186]), and future interactions to predict
and evaluate on. As this set of users might possibly be very small at certain points,
we do not incorporate those where |U; N Uy, 4,1 < Umin, With Ui, a predefined
threshold. If the number of users used for evaluation is too small, outliers will have
an overly large impact on the overall view.

Furthermore, live recommender systems are not as static as they are made out
to be in LOOCV. These systems are either incrementally trained or fully retrained
regularly, with possibly multiple updates every hour. As a consequence, specific
to the use case, it might not be best practice to evaluate a system on its ability to
predict relevant items multiple weeks or even months in the future. In our proposed
evaluation procedure, we divide the dataset into equidistant intervals of width #a. At
a given time t, we evaluate the model trained on 9, on its ability to generate relevant
recommendations w.r.t. the interactions present in @ s4,). The granularity of ta
is relative to the use case. Where it might be very small for a news recommender
(new items arrive at high rates and item popularity generally declines quickly over
time, calling for fast and frequent updates), retail recommenders might call for wider
intervals (daily or weekly, as sales are bound to seasonality).

Throughout the rest of this paper, we refer to our novel proposed procedure
as k-fold Sliding Window Evaluation (SW-EVAL) where k indicates the number of
intervals used in the validation step.

Our method corresponds to live A/B-testing in the sense that it follows a clear
chronological ordering of events, which we argue is crucial to properly assess system
performance. A major difference that remains is that of an over-representation of
false negatives during the evaluation phase: where in a real-time setting a user might
click on a certain recommendation when it would be given, that same recommen-
dation will always be seen as non-relevant by offline evaluation procedures if there
exists no historical interaction between said user and item. As this issue is very
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non-trivial to solve, a careful choice of evaluation metrics that focus on rewarding
true positives instead of penalising false positives is appropriate. We provide a brief
overview of such metrics in the following subsection.

Evaluation Metric

As mentioned above, due to the inherent lack of user interaction in offline evaluation,
we focus on metrics that reward true positives instead of those that penalise false
positives. We will denote the set of known relevant items for a given user u as Rel,,
where her top-k recommendations are represented by Rec, ;. Recall@k is then
given by equation 4.1.

1 Rel, NnRec
Recall@k = — ) [Rel, N Recy,i| 4.1)
m il |Rel,|

With the leave-one-out scheme, Rel,, will always consist of exactly one item. In these
cases, Recall@k is the same as HR@k: the fraction of users for whom the left-out
item appears in the top-k recommendations.

In the more general case, Recall@k is the average fraction of retrieved relevant
items in the top-k recommendations of all users. Note that when the number of
relevant items is higher than k, it is impossible to achieve the perfect recall of 1.
When k is set to the number of relevant items for every user |Rel, |, equation 4.1 is
called the R-precision, overcoming said issue.

LOOCV vs. SW-EVAL

The first hypothesis to tackle is whether LOOCV and SW-EVAL produce comparable
results. We define comparable by three criteria in increasing order of importance:

Absolute metrics One of the main goals of recommender systems evaluation is to
obtain a reliable estimate of the effectiveness of a recommendation algorithm. The
order of magnitude of recommendation accuracy is therefore of critical importance.
Business trade-offs that require accurate estimations of e.g. model cost vs. model
performance cannot afford large errors here.

Ratios among algorithms As recommendation accuracy is often only one aspect
of abroader evaluation, ratios among algorithms should be accurate as well. From an
offline evaluation procedure, some model A might outperform some model B with
a factor of 10. However, model A might also be 5 times more costly. If in practice,
model A would only be twice as effective as model B, the inaccurate evaluation
procedure leads to suboptimal decisions.

Rankings among algorithms In the case where model efficiency and cost are
not taken into account, the ranking of competing algorithms that emerges from a
certain evaluation procedure is still highly important. If simply the highest ranking
model according to offline tests is deployed, it is imperative that the optimal model
according to the offline evaluation procedure indeed reflects the best performer in
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an online setting as well. Naturally, an offline evaluation procedure that correlates
well with the system’s actual online application is preferred.

As we motivated our evaluation procedure to be tightly coupled with the inherent
characteristics of live recommender systems in e-commerce and other use cases,
in the case of conflicting results on any of the above-mentioned aspects, we would
place more trust in SW-EVAL than in LOOCV. To validate the effectiveness of SW-
EVAL compared to LOOCV, we aim to study the parity between results of these offline
evaluation procedures with those attained through live A/B-tests in future work.

Impact of Logging Policy

A second hypothesis we aim to investigate with this work is whether the logging
policy  has significant impact when evaluating results on 2” or more generally on
any 9 s.t. 2" € 9. The work of Agarwal et al. provides a theoretical foundation for
this problem in the more general case, where data from multiple diverging stochastic
logging policies is naively combined [3]. However, to the best of our knowledge,
in the context of recommender systems, no studies have conclusively proven or
disproven that the impact of x is indeed highly significant with real-world data. If
this is indeed the case, interesting directions for future research include modelling
the bias 7 incurs, and deriving learning algorithms that mitigate this bias.

The impact of = can be defined by the same three aspects outlined in the previous
subsection: whether it influences absolute values, ratios among algorithms, or
rankings among algorithms. Intuitively, one would assume algorithms that closely
correlate with the logging policy have an inherent advantage, as the disadvantages
inferred by the lack of interaction in offline evaluation are annulled in this setting.

4.3 Experiments

The setting of our experiments is summarised in the following section. We give an
overview of the recommendation algorithms we compared and go on by describing
the dataset we used. Experimental results are presented and discussed in Subsec-
tions 4.3 and 4.3, following the same distinction as the research questions presented
in Subsections 4.2 and 4.2 respectively.

Algorithms

Two simple baselines were used to compare algorithm performance against: a global
popularity baseline (POP) and a sliding window popularity baseline (POP-N). The
first sorts all items based on their number of occurrences in the full training set, and
the latter sorts items based on the number of occurrences in the last N recorded
interactions at the time of recommending. As the sliding window approach does not
apply to the leave-one-out scheme (as it requires temporal information, which is
not available), we do not include it in the LOOCV results. However, the approach
proves surprisingly effective in our sliding window based evaluation method.
Apart from these baselines, we compared several well-known and widely used
algorithms. The item k-nearest neighbour (I-kNN) algorithm computes the rec-
ommendation score Ry, ; for a user u and an item i as a weighted sum of cosine
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similarities between i and items j € I,;, as shown in Equation 4.2 [183].

_ 1
Ry,

=— ) cos(i,j) (4.2)
Tl

jely

As a full similarity self-join on the set of items I is both time- and space-consuming,
only similarities between every item and its k nearest neighbours are computed and
retained. This leads to a space complexity of @ (kn) instead of @ (n?).

The user k-nearest neighbour algorithm (U-kNN) is a traditional and intuitive
collaborative filtering algorithm that counts the occurrences of items that « has not
yet consumed among the k nearest neighbours of u. Items that are more popular
with similar users are then assumed to make up better recommendations [61].

Matrix factorization algorithms explicitly compute item- and user-factors in a
fixed number of latent dimensions. The recommendation score for a user u and
item i is then defined as the dot-product of their latent factors. We compute the
factors using the well-known Singular Value Decomposition (SVD) algorithm [249].

As the purpose of this work is not to determine which algorithm generates
optimal recommendations, we refrain from investigating more advanced or recent
state-of-the-art algorithms. However, it should be noted that nearest-neighbour-
based algorithms have recently still been shown to attain competitive performance
with the state-of-the-art [220, 73].

If the top-k recommendation list Rec,, ;. generated by any algorithm contains
items that were already in the history of u, we drop them from the list and expand it.
As we work with de-duplicated interactions, re-targeting is out of the scope of this
paper.

The baselines, U-kNN, I-kNN and SVD were implemented using Sci- and Num-
Py [227, 217]. Optimal hyper-parameters were obtained through an extensive grid
search on LOOCYV for optimal Recall@10 before experiments were conducted. For
fair comparison, we did not recompute optimal hyper-parameters for the SW-EVAL
setting or varying values of k, but retained the optimal ones for LOOCV and k = 10.

Dataset

Retail is a proprietary dataset obtained from the logs of a live recommender sys-
tem serving a Belgian retail website, over the course of 4 months. During this period,
3 different algorithms generated recommendations in the fashion of an A/B-test. Ap-
proximately 25% of the recommendations were generated by a popularity baseline,
25% by an undisclosed algorithm, and 50% by I-kNN. We will respectively denote
these logging policies by 7, 7, and ;. It is notable that the recommender system
is subject to certain business rules, and top-k recommendation lists can therefore
not be shown to the user as is. However, how and exactly which recommendations
were effectively shown to the user is not important for the purposes of this work.
Out of these 4 months, the last month acts as validation period for SW-EVAL. With
30 folds, this corresponds to daily updates and evaluations. Table 4.1 provides an
overview of the dataset’s size and properties.
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Table 4.1: Characteristics of the dataset

12| Ul 1] Sparsity

Retail 734813 189343 10700 99.96%

LOOCV vs. SW-EVAL

In what follows we discuss the experimental results corresponding to the research
question laid out in Section 4.2. To determine whether LOOCV and SW-EVAL
produce comparable results as an offline evaluation procedure, we report mean
Recall@k for varying k and relative performance to the best performer (in bold) for
both 10-fold LOOCYV and 30-fold SW-EVAL in Table 4.2. We set the threshold ;5
to 100 for SW-EVAL, but generally multiple hundreds of users were included for
evaluation at every fold. Results are visualised in Figure 4.1.

LOOCV results indicate that I-kNN is the clear best performer regardless of the
value of k, exceeding the Recall of its competing algorithms with a factor of 2 and
even beating the baseline algorithm with a factor of 10. However, SW-EVAL results
paint an entirely different picture. First, the best performing algorithm has a mean
Recall@10 that is a factor 5 smaller than reported by LOOCV. Second, we observe
that the simple popularity baseline is able to attain up to 44% of the Recall@10 of
the best performer, in stark contrast with the 11% reported by LOOCV. Furthermore,
a simple sliding window extension boosts this further up to 71% and even 98% for
k = 5. Third, where LOOCV concludes SVD and U-kNN to be virtually equal for
k =10, SW-EVAL clearly prefers SVD with 81% of the optimal performance instead
of just 49%.

We observe that both for LOOCV and SW-EVAL, the gap between I-kNN and SVD
closes as the number of generated recommendations grows. For the reported Re-
call@20, only a 3% difference remains between the two competing algorithms. The
gap between U-kNN and I-kNN remains somewhat steady. A possible explanation
for this is that the optimal amount of a user’s neighbours to be taken into account
when generating recommendations for k = 10 might be suboptimal for larger k, as
the same candidate items might keep reappearing instead of novel recommenda-
tions. We see a similar but more stark effect for POP-N: as the optimal N obtained
from the hyper-parameter optimisation procedure was rather low, the number of
truly trending items might become less than k as k keeps growing. Extending POP-N
to include a more advanced recency formula could certainly solve this issue.

It is clear that LOOCV and SW-EVAL do not yield comparable results for the
given dataset. LOOCYV is prone to overestimate model performance in general, vastly
underestimate the effectiveness of popularity-based baselines, and generally rank
algorithms very differently than SW-EVAL.

One might note that the number of relevant items for a given user in the valida-
tion set |Rel,| is important when computing the Recall@k: for LOOCYV, |Rel, | = 1. If
it differs greatly for SW-EVAL, lower absolute numbers are to be expected. However,
we also conducted experiments where only the first item a user interacts with in the
validation interval is seen as relevant, effectively setting |Rel,| = 1 as well. Results
were very comparable, but omitted for brevity.



CHAPTER 4. OFFLINE EVALUATION WITH MNAR DATA

70

Table 4.2: Mean Recall@k for the Retail dataset when using 10-fold LOOCV and 30-fold SW-EVAL respectively, for varying values of k. A%
denotes the relative performance of an algorithm compared to the best performer (in bold). The sliding window baseline POP-N is not
included for LOOCYV as it lacks the use of temporal information.

10-fold LOOCV 30-fold SW-EVAL

k POP A% SVD A% U-kNN A% I-kNN A% POP A% POP-N A% SVD A% U-kNN A% I-kNN A%

5 0.019 -92% 0.098 -58% 0.116 -50% 0.233 0.016 -61% 0.039 -2% 0.028 -29% 0.022 -44% 0.040
10 0.031 -89% 0.137 -51% 0.139 -51% 0.282 0.024 -56% 0.039 -29% 0.045 -19% 0.030 -45% 0.055
15 0.041 -87% 0.165 -46% 0.151 -50% 0.304 0.032 -50% 0.039 -39% 0.058 -10% 0.034 -46% 0.064
20 0.052 -84% 0.186 -41% 0.158 -50% 0.317 0.039 -45% 0.039 -45% 0.069 -3% 0.038 -47% 0.071
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Figure 4.1: Mean Recall@k for the Retail dataset when using 10-fold LOOCV and
30-fold SW-EVAL respectively, for varying values of k. Note that the SW-EVAL y-axis
is scaled down by a factor of almost 5 in comparison with the LOOCV plot.

Impact of Logging Policy

In what follows we discuss the experimental results corresponding to the research
question laid out in section 4.2. To determine whether the logging policy = has a sig-
nificant impact on results from offline evaluation procedures on 2%, we report mean
Recall@k for varying k, and relative performance to the best performing algorithm
for both 10-fold LOOCV and 30-fold SW-EVAL on 2"+, 9™» and 9" respectively
in Table 4.3. Even though the number of users covered by a subset 2" of 2 will be
lower than the number of users covered by the full set of transactions 2, we set v,
to 100 as in our previous experiments. Equivalently to those previous experiments,
this lower bound was never attained. Results are visualised in Figure 4.2, where the
top and lower row of plots respectively correspond to LOOCV and SW-EVAL results.
Every column represents results on a subset of logs corresponding to a given logging
policy.

When considering LOOCV results, algorithm ranking generally does not seem
to be impacted by varying 7 or k for this specific case. However, absolute mea-
surements as well as ratios among competing algorithms clearly are. Under the
undisclosed logging policy 7, and for k = 10, I-kNN only achieves roughly 65% of
the performance it reaches under its own logging policy ;. When we consider the
absolute performance of U-kNN over all logging policies, we find it seems rather
stable. However, the relative performance of U-kNN compared to I-kNN varies from
58% to 92% for its worst and best measurements respectively. While less pronounced,
SVD exhibits similar behaviour. The popularity baseline seems moderately stable.
Although less evident for 7, and 7, a clear bias towards I-kNN is present in the data
that was generated by showing I-kNN recommendations to users on the website,
becoming more and more clear as k increases.
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In the SW-EVAL results, the bias appears even more clear-cut. We distinctly
observe that absolute values, the ratio amongst competing algorithms and the
general ranking of algorithms is heavily influenced by 7. For both the undisclosed
algorithm 7, and the popularity policy 7, the sliding window popularity baseline
outperforms all competing algorithms for small values of k. As in the reported
results from the previous section, SVD and I-kNN are able to thrive when generating
more recommendations, whereas U-kNN and POP-N are much less able to do so.
We suspect this is an artefact of our hyper-parameter optimisation procedure, since
optimal parameters for k =5 or k = 20 are bound to be different than those found
for k =10.

For the I-kNN policy 7;, a clear bias is present towards the I-kNN algorithm from
the offline evaluation results. This is not surprising, as items that were effectively
shown to a user have a much higher probability of being clicked than those that
were not shown. Even though this clear bias is present, SVD attains up to 92% of
I-kNN'’s performance for the largest value of k. This phenomenon is widely known as
presentation bias [51], and can cause severe feedback loops if not handled properly.
The effects of those feedback loops may be detrimental to the performance of a
recommender system, as items in the long tail will never be considered fairly [161].
Recent related work has focused on retrieving users’ intrinsic preferences when
such feedback loops are present [193]. Metrics or frameworks that reward long-
tail recommendations more than others are also a possible way of alleviating this
issue [198, 1].

4.4 Conclusions

In this work, we have motivated the need for alternative offline evaluation pro-
cedures from LOOCV. We have identified that despite its clear flaws (ignoring all
temporal information), LOOCYV still remains an extremely popular technique to
experimentally validate newly proposed algorithms as the state-of-the-art in recent
recommender systems research [169, 147, 30, 58, 150, 154]. To this end, we have
proposed a novel approach that much more tightly follows the important aspects of
live recommender systems, such as their dynamic and temporal nature. We have
experimentally validated on real-world data originating from the logs of a live recom-
mender system that our approach yields very different results than LOOCV in terms
of absolute metrics, ratios among competing algorithms, and mutual rankings of
competing algorithms. Furthermore, LOOCV vastly underestimates the performance
of advanced popularity-based approaches to recommendation.

Moreover, we motivated and discussed how live <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>