
Faculteit Wetenschappen
Departement Informatica

Offline Approaches to Recommendation

with Online Success

Proefschrift

voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

aan de Universiteit Antwerpen
te verdedigen door

Olivier Jeunen

Promotor: prof. dr. Bart Goethals Antwerpen, 2021



Offline Approaches to Recommendation with Online Success
Nederlandse titel: Offline Methoden voor Aanbevelingen met Online Succes

Copyright © 2021 by Olivier Jeunen



The important thing is not to stop questioning. Curiosity has its own reason for
existence. One cannot help but be in awe when he contemplates the mysteries of
eternity, of life, of the marvellous structure of reality. It is enough if one tries merely to
comprehend a little of this mystery each day.

— Albert Einstein
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CHAPTER 1
Introduction

Over three decades ago, the “Information Revolution” began [175]. Sparked by
exponential advances in computing technology and fuelled by the rise of the internet,
access to information on the web quickly became widespread. In addition to that,
the rate at which new information in the form of data is being generated has now
grown to be higher than it has ever been before. Today, backed up by massive
advances in machine learning, it is safe to say that the revolution is still going strong.

Access to a wealth of information is one thing, but being able to effectively and
efficiently explore or filter information quickly becomes crucial. And so, not long af-
ter the start of the revolution, the problem of “Information Overload” rapidly gained
in importance and research interest [18]. Indeed, what good is an encyclopedia if it
is entirely unstructured and missing its typical back-of-the-book index?

The field of Information Retrieval (IR) aims to solve these problems, with web
search engines as their most visible embodiment that we now all use on a daily basis.
These systems take in queries like “presidential elections 2020”, “is a Ph.D. worth
it?” or “can doctoral juries be bribed?” and produce an ordering of web pages as the
result to that query. Search engines are by no means restricted to text, and diverging
applications such as multimedia retrieval to search audio, image or video catalogues
spawned over the years as well. Nowadays, all “Big Tech” companies have some
search functionality on their platform that is often central to their business. Whether
we are browsing retail products on Amazon, musical artists on Spotify or Apple
Music, TV series on Netflix, friends’ profiles on Facebook or websites via Google or
Bing, IR applications are ubiquitous and touch upon many people’s daily lives.

An interesting question to ask is then: what happens when we don’t actually have
an explicit query? What if I’m just browsing a retail store? What happens when I do
not know which musical artist I want to listen to or which movie I want to watch?
This is where the field of “Recommender Systems” comes into play.

1



2 CHAPTER 1. INTRODUCTION

1.1 A Brief History of Recommender Systems

It may be unfair to introduce the field by summing up its present-day industrial
applications, as we did above. Although they are indeed widespread and industrial
recommenders are arguably the ones we interact with so often, the research field
was originally not designed with business cases or profiteering in mind. As Resnick
and Varian so eloquently put it [172]:

“It is often necessary to make choices without sufficient personal experience of the
alternatives. In everyday life, we rely on recommendations from other people either
by word of mouth, recommendation letters, movie and book reviews printed in news
papers, [...]. Recommender systems assist and augment this natural social process.”

This focus on the utility of the recommendation to the recipient is what sets it
aside from related sub-fields like computational advertising [137], although many
algorithmic approaches to either of these problems can be applied interchangeably.

One of the first recommendation systems was called “Tapestry”, and it was
motivated by the information overload that stemmed from an increasing use of
electronic mail at the time. Modelling the recommendation algorithm to mimick the
above-described social process, the authors coined the term “collaborative filtering”
to denote that information distilled from other users’ interactions would be used
to figure out what we should recommend to you [50]. These days, collaborative
filtering is still the most widely adopted paradigm behind modern approaches to
recommendation [39].

Not much later, the “GroupLens” architecture was proposed, which framed the
task of recommendation as that of predicting the rating that a user would give
to an item [173]. If we have a dataset consisting of interval-scale ratings from
users to items, we can represent it in a user-item rating matrix R where the value
at Ru,i holds the observed rating for user u and item i . Figure 1.1(a) visualises
this, with an example rating matrix R that highlights a 5 star rating for the item
at index n −1, from user number 2. Generally speaking, we do not have access to
a full user-item matrix. When the size of the item catalogue grows, this becomes
increasingly cumbersome to obtain. Additionally, the goal of the recommendation
algorithm is to figure out which items a certain user might rate highly without
explicitly eliciting this information from the user. As such, the task at hand is
to predict the missing ratings from an incomplete user-item matrix, as shown in
Figure 1.1(b). A rating prediction model generates predicted ratings for ever user-
item pair, and its output can be seen as a reconstruction of the rating matrix R̃ ≈ R .
Competing models are then often evaluated on the Root Mean Squared Error (RMSE)
between the true and approximated ratings for some held-out test set [199]. Because
the reconstructed rating matrix R̃ holds predictions for all the items for which we
do not know the user’s rating, we can use these to obtain a sorted recommendation
list to show to the user. The assumption here is that higher predicted ratings imply
improved recommendation quality. As this modelling approach requires us to
explicitly prompt users to provide ratings on an interval scale, it is often referred to
as the “explicit feedback” setting. This framework has been hugely successful, and
dominated the field for many years. Perhaps the most famous example is that of the
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(a) Full user-item matrix. (b) Missing ratings.

Figure 1.1: An example of rating prediction. (a) We build a user-item matrix R that
holds the rating for user u and item i at Ru,i . (b) Typically, some ratings are missing,
and the recommendation task is defined as the prediction of these missing ratings.

Netflix Prize competition, where the eponymous video streaming service pledged a
USD 1 000 000 prize to the team that could achieve a minimal RMSE at the end of
the competition [13, 11].

Nevertheless, obtaining a suitable dataset with explicit ratings can be a hurdle, as
repetitively prompting users to rate items can be detrimental to the user experience.
Furthermore, studies have shown that ratings obtained through such online rating
systems do not always reflect users’ true evaluations of the items at hand [250].

These observations combined with the reality that users’ interactions on online
platforms were being logged and stored, gave rise to the “implicit feedback” setting
which then took over [158, 65]. By exploiting the information that is inherent to a
user interacting with an item, we can avoid the need for explicit ratings. Indeed, we
can reasonably assume that a user will mostly view retail product pages of items they
are interested in, or movies and series that they enjoy. The implicit-feedback rec-
ommendation setting quickly gained in popularity, and is now far more widespread
than its explicit counterpart. Even Netflix has moved on from their 5-star ratings to
a simpler feedback mechanism, predominantly focusing on signal acquired from
interaction data [51]. When purely focusing on deduplicated “views”, “clicks”, “pur-
chases” et cetera, this setting is referred to as binary, positive-only [221]. This setting
is visualised in Figure 1.2 where we build a user-item matrix based on a sequence of
user-item interactions, and frame the task of recommendation as predicting missing
interactions. Note that there are several differences between the item and rating pre-
diction tasks, most notably that there’s an absence of explicit negative information in
the former (hence, positive-only). When a user-item interaction is missing from the
dataset, we often do not know whether this means that the user is simply unaware of
the item, or whether it is irrelevant to the user. This inability to distinguish between
“missing” and “negative” feedback has motivated several modelling approaches such
as Bayesian Personalised Ranking [169] and Weighted Regularised Matrix Factorisa-
tion [65, 158]. Furthermore, the data is typically Missing-Not-At-Random (MNAR),
and this characteristic remains important to take into account when learning or
evaluating recommendation models [197]. In contrast with the RMSE metric often
used in rating prediction, the item prediction setup is typically evaluated with IR-
inspired metrics such as precision, recall or Normalised Discounted Cumulative
Gain (NDCG) [199, 20, 215].
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(a) Interactions for u. (b) Full user-item matrix. (c) Missing interactions.

Figure 1.2: An example of item prediction. (a) We observe a sequence of items a user
u has interacted with, and wish to predict which item completes the sequence. (b)
We build a user-item matrix X that holds binarised interactions for user u and item
i at X u,i . (c) Typically, many interactions are missing, and the recommendation task
is defined as the prediction of which user-item interactions actually occur in the
data.

Many approaches to recommendation from implicit-feedback data find their
roots in the explicit-feedback setting. In what follows, we give a brief introduction to
the most common families of approaches, and the rationale behind them.

Latent Factor Models

Latent factor models assume a low-rank generating process behind the user-item
interaction data, and they explicitly model this by optimising low-rank user- and
item-factor matrices U ∈ Rm×k ,V ∈ Rk×n , if we assume to have m unique users, n
unique items, and k latent factors [98]. Figure 1.3 visualises this type of approach.
The intuitive idea is that the learnt latent factors will represent common concepts
such as genres, and the values in U and V encode users’ and items’ affinities to those
genres respectively. The recommendation score for a user u and an item i , is then
computed as the dot-product between their low-rank embeddings, as shown by
Equation 1.1.

X u,i ≈U u,· ·V ·,i =
∑
k

U u,k ·V k,i (1.1)

Lower values of k restrict the model’s capacity and might result in underfitting,
whereas for larger values of k we can eventually exactly reconstruct the user-item
matrix X . Note that the latter is equally undesirable, as a model that correctly
identifies all zeroes in Figure 1.2(b) does not provide any actionable information
for personalisation. For these reasons, a regularisation term is often added to the
optimisation problem at hand. Earlier methods learn the factorised matrices via
singular value decomposition, and many extensions to this have been proposed
over the years [181, 31, 40]. Latent factor models are one of the oldest classes
around, and are often still surprisingly effective when compared to more complex
alternatives [170, 171].
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X ∈Rm×n

≈

U ∈Rm×k

×

V ∈Rk×n

Figure 1.3: Latent factor models explicitly learn common latent factors that describe
users and items, in an attempt to reconstruct the user-item matrix via a low-rank
bottleneck. The transitivity that comes from the low-rank assumption helps to
generalise and predict affinity scores between users and unseen items.

X ∈Rm×n

≈

X ∈Rm×n

×

S ∈Rn×n

Figure 1.4: Item-based recommendation models learn an item-item similarity matrix
to reconstruct values in the user-item matrix based on the values in other columns.
The diagonal of the matrix can be restricted towards zero, as to avoid the trivial
solution where S is the identity matrix.

Item-Based Models

Item-based models are – generally speaking – a type of full-rank model. The rationale
is that we can predict the affinity from a user towards an item by considering the
other items a user has already interacted with in the past. We effectively learn an
item-item similarity matrix S ∈Rn×n , and use these similarities in a weighted sum
with items in the users’ history to predict relevance. This is shown in Figure 1.4 and
Equation 1.2.

X u,i ≈ X u,· ·S ·,i =
∑

j
X u, j ·S j ,i (1.2)

When the item-item matrix is constructed with an analytically computable
similarity measure between the high-dimensional yet sparse columns of the user-
item matrix X (such as cosine similarity, Jaccard index or conditional probabilities),
this type of approach is often called “nearest neighbours”-based [34]. Although
technically correct, this is not the most descriptive terminology. Indeed, latent factor
models are also “nearest neighbours”-based, albeit in a projected low-dimensional
space instead of the one represented directly by the user-item matrix X . Many
extensions to the item-based paradigm have been proposed [147, 30], and posing
the computation of S as a simple linear optimisation problem is often sufficient to
obtain highly competitive results [200]. When the item-item similarities are learnt
directly, this model is referred to as full-rank. It is however not uncommon to model
S itself as the factorisation of two lower-dimensional matrices [90].
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Sequence-Aware Models and Beyond

The two families of approaches introduced above operate on the bare minimum of
information: the presence of an interaction between user u and item i . For many
practical use-cases, more information will be available as well. Consider the set-up
we introduced in Figure 1.2, by generating a binarised user-item matrix from the
sequence of interactions, we effectively threw away all temporal information. Natu-
rally, this information can encode many implicit sequential relations among items,
and advanced methods can exploit these relations for enhanced recommendation
accuracy [167]. Many more examples can be thought of, where we additionally have
information about item content, contextual information about item consumption,
browsing sessions et cetera [2, 74, 124].

Contextual Bandits

The “contextual bandit” framework is a general machine learning paradigm where
an agent observes a certain context and can perform an action [102]. We can re-
place these abstract concepts with a recommendation system that observes a user
visiting the system, and then chooses which items to recommend to this user. As
such, real-world recommendation systems can be referred to as contextual bandits.
Nevertheless, general bandit algorithms and recommendation approaches tend to
differ quite a bit. Bandit algorithms were introduced as a general framework for
decision-making under uncertainty, and they typically update their model based on
the outcome of their actions [23, 37]. Traditional approaches to recommendation,
in contrast, focus on predicting the occurrence of interactions between users and
items, and do not take into account the outcomes of the recommendations them-
selves. Several recent works have tried to bridge this gap [112, 114, 136, 140], but
these fields have largely evolved independently of one another.

The recommender systems research space is broad and vast, and it is by no means
our ambition to provide an extensive survey in the introductory Chapter to this
thesis. Nevertheless, we have now introduced the reader to the tools necessary to
contextualise the research contributions that make up the rest of this manuscript.
The contributions presented in this thesis can be broadly categorised into three
disjoint parts. In what follows we briefly introduce these sub-fields, and provide an
outline of the chapters that follow. The common theme uniting our research contri-
butions, is that we aim to bridge the gap between the (often static) recommendation
problem that is prevalent in academic research, and the more complex dynamic
systems that are typically faced by practitioners in industry.

1.2 Efficient and Incremental Computations

Recommendation models that are deployed into the real world are far from static.
They need to be updated periodically as new data comes in to account for shifting
user preferences and item popularities. This incurs a computational cost that we
would naturally like to reduce as much as possible. The first goal is to reduce the
initial computation time for the recommendation model to a minimum, that is,
make model training efficient. Second, we wish to reduce the time needed for
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subsequent updates to the model. By targeting those model parameters that need
to be updated instead of blindly recomputing the entire model, we obtain models
that can be updated incrementally.

• In Chapter 2, we present Dynamic Index: a novel algorithm for efficient and
exact similarity computation between sparse, high-dimensional vectors. The
algorithm is tailored towards the implicit-feedback data setting that widely
occurs in recommender systems, learns incrementally, and is easily parallel-
lisable. As such, it is naturally suited for item-based collaborative filtering
approaches that are deployed in dynamic environments, where updates need
to be performed in real-time. We additionally explore the concept of item rec-
ommendability, and show that our method can exploit this naturally occurring
concept efficiently and effectively.

• In Chapter 3, we present Dynamic EASER (DYN-EASER): a novel algorithm for
incrementally updating ridge regression models as new data arrives, mak-
ing use of the Dynamic Index algorithm to incrementally update the item
co-occurrence matrix, and subsequently leverage well-known identities from
linear algebra to incrementally compute its inverse. Our exact updating algo-
rithm significantly improves the efficiency of the state-of-the-art recommen-
dation approach EASER [200]. Moreover, we present approximate variants of
DYN-EASER, providing a tuneable trade-off between the exactness of the model
and the efficiency with which it can be computed. Approximate DYN-EASER

can further improve the recommendation accuracy of its exact counterpart,
by exploiting transitivity relations that arise in low-rank representations when
the data is sparse.

1.3 Offline Evaluation Methodologies

Machine learning models are typically evaluated on offline datasets, where a random
split divides the data into a train and test set, and a model that has learned from
the samples in the training set is evaluated on its ability to predict (labels for) the
samples in the test set [96]. This well-validated and established paradigm has
found widespread adoption in the recommender systems community as well, and is
often used to report empirical gains in recommendation accuracy in the literature.
Nevertheless, such evaluation procedures generally conflate improved prediction
capabilities with improved recommendations, due to the assumption made by the
item prediction paradigm that they are equivalent.

In contrast, recommendation algorithms deployed in the real world have a dis-
tinct advantage: they get to actually show recommendations to users and observe
whether the user interacts with them. Metrics based on click-through-rate, page
dwell time, session length, subscription renewal, et cetera are then often used as
proxies for user satisfaction, which still remains the paramount and overarching
target. The downside here is that online experiments are generally much more ex-
pensive than offline procedures, and are often out of reach for academic researchers.

Current offline evaluation methodologies are notoriously uncorrelated with
online success metrics, and the reasons why are often only superficially understood.
Understanding when and why offline evaluation results diverge from online success
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metrics can be an important step to ensure that empirical gains in the literature
translate to better recommendations being presented to users.

• In Chapter 4, we present results from an empirical study that compares vari-
ous offline evaluation methodologies on real-world data collected on a retail
website with a deployed recommendation algorithm. We present a novel
evaluation procedure called Sliding Window Evaluation (SW-EVAL), which
much more tightly adheres to the use-cases deployed recommendation al-
gorithms encounter than random train-test splits. We show how taking the
sequential nature of user-item interactions into account provides much more
reliable offline estimates of performance, and show how alternative meth-
ods provide conflicting results. Finally, we show that the selection bias from
the deployed recommendation algorithm significantly biases results towards
recommendations that were shown by the logging policy, and underline that
Missing-Not-At-Randomness (MNAR) in the data is crucial to model.

• In Chapter 5, we review the differences and commonalities between online
and offline evaluation strategies, and present a research agenda to bring
them together. Online evaluation methods are effective but inefficient, and
offline alternatives are efficient yet ineffective. We highlight the importance of
temporal evaluation to model sequentiality in the data, off-policy evaluation
to de-bias the item selection bias that occurs from deployed recommenders,
and argue in favour of exploiting information related to impressions and user
inaction in offline metrics, to distinguish missing interactions from negative
feedback.

1.4 Effective Learning from Bandit Feedback

The assumption behind the item prediction paradigm is that accurately predicting
which interactions between users and items will occur in the absence of the recom-
mender, makes for a good recommendation algorithm. This is rooted in the many
observational datasets containing organic user-item interactions that are widely
available and adopted by the research community, and has proven its worth for
many years. The online paradigm, in contrast, does not focus on merely predicting
which items a user will interact with. Crucially, there is an interactive component
where we show a recommendation to the user, and we observe any subsequent
interactions. This interventionist view departs from many classical approaches to
recommendation, but is a fundamental component of any practical recommenda-
tion use-case.

If metrics related to online interventions are what we wish to optimise, it makes
sense to use datasets containing logged recommendations and their outcomes. Such
data is often called bandit feedback, as we only observe the outcome for actions
taken by the contextual bandit that was deployed at data collection time. This
contextual bandit is referred to as the logging policy, and it will often be biased
towards performing actions that it deems successful (i.e. showing recommendations
that are likely to lead to user satisfaction). This arm selection bias can severely skew
the data if not taken into account properly, making effective learning from bandit
feedback a highly non-trivial task.
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Datasets consisting of bandit feedback are abundant in industrial recommen-
dation applications. It is exactly the data that is being used to evaluate the online
performance of recommendation algorithms, and it comes naturally that this data
should be used to provide meaningful offline estimates of online performance. Nev-
ertheless, these datasets are rarely publicly available, and counterfactual evaluation
procedures using them often lack the statistical power to conclusively reject hy-
potheses [49]. There is a fundamental divide here between the bulk of academic
research and the recommendation use-cases that arise in practice.

• In Chapter 6, we present an overview of the state-of-the-art in learning from
bandit feedback, with an eye on the recommendation task. We present results
from the first broad empirical study of counterfactual learning methods for
recommendation, using reproducible simulation environments. We highlight
how existing methods tend to fail due to stochastic and sparse rewards, and
propose the use of a logarithmic lower bound on the traditional importance
sampling estimator to mitigate these issues. Moreover, we show that the two
contrasting families of value- and policy-based methods can be modelled with
an identical parameterisation, which allows for a model that jointly optimises
a hybrid objective. We show that this Dual Bandit approach achieves state-
of-the-art performance in a wide range of scenarios, and that its gains over
competing methods are most outspoken in the realistic and complex settings.

• In Chapter 7, we focus on improving the performance of reward models that
are learned from bandit feedback. We present a general-purpose framework
for pessimistic decision making under model uncertainty, and show how it can
be used to obtain state-of-the-art performance in off-policy recommendation
tasks. Our decision-making approach exploits Bayesian uncertainty estimates
to know what the reward model does not know, and takes decisions with a
maximal worst-case outcome. This form of principled scepticism leads to
a significant and robust increase in online recommendation performance.
We additionally show how our method limits post-decision disappointment,
implying that it can also be used to accurately forecast model performance by
practitioners.

Chapter 8 summarises the research contributions presented throughout this
thesis, and those presented in additional related work by the author. We conclude by
presenting a scope for future research to further bridge the gap between academia
and industry in recommendation research.





Part I

Efficient and Incremental
Computations



If I have seen further, it is by standing on the shoulders of Giants.

— Isaac Newton



CHAPTER 2
Efficient Similarity

Computation for Collaborative
Filtering in Dynamic

Environments
The problem of computing all pairwise similarities in a large collection
of vectors is a well-known and common data mining task. As the number
and dimensionality of these vectors keeps increasing, however, currently
existing approaches are often unable to meet the strict efficiency require-
ments imposed by the environments they need to perform in. Real-time
neighbourhood-based collaborative filtering (CF) is one example of such
an environment in which performance is critical.

In this work, we present a novel algorithm for efficient and exact simi-
larity computation between sparse, high-dimensional vectors. Our ap-
proach exploits the sparsity that is inherent to implicit feedback data-
streams, entailing significant gains compared to other methods. Fur-
thermore, as our model learns incrementally, it is naturally suited for
dynamic real-time CF environments. We propose a MapReduce-inspired
parallellisation procedure along with our method, and show how even
more speed-up can be achieved. Additionally, in many real-world sys-
tems, many items are actually not recommendable at any given time, due
to recency, stock, seasonality, or enforced business rules. We exploit this
fact to further improve the computational efficiency of our approach. Ex-
perimental evaluation on both real-world and publicly available datasets
shows that our approach scales up to millions of processed user-item in-
teractions per second, and well advances the state-of-the-art.1

1This chapter is based on work published in the Proceedings of the 2019 ACM RecSys Conference as
“Efficient Similarity Computation for Collaborative Filtering in Dynamic Environments” by Olivier Jeunen,
Koen Verstrepen and Bart Goethals [83].

13



14 CHAPTER 2. EFFICIENT SIMILARITY COMPUTATION

2.1 Introduction

Many important recommender system use-cases are highly dynamic in nature: news,
movie, music or retail recommenders all want to incorporate new behaviour into
their models as quickly as possible. With new user-item interactions arriving at high
rates, the need for dynamic models that can efficiently handle incremental updates
in approximately real time becomes more and more apparent [92]. In the context
of highly dynamic environments where items have limited lifetimes, this issue be-
comes even more pressing. News websites typically only want to recommend recent
articles, and interactions with newly written articles need to be incorporated into
the model as quickly as possible. Auction websites frequently deal with items that
are only available for a few days and face the same concerns. Many more examples
exist. Traditional Collaborative Filtering (CF) approaches fall short in this setting,
as frequent model updates often become too time consuming. Typically, the entire
CF model will be retrained at certain fixed points in time, after which the updated
model is then deployed. For highly dynamic use-cases, the time between subsequent
model updates should ideally be kept minimal, in order to allow information from
new incoming user-item interactions to be incorporated into the recommendation
process as soon as possible. However, as more and more data arrives, the iterative
recomputation of the entire model becomes more and more costly as well, putting
a hard upper limit on the frequency with which model updates can be performed.
We see a fundamental divide here, and such a trade-off is unacceptable for many
present-day applications. A clear need arises for CF models that can instantaneously
process new transactions and incorporate them into the model in an incremental
manner, while avoiding the periodical re-processing of old data.

In this paper, we present a novel exact algorithm to tackle the problem of efficient
similarity computation for high-dimensional and fast changing sparse implicit
feedback data streams. Such algorithms are at the basis of nearest-neighbour-based
CF techniques, which have recently been shown to attain competitive results with
more advanced state-of-the-art approaches, such as recurrent neural networks [73].
On top of this, they provide naturally explainable recommendations [220]. As a
consequence, they remain a popular approach to recommendation. Currently
existing alternative methods for efficient similarity computation often make use
of approximations, sacrificing accuracy for efficiency [144, 66, 207]. Our algorithm,
on the other hand, computes all exact item-item similarities. The algorithm learns
incrementally, making it naturally suitable for real-time CF environments. We exploit
the data’s sparsity to avoid unnecessary iterative computations and propose the use
of an inverted index to quickly identify affected pairs of items when updates arrive.
Our approach is presented in a MapReduce-inspired formulation, demonstrating its
scalability.

As the number of users and items in present-day real world systems quickly
scales up to hundreds of thousands and millions, it often becomes undesirable or
unnecessary to keep updated recommendation scores for all catalogued items in the
database. Again, in the case of a news website recommendation engine, scores for
old articles will be irrelevant as only recent items are allowed to be recommended.
Or, in the case of a retail environment: recommending items that are currently out
of stock is to be avoided. Media recommenders that deal with expiring licenses
encounter the same issues. As such, for many different use-cases, the set of recom-
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mendable items at a given time is a much smaller subset of the full item collection.
This imbalance is exploited by our algorithm, as we compute and maintain rec-
ommendation scores only for those items that are recommendable. We show that
incorporating this natural aspect into our algorithm has dramatic effects on system
throughput.

To summarise, the main contributions of this paper are:

1. We introduce a novel algorithm, called “Dynamic Index”, for efficiently com-
puting all pairwise similarities in a collection of sparse high-dimensional
vectors, which are typical for recommender systems.

2. Our approach learns incrementally, making it suitable for real-time environ-
ments.

3. We further exploit non-recommendable items to improve the computational
efficiency of our method.

4. By presenting our algorithm in a MapReduce-inspired formulation, it is easily
parallellised and scalable.

5. Experimental results on real-world data demonstrate the efficiency and per-
formance of our methodology.2

2.2 Related Work

Nearest-neighbour or similarity join processing is not a new problem, and has been
thoroughly investigated in the last 15 to 20 years. Most recent trends for speeding
up computation tend to either focus on approximate solutions [144], distributed
algorithms [248, 246] or incremental approaches [237, 243]. The first notable work
in the latter area is the kNNJoin+ algorithm [243], which uses the iDistance sim-
ilarity measure [241, 242] and a Sphere-tree index to efficiently reduce the high-
dimensional search to a single dimension. However, when updating two points i
and j , the distance between these two points still needs to be re-evaluated in the
high-dimensional space before the index can be updated to enable efficient nearest
neighbour search. Moreover, this work was aimed at a dimensionality ranging from
20 to 50 and only 100000 data points, whereas we focus on much larger but very
sparse datasets consisting of millions of dimensions, as is typical for recommender
systems.

Yang et al. propose a method called HDR-tree for incrementally updating near-
est neighbour joins in the context of recommender systems [237], exploiting the
distance-preserving properties of Principal Component Analysis (PCA). Their algo-
rithm focuses on content-based filtering with a strict window size of recent items that
they consider for recommendations, whereas our algorithm focuses on collaborative
filtering with a much more flexible set of recommendable items that can change
over time. Furthermore, they require a fixed set of users, which is too restrictive for
the more typical setting we consider. In the context of CF algorithms for streaming
scenarios, multiple online learning approaches for matrix factorization, learning-
to-rank and neural network models have been presented as well [168, 60, 232, 231].

2Code available at: https://github.com/olivierjeunen/dynamicindex

https://github.com/olivierjeunen/dynamicindex
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Several incremental or online learning algorithms specifically for nearest-neighbour-
based CF models have also been published in recent years. Liu et al. propose an
incremental learning algorithm that includes temporal information in their novel
similarity measure to tackle concept drift in users’ preferences over time [119]. The
work of Luo et al. focuses on reducing model storage complexity and increasing rat-
ing prediction accuracy by incrementally learning biases on top of similarities [125].
TencentRec is a framework implementing several well-known recommendation
algorithms in a streaming environment to provide real-time recommendations [66].
Their variant prunes probable dissimilar items, leading to an approximate solution
instead of an exact one. Another neighborhood-based approach is proposed by Sub-
bian et al., where a probabilistic data structure is used to approximate item-item
similarities and provide recommendations in a real-time manner [207]. Sreepada
and Patra present a novel similarity measure that is incrementally learned more
easily than other common similarity measures, called item tendency [196].

However, most of the above-mentioned methods [119, 125, 207, 196] rely on
explicit-feedback data, which is vastly different than the implicit-feedback data
use-case we tackle with this work in terms of similarity measure computation as
well as general aspects of the dataset. Moreover, several of these methods [66, 207]
use approximations to speed up computation time, at the cost of similarity- (and as
a consequence recommendation-) accuracy. In this work, we focus on the task of
exact nearest-neighbour and similarity computations from implicit-feedback data,
without the use of any approximations or need of explicit rating data. In addition,
with our approach, non-relevant items or users are not considered at computation
time, which allows us to work directly on the high-dimensional space, as we can take
maximal advantage of the highly sparse nature of the data. Finally, as our algorithm
only needs a simple inverted index to efficiently identify affected pairs of items when
updates arrive, we can formulate it in accordance with the MapReduce paradigm,
ensuring scalability through parallel processing [33].

2.3 Background

Preliminaries

Let U be a set of m users and I a set of n items. Our work focuses on transactional
data with implicit feedback. More specifically: we work with a set of user-item pairs
(u, i ) ∈ U × I denoting that user u has consumed item i , be it in the form of a product
purchase, a movie streaming, a click on a news article or otherwise. We call such
preference expressions pageviews, and represent them as a tuple (u, i , tc ), where tc

denotes the consumption time. The set of all pageviews up to, but not including
time t is denoted by P t . We can represent these pageviews in the form of a sparse
user-item matrix Pt ∈ {0,1}m×n for m unique users and n unique items. We omit the
timestamp t when it is clear from context. Rows in this matrix are users represented
by the items they have consumed, and vice versa for columns: Pu,i = 1 if and only if
user u has consumed item i and Pu,i = 0 otherwise. When we represent an item i by
the i -th column-vector of the matrix Pt , we denote it as i . The set of users that have
consumed a specific item i ∈ I is denoted as Ui . Vice versa, the set of items that a
certain user u ∈U has consumed is denoted as Iu .
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Algorithm 1 Naive Baseline

Input: A set of pageviews |P t |.
Output: An inverted index from items to users K , a matrix of item similarities S.

1: K ←;, S ← I
2: for (u, i , tc ) ∈P t do
3: K [i ] =K [i ]∪ {u}
4: for i ∈K do
5: for j ∈K do
6: if i < j then

7: Si , j ← |K [i ]∩K [ j ]|p|K [i ]|·
p

|K [ j ]|
8: return K ,S

Between items i , j ∈ I , similarity is expressed as the well-known cosine similarity:
cos(i , j ). The goal at hand is to efficiently and incrementally compute and store
the similarity cos(i , j ) for every such item-pair. In a worst-case scenario, this would
incur a memory overhead of n·(n−1)

2 item similarities that need to be stored. In
many real world datasets, the user-item matrix P is extremely sparse. For many
implicit-feedback datasets, this can lead to sparsity in the item co-occurrence matrix
M. We denote the sparsity of any matrix by the function σ(·). Partially to allevi-
ate spatial complexity issues, and partially to exploit this inherent sparseness and
avoid unnecessary iterative computations on zero-values, we propose the use of
sparse data-structures throughout the algorithms presented in the following sec-
tions. Finally, familiarity with item-based nearest neighbour collaborative filtering
approaches is assumed [183].

Baseline Approaches

The naive approach to computing cosine similarities between pairs of items occur-
ring in a given set of pageviews P t is laid out in Algorithm 1. First, an inverted index
from every item i to the set of users that have seen that item, Ui , is constructed.
Subsequently, the algorithm iterates over said sets of users for every item-pair i , j ∈ I
and computes the sparse dot-product i · j , which is equivalent to the intersection of
their user-sets |Ui ∩U j |. Because of the symmetric nature of our similarity measure,
only half of the iterations lead to actual computations (line 6). Note that only the size
of the intersection needs to be computed, and not the set intersection itself. Efficient
algorithms with linear time complexity exist for this operation over sorted inverted
indices. However, the naive baseline approach explicitly computes all n·(n−1)

2 sparse
vector dot-products, even when a significant amount of them are irrelevant. For
many (sparse) real world datasets, this is extremely inefficient.

An improved baseline, specifically tuned to the setting of sparse data is presented
in Algorithm 2. On top of the original item-to-user inverted index, we now construct
a user-to-item inverted index as well. As a result, we can deconstruct the sparse
vector dot-product, and iteratively count which item-pairs i , j ∈ I also appear in
Iu for every user u ∈Ui . As |Ui | ¿ |U | in sparse datasets, this entails a significant
efficiency advantage. Note that this baseline is less memory efficient than the naive
baseline, as it needs a second inverted index to efficiently exploit the sparse nature
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Algorithm 2 Sparse Baseline

Input: A set of pageviews |P t |.
Output: An inverted index from items to users K , an inverted index from users to

items L , a matrix of item similarities S.
1: K ←;, L ←;, S ← I
2: for (u, i , tc ) ∈P t do
3: K [i ] =K [i ]∪ {u}
4: L [u] =L [u]∪ {i }
5: for i ∈K do
6: for u ∈K [i ] do
7: for j ∈L [u] do
8: if i < j then
9: Si , j += 1

10: for i , j ∈ S do
11: if Si , j > 0 then
12: Si , j /=p|K [i ]| ·√|K [ j ]|
13: return K ,L ,S

of the data. In both baseline algorithms, the square roots of the item-norms
p|Ui |

can be pre-computed for improved efficiency.

2.4 Methodology

Recommendable Items

Traditionally, recommender systems are seen as functions that predict some rele-
vance score specific to a user-item pair: fP : U × I → [0,1]. Here, the recommender
system represented by the function f is dependent on the user-item matrix P, hence
the subscript. In real-world present-day systems, the number of users and items
can quickly scale up to hundreds of thousands and even millions. It is clear that the
model represented by the function fP becomes much more complex to compute and
will take up much more memory to store in the case of ever-growing user- and item-
sets and the matrix P. We identify two possible methods to alleviate this issue: either
reduce the size of the training matrix P, or reduce the complexity of fP by putting
restrictions on the set of items to compute recommendation scores for. Although
the first option opens up interesting directions for future research in how datasets
can be optimally summarised with minimal loss of information, we focus on the
latter. We define our model as follows: fP : U ×R → [0,1], where R ⊆ I denotes the
set of recommendable items. This set can be highly dynamic, and depends on any
number of factors such as recency, seasonality, stock and much more. Throughout
the rest of this manuscript, Rt will represent the set of recommendable items at time
t . When omitted, all items are considered recommendable (Rt = I).

Incremental Similarity Computation

Papagelis et al. present an incremental user-based CF method, focused on explicit
feedback [160]. This work has later been adapted by Yang et al. to allow incremental
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updates of item-based CF methods relying on explicit feedback [240]. Inspired
by their work, our work focuses on incremental updates with implicit feedback.
We split cosine similarity into three key components and incrementally update
these components instead of recomputing the entire similarity after every update.
Equation 2.1 shows the formula for computing the cosine similarity between two
item vectors, where i k represents whether user k has consumed item i .

cos(i , j ) = i · j

‖i ‖2
∥∥ j

∥∥
2

=

m∑
k=1

i k j k√
m∑

k=1
i 2

k

√
m∑

k=1
j 2

k

(2.1)

In the case of implicit feedback (0’s and 1’s) from transactional data and the use
of sparse data-structures, this formulation can be rewritten as shown in Equation
2.2. Here, items i and j are no longer explicitly represented by vectors in a user-
dimensional space, but rather as sets of users that have consumed these items. These
sets can be easily computed from the aforementioned historical transaction data, as
they are effectively a sparse column-wise representation of the binary preference
matrix P.

cos(i , j ) = |Ui ∩U j |p|Ui | ·
√|U j |

(2.2)

Thus, item similarities can be directly computed when the set-intersection between
their respective user sets and their set sizes are known. We exploit this formulation
to reduce the problem of incrementally updating item similarities to continuously
updating |Ui |, |U j | and |Ui ∩U j | for every pair of items i , j ∈ I . We denote the
vector containing all item-vectors’ l1−norms and the matrix containing all item-pair
intersections at time t as follows:

Nt ∈Nn : Ni ,t = |Ui ,t |,and

Mt ∈Nn×n : Mi , j ,t = |Ui ,t ∩U j ,t |.
The final formula for computing the similarity between two items i , j at time t then

becomes the following: cos(i t , j t ) = Mi , j ,tp
Ni ,t ·

p
N j ,t

.

Since M is a symmetrical matrix, we can further improve performance by using
appropriate data structures.

The Dynamic Index Algorithm

Suppose we have a set of recommendable items Rt at time t . Define Ut ⊆ U as the
set of all users u that have ever seen an item that is recommendable at time t :

Ut = {u|∃(u, i , s) ∈P t ∧ i ∈ Rt }.

Define At ⊆P t as the set of all pageviews by users in that set:

At = {(u, i , s) ∈P t |u ∈ Ut }.

At now holds all pageviews that are relevant to the intersections |Ui ∩U j | where
either i or j is a recommendable item. Naturally, when Rt = I , At = P t . Using
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Algorithm 3 Dynamic Index

Input: A set of pageviews P t , a set of recommendable items Rt .
Output: A matrix of item intersections M, a vector of items’ l1−norms N, an inverted

index of users to rec. items Lr , an inverted index of users to non-rec. items Ln .
1: M ← 0, N ← 0
2: ∀u ∈ U : Lr [u] ←;,Ln[u] ←;
3: for (u, i , s) ∈P t do
4: for j ∈Lr [u] do
5: Mi , j += 1
6: if i ∈ Rt then
7: for j ∈Ln[u] do
8: Mi , j += 1
9: Lr [u] =Lr [u]∪ {i }

10: Ni += 1
11: else
12: Ln[u] =Ln[u]∪ {i }
13: return M,N,Lr ,Ln

Algorithm 3, we can compute the co-occurrence matrix M, and thus all pair-wise
similarities, efficiently. The algorithm dynamically builds two inverted indices for
every user: one for all items recommendable at time t and one for all other items.
The idea of dynamically indexing the data rather than doing this in a preprocessing
step, is adopted from the work of Sarawagi and Kirpal [182]. This approach enables
us to exploit the sparsity that is inherent to the data as we quickly identify those pairs
of items that are of interest, i.e. (i , j ) where 1. either i or j ∈ Rt , and 2. |Ui ∩U j | > 0,
while avoiding unnecessary computations on all other pairs of items. Note that
this proposed algorithm is more space-efficient than the Sparse Baseline shown in
Algorithm 2: P t is indexed only once instead of twice.

As the inverted indices are dynamically built, the core algorithm consists of a
single for-loop over the set of pageviews. Consequently, when a set of new user-item
interactions ∆P arrives, the model can be updated by executing lines 3-12 from
Algorithm 3 on top of the already initialised model computed on the data P t . As |P |
grows, this benefit becomes increasingly important. Figure 2.1 provides some visual
intuition into this phenomenon.

As we have hinted at before, M is a symmetrical matrix. We avoid explicitly
incrementing M j ,i when incrementing Mi , j since they will be represented as one
number in an efficient implementation. Additionally, the dynamically constructed
inverted indices Lr and Ln do not need to store the sets of items in an ordered
manner, improving further on runtime efficiency.

From an existing model M = {M,N,Lr ,Ln}, we can compute all recommend-
able neighbours j of i with their respective cosine similarities as follows: cos(i , j ) =

|Ui∩U j |p
|Ui |·

p|U j |
= Mi , jp

|Ui |·
p

N j
. It should be noted that |Ui | cannot simply be extracted from

N, since we have only computed these item norms from At ⊆P t . By definition, this
vector of item norms will be up to date for recommendable items, but it might not
be for non-recommendable items. However, retrieving |Ui | from P t is only needed
when the actual cosine similarity is important and not just the internal ranking
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Figure 2.1: A visualisation of incremental computation, in comparison with the
classical iterative variant. As more data becomes available, iterative models need
to be retrained from scratch, with computation time ti+1. In contrast, online or
incremental methods, can update the existing model after |∆P | new user-item
interactions occur, requiring only ∆t time.

among neighbours. Since all similarities are divided by the constant factor
p|Ui |, it

is trivial to see that the internal ordering will not be impacted by this.

Parallellisation Procedure

From Algorithm 3, we can see a clear independence between the contribution of
different users to the similarity of an item-pair. As i · j equals the number of users
that have consumed both i and j , it is easy to see that a pageview (u, i , s) only has to
be correlated with other items j seen by user u. This insight, albeit trivial, allows
the computation of Algorithm 3 to be easily and efficiently parallellised following
the MapReduce paradigm [33]: if the sets of users processed by every map-process
are mutually disjoint, the reduce-process effectively consists of a summation of the
different matrices M and vectors N.

Let M = {M,N,Lr ,Ln} be a model, as obtained through Algorithm 3. Figure 2.2
visualises the MapReduce-inspired parallellisation procedure we adopt in this work.
With n available cores, Algorithm 3 generates n different models in parallel, as shown
in the top row of Figure 2.2. As this step is embarrasingly parallel, this is the so-called
Map-procedure. We then go on to recursively merge models in parallel, until we
obtain one final model. This is visualised in the subsequent rows of Figure 2.2, and
correlates with the Reduce-procedure. Algorithm 4 presents the process to correctly
merge two models M and M ′. After i iterations of parallel reduce-processes have
been completed, n

2(i−1) models remain. Ergo, log2(n) iterations of parallel reduce
steps are required to obtain a single final model.

From Algorithm 4, it is clear to see that most of the complexity comes from
correlating items that a given user has seen in model M ′ with items the same user
has seen in M . When parallellising the initial similarity computation, we therefore
ensure that the data used for all map-processes and models {M0, . . . ,Mn} consists of
entirely disjoint sets of users: |U ∩U ′| =;. However, for incremental model updates,
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Algorithm 4 Merging two models (reduce)

Input: M, M′, N, N′, Lr , L ′
r , Ln , L ′

n .
Output: M, N, Lr , Ln .

1: M += M′
2: N += N′
3: for u ∈L ′

r do
4: for i ∈L ′

r [u] do
5: for j ∈Lr [u] do
6: Mi , j += 1
7: for j ∈Ln[u] do
8: Mi , j += 1
9: for u ∈L ′

n do
10: for i ∈L ′

n[u] do
11: for j ∈Lr [u] do
12: Mi , j += 1
13: ∀u ∈ U : Lr [u] =Lr [u]∪L ′

r [u]
14: ∀u ∈ U : Ln[u] =Ln[u]∪L ′

n[u]
15: return M, N, Lr , Ln

…1 2 
n−1 

n

1
 n

2(i−1)
…

 

…



Figure 2.2: A visualisation of the MapReduce-inspired parallellisation proce-
dure adopted in this work. Assuming n independent map-processes, n mod-
els {M1, . . . ,Mn} are obtained through Algorithm 3, and subsequently recursively
merged through Algorithm 4. After i iterations of the reduce step, n

2(i−1) models
remain. Consequently, log2(n) reduce iterations are required.

this is less straightforward: as the new model M ′ is trained on newly incoming
interactions, we have no way of ensuring that the intersection between U and U ′ is
kept minimal. As a consequence, the computational complexity of the reduce-step
grows significantly, and with it the overhead of the parallellisation procedure.

Incremental Model Updates with Dynamic Recommendability

At time t +1, the model needs to be updated for a new set of recommendable items
Rt+1. As the set of recommendable items changes, the set of users with interactions
that are relevant to these items needs to be re-evaluated as well. We compute
Ut+1 analogous to the previous iteration: Ut+1 = {u|(u, i , tc ) ∈P t+1 : i ∈ Rt+1}. At+1

is initialised as the empty set ;. Three different possibilities for every user u in
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Ut ∪Ut+1 emerge:
Case u ∈ Ut \Ut+1: The user u was relevant in the previous iteration, but no

longer is. Since their inverted indices Lr [u] and Ln[u] will not be needed during
this iteration, we remove them out of memory.

Case u ∈ Ut ∩Ut+1: The user u was relevant and still is. As all u’s interactions
up until time t were already incorporated in the model, we only need to take into
account new interactions between time t and t +1:

At+1 =At+1 ∪ {(u, i , tc ) ∈P t+1\P t |u ∈ Ut+1 ∩Ut }.

Case u ∈ Ut+1\Ut : The user u was not relevant during the previous iteration, but
has become now. As the model has no record of any interactions by this user, we
need to take into account their full history:

At+1 =At+1 ∪ {(u, i , tc ) ∈P t+1|u ∈ Ut+1\Ut }.

At this point, an updated set of pageviews At+1 to be incorporated into the
model has been computed analogous to Algorithm 3. However, some precautions
still need to be taken with relation to the recommendability of items over time. For
every item i in Rt ∪Rt+1, three analogous cases to the ones outlined above occur:

Case i ∈ Rt \Rt+1: The item i was recommendable in the previous iteration, but
no longer is. We drop all entries in the matrix Mi , j where j ∉ Rt+1. This is important
to ensure consistency when the item i would later become recommendable again,
otherwise increments might not start at 0. Additionally, we move item i from Lr [u]
to Ln[u].

Case i ∈ Rt ∩Rt+1: The item i was recommendable and still is, nothing needs to
be done here.

Case i ∈ Rt+1\Rt : The item i was not recommendable during the previous
iteration, but has become recommendable now. Since item i might have already
been included in the index, we should compute possible intersections Mi , j that
were not included in the matrix before. This is true for all users u who have seen
item i before time t : {u|(u, l , tc ) ∈P t : l = i }. For every non-recommendable item
j ∈ Ln[u] seen by those users, we increment Mi , j . Afterwards, item i has to be
deleted from Ln[u] and inserted into Lr [u].

If recommendability of items is a monotonically decreasing function over time,
one does not have to worry about these issues: {(u, l , tc ) ∈ P t : l = i } will be the
empty set for items i ∈ Rt+1\Rt , since items that become recommendable are per
definition new in this context. In, for example, a news recommendation setting this
makes perfect sense: older articles should not be considered for recommendation.
In a retail environment, however, this is not the case: recommendability will often
depend on seasonality and current stock.

2.5 Experimental Results

Table 2.1 shows the characteristics of the datasets we used to experimentally vali-
date the efficiency of our proposed approach. Movielens is the latest well-known
Movielens dataset [57], Netflix refers to the full dataset that was used for the famous
Netflix-Prize [13]. For both movie datasets, we converted explicit ratings to binary
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Table 2.1: Experimental dataset characteristics. Datasets denoted by an asterisk (*)
are binarised from explicit-feedback, to mimick the implicit-feedback setting.

Movielens* Netflix* News Outbrain

|P | 20e6 100e6 96e6 200e6

|U | 138e3 480e3 5e6 113e6

|I| 27e3 18e3 297e3 1e6

|Iu | 144.41 209.25 18.29 1.76

|Ui | 747.84 5654.50 242.51 184.50

σ(P) 99.46% 98.82% 99.99% 99.99%

σ(M) 59.90% 0.22% 99.83% 99.98%

Si , j : Si , j > 0 0.050 0.037 0.027 0.012

implicit feedback, entirely disregarding the actual ratings. Outbrain is a dataset
containing logs from users and articles they read, published in a recent Kaggle
competition [155]. We use a deduplicated version of the first 200 million logged
user-item events in our experiments: in the case of recurring user-item pairs, we
keep only the earliest entry. News is a proprietary real-world dataset consisting of
roughly 96 million user-item pairs originating from article reads on the website of a
large Belgian newspaper. Our algorithm, as well as the baseline methods, are imple-
mented in C++ and compiled with all the available optimisation flags. Experiments
ran on a single Intel Xeon processor. We aim to answer three research questions,
respectively covered in the following sections:

RQ1 Is the proposed Dynamic Index algorithm more efficient than the state-of-
the-art in computing similarity between pairs of high-dimensional sparse
vectors?

RQ2 Is the proposed MapReduce-inspired parallellisation procedure effective in
reducing the necessary computation time?

RQ3 What is the impact of restrictions on the set of recommendable items on the
efficiency of the algorithm?

Efficiency of Dynamic Index (RQ1)

To validate the efficiency of our proposed algorithm, we report computation time
for the sparse baseline and Dynamic Index, as shown in Figure 2.3. Both algorithms
run on a single computational core. The naive baseline presented in Algorithm 1
is not included in these results, as it is orders of magnitude slower than the Sparse
Baseline or Dynamic Index on every dataset we consider. We do not consider other
algorithms in our comparison, as other proposed exact approaches in the literature
were demonstrated only on dense datasets, covering a few hundred dimensions at
most [241, 242, 243, 237]. Our method, aimed towards sparse datasets, can efficiently
handle millions of dimensions. Additionally, to the best knowledge of the authors,
no competing exact methods or implementations are available at the time of writing.
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All datasets were chronologically sorted, and we gradually retrained every algo-
rithm with more data, in order to provide a realistic view of the benefits of online
or incremental computation. We can see that for all datasets but Movielens, our
proposed algorithm significantly outperforms the sparse baseline. Movielens has
the highest average non-zero similarity between any item-pair, which might make
it more suited to Algorithm 2. However, as our method learns incrementally, the
potential efficiency gains are much more tangible than merely shown by the area
between the two lines in the plot. The improvement of Dynamic Index is most
apparent for the largest dataset: our algorithm provides a speedup factor larger
than four when all available user-item interactions are considered. Looking at the
average number of pageviews processed by Algorithm 3 per second at every point
in the plots in Figure 2.3, we observe throughputs ranging from 14500 |P |

s for the

Netflix dataset, to more than 834000 |P |
s for Outbrain. These numbers effectively

represent an upper bound on the number of new incoming pageviews per second
the single-core streaming model could process in real-time, assuming a constant-
rate influx. From Table 2.1 and the nature of Algorithm 3, we can deduce interesting
observations about the efficiency of our approach. First, as the throughput is highest
for those datasets with large |I|, it seems this is not an important factor. This may
seem counter-intuitive at first, as more unique items will lead to more similarities
that have to be computed. However, the sparsity of the co-occurrence matrix σ(M)
is more significant than its absolute dimensions, as we effectively leverage this by
avoiding computations on zero-values. The second decisive factor is |Iu|. As most
of the complexity of the algorithm lies in iterating over inverted indices containing
user histories, it should come as no surprise that shorter lists imply faster iterations.

Efficiency of Parallellisation Procedure (RQ2)

To validate the efficiency of our proposed parallellisation procedure, we report
runtime results for the same experimental setting as laid out in Section 2.5, for a
varying number of available cores. Results from this experiment are visualised in
Figure 2.4. We see a clear benefit from parallellising the computation over multiple
cores, over all datasets. For the Netflix and News datasets, using 8 cores provides
a speedup larger than factor 4 compared to the single-core variant. The Outbrain
dataset, which gains the least from the parallellisation scheme, was also the dataset
on which the highest throughputs for the single-core algorithm were reported.

As mentioned in Section 2.4, the reduce-step for merging two models in Al-
gorithm 4 is especially efficient when both models were generated from logged
interactions by mutually disjoint sets of users. When this condition can not be guar-
anteed, it becomes significantly more complex. Therefore, when the batch-size |∆P |
is small, the single-core variant proves to be more efficient at incremental updates
than the parallellised version. However, for sufficiently large |∆P |, the bulk of com-
putation time needed to incrementally update the existing model will come from
dynamically indexing the new data using Algorithm 3 to generate the new model
Mt+1, contrary to merging the old model Mt with Mt+1 using Algorithm 4. In these
cases, the multi-core variant proves itself to be advantageous. Moreover, in cases
where the influx of new data is limited, periodically retraining the model in parallel
or performing the incremental updates batch-wise might be more cost-efficient than
performing incremental updates in a streaming fashion. Simplistically: if the entire



2.5. EXPERIMENTAL RESULTS 27

0.
0

0.
5

1.
0

1.
5

2.
0

|
|

1e
7

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

runtime (s)

M
ov

ie
le
ns

0.
00

0.
25

0.
50

0.
75

1.
00

|
|

1e
8

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
Ne

tfl
ix

0.
00

0.
25

0.
50

0.
75

1.
00

|
|

1e
8

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
Ne

ws

0.
0

0.
5

1.
0

1.
5

2.
0

|
|

1e
8

0408012
0

16
0

20
0

24
0

28
0

32
0

Ou
tb
ra
in

n
=
1

n
=
2

n
=
4

n
=
8

Fi
gu

re
2.

4:
C

om
p

u
ta

ti
on

ti
m

e
fo

r
ou

r
p

ro
p

os
ed

al
go

ri
th

m
o

n
th

e
4

d
if

fe
re

n
td

at
as

et
s

la
id

ou
ti

n
Ta

b
le

2.
1,

p
ar

al
le

lli
se

d
ov

er
a

va
ry

in
g

n
u

m
b

er
o

fc
o

m
p

u
ta

ti
o

n
al

co
re

s
(n

∈{
1,

2,
4,

8}
).

W
e

ch
ro

n
o

lo
gi

ca
lly

so
rt

ed
th

e
av

ai
la

b
le

u
se

r-
it

em
in

te
ra

ct
io

n
s

an
d

gr
ad

u
al

ly
in

cr
ea

se
d

th
e

si
ze

o
ft

h
e

tr
ai

n
in

g
d

at
a

p
as

se
d

to
th

e
al

go
ri

th
m

(o
ve

r
th

e
x-

ax
is

).
H

ow
ev

er
,t

h
e

m
o

d
el

is
it

er
at

iv
el

y
re

tr
ai

n
ed

as
m

o
re

d
at

a
b

ec
o

m
es

av
ai

la
b

le
.A

ll
it

em
s

ar
e

co
n

si
d

er
ed

re
co

m
m

en
d

ab
le

(R
t
=

I)
.



28 CHAPTER 2. EFFICIENT SIMILARITY COMPUTATION

model can be retrained in 20 minutes and an hour of new data can be processed in
1 minute, these options are respectively 3 and 60 times more cost-efficient than a
24/7 streaming solution.

Efficiency of Restricted Recommendability (RQ3)

Up until now, we have assumed no restrictions on the set of recommendable items.
However, as we have argued before, we believe that this will often not hold in real-
world applications. Whether based on recency, seasonality, available stock, business
rules or any other reason, the set of items that actually should not be recommended
can grow to be of significant size.

To demonstrate the effect that a varying set of recommendable items Rt can
have on the Dynamic Index algorithm, we focus on the news recommendation
application. We define δ as the recommendability threshold in this recency-focused
setting: when a new item arrives, it remains recommendable for δ hours. After
this period has passed, the item is no longer considered newsworthy and should
no longer be recommended. Figure 2.5 shows runtime (top plot) and the number
of recommendable items (bottom plot) when the model is retrained iteratively on
more data, using the Dynamic Index algorithm with varying thresholds δ. Note that
both y-axes are logarithmically scaled. We focus on the case where ample data is
available, and show results for the last week in the News dataset, where the entire
model is iteratively retrained on a growing set of user-item interactions.

Clear performance gains are observed when comparing the results from the
restricted-recommendability variants to the unrestricted algorithm (δ=∞). First,
absolute runtimes are decreased massively when focusing on a smaller, yet more
relevant, set of items. For δ = 48h, the algorithm computes the exact similarity
for all relevant item-pairs in < 10% of the time needed for δ = ∞. The number
of recommendable items, however, still exceeds 17000, leaving plenty of room
for personalisation. With δ= 24h, runtime reduces to < 5%, with more than 8000
recommendable items. Atδ= 6h, these numbers turn to 1.6% of the original runtime,
retaining an average of 2100 recommendable items. The sinusoid pattern that
emerges in the bottom plot for low values of δ is an artefact originating from the
data: as fewer news articles are published at night, the number of recent items drops
and rises periodically.

Second, looking at the slope of the runtime of the unrestricted variant compared
to that of all restricted variants, we observe that the latter variants all suffer far less
from ever-growing dataset sizes in terms of reduced efficiency. Last, the model size,
number of recommendable items, and runtime are highly correlated with δ.

A reasonable question to ask might be how the restricted recommendability
impacts the accuracy of the generated recommendations. We did not further explore
this due to the following reasons: 1. When recommendability depends on recency,
seasonality or available stock, these are often hard-imposed business rules. As a
result, restricting recommendability is often not a choice in real-world settings. Our
approach deals with this in a flexible way, and effectively exploits the imbalance
for improved efficiency. 2. In offline experiments on logged feedback data, a mul-
titude of biases is consistently present [80, 239, 52]. As users are often presented
with only recent articles on news websites, offline experiments will heavily favour
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Figure 2.5: Computation time (top) and number of recommendable items (bottom)
for varying recommendability thresholds in the News dataset (n = 8). δ denotes how
long a new item remains recommendable after its first appearance, mimicking the
real-world application of news recommendation where recency is critical. Note that
both y-axes are logarithmically scaled.

recency-based approaches. On the other hand, presenting users with irrelevant and
old news in an online experiment is also inappropriate for obvious reasons.

2.6 Conclusions

In this paper, we have motivated and discussed the need for highly dynamic collab-
orative filtering algorithms that are incrementally updateable in near real-time, to
keep up with the highly dynamic environments these algorithms need to perform in.
As a step towards this goal, we proposed a novel parallel approach to incrementally
compute similarity among high-dimensional vectors, specifically tuned to the in-
herent sparsity of real-world datasets in a nearest-neighbour collaborative filtering
recommender system setting. Our algorithm uses simple inverted indices to quickly
identify relevant pairs of items when updates arrive, and as a consequence avoids
further unnecessary computations. Moreover, we have formulated our method in
accordance with the MapReduce paradigm, making it readily parallellisable and
distributable. We have shown that our approach easily scales up to millions of
pageviews, and is able to process industrial-sized datasets in a matter of minutes on
non-specialised hardware. Attainable processing throughputs vary with configura-
tion and data, but can easily range from tens of thousands to millions of pageviews
per second. Our approach is highly scalable and flexible in terms of new users and
items arriving over time. We introduced the concept of item recommendability and
how it can be exploited to avoid wasting unnecessary computation time for the right
use-cases. In our experiments, we effectively increased system throughput by a fac-
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tor of up to 60 when considering a smaller, yet more relevant set of recommendable
items.

As future work, we intend to further experimentally validate the efficiency of
incremental updates to our model with non-monotonic recommendability con-
straints. In an attempt to further improve upon the scalability of CF systems, sum-
marisation algorithms to compress a transactional dataset with minimal information
loss, specifically in the context of recommender systems, would be an interesting
direction for future research. Furthermore, we intend to look into other similar-
ity functions to determine whether they can be decomposed and incrementally
computed as well. As Jaccard Index, Pointwise Mutual Information and Pearson’s
correlation coefficient all depend on the co-occurrence matrix M, we believe this
to be an attainable extension of our work. Throughout this manuscript, we have
focused on item-to-item nearest-neighbour collaborative filtering as the main ap-
plication of our work. When changing the terminology from “users” and “items” to
“terms” and “documents”, we believe that our approach is applicable to more general
information retrieval use-cases as well. Nevertheless, in these settings, extensions
for non-binary data (by including a term-value pair in the inverted indices instead
of just the term) would be appropriate. Naturally, when these inverted indices keep
growing in size, compression techniques might be convenient to improve on space
efficiency. However, most state-of-the-art compression techniques do not support
incremental updates, and random access would be imperative [153, 166].

Reflections

This Chapter has focused on incremental similarity computation for item-based
nearest-neighbour models, but has largely ignored the inseparable problem of
nearest-neighbour querying based on the acquired similarities. The latter is largely
an open problem, as indices for querying typically need to be rebuilt from scratch
when new data arrives. Tackling these two problems jointly could give rise to fully in-
cremental, end-to-end recommendation pipelines. Nevertheless, the contributions
presented in this Chapter represent an important step in this direction.

Furthermore, this Chapter has dealt with analytically computable similarity
metrics, such as cosine similarity (or those that consist of the same building blocks).
Several important extensions have been made to this modelling approach, where
the item-item matrix is trained to minimise some objective function on the data
(e.g. SLIM [147] and EASER [200]). As these extensions yield significantly improved
recommendation accuracy, a natural question to ask is whether we can provide an
incremental update procedure for these methods. This question provides the main
motivation for the work presented in Chapter 3.



CHAPTER 3
Embarrassingly Shallow

Auto-Encoders for Dynamic
Collaborative Filtering

Recent work has shown that, despite their simplicity, item-based models
optimised through ridge regression can attain highly competitive results
on collaborative filtering tasks. As these models are analytically com-
putable and thus forgo the need for often expensive iterative optimisation
procedures, they have become an attractive choice for practitioners. Com-
puting the closed-form ridge regression solution consists of inverting
the Gramian item-item matrix, which is known to be a costly operation
that scales poorly with the size of the item catalogue. Because of this
bottleneck, the adoption of these methods is restricted to a specific set
of problems where the number of items is modest. This can become es-
pecially problematic in real-world dynamical environments, where the
model needs to keep up with incoming data to combat issues of cold start
and concept drift.

In this work we propose Dynamic EASER: an algorithm based on the
Woodbury matrix identity that incrementally updates an existing regres-
sion model when new data arrives, either approximately or exact. By
exploiting a widely accepted low-rank assumption for the user-item in-
teraction data, this allows us to target those parts of the resulting model
that need updating, and avoid a costly inversion of the entire item-item
matrix with every update. We theoretically and empirically show that
our newly proposed methods can entail significant efficiency gains in the
right settings, broadening the scope of problems for which closed-form
models are an appropriate choice.1

1This chapter is based on work under submission to the User Modeling and User-Adapted Interaction
(UMUAI) Special Issue on Dynamic Recommender Systems and User Models (DyRSUM) as “Embarrassingly
Shallow Auto-Encoders for Dynamic Collaborative Filtering” by Olivier Jeunen, Jan Van Balen and Bart
Goethals.

31
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3.1 Introduction

Recommender systems are information retrieval applications that aim to mitigate
the problem of “information overload”, by matching users to certain items [18]. They
have become ubiquitous on the world wide web, and have found applications in
many different areas where these items can represent anything from news articles
and musical artists to retail products and social media accounts. Most modern ap-
proaches to recommendation are based on some form of collaborative filtering [39],
a family of methods that aim to model user preferences and learn them from a
dataset of user behaviour. These methods have known widespread success over
the years, and are the cornerstone of modern recommender systems research. As
a consequence, the quest for more effective collaborative filtering algorithms is a
very lively research area, where significant strides forward are being made every year.
Many novel methods are based on deep and non-linear neural networks, and the ex-
pressiveness of this model class has made them ubiquitous in the field [116, 40, 189].
Recent work casts doubt on the reproducibility of evaluation strategies that are often
adopted to empirically validate research findings [32, 170, 171], making it harder
to conclude whether these complex model classes are what the field needs moving
forward.

In a parallel line of research, the effectiveness of simpler linear models for the
collaborative filtering task has been shown time and again [147, 109, 187, 201, 202,
203]. Most notably and recently, Embarrassingly Shallow Auto-Encoders (reversed:
EASER) have been shown to yield highly competitive results with the state-of-the-
art, whilst often being much easier to implement, and much more efficient to
compute [200]. The closed-form solution that is available for ridge regression models
is at the heart of these major advantages, as EASER effectively optimises a regularised
least-squares problem. Recently, EASER has been extended to incorporate item
metadata into two variants: CEASER and ADD-EASER [85]. These extensions improve
the capabilities of closed-form linear models to deal with issues such as the “long
tail” (very few items account for the large majority of interactions) and “cold start”
(new items do not have any interactions) [186, 161, 190].

The main benefit of EASER and its variants over competing approaches, is their
computational efficiency. As the core algorithm consists of a single inversion of
the Gramian item-item matrix, it is often many times more efficient to compute
than models relying on iterative optimisation techniques. As reported in the original
paper, the algorithm can be implemented in just a few lines of Python and is typically
computed in the order of minutes on various often used publicly available bench-
mark datasets [200]. Nevertheless, matrix inversion is known to scale poorly for large
matrices, and EASER’s reliance on it does inhibit its adoption in use-cases with large
item catalogues. In such cases, methods that rely on gradient-based optimisation
techniques are still preferable.

To add insult to injury, real-world systems rarely rely on a single trained model
that is trained once and then deployed. To make this concrete: suppose we operate
a hypothetical retail website, and we wish to send out an e-mail with a top-N list
of personalised recommendations to our subscribed users every few days. Natu-
rally, the model that generates these recommendation lists should evolve over time,
preferably incorporating new user-item interactions that occurred over the past days.
The importance of a dynamic model like that is threefold: 1. it will generate more
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novel and diverse recommendations than its static counterpart [21], 2. it will be able
to combat concept drift in the data (due to shifting item popularity or seasonality
trends in preferences) [47], and 3. it will have a means to handle cold-start prob-
lems when either with new items or news users appear [186]. Many modern digital
systems generate new data at increasingly fast rates, and this is no different for our
hypothetical retail website. This is important to take into account when choosing a
recommendation algorithm. Models that are already inefficient to compute initially,
will only see these problems exacerbated when the predominant approach every few
days is to recompute them iteratively on more and more data. This puts a theoretical
limit on how often we can update the model, and incurs a computational cost that
we would like to reduce. Instead, it would be much more preferable to have models
that can be updated with new information when it arrives, but do not require a full
retraining of untouched parameters for every new batch of data that comes in. This
is not an easy feat, and the field of “online recommender systems” that are able to
handle model updates more elegantly has seen much interest in recent years [225].
More generally, the problem of “lifelong” or “continual” learning in the machine
learning field deals with similar issues [24].

In this work, we present a novel algorithm to incrementally update the state-of-
the-art item-based linear model EASER, which is naturally extended to include recent
variants that exploit side-information: CEASER and ADD-EASER. EASER consists of two
major computation steps: (1) the generation of the Gramian item-item matrix, and
(2) the inversion of this matrix that yields the solution to the regression problem.

We propose Dynamic EASER (DYN-EASER), consisting of incremental update rules
for these two steps that leverage the recently proposed Dynamic Index algorithm [83]
and the well-known Woodbury matrix identity [55] respectively. As such, DYN-EASER

provides a way to efficiently update an existing EASER-like model without the need
of recomputing the entire regression model from scratch with every data update.

A theoretical analysis of the proposed algorithm shows that the highest efficiency
gains can be expected when the rank of the update to the Gramian is low, an assump-
tion that has been widely adopted in the recommender systems literature before [98].
We show how this quantity can be bounded using simple summary statistics from the
new batch of data, and support our findings with empirical results. Further experi-
ments confirm that DYN-EASER is able to significantly cut down on computation time
compared to iteratively retrained EASER, in a variety of recommendation domains.
Finally, we show how we can update the model with low-rank approximations when
the new batch of data itself is not low-rank; providing a tuneable trade-off between
the exactness of the solution and the efficiency with which it can be kept up-to-date.
Empirical observations show how this approximate variant of DYN-EASER still yields
highly competitive recommendation performance, with greatly improved update
speed. As a result, our work broadens the space of recommendation problems to
which the state-of-the-art linear model EASER can efficiently be applied. To foster
the reproducibility of our work, all source code for the experiments in Section 3.4 is
publicly available at github.com/olivierjeunen/dynamic-easer/.

This Chapter builds upon and combines parts of our previously published work
on incremental models [83], and our preliminary work on closed-form models that
exploit side-information [85].

The rest of this Chapter is structured as follows: Section 3.2 introduces our use-
case, with mathematical notation and relevant related work; Section 3.3 introduces

https://github.com/olivierjeunen/dynamic-easer/
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DYN-EASER and presents a theoretical analysis of its inner workings; Section 3.4
presents empirical observations from a wide range of experiments and shows where
DYN-EASER can provide meaningful improvements, findings that are in line with what
the theory suggests. This work is concluded in Section 3.5, where we additionally
present a scope for future research.

3.2 Background and Related Work

We first formalise our use-case, and present relevant mathematical notation used
throughout the rest of this work. We are interested in the “binary, positive-only”
implicit feedback setting [221], where we have access to a dataset consisting of
preference indications from users in U over items in I at time t ∈ N, assumed
from a set of interaction data P ⊆ U ×I ×N. Ignoring temporal information,
these preferences can be represented in a binary user-item matrix X ∈ {0,1}|U |×|I |,
where X u,i = 1 if we have a click, view, purchase,. . . for user u and item i in P , and
X u,i = 0 otherwise. With P t , we denote the set of all interactions up to time t :
{(u, i , t ′) ∈P |t ′ < t }. Consequently, X t is the user-item matrix constructed from the
set of interactions P t . We will refer to the set of all items seen by user u as Iu ⊆I ,
and vice versa Ui ⊆U for an item i . The Gramian of the user-item matrix is defined
as G := X ᵀX ; it is an item-item matrix that holds the co-occurrence count for items
i and j at index G i , j . The goal at hand for a recommendation algorithm is to predict
which zeroes in the user-item matrix X actually shouldn’t be zeroes, and thus imply
that the item would in some way “fit” the user’s tastes and consequently make for a
good item to be shown as a recommendation.

In some cases, additional information about items can be available. Such “side-
information” or “metadata” often comes in the form of discrete tags, which can for
example be a release year, genre or director for a movie, an artist or genre for a song,
a writer for a book, or many more. Incorporating item metadata in the modelling
process can help mitigate cold-start and long-tail issues, where the preference
information for a given item is limited [186, 161]. We will refer to the set of all such
tags as the vocabulary V . In a similar fashion to the user-item matrix X , a tag-item
matrix T ∈R|V |×|I | is constructed. Note that this matrix is real-valued, as it will often
contain pre-computed values such as tf-idf weights instead of binary indicators.

In what follows, we present a brief introduction to item-based recommenda-
tion models, most notably ITEM-KNN [183], SLIM [147] and EASER [200]. We then
additionally introduce CEASER and ADD-EASER as extensions of EASER that incorpo-
rate item side-information whilst retaining a closed-form solution [85], as these are
most relevant to the dynamic EASER algorithm we will present in Section 3.3. This
section is concluded with an overview of related work in the field of incremental
collaborative filtering approaches.

Item-based Models, SLIM & EASER

Item-based collaborative filtering models tackle the recommendation task by defin-
ing a conceptual similarity matrix S ∈R|I |×|I |. The score given to a potential recom-
mendation is then computed as the sum of similarities between items in the user’s
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history and the item at hand:

score(u, i ) = ∑
j∈Iu

S j ,i = (X u,·S)i (3.1)

Here, X u,· denotes the uth row of X . Note that computing recommendation
scores for all training users and all items simply consists of computing the matrix
multiplication X S, an operation that is made more efficient when the matrix S
is restricted to be sparse. Scores for items i already present in the user history
Iu are often ignored, and the remaining items are ranked and presented in a top-
N recommendation list or slate to the user. Early seminal works would define
the similarity matrix S as all pairwise cosine similarities among items in the high-
dimensional but sparse user-item matrix X [183]. This has then been extended to
include slightly more advanced notions of similarity such as Pearson’s correlation
or conditional probabilities [34]. Recent work has introduced the “Dynamic Index”
algorithm to incrementally compute the Gramian of X , additionally showing that
several conventional similarity metrics such as cosine similarity or Jaccard index
can be readily computed from G when it is up-to-date [83].

Methods for actually learning an optimal item-item similarity matrix have been
proposed for the task of rating prediction [97], as well as for pairwise learning from
implicit feedback [169]. Ning and Karypis were the first to propose to learn a sparse
weight matrix S through a pointwise optimisation procedure, aptly dubbing their
approach the Sparse LInear Method (SLIM) [147]. SLIM optimises a least-squares
regression model with elastic net regularisation, constrained to positive weights:

S∗ = argmin
S

‖X −X S‖2
F +λ1 ‖S‖2

1 +λ2 ‖S‖2
F ,

subject to diag(S) = 0 and S ≥ 0. (3.2)

The restriction of the diagonal to zero avoids the trivial solution where S = I .
Many extensions of SLIM have been proposed in recent years, and it has become
a widely used method for the collaborative filtering task [148, 109, 29, 187, 30, 200,
202, 203, 26]. In practice, the SLIM optimisation problem is often decomposed into
|I | independent problems (one per target item). Although these can then be solved
in an embarrassingly parallel fashion, this renders the approach intractable for
very large item catalogues. Indeed, as they aim to solve |I | regression problems,
their computational complexity is in the order of O (|I |(|I |−1)2.373), assuming they
exploit the recent advances in efficient matrix multiplication and inversion [104, 7].
The computational cost of the original SLIM approach is a known impediment for
its adoption in certain use-cases; related work has reported that hyper-parameter
tuning took several weeks on even medium-sized datasets [116].2

Steck studied whether the restrictions of SLIM to only allow positive item-item
weights and their l1-regularisation-induced sparsity were necessary for the result-
ing model to remain competitive, and concluded that this was not always the
case [200, 203]. The resulting Tikhonov-regularised least-squares problem can then
be formalised as:

S∗ = argmin
S

‖X −X S‖2
F +λ‖S‖2

F , subject to diag(S) = 0. (3.3)

2It should be noted that the authors have since released a more performant coordinate-descent-
based implementation of their method [149].
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The main advantage of simplifying the optimisation problem at hand, is that
the well-known closed form solutions for Ordinary Least Squares (OLS) and ridge
regression can now be adopted. Including the zero-diagonal constraint via Lagrange
multipliers yields the Embarrassingly Shallow Auto-Encoder (EASER) model:

Ŝ = I − P̂ ·diagMat(1®diag(P̂ )), where P̂ := (X ᵀX +λI )−1. (3.4)

As this model consists of a single regression problem to be solved and thus a
single matrix inversion to be computed, its complexity is orders of magnitude smaller
than that of the original SLIM variants: O (|I |2.373). EASER no longer yields a sparse
matrix, possibly making Equation 3.1 much less efficient to compute. Nevertheless,
the author reported that there was only a marginal performance impact when simply
sparsifying the learnt matrix by zero-ing out weights based on their absolute values
up until the desired sparsity level. As an additional advantage, EASER has only a
single regularisation strength hyper-parameter to tune compared to the two needed
for SLIM’s elastic net regularisation. We refer the interested reader to [200, 201] for a
full derivation of the model and additional information.

Another recent extension of the SLIM paradigm proposes to use Block-Diagonal-
Regularisation (BDR) to obtain a block-aware item similarity model [26]. The block-
diagonal structure in the learnt matrix inherently represents clusters among items.
As inter-block similarities are penalised, BDR has a sparsity-inducing effect that pos-
itively impacts the efficiency of the recommendation-generating process. Because
the block-aware model presented by [26] no longer has an analytically computable
solution readily available, further comparison with their method is out of scope
for the purposes of this work. The item-based paradigm and its closed-form in-
stantiations have also recently been adapted for bandit-based recommendation
use-cases[78].

Item-Based Models with Side-Information

The EASER definition can be further extended to incorporate side-information in ei-
ther a “collective” (CEASER) or “additive” (ADD-EASER) manner [85]. The first method,
inspired by collective SLIM [148], intuitively treats discrete tags equivalent to how
users are treated, and re-weights their contribution to the solution of the regression
problem by the diagonal weight-matrix W ∈R(|U |+|V |)×(|U |+|V |):

S∗ = argmin
S

∥∥∥pW (X ′−X ′S)
∥∥∥2

F
+λ‖S‖2

F ,

subject to diag(S) = 0, where X ′ =
[

X

T

]
. (3.5)

The closed-form solution is then given by Equation 3.6, where®denotes element-
wise division, diag(·) extracts the diagonal from a matrix, diagMat(·) generates a
square diagonal matrix from a vector, and 1 is a vector of ones.

Ŝ = I − P̂ ·diagMat(1®diag(P̂ )), where P̂ := (X ′ᵀW X ′+λI )−1 (3.6)

The second method, ADD-EASER, treats the regression problem on the user-item
matrix X and the one on the tag-item matrix T as two fully independent problems
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to solve in parallel; combining the two resulting item-item weight matrices S X and
ST in an additive fashion later down the line.

S∗ =αargmin
S X

(∥∥∥√
W X (X −X S X )

∥∥∥2

F
+λX ‖S X ‖2

F

)
+(1−α)argmin

ST

(∥∥∥√
W T (T −T ST )

∥∥∥2

F
+λT ‖ST ‖2

F

)
,

subject to diag(S X ) = diag(ST ) = 0.

(3.7)

ADD-EASER doubles the amount of parameters used by EASER and CEASER, increasing
its degrees of freedom at learning time at the cost of having to solve two regression
problems instead of one. Note, however, that these are fully independent and can
be computed in parallel. Equation 3.8 shows the analytical formulas to obtain the
two independent models, and combine them with a blending parameter 0 ≤α≤ 1.

Ŝ X = I − P̂ X ·diagMat(1®diag(P̂ X )), where P̂ X := (X ᵀW X X +λX I )−1

ŜT = I − P̂ T ·diagMat(1®diag(P̂ T )), where P̂ T := (T ᵀW T T +λT I )−1 (3.8)

Ŝ =αŜ X +(1−α)ŜT

The computational complexity of CEASER and ADD-EASER remains in the order of
O (|I |2.373), which is equivalent to the original EASER approach. As such, these
methods allow item side-information to be included into the model without a
significant added cost in terms of computational complexity. The main reason for
this, is that we adapt the entries in the Gramian G , but do not alter its dimensions.

Incremental Collaborative Filtering

Collaborative filtering techniques that can be incrementally updated when new data
arrives are a lively research area in itself. Vinagre et al. propose incremental Stochas-
tic Gradient Descent (SGD) as a way to dynamically update matrix factorisation
models based on positive-only implicit feedback [222]. Their methodology has first
been extended to include negative feedback [224], and then to a co-factorisation
model that is more complex than traditional matrix factorisation, but also leads to
superior recommendation accuracy [8]. He et al. propose an incremental optimi-
sation procedure based on Alternating Least Squares (ALS), and also show how it
can be applied to efficiently and effectively update matrix factorisation models [60].
More recently, Ferreira et al. propose a method that personalises learning rates on
a user-basis, reporting further improvements. In contrast, our work focuses on
item-based similarity models that come with closed-form solutions, as these have
been shown to be highly competitive with the state-of-the-art in many collaborative
filtering use-cases.

Instead of just incorporating new data into the model, Matuszyk et al. propose
to forget older data that has become obsolete, reporting significantly improved per-
formance for collaborative filtering approaches [133]. The dynamic EASER method
we propose in Section 3.3 fits perfectly into this paradigm, as it can incorporate
new data just as easily as it can forget irrelevant information in a targeted manner.
This type of de-cremental learning has the additional advantage of being able to
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avoid complete retraining in privacy-sensitive application areas, where specific user
histories need to be removed from the model upon request.

Neural Auto-Encoders

The Auto-Encoder paradigm of which EASER is a specific instantiation, has gained
much popularity in recent years. The Mult-VAE method proposed by Liang et al. [116],
consists of a variational auto-encoder with a multinomial likelihood, and has been
a strong baseline for several years [32]. Khawar et al. propose an architecture that
first learns a grouping of items and leverages this structure when learning the auto-
encoder, reporting significant gains over the original Mult-VAE method [93]. As
these methods rely on gradient-based optimisation of often highly non-convex
objective functions, they rely on software packages with automatic differentiation
capabilities, and typically require significant computational resources, in the form
of several hours of training on machines equipped with GPUs. The methods we
consider in this work are computed in the order of minutes on CPUs, and we do not
include neural approaches in our comparison for this reason. Furthermore, among
others, the work of Steck [200] and Dacrema et al. [32] have repeatedly shown that
linear item-based models can attain highly competitive recommendation accuracy
compared to neural alternatives.

3.3 Methodology and Contributions

We have given a brief history of item-based collaborative filtering models, and have
discussed why EASER and its variants are computationally often more efficient than
their counterparts based on SLIM. For very large item catalogues, however, its more
than quadratic computational complexity in the number of items still becomes a
very tangible issue. Because of this, the demand for an algorithm that can efficiently
update EASER-like models when new data arrives, is still very real, and a necessity
for these methods to obtain widespread adoption in practice. Recent work proposes
the “Dynamic Index” algorithm as a way to incrementally update item similarities in
neighbourhood-based models that adopt cosine similarity [83]. A crucial building
block of this metric and the algorithm is the efficient and incremental computation
of the Gramian matrix G = X ᵀX . By storing G in low-overhead sparse data-structures
such as inverted indices, they minimise memory overhead whilst still allowing for
an amortised constant lookup time when querying Iu , which is a requirement for
incremental updates. From Equations 3.4, 3.6 and 3.8, it is clear to see that EASER

and its variants are dependent on this Gram-matrix as well. In fact, it is the only
building block needed to be able to compute the resulting item-item weight matrix
Ŝ. As such, we adopt parts of the Dynamic Index algorithm proposed by Jeunen et al.
to first efficiently compute and then incrementally update the Gramian matrix G .
Once we have an up-to-date matrix G , we need to compute its inverse to obtain P̂
and the eventual model Ŝ from that. The matrix inversion to go from G to P̂ is the
workhorse behind EASER that takes up the large majority of the computation time, as
this step corresponds to solving the regression problem formulated in Equation 3.3.
Iterative re-computation of this matrix inverse every time we wish to incorporate
new data into the model, is thus to be avoided if it can be.
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Algorithm 5 DYN-GRAM

Input: P∆, L

Output: G∆, L

1: G∆ = 0
2: for (u, i ) ∈P∆ do
3: for j ∈L [u] do
4: G∆,i , j += 1
5: G∆, j ,i += 1
6: G∆,i ,i += 1
7: L [u] =L [u]∪ {i }
8: return G∆,L

Low-Rank Model Updates with the Woodbury Matrix Identity

Equation 3.9 shows the Woodbury matrix identity, which posits that the inverse of a
rank-k correction of some n ×n matrix A can be computed by performing a rank-k
correction on the inverse of that matrix A [55].

(A +UCV )−1 = A−1 − A−1U (C−1 +V A−1U )−1V A−1 (3.9)

So, given A−1, U , C and V , there is no need to re-compute the inversion on the
update of A, but it is sufficient to multiply a few matrices and compute the inverse
of (C−1 +V A−1U ) ∈Rk×k . Naturally, for large n and k ¿ n, the efficiency gains will
be most significant. Note that the inversion of C is trivial and consists of just k
operations, as C is a diagonal matrix.

In our setting, suppose we have an up-to-date model at a certain time t with X t ,
G t , P̂ t and Ŝ t . At a given time t +1, suppose we have an updated user-item matrix
X t+1, but we wish to compute G t+1, P̂ t+1 and the resulting Ŝ t+1 as efficiently as
possible. As we mentioned before, computing G t+1 incrementally can be achieved
easily and efficiently by adopting parts of the Dynamic Index algorithm. In fact,
because of the incremental nature of the algorithm, we can easily just store the
difference in the Gramian matrix instead of its entirety: G∆ =G t+1−G t = X ᵀ

t+1 X t+1−
X ᵀ

t X t . Given a set of user-item interactions P∆ ⊂U ×I to include into the model
and an inverted index Lt mapping users u to their histories Iu , Algorithm 5 shows
how to achieve this. Note that the indices holding Iu are just a sparse representation
of the user-item matrix X and don’t require any additional memory consumption.
Furthermore, Algorithm 5 is easily parallellisable through the same MapReduce-
like paradigm adopted by [83]. Naturally, an efficient implementation will exploit
the symmetry of the Gramian G∆ to decrease memory consumption as well as the
number of floating point operations needed at every update.

Now, having computed G∆, we can rewrite what we need as follows:

P̂ t+1 = (G t+1 +λI )−1 = (G t +λI +G∆)−1. (3.10)

The form on the right-hand side already begins to resemble Woodbury’s formula
in Equation 3.9. All that’s left is to decompose G∆ ∈ Rn×n into matrices U ∈ Rn×k ,
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C ∈ Rk×k and V ∈ Rk×n . As G∆ is the difference of two real symmetric matrices
G t+1 and G t , it will always be a real symmetric matrix as well. This means that
the eigenvectors of G∆ can be chosen to be orthogonal to each other: Qᵀ ≡ Q−1.
Consequently, an eigendecomposition always exists, where k is the rank of G∆:

G∆ =QΛQ−1

=QΛQᵀ

=
k∑

i=1
Λi i Q ·,i Qᵀ

·,i .

(3.11)

As such, we can plug Equation 3.11 containing the eigendecomposition of G∆

into Equations 3.9 and 3.10 to obtain our final update rule in Equation 3.12:

P̂ t+1 = (G t +λI +G∆)−1

= (G t +λI +QΛQᵀ)−1

= P̂ t − P̂ t Q(Λ−1 +QᵀP̂ t Q)−1QᵀP̂ t .

(3.12)

The full DYN-EASER procedure is presented in Algorithm 6. If the updates to the
Gramian matrix are low-rank, this procedure will be much more computationally
efficient than re-computing the inverse of the entire Gramian matrix from scratch, as
we will shown in the following subsection. The assumption that the data-generating
process behind user-item interactions is generally low-rank, has been exploited far
and wide in the recommender systems literature [98].

It is interesting to note that EASER does not follow the low-rank assumption
that motivates the popular family of latent factor models for collaborative filtering.
Indeed, EASER is a full-rank model, combatting overfitting with Gaussian priors on its
parameters rather than reducing the dimensionality of the problem. The low-rank
assumption we adopt here is on the update to the Gramian G∆, instead of the full
Gramian G . As we will show further on, both theoretically and empirically, this
assumption holds in a variety of settings.

The fact that G∆ is symmetric and will often be very sparse in nature can be
exploited when computing the eigendecomposition on line 3 of Algorithm 6, as
we will show in the following section. Many modern software packages for scien-
tific computing implement very efficient procedures specifically for such cases (e.g.
SciPy [227]). Note that alternative algorithms to factorise G∆ into lower-dimensional
matrices exist, often relying on randomised sampling procedures [131, 56]. These
algorithms are reportedly more efficient to compute than the traditional eigen-
decomposition, but often not geared specifically towards the high-dimensional yet
sparse use-case we tackle in this work, or not equipped to exploit the symmetric
structure that is typical for the Gramian. As they compute two dense matrices of
Q’s dimensions – their improvement in computation time comes with the cost of
increased memory consumption. Furthermore, these methods are often focused on
approximate matrix reconstructions whereas we are interested in an exact decom-
position of the update to the Gramian. As the eigen-decomposition fulfils our needs,
the study of alternative factorisation methods falls out of the scope of the present
work.
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Algorithm 6 Exact DYN-EASER

Input: P̂ t , P∆, Lt

Output: P̂ t+1, Lt +1.
1: G∆,Lt+1 = DYN-GRAM(P∆,Lt ) // (Algorithm 5)
2: k = estimate-rank(G∆) // [117, 214]
3: Λ,Q = eigen-decomposition(G∆,k)
4: P̂ t+1 = P̂ t − P̂ t Q(Λ−1 +QᵀP̂ t Q)−1QᵀP̂ t

5: return P̂ t+1

Throughout this section, we have focused on DYN-EASER as a general extension
of EASER. Naturally, our approach is trivially extended to include CEASER, ADD-EASER

or a weight matrix W different from the identity matrix I as well, as these variants
only change the input to Algorithms 5 and 6, but bear no impact on the procedures
themselves.

Computational Complexity Analysis of Eigen-Decomposition

The computational complexity of EASER is determined by the inversion of the
Gramian, whereas the complexity of DYN-EASER is dictated by that of the eigen-
decomposition of the update to the Gramian. The computational complexity of
matrix inversion, as well as that of solving the eigen-problem of a matrix, can be
reduced to that of matrix multiplication [159, 104]. Given a square matrix of size
n ×n, this is generally thought of as an O (n3) problem. Nevertheless, specialised
methods that provide improved bounds on the exponent exist, the most recent one
being O (n2.37286) by [7].

In practice, it is easily seen that more efficient algorithms can be applied to
specific cases instead of the general approach. Indeed, the inversion of a diagonal
matrix consists of just n operations, and algorithms to multiply sparse matrices
are often much more efficient than their dense counterparts. In what follows, we
provide a brief theoretical analysis of the complexity of DYN-EASER, giving rise to
an improved estimate for its computational complexity in practical settings. This
bound explains the efficiency improvements of DYN-EASER over EASER, and recovers
the equivalence of eigen-decomposition to matrix inversion in the general case.

A first important thing to note is that the Gramian is symmetric, and so is G∆.
This allows us to use the iterative method proposed by [101] to compute its eigen-
vectors and -values.3 The core algorithm proposed by Lanczos consists of k steps –
one per non-zero eigen-value-vector pair – which in turn consist of several vector
and matrix manipulations. We refer the interested reader to an excellent analysis of
the Lanczos algorithm provided by [157], showing how it works and why it converges.
The computational complexity of every step in the method is determined by that of
a matrix-vector product between the input G∆ and an |I |-dimensional vector. In
the general case, such an operation is O (|I |2). In our specific case, however, G∆ is

3In our experiments we use an efficient SciPy implementation of a variant called the Implicitly
Restarted Lanczos Method [107, 227]; the analysis remains valid.
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often of an extremely sparse nature. This allows us to describe the complexity of the
product as O (m · |I |), where m is the average number of non-zero values in every
column of G∆. Repeating these steps for every non-zero eigen-value-vector pair
yields a final computational complexity of O (k ·m · |I |). When we wish to do a full-
rank update on a dense matrix (i.e. k = m = |I |), this recovers the computational
complexity of general matrix inversion: O (|I |3). In the cases where either the
rank of the update is low (k ¿ |I |) or the update to the Gramian is highly sparse
(m ¿|I |), the eigen-decomposition will be most efficient and as a consequence, the
performance benefits of DYN-EASER over EASER will be most apparent too. Note that
although low-rankness and sparsity will often come in pairs in the practical settings
we deal with, this does not have to be the case in general. As a counter-example: the
identity matrix I is highly sparse yet full-rank.

Efficient Estimation and Upper Bounding of the Update’s Rank

In order to compute the eigen-decomposition on line 3 of Algorithm 6, the numerical
rank of G∆ would need to be known a priori. Furthermore, as we have shown,
the efficiency of the update procedure is highly dependent on the assumption
that this rank is much smaller than the dimensionality of the Gram-matrix itself:
k ¿ |I |. It is known that matrix ranks can be estimated efficiently through the
use of randomised methods [117, 214]; when dealing with sparse and symmetric
matrices, these methods tend to attain extremely efficient performance.4 Being able
to estimate rank(G∆) of course does not guarantee that this quantity will be low. In
practice, however, we notice that it is often the case. We can see that the rank of the
update G∆ depends on (1) the number of unique users in the update P∆, denoted
by |U∆| , and (2) the average number of items in the entire history of these users:
|IU∆ |. This can be intuitively seen from the fact that an index i , j in the Gramian
matrix represents the number of co-occurrences between the items i and j in the
dataset. As such, a new user-item interaction (u, i ) ∈P∆ affects G i , j ,∀ j ∈Iu .

Now, let X [U∆,·] be the user-item matrix containing all (including historical) user-
item interactions from only the users that appear in the update. This means we can
rewrite the updated Gramian matrix as follows:

G t+1 =G t −X ᵀ
t X t +X ᵀ

t+1 X t+1

=G t −X ᵀ
[U∆,·],t X [U∆,·],t +X ᵀ

[U∆,·],t+1 X [U∆,·],t+1.

The update then becomes: G∆ = X ᵀ
[U∆,·],t+1 X [U∆,·],t+1 −X ᵀ

[U∆,·],t X [U∆,·],t .

Lemma 1. Given a |U |×|I | user-item matrix X , its Gramian matrix G , and updates
to X ; the rank of the update of the Gramian matrix G∆ can be upper bounded by two
times the number of unique, non-zero rows in X∆: rank(G∆) ≤ 2|U∆|.

Proof. As the rank of a matrix is defined as its number of linearly independent row
or column vectors, a (possibly loose) upper bound for rank(X [U∆,·]) is given by its
number of non-zero rows |U∆|. Consequently, the rank of the Gramian matrix has
the same bound: rank(X ᵀ

[U∆,·] X [U∆,·]) ≤ |U∆|. It is well known that the rank of the

4In the SciPy package for Python, an implementation of the randomised method presented by Liberty
et al. can be found under scipy.linalg.interpolative.estimate_rank [117, 227].

UMUAI21:https://docs.scipy.org/doc/scipy-1.4.1/reference/linalg.interpolative.html
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Algorithm 7 Approximate DYN-EASER

Input: P̂ t , P∆, Lt , k
Output: P̂ t+1, Lt +1.

1: G∆,Lt+1 = DYN-GRAM(P∆,Lt ) // (Algorithm 5)
2: Λ,Q = truncated-eigen-decomposition(G∆,k)
3: P̂ t+1 = P̂ t − P̂ t Q(Λ−1 +QᵀP̂ t Q)−1QᵀP̂ t

4: return P̂ t+1

sum of two matrices is less than or equal to the sum of the ranks of the individual
matrices. Bringing those together, we have that rank(G∆) ≤ 2|U∆|.

This upper bound on rank(G∆) holds for any update to X . When users in the
update are disjoint of those in X t , the bound can be tightened to |U∆|. For general-
purpose use cases, it is not be feasible to ensure that users in the update do not
appear with partial histories in previous iterations of the model. For specific appli-
cations such as session-based recommendation, however, it is common practice to
train models on the session-item matrix, which satisfies this assumption by defini-
tion [124].

Lemma 2. Given a |U |×|I | user-item matrix X , its Gramian matrix G , and updates
to X that only consist of adding new rows or altering previously zero-rows; the rank of
the update of the Gramian matrix G∆ can be upper bounded by the number of rows
being added or altered: rank(G∆) ≤ |U∆|.

Proof. When the update only pertains to new users, this ensures that rank(G∆) =
rank(X∆). Because rank(X∆) is bounded by |U∆| per definition, so is rank(G∆):
rank(G∆) ≤ |U∆|.

We have provided bounds for rank(G∆) by focusing on the number of users that
have contributed interactions in the new batch of data that we wish to include into
the model. Analogously, in some settings, it might be easier to bound the number of
unique items that are being interacted with. In a news recommendation setting, for
example, a new batch of data might consist of only a very limited number of items (in
the order of hundreds) being read by a much higher number of users (hundreds of
thousands). In this case, we can straightforwardly extend Lemmas 1 and 2 to bound
the rank by the number of independent columns in X as opposed to its rows. The
further reasoning and results follow trivially, bounding rank(G∆) by 2|I∆| and |I∆|
respectively. Whereas the original EASER approach and the need to iteratively retrain
would make it a poor choice for applications with possibly vast item catalogues but
smaller active item catalogues, such as catalogues of news articles, the presented
upper bounds theoretically show why DYN-EASER can provide an efficient updating
mechanism.



44 CHAPTER 3. DYNAMIC EMBARRASSINGLY SHALLOW AUTO-ENCODERS

Approximate DYN-EASER Updates via Truncated Eigen-Decomposition

Naturally, the rank of the update will not always be low in general recommendation
use-cases. The easiest counter-example to think of is the case where we wish to
include k user-item interactions that pertain to k new and unique users as well as
k unique items. This will lead to a diagonal-like structure of X∆ and rank(X∆) = k,
which is problematic for large values of k. However, it is also not hard to see that
incorporating such a batch of data into our model will not affect any of our personal-
isation capabilities. Indeed, as EASER exploits signal from item co-occurrences, data
where no item co-occurrences are present is practically useless, even though it is
full-rank. Although this is a contrived example, it serves to illustrate that the rank of
the update is not necessarily synonymous with its informational value.

In these cases, we can still resort to updating our model P̂ with a low-rank ap-
proximation of G∆ without hurting the performance of the updated model. Instead
of computing the rank and a full eigen-decomposition of the Gramian as shown in
Algorithm 6, we can choose the rank k at which we wish to truncate, and update P̂
with a low-rank approximation G̃∆ instead of the real thing. The resulting algorithm
is shown in Algorithm 7, and it provides a tunable trade-off between the exactness
of the acquired solution and the efficiency of incremental updates.

Interestingly, this type of approximate update is closely related to yet another
extension of the SLIM paradigm: Factored Item Similarity Models (FISM) [90]. In
FISM, the similarity matrix S is modelled as the product of two lower-dimensional
latent factor matrices. The resulting low-rank model is shown to be increasingly
effective as the sparsity in the user-item interactions it learns from increases, high-
lighting that this type of approximation does not necessarily imply a decrease in
recommendation accuracy. In approximate DYN-EASER, we do not directly model
the similarity matrix S as factorised, but we update S with a factorised version of
the update to the Gramian G∆. Factorised models such as FISM or approximate
DYN-EASER also bear resemblance to models that are often used in natural language
processing applications. Indeed, the well-known WORD2VEC algorithm to train word
embeddings implicitly learns to factorise a matrix holding the (shifted positive)
pointwise mutual information between word-context pairs [141, 110].

Although our motivations for approximate DYN-EASER are rooted in improving
the computational cost of exact DYN-EASER, the advantages of transitivity that come
from adopting low-rank representations can significantly impact recommendation
performance as well. Imagine items a,b,c ∈ I where (a,b) and (b,c) co-occur in
the training data of user histories, but (a,c) does not. Full-rank EASER cannot infer a
correlation between a and c in such a setting, whereas low-rank models can learn
a latent factor that unifies a, b and c. This explains the advantage that low-rank
models have in sparse data environments. For further insights on the advantages,
differences and analogies between full-rank and low-rank models, we refer the
interested reader to the work of Van Balen and Goethals [216].

As we are factorising G∆ by its truncated eigen-decomposition, we are guaran-
teed to end up with the optimal rank-k approximation with respect to the mean
squared error between G̃∆ and G∆. Naturally, with the highly sparse nature of G∆,
this optimal approximation will focus on reconstructing entries with large values,
and rows or columns with many non-zero values. This corresponds to focusing on
the items that occur most often in the new incoming batch of user-item interactions
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Name nnz(X) |U | |I | |Ui | |Iu | Timespan (δ)

MovieLens-25M (ML-25M) 16M 162k 30k 524 96 25 years

YooChoose 10M 1.3M 28k 359 8 6 months

RetailRocket 593k 115k 49k 12 5 4 months

Adressa 39M 1.4M 54k 725 28 3 months

Microsoft News (MIND) 16M 696k 62k 266 24 5 days

SMDI 738k 10k 7k 41 31 4 months

Table 3.1: Datasets we adopt throughout the experiments presented in this work,
along with their source and summary statistics that describe the user-item interac-
tions and their sparsity. nnz(·) denotes the number of non-zero entries.

P∆. Because of this, we can expect approximate DYN-EASER to favour recently popu-
lar items, which can give an additional performance boost in the right application
areas. Nevertheless, an in-depth discussion or validation of the efficacy of factorised
EASER-like models falls outside the scope of this work, as we focus on the efficiency
with which the model can be updated. If the cut-off rank k is lower than the true
rank of the update, approximate DYN-EASER guarantees an improvement in terms of
the computational complexity of the update procedure.

3.4 Experimental Results and Discussion

The goal of this section is to validate that the methods we proposed in earlier sec-
tions of this manuscript work as expected, and to investigate whether expectations
grounded in theory can be substantiated with empirical observations. Concretely,
the research questions we wish to answer are the following:

RQ1 Can exact DYN-EASER provide more efficient model updates in comparison
with iteratively retrained EASER?

RQ2 Can our theoretical analysis on the correlation between rank(G∆) and the
runtime of DYN-EASER set realistic expectations in practice?

RQ3 Do the phenomena we describe for bounding rank(G∆) occur in real-world
session-based or news recommendation datasets?

RQ4 Can approximate DYN-EASER provide a sensible trade-off between recommen-
dation efficiency and effectiveness?

Table 3.1 shows the publicly available datasets we use throughout our experi-
ments in an attempt to provide empirical answers to the above-mentioned research
questions. The well-known MovieLens dataset [57] consists of explicit ratings (on a
1–5 scale) that users have given to movies, along with the time of rating. We drop
ratings lower than 3.5 and treat the remainder as binary preference expressions.
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Additionally, we only keep users and items that appear at least 3 times throughout
the dataset. This type of pre-processing is common, and ensures we are left with
positive preference expressions that carry enough signal for effective personalisa-
tion [116, 9]. We take the newest and largest variant of the dataset as our starting
point: MovieLens-25M.

Many recommender systems applications are based on shorter browsing ses-
sions rather than full user histories that might span years [124]. As laid out in
Section 3.3, these set-ups can be especially amenable to our approach, as the adop-
tion of these shorter sessions instead of longer user histories naturally decreases the
rank of the update to the Gramian. We adopt two well-known datasets for session-
based recommender systems: the YooChoose dataset, released in the context of the
2015 ACM RecSys Challenge [12]; and the RetailRocket dataset [91]. These datasets
consist of implicit feedback (clicks) from users on retail products, and we compute
the 3-core for users and items in the same manner we did for MovieLens-25M, after
removing repeated user-item interactions. To validate our intuitions regarding DYN-
EASER and the rank of the Gramian in news recommendation setups, we use the
Adressa and Microsoft News datasets (MIND) [53, 235]. These datasets contain im-
plicit feedback inferred from browsing behaviour on news websites; we pre-process
them anaologously to the other datasets.

Some datasets have prohibitively large item catalogues for EASER to compute
the inverse Gramian at once. However, the large majority of items are often at the
extreme end of the so-called “long tail”, only being interacted with once or twice.
We prune these items to keep the EASER computation feasible but still highlight the
advantages of DYN-EASER.

Note that these pruning operations on rare items significantly cut down com-
putation time for EASER (directly dependent on |I |), but do not pose an unfair
advantage for DYN-EASER. Items that appear just once in the dataset blow up the size
of the Gramian, but do not significantly impact the rank of the Gramian updates.
Indeed, in these situations we get that k ¿|I |, and the computational advantages
of DYN-EASER over EASER become even more pronounced. We adopt such pruning
as it is common practice and keeps the computational needs for reproducing our
experiments reasonable. The reason we do not further explore other commonly
known datasets such as the Million Song Dataset (MSD) [15], is that these do not
include logged timestamps that indicate when the user-item interactions occurred.
Because of this, they are unsuited for evaluating a realistic scenario where models
are incrementally retrained over time.

The final dataset we adopt is the SuperMarket Dataset with Implicit feedback
(SMDI) introduced by Viniski et al. [226]. Because this dataset has a comparatively
small item catalogue, the computation time for all EASER variants is in the order
of seconds and largely dominated by variance and system overhead. We adopt
the SMDI dataset to study the recommendation performance of approximate DYN-
EASER, as it exhibits a distribution shift that is largely absent in the other datasets we
consider.

To foster the reproducibility of our work, all source code for the experiments we
have conducted is publicly available at github.com/olivierjeunen/dynamic-easer/,
under an open-source license. All code is written in Python 3.7 using SciPy [227].
Reported runtimes are wall-time as measured using an Intel Xeon processor with 14
cores. The rest of this section is structured to follow the research questions laid out

https://github.com/olivierjeunen/dynamic-easer/
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above.

Efficiency of exact DYN-EASER (RQ1)

To verify the gains in runtime from exact DYN-EASER over iteratively retrained EASER,
we chronologically split the user-item interactions based on a fixed timestamp t ,
yielding all user-item interactions up to t , and all those after t . The Microsoft News
Dataset comes with user’s reading histories and clicks on shown recommendations,
but the former type of interaction does not include timestamps. Because of this,
we treat these historical interactions as “early data” included in the original EASER

computation, and incorporate the timed clicks chronologically into DYN-EASER in
the procedure described below.

We train an EASER model on the early batch, and report the runtime in seconds
needed for this computation. This operation is repeated over 5 runs, and we report
a 95% Gaussian confidence interval. As new incoming user-item interactions do
not affect the dimension of the Gramian matrix that needs to be inverted, the
runtime needed to compute EASER remains fairly constant when adding new user-
interactions.

Over the newer batch of data, we employ a non-overlapping sliding window
technique that chronologically generates batches of data to be included in the ex-
isting model via our proposed exact DYN-EASER procedure. The size of this window
δ is varied to study the effects on the runtime of DYN-EASER. Larger values of δ
imply larger update batch sizes, which will often lead to an increase in rank(G∆).
Naturally, when δ becomes too large, a point is reached where the overhead induced
by our incremental updating method becomes prohibitively large, and it becomes
favourable to fully retrain the EASER model. Sensible values of δ come with a restric-
tion: when the runtime of the model update is larger than δ, this would indicate that
the procedure cannot keep up with incoming data in real-time. We do not encounter
this issue for any of the values of δ explored in our experiments - suggesting that
DYN-EASER can be a good fit for various configurations.

Figure 3.1 visualises the resulting runtimes from the procedure laid out above,
on all five considered datasets. The time for the sliding window increases over the
x-axis, and runtime for varying values of δ is shown on the y-axis. The explored
values of δ differ based on the dataset and use-case: for the 25-year spanning
MovieLens dataset, daily updates might be sufficient; for the 3-month spanning
news recommendation dataset Adressa, more frequent 5-minute updates might be
more appropriate, to keep up with the highly dynamic nature of the environment.

We included values of δ that push the runtime for DYN-EASER up to that of EASER

to highlight the limitations of our approach. Provided that the computing power
and infrastructure is available, however, δ can be decreased to bring DYN-EASER’s
runtime into the desirable range. Note that this limitation on δ is general for online
learning approaches from user-item interactions, and not specific to the methods
we propose in this work.

From the runtime results, we can observe that our proposed method entails
significant performance improvements compared to iterative model retraining, for
a wide range of settings. Over all datasets, we observe a clear trend towards lower
runtimes for shorter sliding windows and more frequent updates, as is expected
from our theoretical results.
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As the MovieLens-25M dataset spans several decades, the amount of new user-
item interactions to be incorporated on a daily basis remains modest. Exploring
lower values of δ would not provide any additional insights into the performance of
DYN-EASER because of this. As a consequence, we obtain a clean separation between
the runtime for DYN-EASER on batches of different length.

The remaining four datasets represent session- and news-based recommenda-
tion environments, which are known to be much more fast-paced and dynamic.
Because we focus on smaller sliding window lengths δ here, we clearly see daily
seasonal patterns emerging. Indeed, DYN-EASER runtime peaks coincide with peaks
in website traffic. As the rank of the update is typically correlated with the num-
ber of user-item interactions in the update, this phenomenon is to be expected. It
highlights that DYN-EASER is able to effectively target those model parameters that
need updating, and does not spend unnecessary computing cycles on unchanged
parts of the model. Note that δ does not need to be a fixed constant in real-world
applications. An effective use of computing power might decrease and increase δ
during traffic peaks and valleys respectively.

Correlating the rank of the update with the runtime of DYN-EASER (RQ2)

The runtime of the incremental updates shown in Figure 3.1 is visualised against the
rank of the updates in Figure 3.2. We clearly observe a strong correlation between
the rank of the update to the Gramian and the runtime of DYN-EASER, with a trend
that is consistent over varying values of δ.

We fit a polynomial of the form f (x) = a · xb + c on a randomly sampled subset
of 90% of measurements, and assess its performance in predicting the runtime for
DYN-EASER based on rank(G∆) on the remaining 10% of the measurements. Table 3.2
shows the optimal parameters, the number of samples (runtime measurements)
and the Root Mean Squared Error (RMSE) on the test sample for every dataset.
Figure 3.2 qualitatively shows that we are able to to predict the runtime for DYN-
EASER updates with reasonable accuracy when we know the rank of the update.
Combined with the bounds on this quantity laid out in Section 3.3, we can use
this to set an expected upper bound for the computation time of our incremental
updates through DYN-EASER. Table 3.2 quantitatively shows the magnitude of the
errors, reassuring our qualitatively obtained insights. Note that whereas the absolute
RMSE increases with the datasets with larger item catalogues, the relative error of
the model remains fairly constant. Indeed, a mean error of 5 seconds on a prediction
of 10 seconds is not equivalent to being 5 seconds off when the order of magnitude
is 1000 seconds. These empirical observations together with the theoretical analysis
presented in Section 3.3 highlight the efficiency and favourable scalability of the
proposed DYN-EASER procedure.

Analysing bounds for the rank of the update (RQ3)

Figure 3.3 shows the rank of the incremental updates from Figure 3.1 compared
to summary statistics for the batches of user-item interactions. This visualisation
shows the effectiveness of the upper bounds laid out in Section 3.3 in order to assess
their utility and provide a better understanding of the underlying dynamics for every
dataset.
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Dataset RMSE N a b c

MovieLens-25M (ML-25M) 2.34 1 457 3.59e-4 1.83 6.28

YooChoose 2.01 4 200 5.78e-4 1.79 9.01

RetailRocket 2.11 1 302 1.43e-3 1.72 18.81

Adressa 5.88 2 580 1.03e-3 1.75 26.35

Microsoft News (MIND) 8.77 3 000 5.98e-3 1.52 28.32

Table 3.2: Resulting polynomial model to predict runtime from rank(G∆), along with
the Root Mean Squared Error (RMSE) it attains and the number of observations
it was fitted on. We observe that the models attain good performance in terms of
RMSE, indicating that they can set realistic expectations for DYN-EASER runtime.
Furthermore, the exponent b in the model is lower than quadratic, indicating good
scaling properties for DYN-EASER with respect to rank(G∆).

We observe that both for general purpose MovieLens-25M and the session-based
datasets, the user-focused bound performs reasonably well in approximating the
rank of the update to the Gramian. This is in line with our theoretical expectations,
and confirms that the number of unique users in any given batch of user-item in-
teractions are the main driving factor for rank(G∆). We further see that the upper
bound becomes looser as the number of unique users grows. This as well is expected
behaviour, as it becomes less likely for new users’ behaviour to be linearly inde-
pendent of other users in the batch as the batch size grows. As mentioned in 3.3,
the upper bound of 2|U | could be tightened to |U | if we did not perform a hard
split on time but rather divided user sessions into a “finished” and “ongoing” set.
This phenomenon occurs naturally for the YooChoose dataset, where we clearly
see that the 2|U | bound is much looser. Note that the tight bounds for Movielens
might change if this dataset would include timestamps for item consumption rather
than rating, as the majority of users might watch a smaller set of current series or
movies. Such a recency bias would decrease the active item catalogue, favouring the
item-based bounds.

In contrast with the user-focused datasets, the bound on the number of unique
items is much tighter for the news datasets, providing an almost perfect approxi-
mation in many cases. This confirms our intuition that the rank of the update in
these settings is fully determined by the number active items in the catalogue and
virtually independent of the number of users or interactions in a given batch. This
in turn makes these environments especially amenable to our DYN-EASER approach.

The number of unique users or items in a batch can give rise to reasonably tight
upper bounds on the rank of the update in realistic scenarios, using real-world
datasets. The absolute number of user-item interactions |P | provides another
(impractical) bound on the rank of the update; indeed, in a worst-case scenario,
every user-item interaction would pertain to a unique user and a unique item. We
include the visualisation of the relation between rank(G∆) and |P | to intuitively
show that our proposed approach scales favourably with respect to the size of the
data, a property that is most appreciated in highly dynamic environments with
ever-growing dataset sizes.
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Efficiency and effectiveness of approximate DYN-EASER (RQ4)

Finally, we wish to validate the efficiency and efficacy of approximate updates
to EASER-like models. Specifically, we wish to understand the trade-off between
runtime and recall for models that are iteratively updated as new data comes in. We
report experimental results for runtime and recommendation accuracy for both the
Adressa and SMDI datasets. This experiment is not repeated on the other datasets, as
they do not favour this type of experimental evaluation procedure. MovieLens-25M
spans a too long time period, and we observe insignificant effects of model retraining
on recommendation accuracy. YooChoose and RetailRocket focus on shorter user
sessions, which are also unfavourable for SW-EVAL to reach statistically significant
conclusions. Lastly, the Microsoft News Dataset contains bandit feedback, which is
different to the organic user-item interactions we tackle in this work. This was not
an issue when evaluating models’ computational cost, but is prohibitive to properly
evaluate recommendation accuracy in a common manner.

To illustrate the advantages of approximate DYN-EASER, we make use of the
Sliding Window Evaluation (SW-EVAL) technique [80, 75]. We train a model on all
user-item interactions that have occurred up to time t . For a fixed sliding window
widthδupdate, we periodically update the model with new incoming data, both for the
exact and approximate DYN-EASER variants. A concurrent sliding window with width
δeval dictates the evaluation period where every competing model is evaluated on
its ability to predict with which items users interacted with next. This experimental
procedure is formalised in Algorithm 8. We set δupdate = 60min and δeval = 120min
for the Adressa dataset and evaluate over the final 24 hours, and δupdate = 6h and
δeval = 3d for the final 120 days of the SMDI dataset. This difference in order of
magnitude is to keep the overall runtime of the experiments reasonable, and to
ensure statistically significant results from sufficiently large evaluation sample sizes.

Computation time for approximate DYN-EASER

Figure 3.4 shows computation time for exact DYN-EASER, as well as several approxi-
mate model variants with varying cut-off ranks k. In terms of runtime improvements,
we observe very favourable results for approximate updates. As is expected, the com-
putational cost of DYN-EASER’s updates can largely be attributed to the computation
of all eigen-pairs, and limiting the rank has a significant impact on the efficiency
of said updates. At cut-off rank k = 250, the computational cost for the updates is
decreased by a factor 3 or 65%.

As we have mentioned above, the computation time for all EASER variants on
the SMDI dataset is in the order of seconds and largely dominated by variance
and system overhead. As a result, runtime results on this dataset do not provide
significant insights, and we do not report them.

Recommendation accuracy for approximate DYN-EASER

Figure 3.5 visualises Recall@K for K ∈ {1,5,10,20} over time on the Adressa and SMDI
datasets. The SMDI dataset has large variance on the number of active users over
time, which heavily influences the statistical significance of some of the evaluation
results, as they are based on insufficient samples. We do not include evaluation
results where the evaluation set consisted of less than 100 users. The denominator
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for our Recall measure is min(K , |I test
u |) instead of the number of held-out items

|I test
u |, to ensure that a perfect value of 1 can theoretically be attained at all cut-offs

k.
Additional to several approximate model variants, we include recommendation

accuracy results for a model that is not updated over time, yielding a lower bound
on the accuracy we can expect from approximate updates. On the Adressa dataset,
we observe that such a model quickly deteriorates over time. This is to be expected,
as the Adressa dataset and news recommendation application are heavily biased
towards recent items and interactions. This bias is less clear on the SMDI dataset at
lower cut-off ranks K , but clearly manifests itself for Recall@20 near the end of the
evaluation period.

For both datasets, we observe that the accuracy of approximate DYN-EASER

variants for high values of k, is statistically insignificantly different from exact DYN-
EASER. This highlights that the N-fold improvement in terms of computational
cost can come with a negligible impact on recommendation accuracy, showing the
advantages of approximate computations. For Adressa, we observe a statistically
significant improvement over exact DYN-EASER for low values of k. This can be
attributed to the reasons laid out in Section 3.3, as the low-rank approximation
handles sparsity, transitivity, and favours recently popular items. These model
characteristics are highly favourable in news recommendation settings – but might
have smaller influence on supermarket data. Nevertheless, the results highlight that
many efficient low-rank updates can yield highly competitive models compared to
more costly full-rank updates.

All runtime and recommendation accuracy measurements are aggregated in
Table 3.3, providing further insights on the trade-off between runtime and recom-
mendation accuracy for approximate DYN-EASER. We denote the Recall@K measure
as R@K for improved spacing. On the SMDI dataset, the differences in recommen-
dation accuracy among exactly or approximately update model variants were not
found to be statistically significant at the p = 0.05 level. The differences between the
stale EASER and DYN-EASER models are significant.

The size of the Adressa dataset yields more statistical power, and both the differ-
ences between stale EASER and DYN-EASER and those between exact DYN-EASER and
approximate DYN-EASER with k ∈ {1,5} were found to be statistically significant.

3.5 Conclusions

Linear item-based models are an attractive choice for many collaborative filtering
tasks due to their conceptual simplicity, interpretability, and recommendation accu-
racy. Recent work has shown that the analytical solution that is available for ridge
regression can significantly improve the scalability of such methods, with a state-of-
the-art algorithm called EASER [200]. EASER consists of a single matrix inversion of
the Gramian. As its computational complexity does not rely on the number of users
or even the number of user-item interactions in the training set, it is particularly
well suited to use-cases with many users or interactions, with the sole constraint
that the size of the item catalogue is limited.

When deployed in real-world applications, models often need to be periodically
recomputed to incorporate new data and account for newly available items and
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shifting user preferences, as well as general concept drift. Iteratively retraining an
EASER-like model from scratch puts additional strain on such real-world applications,
putting a hard upper limit on the frequency of model updates that can be attained,
and possibly driving up computational costs. This especially limits the application
of EASER in domains where item recency is an important factor deciding on item
relevance – such as in retail or news recommendation.

In this work, we propose a novel and exact updating algorithm for embarrassingly
shallow auto-encoders that combines parts of the Dynamic Index algorithm [83] and
the Woodbury matrix identity [55]: Dynamic EASER (DYN-EASER). We have provided a
thorough theoretical analysis of our proposed approach, highlighting in which cases
it can provide a considerable advantage over iteratively retrained EASER, and in which
cases it does not. These theoretical insights are corroborated by empirical insights
from extensive experiments, showing that DYN-EASER is well suited for efficient and
effective online collaborative filtering in various real-world applications.

DYN-EASER exploits the sparse and symmetric structure of the Gramian to effi-
ciently compute the eigen-decomposition of the Gramian update. When the rank
of the update is large, however, this operation can still become prohibitively ex-
pensive. To mitigate this problem, we have additionally proposed an approximate
DYN-EASER variant that uses a low-rank approximation of the Gramian update as
opposed to its exact decomposition. Empirical results highlight further efficiency
improvements at a small cost for recommendation accuracy. Our work broadens the
scope of problems for which item-based models based on ridge regression are an
appropriate choice in practice. To foster the reproducibility of our work, the source
code for all our experiments is publicly available under an open-source license at
github.com/olivierjeunen/dynamic-easer.

A promising area for future work is to further improve DYN-EASER’s computa-
tional efficiency by looking at alternative (approximate) matrix decompositions
that exploit efficient random sampling [56, 131], as the bottleneck of our current
approach lies in the computation of the exact eigen-decomposition of the update
to the Gramian. Furthermore, we would like to explore applications of our efficient
incremental updating scheme to more general multi-label regression tasks beyond
the collaborative filtering use-case we tackle in this work.

Reflections

This Chapter has provided an elegant solution for incremental updating of closed-
form regression models for collaborative filtering. Although effective and efficient,
this model class only represents a fraction of those available. In many real-world
applications, the size of the item catalogue will be prohibitively large for item-
based models to be an appropriate choice. Keeping this in mind, the impact of our
proposed dynamic updating algorithm might remain fairly limited.

Thoroughly analysing and characterising under which circumstances either
the closed-form solution, or gradient-descent-based alternatives would be more
efficient, is an interesting line of future work that could crystallise when closed-form
models are an appropriate choice.

https://github.com/olivierjeunen/dynamic-easer/
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Figure 3.1: Runtime results for DYN-EASER updated with different intervals (sliding
window width δ), as compared to iteratively retrained EASER over the final N days of
the datasets.
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Figure 3.2: Runtime for incremental updates from Figure 3.1 plotted against the
rank of the update to the Gramian matrix G∆. We observe a strong correlation
between higher values of rank(G∆) and runtime, as well as a correlation between δ
and higher rank(G∆). This result highlights that bounding rank(G∆) can give realistic
expectations for DYN-EASER efficiency in practice.
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Figure 3.3: Upper bounds for the batches of incremental updates from Figure 3.1
plotted against the rank of the update to the Gramian matrix G∆. We observe that
different applications that imply different data characteristics bound the rank of the
update in different ways.
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Algorithm 8 Sliding Window Evaluation Procedure

Input: Pageviews P , evaluation period timestamps (t , tmax), update intervals
δupdate, evaluation sliding window width δeval, list K of cut-off ranks k to con-
sider.

Output: Recommendation accuracy measurements R.
1: P t := EASER(P t )
2: for k ∈ K do
3: P k,t := P t

4: t ′ := t +δupdate

5: while t ′ < tmax do
6: P t ′ := EXACT DYN-EASER(P t ′−δupdate

,P (t ′−δupdate,t ′))
7: for k ∈ K do
8: P k,t ′ := APPROXIMATE DYN-EASER(P k,t ′−δupdate

,P (t ′−δupdate,t ′),k)
9: if (t ′− t ) mod δeval = 0 then

10: R ← SW-EVAL(P t ,P t ′ ,P k,t ′ ,P (t ′,t ′+δeval))
11: t ′ := t ′+δupdate

12: return R
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Figure 3.4: Runtime results for exact and approximate DYN-EASER variants, with
varying cut-off ranks k. We observe a quick and steady decline in computation time
needed for lower values of k, which can be attributed to less computation time spent
finding eigen-pairs.
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Part II

Offline Evaluation Methods



Our comforting conviction that the world makes sense rests on a secure foundation:
our almost unlimited ability to ignore our ignorance.

— Daniel Kahneman



CHAPTER 4
Fair Offline Evaluation with

Missing-Not-At-Random Data

Recommender systems are traditionally evaluated using historical data,
partitioned into a training- and test-set. The system is trained on the
user-item interactions available in the training set and evaluated on its
performance to predict which interactions are part of the test set. Leave-
One-Out Cross-Validation (LOOCV) is a commonly recurring evaluation
procedure, widely used to present novel algorithms as the state-of-the-art.
However, the temporal aspect that is inherent to many recommender
system use cases is entirely neglected with this technique, as well as po-
tential biases in the data (i.e. interactions are Missing-Not-At-Random
(MNAR)).

In this paper we propose and experimentally validate an alternative
method to perform offline evaluation using real-world data from a live
recommender system. Our novel approach adheres to the aspects that are
inherent to web-based recommender systems in e.g. e-commerce much
more tightly than LOOCV. Experimental results indicate that LOOCV is
prone to overestimate model performance in general, underestimate the
power of popularity-based baselines, and generally rank algorithms dif-
ferently than our methodology. Furthermore, we study the impact of live
recommendation algorithms in place during the time of data gathering
on the offline evaluation of other algorithms on said data. We exper-
imentally validate that such impact is indeed significant. Finally, we
propose a scope for future research to model these MNAR biases and take
them into account during training and evaluation to provide unbiased
recommendations.1

1This chapter is based on work published in the Proceedings of the 2018 REVEAL Workshop (co-
located with the ACM RecSys Conference) as “Fair Offline Evaluation Methodologies for Implicit-Feedback
Recommender Systems with MNAR Data” by Olivier Jeunen, Koen Verstrepen and Bart Goethals [80].

61



62 CHAPTER 4. OFFLINE EVALUATION WITH MNAR DATA

4.1 Introduction

Over the past decades, personalisation has played an ever-growing role in how we
consume content online. News websites, movie or music streaming services, retail
stores, etc. can all greatly benefit from recommendation systems that accurately
pair items with users and suggest them. Users can be guided towards the subset of
catalogued items they are interested in, leading to more satisfying experiences and
an increase in user engagement.

When recommender systems first gained traction, the field focused on the task
of rating prediction. This assumes that a dataset with explicit feedback from users is
available, which is often hard to collect. The goal was then to predict users’ ratings
for unseen items, with the rationale that items with higher predicted ratings make
up better recommendations. In recent years, a shift has occurred towards item
prediction from implicit feedback. These methods do not require explicit ratings by
users, but rather take into account logged interactions between users and items to
model inherent preferences and correlations. Throughout our work, we will focus
on this task, as implicit feedback data is more prevalent in present day e-commerce.

Specific goals of recommender systems can vary greatly depending on their re-
spective applications. Where some systems will be more focused on maximising user
engagement in terms of time spent browsing a website, others might only focus on
clicks or sales. User satisfaction, serendipity or diversity of the recommended items
are only a few examples of many more possible objectives. We focus on maximising
user engagement through clicks for the rest of this work, but our methodology is
easily extended towards maximising sales. Analogously, this work focuses on, but is
not limited to, collaborative filtering (CF) algorithms.

Traditionally, the performance of recommender systems (learning from implicit
feedback) is evaluated on historical transactional data. As is often the case with
classification problems and supervised learning in general, a portion of the data is
split off and used as a test or validation set to assess algorithmic performance [96].
Leave-One-Out Cross-Validation (LOOCV) is a commonly recurring technique in
the literature, where for every user one item-interaction is randomly selected to be
part of the test set. The training set then consists of all remaining user-item pairs.
Common metrics such as the hit-rate-at-k (HR@k) then compute the fraction of
users for whom the removed item occurs in the top-k recommendations computed
by the system, or the normalised discounted cumulative gain (NDCG@k) which
evaluates the ranking of the removed item in the recommendation-list, or others.
This process is repeated with different training-test splits, and performance metrics
are subsequently aggregated over different runs in order to get a stable final result.
Algorithms that can generate more promising metrics are then assumed to generate
more revenue in an online setting than their competitors. This technique has been
used widely and recently to present new algorithms as the state-of-the-art [169, 147,
30, 58, 150, 154].

Online evaluation methods such as live A/B-testing have been shown to paint a
clearer and more honest image of an algorithm’s performance in providing mean-
ingful and interesting recommendations, but are generally more expensive and
complex to realise [188]. During an A/B-test, the user-base is divided into groups.
Every user in one of those groups is presented with recommendations generated
by a different algorithm, specific to the group they belong to. Metrics such as the
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click-through-rate (CTR) are then often used to compare which algorithm gener-
ates the most clicks, and thus is the most successful in generating revenue. Online
evaluation is often favoured over its offline counterpart, as it directly correlates
with the inherent goal of the system: to maximise user-interaction with the shown
recommendations.

Crucial differences between live A/B-tests and LOOCV are two-fold: first there
is a clear temporal dimension in many recommender systems use cases that is
inherently taken into account in the first, but often neglected in the latter. Predicting
past preferences based on future interactions is in many cases a considerably easier
task than vice versa, and as a consequence their performances are not necessarily
representative for each other.

Second, the goal of the evaluation technique is inherently dissimilar; where A/B-
tests can present and evaluate a wide range of recommendations and evaluate how
the user interacts with them, LOOCV is entirely restricted to predicting which items
the user has already interacted with in the past. A top-k recommendation list might
be clicked in an A/B-test because it sparks the user’s interest, but it won’t increase
the hit-rate of LOOCV if the user has no recorded interactions with these items in the
historical dataset. This distinction between negative and missing feedback is taken
into account in the training phase of several well-known algorithms [65, 158, 169],
but is much less studied in the context of offline evaluation.

Furthermore, if the available historical user-item interactions were collected
with a live recommender system in place, this indicates the data are Missing-Not-At-
Random (MNAR) [197]. We show that the algorithm presenting recommendations
to the user significantly impacts offline evaluation results of different algorithms on
the collected data. We adopt the terminology used by recent work in counterfactual
estimation for recommender system evaluation and call such a live recommender
system algorithm the logging policy. These counterfactual estimators have been
shown to act as fast offline alternatives for more classical online methods such as
A/B-testing, and are proven to be more correlated with online metrics than classical
offline alternatives. As a consequence, improving these estimators has become a
lively research direction in recent years [3, 49].

Related work has studied the correlation of the above-mentioned off- and on-
line evaluation methods. Comparison research studies do exist for the specific fields
of research paper recommendation [10], movie recommendation [177] and news
recommendation [48], but none for the more general case. What these studies have
in common however, is that they shed doubt on the assumption being made in many
research papers that offline evaluations are good indicators of online performance.
A discussion of how recommendation systems should be evaluated in an offline
manner is presented by Herlocker et al. [62]. The authors identify a range of different
goals the recommendation system and subsequently the evaluation method might
need to be tuned to. A comparison of various evaluation metrics suggests that
different metrics can be highly uncorrelated and make the evaluation procedure
even less deterministic.

The contributions presented in this paper are the following:

1. We present a novel offline evaluation procedure that is more tightly coupled
with the inherent goals of live recommender systems, and call it SW-EVAL.
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2. We show that SW-EVAL generates very different results than LOOCV in terms
of absolute metrics, ratios among algorithms and rankings among algorithms.
We experimentally validate our findings on real-world data from a live e-
commerce recommender system.

3. We show that the algorithm behind the live recommender system (or logging
policy) induces a significant bias on collected data and as a consequence,
severely influences offline evaluation results on said data.

The rest of this paper is structured as follows: we provide an overview of our
alternative evaluation strategy in Section 4.2, and motivate our research questions.
The data and algorithms we used for our experiments are presented and discussed
in Section 4.3, along with their results. Our work is concluded in Section 4.4, where
we finalise with a scope for future research.

4.2 Methodology

In what follows, we provide an overview of our methods. The following subsection
focuses on preliminaries, after which we present our evaluation procedures and
metrics. We then go on to motivate the research questions we aim to answer with
this work, and how we achieve this.

Preliminaries

Throughout this paper, we assume to work with a set of historical transactional data,
containing de-duplicated and timed logs of user-item interactions. U denotes the
set of m unique users appearing in the dataset, and I the set of n unique items. A
transaction is represented as a tuple (u, i , t ) ∈ U × I ×R+ where u is a user, i an item,
and t a timestamp. D is the set of all available transactions. These transactions
denote that user u has in some way consumed or interacted with item i at time t , be
it in the form of a product purchase, a movie streaming, a click on a news article or
otherwise. We represent these interactions in the form of a sparse user-item matrix
R ∈ {0,1}m×n , often called the rating or preference matrix. Rows in this matrix are
users represented by the items they have consumed, and vice versa for columns:
Ru,i = 1 if and only if user u has consumed item i and Ru,i = 0 otherwise. For a
given item i , we define the set Ui as consisting of all users u that have consumed
item i , that is Ui = {u ∈ U : Ru,i = 1}, and Iu analogously for a given user u: Iu = {i ∈
I : Ru,i = 1}. When we represent an item i or a user u as their respective column-
or row-vectors in R, we write them as i or u. Time-intervals are characterised by
subscripts: Dt is the set of all interactions up to but not including time t , R[tx ,ty ) is
the preference matrix containing all transactions (u, i , t ) ∈D where tx ≤ t < ty . The
timestamp of the latest transaction in D is denoted by tmax.

Finally, as logged interactions in our setting originate from a system running
live A/B-tests, we distinguish Dπ as the set of transactions generated under logging
policy π. In the trivial case where only one logging policy π is implemented, D =Dπ.
Note that sets of transactions generated under different logging policies typically
contain disjoint sets of users, but the same sets of items.
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Evaluation Procedure

As we have mentioned in Section 4.1, LOOCV is one of the most commonly recurring
evaluation techniques in recommender system literature. For every user u, one item
j is sampled uniformly at random from Iu to be used in the validation phase; all other
remaining item-interactions {(u, i , t ) ∈D : i ∈ Iu\{ j }} are used to train the model and
generate predictions. The model is then evaluated on its ability to predict which item
was left out. This process is repeated several times with different random seeds, and
results are then aggregated over runs. In this way the approach generates statistically
stable results, covering every user in the dataset. We argue that what impedes
this approach from being a good proxy for online behaviour, is that it completely
ignores the chronological ordering of events. Not only does the model use future
interactions to predict past interactions for a given user, future information about
item correlations will be used as well to predict an interaction at a given earlier time.

As all transactions are timed, the fairest method to perform the train-test split
would be a hard cut on a certain timestamp t : all interactions in Dt are used for
training, and all interactions in D[t ,tmax] can be used for testing. This process can
be repeated, splitting on different times t and aggregating results in order to get
statistically stable results over the full dataset. It is important to note that not all
users are included in the evaluation at every split: to properly evaluate a user u, she
should have recorded historical interactions to base recommendations on (we do
not consider the extreme cold-start case [186]), and future interactions to predict
and evaluate on. As this set of users might possibly be very small at certain points,
we do not incorporate those where |Ut ∩U[t ,tmax]| < umi n , with umi n a predefined
threshold. If the number of users used for evaluation is too small, outliers will have
an overly large impact on the overall view.

Furthermore, live recommender systems are not as static as they are made out
to be in LOOCV. These systems are either incrementally trained or fully retrained
regularly, with possibly multiple updates every hour. As a consequence, specific
to the use case, it might not be best practice to evaluate a system on its ability to
predict relevant items multiple weeks or even months in the future. In our proposed
evaluation procedure, we divide the dataset into equidistant intervals of width t∆. At
a given time t , we evaluate the model trained on Dt on its ability to generate relevant
recommendations w.r.t. the interactions present in D[t ,t+t∆). The granularity of t∆
is relative to the use case. Where it might be very small for a news recommender
(new items arrive at high rates and item popularity generally declines quickly over
time, calling for fast and frequent updates), retail recommenders might call for wider
intervals (daily or weekly, as sales are bound to seasonality).

Throughout the rest of this paper, we refer to our novel proposed procedure
as k-fold Sliding Window Evaluation (SW-EVAL) where k indicates the number of
intervals used in the validation step.

Our method corresponds to live A/B-testing in the sense that it follows a clear
chronological ordering of events, which we argue is crucial to properly assess system
performance. A major difference that remains is that of an over-representation of
false negatives during the evaluation phase: where in a real-time setting a user might
click on a certain recommendation when it would be given, that same recommen-
dation will always be seen as non-relevant by offline evaluation procedures if there
exists no historical interaction between said user and item. As this issue is very
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non-trivial to solve, a careful choice of evaluation metrics that focus on rewarding
true positives instead of penalising false positives is appropriate. We provide a brief
overview of such metrics in the following subsection.

Evaluation Metric

As mentioned above, due to the inherent lack of user interaction in offline evaluation,
we focus on metrics that reward true positives instead of those that penalise false
positives. We will denote the set of known relevant items for a given user u as Relu ,
where her top-k recommendations are represented by Recu,k . Recall@k is then
given by equation 4.1.

Recall@k = 1

m

∑
u∈U

|Relu ∩Recu,k |
|Relu |

(4.1)

With the leave-one-out scheme, Relu will always consist of exactly one item. In these
cases, Recall@k is the same as HR@k: the fraction of users for whom the left-out
item appears in the top-k recommendations.

In the more general case, Recall@k is the average fraction of retrieved relevant
items in the top-k recommendations of all users. Note that when the number of
relevant items is higher than k, it is impossible to achieve the perfect recall of 1.
When k is set to the number of relevant items for every user |Relu |, equation 4.1 is
called the R-precision, overcoming said issue.

LOOCV vs. SW-EVAL

The first hypothesis to tackle is whether LOOCV and SW-EVAL produce comparable
results. We define comparable by three criteria in increasing order of importance:

Absolute metrics One of the main goals of recommender systems evaluation is to
obtain a reliable estimate of the effectiveness of a recommendation algorithm. The
order of magnitude of recommendation accuracy is therefore of critical importance.
Business trade-offs that require accurate estimations of e.g. model cost vs. model
performance cannot afford large errors here.

Ratios among algorithms As recommendation accuracy is often only one aspect
of a broader evaluation, ratios among algorithms should be accurate as well. From an
offline evaluation procedure, some model A might outperform some model B with
a factor of 10. However, model A might also be 5 times more costly. If in practice,
model A would only be twice as effective as model B , the inaccurate evaluation
procedure leads to suboptimal decisions.

Rankings among algorithms In the case where model efficiency and cost are
not taken into account, the ranking of competing algorithms that emerges from a
certain evaluation procedure is still highly important. If simply the highest ranking
model according to offline tests is deployed, it is imperative that the optimal model
according to the offline evaluation procedure indeed reflects the best performer in
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an online setting as well. Naturally, an offline evaluation procedure that correlates
well with the system’s actual online application is preferred.

As we motivated our evaluation procedure to be tightly coupled with the inherent
characteristics of live recommender systems in e-commerce and other use cases,
in the case of conflicting results on any of the above-mentioned aspects, we would
place more trust in SW-EVAL than in LOOCV. To validate the effectiveness of SW-
EVAL compared to LOOCV, we aim to study the parity between results of these offline
evaluation procedures with those attained through live A/B-tests in future work.

Impact of Logging Policy

A second hypothesis we aim to investigate with this work is whether the logging
policy π has significant impact when evaluating results on Dπ or more generally on
any D s.t. Dπ ⊆D. The work of Agarwal et al. provides a theoretical foundation for
this problem in the more general case, where data from multiple diverging stochastic
logging policies is naively combined [3]. However, to the best of our knowledge,
in the context of recommender systems, no studies have conclusively proven or
disproven that the impact of π is indeed highly significant with real-world data. If
this is indeed the case, interesting directions for future research include modelling
the bias π incurs, and deriving learning algorithms that mitigate this bias.

The impact ofπ can be defined by the same three aspects outlined in the previous
subsection: whether it influences absolute values, ratios among algorithms, or
rankings among algorithms. Intuitively, one would assume algorithms that closely
correlate with the logging policy have an inherent advantage, as the disadvantages
inferred by the lack of interaction in offline evaluation are annulled in this setting.

4.3 Experiments

The setting of our experiments is summarised in the following section. We give an
overview of the recommendation algorithms we compared and go on by describing
the dataset we used. Experimental results are presented and discussed in Subsec-
tions 4.3 and 4.3, following the same distinction as the research questions presented
in Subsections 4.2 and 4.2 respectively.

Algorithms

Two simple baselines were used to compare algorithm performance against: a global
popularity baseline (POP) and a sliding window popularity baseline (POP-N ). The
first sorts all items based on their number of occurrences in the full training set, and
the latter sorts items based on the number of occurrences in the last N recorded
interactions at the time of recommending. As the sliding window approach does not
apply to the leave-one-out scheme (as it requires temporal information, which is
not available), we do not include it in the LOOCV results. However, the approach
proves surprisingly effective in our sliding window based evaluation method.

Apart from these baselines, we compared several well-known and widely used
algorithms. The item k-nearest neighbour (I-kNN) algorithm computes the rec-
ommendation score R̃u,i for a user u and an item i as a weighted sum of cosine
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similarities between i and items j ∈ Iu , as shown in Equation 4.2 [183].

R̃u,i = 1

|Iu |
∑

j∈Iu

cos(i , j ) (4.2)

As a full similarity self-join on the set of items I is both time- and space-consuming,
only similarities between every item and its k nearest neighbours are computed and
retained. This leads to a space complexity of O (kn) instead of O (n2).

The user k-nearest neighbour algorithm (U-kNN) is a traditional and intuitive
collaborative filtering algorithm that counts the occurrences of items that u has not
yet consumed among the k nearest neighbours of u. Items that are more popular
with similar users are then assumed to make up better recommendations [61].

Matrix factorization algorithms explicitly compute item- and user-factors in a
fixed number of latent dimensions. The recommendation score for a user u and
item i is then defined as the dot-product of their latent factors. We compute the
factors using the well-known Singular Value Decomposition (SVD) algorithm [249].

As the purpose of this work is not to determine which algorithm generates
optimal recommendations, we refrain from investigating more advanced or recent
state-of-the-art algorithms. However, it should be noted that nearest-neighbour-
based algorithms have recently still been shown to attain competitive performance
with the state-of-the-art [220, 73].

If the top-k recommendation list Recu,k generated by any algorithm contains
items that were already in the history of u, we drop them from the list and expand it.
As we work with de-duplicated interactions, re-targeting is out of the scope of this
paper.

The baselines, U-kNN, I-kNN and SVD were implemented using Sci- and Num-
Py [227, 217]. Optimal hyper-parameters were obtained through an extensive grid
search on LOOCV for optimal Recall@10 before experiments were conducted. For
fair comparison, we did not recompute optimal hyper-parameters for the SW-EVAL
setting or varying values of k, but retained the optimal ones for LOOCV and k = 10.

Dataset

Retail is a proprietary dataset obtained from the logs of a live recommender sys-
tem serving a Belgian retail website, over the course of 4 months. During this period,
3 different algorithms generated recommendations in the fashion of an A/B-test. Ap-
proximately 25% of the recommendations were generated by a popularity baseline,
25% by an undisclosed algorithm, and 50% by I-kNN. We will respectively denote
these logging policies by πp , πu and πi . It is notable that the recommender system
is subject to certain business rules, and top-k recommendation lists can therefore
not be shown to the user as is. However, how and exactly which recommendations
were effectively shown to the user is not important for the purposes of this work.
Out of these 4 months, the last month acts as validation period for SW-EVAL. With
30 folds, this corresponds to daily updates and evaluations. Table 4.1 provides an
overview of the dataset’s size and properties.
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Table 4.1: Characteristics of the dataset

|D| |U | |I| Sparsity

Retail 734813 189343 10700 99.96%

LOOCV vs. SW-EVAL

In what follows we discuss the experimental results corresponding to the research
question laid out in Section 4.2. To determine whether LOOCV and SW-EVAL
produce comparable results as an offline evaluation procedure, we report mean
Recall@k for varying k and relative performance to the best performer (in bold) for
both 10-fold LOOCV and 30-fold SW-EVAL in Table 4.2. We set the threshold umi n

to 100 for SW-EVAL, but generally multiple hundreds of users were included for
evaluation at every fold. Results are visualised in Figure 4.1.

LOOCV results indicate that I-kNN is the clear best performer regardless of the
value of k, exceeding the Recall of its competing algorithms with a factor of 2 and
even beating the baseline algorithm with a factor of 10. However, SW-EVAL results
paint an entirely different picture. First, the best performing algorithm has a mean
Recall@10 that is a factor 5 smaller than reported by LOOCV. Second, we observe
that the simple popularity baseline is able to attain up to 44% of the Recall@10 of
the best performer, in stark contrast with the 11% reported by LOOCV. Furthermore,
a simple sliding window extension boosts this further up to 71% and even 98% for
k = 5. Third, where LOOCV concludes SVD and U-kNN to be virtually equal for
k = 10, SW-EVAL clearly prefers SVD with 81% of the optimal performance instead
of just 49%.

We observe that both for LOOCV and SW-EVAL, the gap between I-kNN and SVD
closes as the number of generated recommendations grows. For the reported Re-
call@20, only a 3% difference remains between the two competing algorithms. The
gap between U-kNN and I-kNN remains somewhat steady. A possible explanation
for this is that the optimal amount of a user’s neighbours to be taken into account
when generating recommendations for k = 10 might be suboptimal for larger k, as
the same candidate items might keep reappearing instead of novel recommenda-
tions. We see a similar but more stark effect for POP-N: as the optimal N obtained
from the hyper-parameter optimisation procedure was rather low, the number of
truly trending items might become less than k as k keeps growing. Extending POP-N
to include a more advanced recency formula could certainly solve this issue.

It is clear that LOOCV and SW-EVAL do not yield comparable results for the
given dataset. LOOCV is prone to overestimate model performance in general, vastly
underestimate the effectiveness of popularity-based baselines, and generally rank
algorithms very differently than SW-EVAL.

One might note that the number of relevant items for a given user in the valida-
tion set |Relu | is important when computing the Recall@k: for LOOCV, |Relu | = 1. If
it differs greatly for SW-EVAL, lower absolute numbers are to be expected. However,
we also conducted experiments where only the first item a user interacts with in the
validation interval is seen as relevant, effectively setting |Relu | = 1 as well. Results
were very comparable, but omitted for brevity.
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Figure 4.1: Mean Recall@k for the Retail dataset when using 10-fold LOOCV and
30-fold SW-EVAL respectively, for varying values of k. Note that the SW-EVAL y-axis
is scaled down by a factor of almost 5 in comparison with the LOOCV plot.

Impact of Logging Policy

In what follows we discuss the experimental results corresponding to the research
question laid out in section 4.2. To determine whether the logging policy π has a sig-
nificant impact on results from offline evaluation procedures on Dπ, we report mean
Recall@k for varying k, and relative performance to the best performing algorithm
for both 10-fold LOOCV and 30-fold SW-EVAL on Dπu , Dπp and Dπi respectively
in Table 4.3. Even though the number of users covered by a subset Dπ of D will be
lower than the number of users covered by the full set of transactions D, we set umi n

to 100 as in our previous experiments. Equivalently to those previous experiments,
this lower bound was never attained. Results are visualised in Figure 4.2, where the
top and lower row of plots respectively correspond to LOOCV and SW-EVAL results.
Every column represents results on a subset of logs corresponding to a given logging
policy.

When considering LOOCV results, algorithm ranking generally does not seem
to be impacted by varying π or k for this specific case. However, absolute mea-
surements as well as ratios among competing algorithms clearly are. Under the
undisclosed logging policy πu and for k = 10, I-kNN only achieves roughly 65% of
the performance it reaches under its own logging policy πi . When we consider the
absolute performance of U-kNN over all logging policies, we find it seems rather
stable. However, the relative performance of U-kNN compared to I-kNN varies from
58% to 92% for its worst and best measurements respectively. While less pronounced,
SVD exhibits similar behaviour. The popularity baseline seems moderately stable.
Although less evident for πu and πp , a clear bias towards I-kNN is present in the data
that was generated by showing I-kNN recommendations to users on the website,
becoming more and more clear as k increases.
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In the SW-EVAL results, the bias appears even more clear-cut. We distinctly
observe that absolute values, the ratio amongst competing algorithms and the
general ranking of algorithms is heavily influenced by π. For both the undisclosed
algorithm πu and the popularity policy πp , the sliding window popularity baseline
outperforms all competing algorithms for small values of k. As in the reported
results from the previous section, SVD and I-kNN are able to thrive when generating
more recommendations, whereas U-kNN and POP-N are much less able to do so.
We suspect this is an artefact of our hyper-parameter optimisation procedure, since
optimal parameters for k = 5 or k = 20 are bound to be different than those found
for k = 10.

For the I-kNN policy πi , a clear bias is present towards the I-kNN algorithm from
the offline evaluation results. This is not surprising, as items that were effectively
shown to a user have a much higher probability of being clicked than those that
were not shown. Even though this clear bias is present, SVD attains up to 92% of
I-kNN’s performance for the largest value of k. This phenomenon is widely known as
presentation bias [51], and can cause severe feedback loops if not handled properly.
The effects of those feedback loops may be detrimental to the performance of a
recommender system, as items in the long tail will never be considered fairly [161].
Recent related work has focused on retrieving users’ intrinsic preferences when
such feedback loops are present [193]. Metrics or frameworks that reward long-
tail recommendations more than others are also a possible way of alleviating this
issue [198, 1].

4.4 Conclusions

In this work, we have motivated the need for alternative offline evaluation pro-
cedures from LOOCV. We have identified that despite its clear flaws (ignoring all
temporal information), LOOCV still remains an extremely popular technique to
experimentally validate newly proposed algorithms as the state-of-the-art in recent
recommender systems research [169, 147, 30, 58, 150, 154]. To this end, we have
proposed a novel approach that much more tightly follows the important aspects of
live recommender systems, such as their dynamic and temporal nature. We have
experimentally validated on real-world data originating from the logs of a live recom-
mender system that our approach yields very different results than LOOCV in terms
of absolute metrics, ratios among competing algorithms, and mutual rankings of
competing algorithms. Furthermore, LOOCV vastly underestimates the performance
of advanced popularity-based approaches to recommendation.

Moreover, we motivated and discussed how live recommendation algorithms in
place at the time of data collection can severely influence said data and produce a
clear presentation bias, which is in turn prone to generate feedback loops. Offline
evaluation results using traditional metrics on data gathered from a live recom-
mender system are therefore heavily influenced by these biases, and lead to varying
conclusions in terms of algorithm-specific performance.

Future Work

As most implicit feedback datasets for recommender systems originate from the
logs of live systems, and more information about the logging policy is often unavail-
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able, the results presented throughout this paper reveal an important issue with
current evaluation and learning procedures. We intend to further validate SW-EVAL
by studying the impact of the window size t∆, and by examining the correlation
between its results and those attained through large-scale online A/B-tests for dif-
ferent recommendation use cases. However, as the experimental results presented
in Section 4.3 show, the choice of logging policy π induces a significant bias that
heavily impacts offline evaluation results on Dπ. To this end, a clear need rises for
bias-free learning and evaluation procedures.

The work of Steck [198] tackles the issue of popularity bias by proposing “Popularity-
Stratified Recall” as an improved evaluation metric. The author goes on to present a
model of item popularity, and an accompanying learning procedure that optimises
a matrix factorization model for said novel metric. By adapting this “Popularity-
Stratified Recall” and the accompanying recommender algorithm to a “Propensity-
Stratified Recall” model, one might be able to alleviate the presentation bias that is
inherent in most real-world datasets.

Recent work has tackled these biases by propensity-weighting in Learning-to-
Rank specifically for information retrieval systems [87]. By extending such works to
include biases that are inherent to recommender systems, we believe fairer offline
learning and evaluation procedures for implicit feedback recommenders with MNAR
data are achievable.

Reflections

This Chapter has highlighted several problems with prevalent offline evaluation
procedures in the research literature, that still remain largely unsolved. In order to
further validate the proposed sliding-window technique, a correlation study with
results from online experiments would be imperative. Additionally, the selection
bias that is a direct result from the logging policy provides a clear impediment for
any offline evaluation technique to yield offline estimates that are predictive of
online performance. This insight motivates the work in the final three Chapters of
this thesis, where we want to quantify and mitigate the impact of the logging policy
for offline evaluation, as well as offline learning.





CHAPTER 5
Revisiting Offline Evaluation for

Implicit-Feedback
Recommender Systems

Recommender systems are typically evaluated in an offline setting. A sub-
set of the available user-item interactions is sampled to serve as test set,
and some model trained on the remaining data points is then evaluated
on its performance to predict which interactions were left out. Alterna-
tively, in an online evaluation setting, multiple versions of the system
are deployed and various metrics for those systems are recorded. Systems
that score better on these metrics, are then typically preferred. Online
evaluation is effective, but inefficient for a number of reasons. Offline
evaluation is much more efficient, but current methodologies often fail
to accurately predict online performance. In this work, we identify three
ways to improve and extend current work on offline evaluation method-
ologies. More specifically, we believe there is much room for improvement
in temporal evaluation, off-policy evaluation, and moving beyond using
just clicks to evaluate performance.1

1This chapter is based on work published in the Proceedings of the 2019 ACM RecSys Conference as
“Revisiting Offline Evaluation for Implicit-Feedback Recommender Systems” by Olivier Jeunen [75].
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5.1 Introduction

Traditionally, recommender systems research focused on rating prediction from
explicit feedback. The best known example of this setting is probably the Netflix
Prize competition, where researchers were challenged to predict which ratings users
had given to certain movies, based on millions of other user-item-rating triplets [13].
User-item pairs that were predicted to have high ratings, were then assumed to
make up good recommendations. In recent years, a shift has occurred towards item
prediction from implicit feedback [158, 65, 169, 221]. These systems no longer rely
on a set of explicitly generated ratings, but can learn to infer personal preferences
from logged feedback such as click behaviour on a news website, listening behaviour
on a music streaming service, video watches on video streaming websites, and
many more. As logged feedback is much easier to obtain than explicit ratings, these
systems are gaining more and more popularity. Netflix has even moved on from
their star rating system, favouring binary preference expressions [51].

Implicit-feedback recommender systems can be evaluated either off- or on-line.
In the offline setting, the data is split into a training and testing subset, as is often
the case in classical supervised learning contexts. Models learn from the training
set, and are evaluated on their ability to predict the samples that are part of the test
set. Those models that perform best on some chosen metric, are then assumed to
be the optimal performers in an online setting as well. Online evaluation methods
often relate to some form of A/B-testing: multiple different models are deployed,
and their performance is measured according to some Key Performance Indicator
(KPI), such as click-through rate (CTR), sales revenue, dwell time, retention rate,
and so on. The biggest advantage of online evaluation methods is that they are very
effective: interaction between users and the systems is directly measured, and if
done properly, online experiments provide a fair and unambiguous view of system
performance. They are, however, much more expensive than offline alternatives for
a number of reasons [188, 3, 49]. Because of this, offline evaluation methods that can
accurately predict online performance remain imperative. However, multiple recent
works show time and again that offline evaluation results from traditional proce-
dures are often contradictory compared to the results of live A/B-tests [10, 48, 177].
The scientific aspirations of this research are to identify which aspects are at the
root cause of the fact that current offline evaluation procedures are often ineffective,
and alleviate these aspects during the training as well as the evaluation phase of live
recommender system deployment. Specifically, we wish to research novel offline
evaluation procedures that are much more tightly coupled with the inherent char-
acteristics of these live recommender systems, such as dynamic deployment, user
interaction, temporal information, and self-induced presentation bias in the data.
The rest of this work broadly corresponds to the following research questions:

1. What is the importance and the role of temporal information in an offline
evaluation stage? How do we handle the sequential order of events and the
absolute time between interactions and predictions correctly?

2. What impact does a live recommender system, in place during data collection,
have on the resulting logged feedback? How do we mitigate biases they induce?
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3. Can we use more information about user (in-)activity, beyond just clicks,
during the offline evaluation process? How do we exploit information about
impressions, dwell time, scrolling,. . . to effectively distinguish between missing
and negative feedback?

5.2 Temporal Evaluation

In its simplest form, supervised learning systems are evaluated on a hold-out test
set. A subset of the available data is randomly sampled and held out when training a
model. Then, the model is evaluated on its performance when predicting the labels
for the unseen, held-out test set. k-fold cross validation and bootstrap sampling are
the most well known and widely used methods [96]. As the recommender systems
field emerged from the broader machine learning field, adaptations specific to the
recommender systems use case were proposed. Leave-one-out cross-validation
(LOOCV) is a commonly recurring scheme in the literature, where one item for
every user is randomly sampled to be part of the test set. The training set then
consists of all remaining user-item pairs. Every model generates a set of top-N
recommendations, and those that can rank the missing sampled items highest in
the set of recommendations are assumed to be the best performers in an online
environment as well. This process is repeated with different random seeds and
samples, and results are averaged in an attempt to reduce variance from different
runs.

While this technique has been used widely and recently to present new models
as the state of the art [147, 30, 115, 58, 150, 154, 238, 251, 31], it entirely disregards
the sequential nature of user-item interactions. It should come as no surprise that
positively rewarding the prediction of past interactions from future data leads to a
distorted picture of algorithmic performance in an online environment. Because
of this, temporal evaluation has recently gained traction as well [223, 80, 89]. Zhao
et al. [252] use a temporal leave-one-out scheme that we will refer to as last-one-out:
instead of randomly sampling an item for every user, the last item is left out for
every user. By doing this, no information about future preferences of a user can be
used by the model when generating recommendations for said user, avoiding look-
ahead bias. However, as the model is still trained on future interactions from other
users, time-constraints remain violated and biases remain inevitable. Li et al. [113]
propose an evaluation protocol called replay, aimed towards contextual-bandit news
recommenders. Their work is extended into StreamingRec, a recently introduced
offline evaluation framework for news recommenders [89]. They focus on model
recency and incremental updates, which are of vital importance in the news domain.
Nevertheless, incremental learning is not trivial for many state-of-the-art algorithms,
nor is it always necessary. Further work for broader recommendation domains still
needs to be conducted.

A novel temporal evaluation technique was proposed by Jeunen et al. [80], using
a sliding window technique to adhere to the chronological ordering of interactions
in the data, and aggregating multiple measurements to provide a robust estimate
(Sliding-Window Evaluation, or SW-EVAL). The authors show that taking the se-
quentiality of the data into account at evaluation time has a significant impact
on evaluation results, in terms of (1) absolute values of evaluation metrics, (2) ra-
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Figure 5.1: A visual representation of the differences between several offline evalua-
tion procedures. u, v ∈U are users, a,b,c,d ,e ∈I are items they have interacted
with, and the x-axis represents time.

tios of evaluation metric values among competing algorithms, and (3) rankings of
evaluation metric values among competing algorithms. Figure 5.1 provides some
visual intuition into the differences of these methods. Here, u, v ∈U are users and
a,b,c,d ,e ∈I are items they have interacted with. The x-axis represents time. In
this trivial example, the test windows used by SW-EVAL hold only one interaction
per user. However, this parameter t∆ can be tuned freely. We find that SW-EVAL has
room for several extensions which could prove beneficial as future work. Currently,
all user-item interactions that occur within the test window are taken into account
with equal importance, and those that occur later are entirely ignored. Because
of this, the impact of the window size t∆ should be further investigated. Further-
more, a discounted importance function could be used to place higher weight on
interactions that occur near the prediction time (i.e. the start of the test window),
and lower weight on interactions that occur later in time. Additionally, until now,
SW-EVAL has only been evaluated on a single dataset, with a modest selection of
traditional baseline algorithms and the Recall@k metric. More thorough analysis
needs to be done, by exploring the impact temporal evaluation has on clearly time-
dependent use-cases (e.g. news recommendation) versus those that might seem less
time-dependent on first look (e.g. movie recommendation). We wish to investigate
the impact on various types of metrics as well, such as Mean Reciprocal Rank (MRR)
or Normalised Discounted Cumulative Gain (NDCG). Finally, to validate the effec-
tiveness of the evaluation procedure, a correlation study comparing results with
those obtained from live A/B-tests needs to be conducted as well.

5.3 Debiasing Logged Feedback

Most recommender systems datasets are collected from logged user-item inter-
actions on some website: be it e-commerce, news, media, and so on. Moreover,
most of these websites have some form of live recommender system running that
influences user behaviour. As user behaviour is logged after these users have been
exposed to algorithmic recommendations, this generates severe biases in the result-
ing datasets [197, 22]. When these datasets are subsequently used to train models
that are in turn deployed on the website, vicious feedback loops can occur [193]. The
biases present in these datasets pose a significant challenge when the data is used
to evaluate other competing algorithms in an offline manner. Under the presence
of A/B tests, where multiple algorithms influence behaviour for different subsets of
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the data [3], or for fast-changing environments that suffer from concept drift [70],
these issues become even more poignant. This problem of predicting how a certain
algorithm would have performed when we only have data that originates from a
different algorithm, is a specific instance of the more general problem of counter-
factual evaluation in the reinforcement learning literature. Importance weighting
or inverse propensity scoring (IPS) is a well-known statistical technique, often used
in these types of situations [19]. In this setting, a stochastic logging policy π0 is
assumed, that assigns a probability to an action, given some context: π0(i |x). Here,
the action corresponds to recommending an item i ∈I , and the context is a feature
vector that can be of arbitrary dimensionality d : i.e. x ∈Rd . When evaluating a new
target policy πt on data collected under π0, the weights for samples (i , x) are then
given by

w(i |x) = πt (i |x)

π0(i |x)
. (5.1)

It can be proven that, under mild assumptions, this weighting function results in
an unbiased estimator. Its variance, however, can grow to be troublesome. When
π0 and πt differ greatly, the ratio of their assigned probabilities will allow for some
samples to be weighted disproportionately. Multiple techniques have been proposed
to alleviate these issues, such as normalising or capping the weights [49].

However, for the case whereπ0 is a deterministic policy (i.e. π0(i |x) ∈ {0,1}), these
weighting techniques lose all practical value. Moreover, even when the policy is
truly stochastic, the propensity scores for every recommendation-context pair (i , x)
need to be known beforehand. Although this is somewhat trivial for the target policy,
this is certainly not the case for general logging policies that might not be under
our control2. Yang et al. [239] tackle this issue by modelling popularity bias as an
exponential function to mimic the typical long-tail distribution. They then use this
model to estimate propensity scores, and use those in turn to debias their evaluation
procedure. The model is user- and context-independent, and assumes a single
propensity score for every item i . Furthermore, they assume the probability of a user
interacting with an item, is independent from whether that item has actually been
recommended to and impressed upon the given user. Naturally, these assumptions
do not hold in real-world situations. We identify two possible directions of future
research:

1. By clustering users based on either meta-information (location, age-group,
et cetera) or their historical sequence of logged items, the propensity of user-
item pairs could more accurately be modelled in a cluster-local model. These
models could then, stand-alone or in combination with a global model fol-
lowing the paradigm of [31], be used to improve upon their offline evaluation
procedure, in combination with the SW-EVAL procedure.

2. The independence assumption between impressions and interactions is clearly
oversimplified for real-world environments and data. For datasets that include
impression information, this effect can be studied. When properly quantified,
it can be used to improve upon the accuracy of the estimated propensities.
Examples of such datasets include the Outbrain [155] and Plista [95] datasets.

2For the problem of computational advertising, a dataset containing logged propensities has been
released by Lefortier et al. [106].
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We discuss the benefit of using datasets enriched with this information in
Section 5.4.

We believe more realistic propensity scores can be estimated through more
nuanced modelling, which can in turn help in improving the effectiveness of IPS-
based estimators in settings where propensities are unknown beforehand. In the
case where not a single item, but a list of N items is recommended, Chen et al. [25]
propose an adaptation of the IPS estimator. As propensity scores for the logging
policy are also unknown beforehand in their setting, they propose to learn these
alongside with the target policy via a recurrent neural network.

Preliminary results from SW-EVAL on logged feedback originating from different
logging policies confirm that such biases are indeed present, and significantly impact
offline evaluation results when not taken into account properly [80]. As future work,
we wish to incorporate such a weighting procedure into the evaluation method, even
when logging policy propensities are unknown in advance. Recent work used an
adapted IPS-estimator to evaluate an algorithm for music playlist recommendation
in an offline way [52]. They show that their offline evaluation results correlate with
their online results, obtained through a series of live A/B tests. Multi-armed bandit
models were used, with logged propensities. However, their work deals with an
idealised environment, making it unclear whether the methodology can be readily
applied other domains. Extending their work for generality, to include larger sets
of available items, and towards ranking-based metrics is a promising direction for
future research.

5.4 Beyond Just Clicks

Missing vs Negative Feedback

A well-known issue in implicit-feedback recommender system literature is the
difficulty in distinguishing between missing and negative feedback: if a user-item
pair (u, i ) is missing from the dataset, does this mean that u disliked i , or was
simply unaware of it? Many different algorithms have been proposed to address
this problem, e.g. by sampling negatives or focusing only on positive preference
expressions [158, 65, 169]. These works are limited, however, in that they only take
a single type of feedback into account: clicks, sales, likes,. . . while typically much
more interaction data is available to the entities providing the recommendations.
The combination of clicks, add-to-cart actions and sales, page dwell times, not
interacting with an impression, et cetera are all rich but largely neglected feedback
signals. The work of Wan and McAuley [230] focuses on monotonic behaviour
chains, where different levels of feedback are all jointly taken into account into
the resulting model. We wish to study whether these different types of feedback
can be used to distinguish between missing and negative feedback, in order to
improve offline evaluation accuracy. If we know a user clicked on an item i , but
later in the same session clicked on and bought an alternative item i ′, this might be
interpreted as a negative feedback signal for the (u, i )-pair. Analogously, if i is shown
as a recommendation to u without any resulting interaction, certain conclusions
might be appropriate. After 1 impression, one can give the benefit of the doubt.
After a large number of impressions, however, we might be able to infer a negative
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relation between u and i . This issue has been tackled in the modelling stage of the
recommender system, by effectively discounting the score for the item and pushing
it downwards the top-N list as it is recommended again and again [105]. However,
this information is mostly neglected when evaluating new models. In a broader
sense, the problem of interpreting user in-action to better understand how users
interact with live recommender systems in the movie domain was studied by Zhao
et al. [253]. They identify various reasons why a user would not click on a given
recommendation, and try to infer from context which of those reasons might explain
a given sample. Further research for better understanding user interactions in
various other domains would very much help with answering this research question
in more general environments.

When the distinction between missing and negative feedback is facilitated, more
involved objective functions such as Generalised Area under the Curve (GAUC) from
the two-class collaborative filtering field [195, 163], can be exploited for use in the
positive-only use-case [221]. Furthermore, multiple pairwise learning algorithms for
recommender systems utilise the information that a given user has interacted with
item i , but not with item j , to model preferences and similarities [169, 64]. These
methods assume that the relation between u and j is less strong than u and i , and
that u effectively prefers item i over j . Although this is a plausible assumption for
datasets with large numbers of items, it cannot be assured. By sampling known, or
assumed with high probability, negative items instead of missing items, we believe
the performance of these existing algorithms can be significantly boosted.

Impression-data for Presentation Bias

Impression-data further has its use in the off-policy evaluation setting described in
Section 5.3. Assume we have a dataset consisting of logged feedback from multiple
loggers (e.g. collected from a live A/B test): D = Dπ0 ∪ . . .∪Dπn , where Dπ refers
to the subset of D that was generated under policy π, and D is a set of user-item-
timestamp triplets. This is the same setting as tackled in the work of Agarwal
et al. [3], where they propose two provably unbiased variants of IPS that limit the
variance in these environments. However, it is assumed that all propensities are
known beforehand, and the loggers are effectively stochastic multi-armed contextual
bandits. When this is not the case, and the policies are possibly unknown, applying
IPS-like methods gets troublesome. To this end, we propose a model-agnostic way of
quantifying the biases among policies. By computing the overlap in their generated
recommendations, we believe the presentation bias that is inherent to the data
can be normalised and alleviated. We denote the set of impressions generated
under the various logging policies by R =Rπ0 ∪ . . .∪Rπn . For every context-vector
x in the logging data, a set of top-N recommendations is logged. As D and R

usually originate from a live A/B-test, the context-vectors x will be disjoint for
different logging policies. Suppose we want to evaluate a new policy πt on D; we can
now compute Rπt for every logged impression: the set of recommendations that
would have been shown, had πt been in effect. Through Rπi , we can quantify the
similarity between a logging policyπi and the targetπt . Although more sophisticated
measures can be used, a simple first option is to use the Jaccard index to compute
the intersection of the generated recommendations. Assuming Rπi and Rπt hold
the same number of generated top-N recommendations, for an identical set of
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context-vectors x, the similarity between these two policies then becomes

sim(πi ,πt ) = |Rπi ∩Rπt |
|Rπi |

. (5.2)

If the logging and target policy are identical, i.e. πi = πt , offline evaluation of
πt on Dπi is effectively an online evaluation, as Rπt does not hold hypothetical
recommendations, but those that were actually shown to the user. On the other
hand, if πi and πt generate entirely disjoint sets of recommendations, evaluating
πt on Dπi will yield heavily biased results that disfavour πt . Intuitively, the effect of
this bias is correlated with sim(πi ,πt ). A similarity of 0.5, indicates that 50% of the
recommendations were actually shown at the time of data collection3. For a given
evaluation function f (D,R,πt ) that intends to evaluate the recommendations of πt

using D, we propose a variant f ′, obtained by partitioning the data according to the
logging policies and normalising according to their similarity with the target policy:

f ′(D,R,πt ) = 1

n

n∑
i=0

f (Dπi ,Rπi ,πt )

sim(πi ,πt )
. (5.3)

This formula can be decomposed even further, when normalising on a sample-by-
sample basis instead of once for every logging policy. We intend to investigate this
approach further from a theoretical basis, as well as empirically. Ideally, we wish to
validate whether this approach can debias results obtained through off-policy evalu-
ation, in situations where classical IPS weighting is not straightforward. This can
be achieved by studying the correlation between results of our proposed approach,
and those obtained through live A/B tests. Analogous to the IPS estimator presented
in Equation 5.1, our proposed Equation 5.3 is prone to several of the same pitfalls.
As sim(πi ,πt ) approaches 0, these estimators will tend to over-compensate. It might
prove beneficial, as is the case in IPS, to clip similarities to a given range or normalise
them, with the goal of decreasing the variance. Since these approaches share the
same intuitions, many of the proposed extensions to IPS can be studied with regards
to their applicability in this setting [19, 49, 52, 70]. The work of Steck [198] on tackling
popularity bias is also based on modelling bias, and normalising it in the evaluation
phase. When our proposed approach is theoretically and experimentally fine-tuned
and validated, interesting future work directions might open up on deriving novel
learning and optimisation procedures that are unbiased as well. Furthermore, by
studying the overlap between D and R, we can disambiguate organic user behaviour
(i.e. behaviour that was not instigated by a recommendation) and influenced user
behaviour (i.e. behaviour that was instigated by a recommendation). We believe a
better understanding of these different types of user behaviour will be useful to the
research field as well.

5.5 Conclusions

In this paper, we have presented the key differences between on- and offline evalua-
tion methodologies for implicit feedback recommender systems. We have motivated

3A possible extension would be to include the rank of the item in the recommendation list, instead
of representing the recommendations as bags-of-items. In this case, Jaccard index could be replaced by
e.g. Spearman’s rank correlation coefficient.
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the need for more effective offline evaluation strategies that are successful in predict-
ing online performance. To this end, we have formulated and discussed three main
research objectives: 1. temporal evaluation, 2. off-policy or counterfactual evalu-
ation, and 3. the use of more involved interaction data to improve upon currently
existing offline evaluation methods. For each of those areas, we summarised and dis-
cussed the state-of-the-art, identifying shortcomings and proposing promising areas
for future work. In the near future, we wish to incorporate the above-mentioned
extensions into our SW-EVAL approach [80].

Reflections

In this Chapter, we have laid out a research agenda for developing offline evaluation
procedures that are predictive of online success metrics. Arguably, from the results
presented in Chapter 4, we might infer that the issue of selection bias in logged
feedback is the most pressing. If no selection bias is present, this means that the
user-item interactions that are present in the dataset were not influenced by any
deployed recommendation system. We call this organic feedback. On the other end
of the spectrum, we can focus only on the user-item interactions that emerge from
system recommendations. We call this bandit feedback.

Online success metrics are typically (but not exclusively) computed on bandit
feedback, for which click-through-rates are the most prevalent example. Often
adopted offline evaluation metrics in the research literature tend to (but not exclu-
sively) assume organic feedback, for which examples include Recall and NDCG@K.
The broader machine learning literature has leveraged ideas from counterfactual
inference to compute purely offline estimators of online metrics, from bandit feed-
back. Computing such an estimator is an offline evaluation problem – finding the
policy that maximises that same estimator is an offline learning problem. It now
comes naturally that this unifying framework is a logical choice for designing offline
methods that directly target online success, and this makes up the core motivation
for the final Part of this thesis. Chapter 8 discusses methods that can jointly leverage
bandit and organic feedback, a promising area for future work.





Part III

Effective Learning from Bandit
Feedback



We must avoid false confidence bred from an ignorance of the probabilistic nature of
the world, from a desire to see black and white where we should rightly see grey.

From a misplaced faith in certainty, the fact that to our minds, 99 percent, even
90 percent, basically means 100 percent – even though it does not. Not really.

— Immanuel Kant



CHAPTER 6
Joint Policy–Value Learning for

Recommendation
Conventional approaches to recommendation often do not explicitly
take into account information on previously shown recommendations
and their recorded responses. One reason is that, since we do not know
the outcome of actions the system did not take, learning directly from
such logs is not a straightforward task. Several methods for off-policy
or counterfactual learning have been proposed in recent years, but their
efficacy for the recommendation task remains understudied. Due to the
limitations of offline datasets and the lack of access of most academic
researchers to online experiments, this is a non-trivial task. Simulation
environments can provide a reproducible solution to this problem.

In this work, we conduct the first broad empirical study of counterfactual
learning methods for recommendation, in a simulated environment. We
consider various different policy-based methods that make use of the In-
verse Propensity Score (IPS) to perform Counterfactual Risk Minimisation
(CRM), as well as value-based methods based on Maximum Likelihood
Estimation (MLE). We highlight how existing off-policy learning methods
fail due to stochastic and sparse rewards, and show how a logarithmic
variant of the traditional IPS estimator can solve these issues, whilst con-
vexifying the objective and thus facilitating its optimisation. Additionally,
under certain assumptions the value- and policy-based methods have
an identical parameterisation, allowing us to propose a new model that
combines both the MLE and CRM objectives. Extensive experiments show
that this “Dual Bandit” approach achieves state-of-the-art performance
in a wide range of scenarios, for varying logging policies, action spaces
and training sample sizes.1

1This chapter is based on work published in the Proceedings of the 2020 ACM SIGKDD Conference as
“Joint Policy-Value Learning for Recommendation” by Olivier Jeunen, David Rohde, Flavian Vasile and
Martin Bompaire [84].
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6.1 Introduction

Traditional approaches to recommendation are often based on some form of col-
laborative filtering on the user-item matrix containing organic user-item interac-
tions [116, 200, 189]. These are generally user-item-timestamp triplets, indicating
item purchases, clicks, views, et cetera. From rating- to next-item-prediction, such
methods have known widespread success [199]. Generally, they are oblivious to
whether actual recommendations were being shown to users in the data they learn
from. In a parallel research direction, computational advertising applications often
frame recommendation as an optimal decision-making problem, where the learning
step aims to build an explicit reward model for all (user, recommendation)-pairs and
the inference step chooses the best recommendation for the user given the learnt
model. Existing work on modelling the probability of clicking on recommendations
falls into this class, and publications on the subject traditionally originate from ad-
vertising research labs (see [137] for an overview). These approaches focus on bandit
feedback: interactions between users and recommendations being shown. There-
fore, this data is conditioned on the policy describing the existing recommender
system.

For both existing frameworks, the majority of new recommendation algorithms
presented in academic papers are evaluated on an offline dataset of logged user-item
interactions, with results reported for some offline ranking metric. Recent work
has shown repeatedly that offline evaluation results tend to diverge from online
performance [48, 177, 75]. Additionally, existing offline evaluation results are often
even contradictory over different runs and datasets, or extremely hard to reproduce
in a robust manner [32, 99]. From a practical or industrial point of view, a need arises
for offline evaluation methods that are robust, reproducible and closely related with
the actual online objectives of the deployed recommender system.

The reinforcement learning literature has long dealt with similar issues. Based
on logged data from a certain policy (recommender), we want to predict what the
performance would have been if another policy had been deployed. Counterfac-
tual estimators, often based on importance sampling [156], are at the heart of this
type of evaluation. Recent work has shown that they can accurately reflect online
performance in recommendation use-cases [49, 52].

We believe that the main reason why the value of bandit feedback is not further
explored in most recommendation research, lies in the datasets we use: the vast
majority of available offline datasets simply do not include information about the
recommendations that were shown, and whether the user interacted with them.
Naturally, we cannot learn from what we do not know. Some datasets containing logs
of historical recommendations and their outcomes do exist, mostly for the specific
task of click-through-rate (CTR) prediction. Nevertheless, they either do not include
propensity scores produced through adding randomisation at recommendation
time, which is often a requirement for unbiased learning and evaluation [19, 49], or
the variance induced by the propensities prohibits effective learning and evalua-
tion [106]. Recently, several simulation environments have been proposed for the
recommendation setting, allowing online experiments such as A/B-tests to be simu-
lated [176, 68]. They enable us to explore the use of bandit feedback for learning and
evaluation of recommender systems in a reproducible manner, and have opened up
promising new research directions. The value of such simulation frameworks has
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steadily gained more attention in recent research [82, 146, 180].

Moving on from evaluation, recent work [19, 211, 212, 88, 81, 129] explores
the problem of learning a new and optimal recommendation policy based on a
dataset consisting of logged bandit feedback. However, real-world recommender
systems tend to differ from the assumptions made in the existing work that studies
the use of bandit feedback for the problem off-policy learning or Counterfactual
Risk Minimization (CRM), in terms of the stochasticity and sparsity of rewards.
Furthermore, the size of the action space in real-world scenarios makes the choice
of problem formulations that result in convex objectives very attractive (due to the
existence of mature fast large-scale optimisation algorithms, such as L-BFGS [103]).
The technical contributions we present in this paper are the following:

(1) Analysis of the Convex Policy Lower-bound for Stochastic Rewards. We show
where existing off-policy learning approaches fall short, especially due to the inher-
ent stochasticity and sparsity of the reward process. We introduce a logarithmic
variant of the traditional Inverse Propensity Scoring (IPS) estimator that allows us
to map the objective to a convex problem, yielding a weighted multinomial log-
likelihood that lower bounds the original. Recent related work has introduced a
similar objective as a Policy Improvement Lower-bound (PIL) and a variance reduc-
tion technique [129]; we focus on its practicality in stochastic environments and
empirically show how it can improve performance. As the logarithmic transforma-
tion convexifies the objective, it facilitates its optimisation.

(2) Joint Policy-Value Optimisation. By presenting value- and policy-based meth-
ods in a common framework, we show that they have an identical parameterisation
under certain assumptions. This allows us to propose Dual Bandit (DB), a hybrid
learning objective that combines both Maximum Likelihood Estimation (MLE) and
Counterfactual Risk Minimisation (CRM) without introducing additional param-
eters, effectively unifying the value- and policy-based families. We show how it
effectively alleviates well-known problems such as propensity overfitting. Moreover,
standard off-policy learning methods do not take into account negative evidence
(i.e. non-clicked recommendations), which is solved through the value-based cross-
entropy term. Finally, we show that the DB approach achieves state-of-the-art
performance in a wide range of recommendation settings, for varying logging poli-
cies, training sample and action space sizes. The most interesting and realistic
results deal with large action spaces, finite samples, and limited randomisation,
which is exactly where the Dual Bandit shows its superiority.

(3) Reproducible Simulation Study. The empirical performance of counterfac-
tual learning methods has mainly been studied in multi-class [211, 88, 129] and
multi-label [212] classification environments where the bandit setting is simulated.
Recent work that focuses on the recommendation use-case adopts a supervised-
to-bandit conversion on existing datasets and custom simulated datasets that as-
sume deterministic rewards [128], or shows empirical success through live experi-
ments [25]. We conduct the first broad simulation study of both value-based meth-
ods based on MLE, and policy-based methods that rely on IPS to perform CRM
in stochastic recommendation environments. In order to aid in the reproducibil-
ity of the research presented in our work, we adopt the RecoGym environment
in our experiments [176]. All source code is available at https://github.com/
olivierjeunen/dual-bandit-kdd-2020.

https://github.com/olivierjeunen/dual-bandit-kdd-2020
https://github.com/olivierjeunen/dual-bandit-kdd-2020
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6.2 Background and Related Work

In what follows, we present an overview of the methods we consider in our com-
parison. As we focus on so-called bandit feedback, these methods make use of
action-reward pairs: recommendations that were shown and whether they were
interacted with. We discern two broad families: value- and policy-based methods.
The first aims to model the reward a certain action will yield, relying on classical su-
pervised learning approaches [63]. The latter directly models the actions that should
be taken in order to maximise the total cumulative reward a policy will collect. This
line of research is more closely related to the reinforcement learning (RL) field [208].
Value-based models and their variations are often referred to as Q-learning in the RL
community.

We assume to have access to a dataset of logged bandit feedback D, consisting of
N tuples (xi , ai , pi ,ci ). This data has been collected under some stochastic logging
policy π0 that describes a probability distribution over actions (recommendations),
conditioned on some context. Here, xi ∈Rn describes the user state or context vector.
Although this vector can be of arbitrary dimension, we will assume it to be a vector
of length n containing counts of historical organic interactions with items for fair
comparison and simplicity. ai ∈ {1,2, . . . ,n} is a scalar identifier representing the
action that was taken (i.e. the item that was shown when the system was presented
with context xi ), we denote the corresponding one-hot encoded vector as ai . The
probability with which that action was taken by the logging policy is denoted by
pi ≡ π0(ai |xi ) ∈ [0,1]. The observed reward (whether the user interacted with the
presented recommendation) is represented as ci ∈ {0,1}.

Value-based Approaches

The most straightforward method is to first perform statistical inference through
Maximum Likelihood Estimation (MLE) and then do decision making in a separate
step, bypassing the empirical/counterfactual risk minimisation principles. If the re-
ward is a binary variable, then a logistic regression model is appropriate, as shown in
Equation 6.1. This formulation can be naturally extended to include more advanced
likelihood-based models such as deep neural networks.

P (C = 1|x, a,β) =σ((x⊗a)ᵀ [(]β)+b) =σ(xᵀβ·,a +b) (6.1)

Here, β ∈ Rn×n are the model parameters where β·,a are those corresponding
to predictions for action a. σ(·) is the logistic sigmoid, ⊗ is the Kronecker product
and [(] ·) vectorises the matrix into a column vector.2 The intercept or bias-term is
denoted by b. As it is a single constant scalar for all context-action pairs, it does not
have any impact on the ranking of competing actions or the actual decision making
process. Nevertheless, it positively impacts the quality of the fitted model [63].
We ensure fair comparison with the other approaches: all consist of exactly n2

parameters that impact the resulting decision rule (excluding hyper-parameters,
that is). Optimising the binary cross-entropy or negative log-likelihood of this model
with respect to a historical dataset yields the objective shown in Equation 6.2.

2We implement the rightmost formula as it is equivalent to, but computationally significantly less
expensive than explicitly computing the Kronecker product.



6.2. BACKGROUND AND RELATED WORK 93

β∗ = argmax
β

N∑
i=1

ci ln
(
σ(xᵀi β·,ai

+b)
)

+(1− ci ) ln
(
1−σ(xᵀi β·,ai

+b)
) (6.2)

Once the model parameters have been fitted, we can obtain a greedy decision
for a given context x by performing the action a∗ with the highest probability of
leading to a positive reward. Naturally, this requires n model evaluations followed
by an arg-max operation:

a∗ = argmax
a

P (C = 1|x, a,β) = argmax
a

xᵀβ·,a . (6.3)

We often fit simpler (for example, linear) models to capture more complex rela-
tionships. When doing this, the model underfits the data as it is unable to capture
the true relationship. When a standard MLE approach is used, the error due to
the underfitting will be minimised around common occurrences of (x, a). If the
distribution of (x, a)-pairs in the historical training data differs from those in the
test set, this leads to a phenomenon widely known as covariate shift [191]. As we
generally wish to learn a new policy that improves upon the logging policy, it will
take different actions by definition, and covariate shift is inevitable.

One general solution to this issue is to make use of importance sampling [156],
and reweight samples to adjust for the difference in the distribution of past actions
(as per the logging policy) and future actions (which we will evaluate uniformly in
this case, as that is exactly what we do with the argmax-operation over actions in
Eq. 6.3). Practically, this is achieved by reweighting samples (xi , ai ,ci ) in Equation 6.2
by the inverse propensity score of the logging policy during maximum likelihood
estimation: wi = 1

π0(ai |xi ) .
Value-based methods estimate the likely reward for each action. Due to the

logging policy, the quality of this estimate can vary dramatically. The estimation
uncertainty will be low for actions performed often by the logging policy, but poor
otherwise. As the action is selected by selecting the maximum value, the policy
may be disrupted badly by a single erroneously optimistic estimate; a phenomenon
known as optimiser’s curse [194]. In recommender systems, the action space can
be large and the size of the training sample and amount of randomisation are often
limited. Because of this, these problems are very tangible in a real-world setting.

Policy-based Approaches

Value-based methods model the probability of a click (value), given a context-action
pair. Policy-based methods, on the other hand, bypass this step and directly map a
context to a decision rule.

Contextual bandits are one example of such a method, directly modelling the
probability of an action, conditioned on a context vector. This is shown in Equa-
tion 6.4, where θ ∈Rn×n are the model parameters.

P (A = a|x,θ) =πθ(a|x) = exp(xᵀθ·,a)∑n
j=1 exp(xᵀθ·,a j )

= [softmax(xᵀθ)]a (6.4)
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Consistent with the work of Bottou et al. [19] and Swaminathan and Joachims [211],
this formulation focuses on learning policies that are parametrised as exponential
models (i.e. going through a softmax). The goal at hand is to learn a policy that
chooses the optimal action given a context x, i.e. the policy that maximises the
reward we would have gotten when πθ was deployed instead of the logging policy π0.
In our setting, this reward can be interpreted as the absolute number of clicks. Equa-
tion 6.5 formalises this counterfactual objective, which can be optimised directly.
Essentially, contextual bandits try to replay decisions that worked in the training
sample. From a learned stochastic policy πθ , a deterministic decision rule can easily
be deduced as shown in Equation 6.6.

θ∗ = argmax
θ

N∑
i=1

ci
πθ(ai |xi)

π0(ai |xi)
(6.5)

a∗ = argmax
a

P (A = a|x,θ) = argmax
a

xᵀθ·,a (6.6)

Note that if we let β ≡ θ, the decision rule in Equation 6.3 is identical to the
decision rule in Equation 6.6. Although the optimisation problems given in Equa-
tions 6.1 and 6.4 are quite different: maximum likelihood ignores the IPS score,
and the contextual bandit ignores the non-clicks. The likelihood-based approach
attempts to model the click for every action, whereas the contextual bandit simply
attempts to identify the best action. This common parameterisation will motivate
the “Dual Bandit” method we present later in this work, a principled approach to
jointly optimise these two objectives.

Inverse Propensity Scoring (IPS) is a powerful technique that allows for counter-
factual optimisation. When the target policy πθ and the logging policy π0 diverge,
however, IPS-based estimators tend to have very high variance and be unreliable for
policy learning. Several extensions to the classical estimator have been proposed,
trading variance for bias. Clipping the propensity ratios to a maximum value or self-
normalising them are common practices. The most notable recent extensions to this
formulation are POEM [211], BanditNet [88] and PIL-IML [129]. They respectively
include additional terms for sample variance penalisation (SVP), self-normalisation
(SNIPS) or imitation learning (IML). Conceptually, they all restrict the newly learned
policy to not stray too far from the logging policy, as the uncertainty on rare actions
brings along high variance on the performance. Originally introduced by Swami-
nathan and Joachims, we refer to these approaches as performing some form of
Counterfactual Risk Minimisation (CRM).

Recent related work has linked IPS techniques to policy gradient methods such
as REINFORCE [234]. These approaches aim to maximise the expected cumulative
reward over a certain time horizon, and were extended to handle specific cases such
as top-K recommendation [25] and two-stage recommendation pipelines [128].
For the binary, immediate reward use-case we tackle in this paper, maximising the
expected reward via REINFORCE yields the same result (that is the same policy) as
optimising the IPS objective given in Eq. 6.5. Ma et al. draw further connections
between their objective and natural policy gradients; we refer the interested reader
to Appendix E in their work [129]. Table 6.1 shows an overview of the discussed
methods.
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Several additional counterfactual estimators have been proposed in the litera-
ture, such as the Direct Method (DM) and Doubly Robust (DR) [36], More Robust
Doubly Robust (MRDR) [43], Continuous Adaptive Blending (CAB) [205] and oth-
ers [228, 255]. These works either focus on evaluation instead of learning (as they are
non-differentiable), or they include an additional regression model that estimates
the reward δ(x, a) for a given context-action pair. As such, they are out of scope
for this study.3 Additionally, contextual and multi-arm bandit approaches with
online model updates have been thoroughly studied. Some notable approaches
are [112, 23, 114]. In contrast with these methods, the models we discuss in this
work are entirely off-policy and lack any interactive component.

As we will discuss in depth in the following section, recommender system logs
are stochastic in nature. Probabilistic models propose a way of naturally handling
uncertainty. When sophisticated priors are used, Bayesian methods can perform
well in modelling complex relationships with small samples. For the related rec-
ommendation task of rating prediction, Bayesian approaches have recently been
shown to robustly obtain state-of-the-art performance [181, 170]. In the case of
top-N recommendation from organic user-item interaction data, recent variational
methods consistently attain impressive results as well [116, 189, 32]. Sakhi et al. pro-
pose a probabilistic approach to combine both organic and bandit signals in order
to improve the estimation of recommendation quality in a Bayesian latent factor
model [180]. Further exploring such models and their applicability in off-policy
recommendation settings is a promising avenue for future research.

6.3 Learning for Recommendation

The performance of most methods discussed in this work has been empirically vali-
dated for multi-class [211, 88, 129] or multi-label [212] classification environments,
which simulate a “Batch-Learning from Bandit-Feedback” (BLBF) context. The pol-
icy performs an action (guesses a class or label), and observes the reward (the guess
is either correct or incorrect). Other work has adopted these supervised-to-bandit
conversions to mimic the recommendation task as well [128]. Assuming we have
more than one item in the catalogue that is of interest to the user, the recommenda-
tion use-case is indeed most closely aligned with the multi-label setup. Several key
differences remain, which we tackle throughout the rest of this section:

(1) Stochastic vs Deterministic Rewards. Previous work has always been evaluated
in experimental set-ups where the reward is deterministic: if a model makes decision
a when presented with context x, the observed reward c will always be exactly the
same. This (often implicit) assumption does not hold in real-world recommendation
settings: users may click (or conversely, refuse to click) on shown recommendations
for any number of reasons. As it is intractable for all factors on which the reward c is
dependent to be included in the context-vector x, the rewards conditional on the
known context-features will always be stochastic.

(2) Sparse Rewards and Low Treatment Effects. CTR measurements in real-world
systems can be notoriously low, skewing the estimates. When the training log D

contains tuples for the same context-action pairs with different observed rewards,

3Note that the Dual Bandit method we propose later in this work also induces a regression model,
but does this without introducing additional parameters.
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however, the information embedded in the clicks is often more valuable than the
non-clicks, although the latter will make up the vast majority of the logged samples.
Furthermore, the difference between the empirical best and second best arms might
not always be large. As such, solely focusing on the empirically best action is not an
optimal strategy.

(3) Large Action Spaces. Recommender systems typically deal with vast item
catalogues. Previous experimental validation of these methods has focused on
setups where the number of actions (classes, labels, documents, . . . ) is at most a few
dozen. Their practicality in very large action spaces remains understudied.

Logarithmic IPS for Stochastic Rewards

Rationally, we could assume the true reward to be drawn from some Bernoulli-
distribution with parameter q relative to the relevance of the taken action; but
relevant actions will not always lead to clicks, and a click does not necessarily imply
that the performed action was the most relevant option. Estimating this parameter
q is an indubitably harder task than the deterministic case, requiring larger training
samples and leaving us vulnerable for common pitfalls such as the optimiser’s
curse [194].

The counterfactual objective function in Equation 6.5 describes an empirical
IPS-estimate of the reward that πθ would incur based on data collected under π0,
given a historical dataset D. We denote this estimator as R̂IPS(πθ,D), and drop
parentheses and arguments when they are clear from context.

R̂IPS(πθ,D) = 1

N

N∑
i=1

ci
πθ(ai |xi )

π0(ai |xi )
(6.7)

This objective leads to a “winner takes it all” scenario, where the optimal policy
puts all its mass on the actions that obtained the highest empirical reward in the
finite training sample – provided the capacity of the policy space allows for this
to happen. We argue that this can lead to sub-optimal policies in the stochastic
scenario, as positive samples for the empirically “second best” actions are simply
ignored. This behaviour has recently been studied in top-K recommendation sce-
narios [25]; we focus on top-1 recommendation.

In supervised learning, it is common practice to optimise a surrogate loss func-
tion instead of a direct metric (hard classification error, for example). Through
Jensen’s inequality, we can derive a lower bound of the traditional IPS estimator
(R̂IPS) that uses a logarithmic transform on the likelihood.4 Intuitively, this is equiv-
alent to optimising the log-likelihood of a multinomial logistic regression model
where each observation has been weighted by wi = ci

π0(ai |xi ) . We refer to this log-

arithmic estimator as R̂ln(IPS) and present it in Equation 6.8. Recent related work
introduced this equivalently as a policy improvement lower-bound [129, 122]. These
works primarily focus on model misspecification and multiple iterations of log-
ging and learning, whereas we study the impact of the transformation in stochastic
environments.5

4A derivation can be found in the reproducibility appendix.
5See [129] and its appendices to link the logarithmic estimator to existing variance reduction tech-

niques such as capped IPS, SVP, SNIPS, and others.
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Figure 6.1: R̂ln(IPS) penalises the learned policy for missing actions that led to posi-
tive rewards in the training sample. Maximising this empirical estimator for a toy
example training sample with 2 clicks on action a and 1 click on action b leads
to more proportional allocation compared to R̂IPS (assuming a uniform π0). For
deterministic multi-class or multi-label settings, both estimators share optima.

R̂ln(IPS)(πθ,D) = 1

N

N∑
i=1

ci
ln(πθ(ai |xi ))

π0(ai |xi )
(6.8)

In combination with the exponential parameterisation in Equation 6.4, this
logarithmic objective leads to a proportional allocation of probability mass. It can
be readily plugged into existing policy learning methods described in Section 6.2.
As it forces the model to include positive samples for all actions instead of the
empirically best action only (limP→0 ln(P ) =−∞), we expect and empirically observe
that this leads to 1. less overfitting, and 2. more robust performance. Furthermore,
computations in the log-space improve the numerical stability of the optimisation
procedure. Negative log-likelihood or cross-entropy (as also used in Equation 6.2
and widely adopted in classification and deep learning) is commonly used in these
settings, as it transforms the objective to be convex, and thus easy to optimise at
large scale.

In policy gradient methods such as REINFORCE, a common way to optimise
the objective consists of performing a gradient step involving the logarithm of the
policy [209]. Also called the “log-trick” or “log derivative trick”, this technique is
by nature very different from ours. Indeed, the “log derivative trick” is a way to
compute an unbiased estimate of the gradient of the expected reward under the new
policy. Hence, using this trick does not change the optimised objective. In our case,
the logarithmic transform changes the objective and moves the global optimum.
Figure 6.1 visualises how this transforms the objective when the reward is stochastic,
or the model misspecified.

Joint Policy-Value Optimisation

Policy-based approaches can suffer from so-called propensity overfitting, where the
learning objective is trivially optimised by missing the observed data [212]. To see
this, suppose we would transform Eq. 6.5 to a minimisation of non-clicks instead of
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a maximisation of clicks. The result of this transformation would be that putting 0
probability mass on all observed π0(a|x) trivially minimises the objective, although
it would clearly not lead to better generalisation capabilities. Indeed, learning to
avoid actions does not imply learning which actions to take. These types of issues
are generally avoided through the use of a SNIPS estimator, which includes a multi-
plicative control variate in the IPS estimator that heavily penalises this behaviour.
BanditNet optimises a Lagrangian form of this estimator and achieved promising
results in a deterministic multi-class bandit setting [88]. By introducing translations
to the binary reward, it opens up opportunities for learning from negative samples;
as can be seen from Eq. 6.5, probabilities for 0-reward actions (ci = 0) have no direct
impact on the objective. However, as the optimal Lagrange multiplier γ could be 0,
this is not a guarantee; which is exactly what we observed in our empirical results.

Another way of limiting the issue of propensity overfitting is by introducing an
IML term to the objective, as done in PIL-IML [129]. By penalising the objective
with the Kullback-Leibler divergence between the learned and logging policies, it
effectively favours those policies that imitate π0. In most of their experimental
setup, π0 is a value-based linear model. Therefore, π0 holds information on the
non-clicked training samples and learning to imitate π0 indirectly transfers this
signal to the learned policy. It is clear to see that the quality of the policy learned
through such an optimisation procedure is highly dependent on the quality of π0,
and that it might have adverse effects for highly skewed logging policies (e.g. an
ε-greedy based approach). Note that this type of soft constraint where the learned
policy should be “similar” to the logging policy is also induced by other common
techniques, such as the variance regularisation method adopted in POEM [210].

As pointed out in Section 6.2, value- and policy-based methods can be formu-
lated such that they have an identical parameterisation (Equations 6.6 and 6.3).
This allows us to present a combined MLE-CRM objective that optimises a weighted
average of the two. Due to the softmax-formulation from CRM, the model will be
less prone to over-estimate under-explored actions. The logistic likelihood term can
be seen as a regularisation term that ensures the dot-product between x and θ·,a
is low for un-clicked (x, a) samples in the training data, information that standard
policy-based methods fail to exploit. We call this joint objective “Dual Bandit”, as
it provides a principled way to combine the best of the value- and policy-based
worlds, whilst alleviating their individual weaknesses. Equation 6.9 shows the novel
objective, where 0 ≤α≤ 1 is a hyperparameter that controls the influence of the log-
likelihood on the final estimate. As such, both the contextual bandit and likelihood
approaches can be seen as special cases of the dual bandit model, for α = 0 and
α= 1 respectively. The contextual bandit aims to learn a probability distribution
over n items, and its objective can be interpreted as the expected number of clicks
under the new policy. The likelihood approach aims to learn whether an action led
to a click, where the objective reflects whether the training sample supports the
model parameters. Due to this disparity, α will act as a rescaling factor on top of a
blending parameter. Keeping this in mind, higher values of α don’t map linearly to
higher importance of the likelihood approach compared with the contextual bandit.
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θ∗ = argmax
θ

(1−α)

(
N∑

i=1
ci

P (A = ai |xi ,θ)

π0(ai |xi )

)

+α
(

N∑
i=1

ci ln(P (C = 1|xi , ai ,θ))+ (1− ci ) ln(1−P (C = 1|xi , ai ,θ))

)

= argmax
θ

(1−α)

(
N∑

i=1
ci

[softmax(xᵀi θ)]ai

π0(ai |xi )

)

+α
(

N∑
i=1

ci ln
(
σ(xᵀi θ·,ai +b)

)+ (1− ci ) ln
(
σ(xᵀi θ·,ai +b)

))
(6.9)

As minimising πθ(a|x) for all seen (x, a)-pairs will negatively impact the cross-
entropy until it dominates the objective, this solves propensity overfitting as well.
Unlike the NormPOEM-objective introduced by Swaminathan and Joachims [212],
our objective decomposes into a sum over the observed samples. Because of this,
it is perfectly suitable for optimisation through stochastic methods such as SGD
and, as a consequence, applicable to large-scale problems and training deep neural
networks. In this sense it is similar to BanditNet [88], but the Dual Bandit formulation
additionally guarantees the inclusion of un-clicked samples in the model. Naturally,
the IPS estimator in the first term can be replaced by the logarithmic IPS estimator
introduced in Equation 6.8, or any other counterfactual estimator provided they
are continuous and differentiable. SVP or IML terms could be naturally included
in the objective, but our experiments show that the Dual Bandit is already highly
competitive without them.

6.4 Experimental Results

In what follows, we experimentally validate the efficacy of counterfactual learning
approaches presented in previous and this work, with a focus on the task of recom-
mendation. In order to evaluate these approaches effectively, we need a dataset
containing logged feedback for context-action pairs, along with the logging propen-
sity for the action performed. Related work has evaluated counterfactual learning
methods on multi-class, multi-label or LTR tasks [211, 212, 88, 71], synthetically gen-
erating bandit feedback samples for a certain logging policy and existing datasets.
What makes the recommendation task fundamentally different from the aforemen-
tioned settings, is that access to the true labels (i.e. how likely a user is to click on
a given recommendation) becomes impractical, and effective offline evaluation
thus much less straightforward. Recent work that focuses on the recommendation
use-case adopts a supervised-to-bandit conversion on existing datasets, and custom
simulated datasets that assume deterministic rewards [128], or shows empirical
success through live experiments [25]. In order to aid in the reproducibility of the re-
search presented in our work, we adopt the RecoGym simulation environment in our
experiments [176]. RecoGym provides functionality to generate offline logs under a
given logging policy (for training and/or evaluation), and allows for the opportunity
to simulate online experiments such as A/B-tests. More information regarding the
specific setup of our experiments can be found in the reproducibility appendix.
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All the methods discussed throughout this work are optimised with the full-batch
L-BFGS algorithm, in order to avoid the choice of optimiser to be a confounding
factor. Although some of the objectives presented in this work are non-convex and
non-smooth, the choice of L-BFGS is theoretically well-supported [244, 111] and
has been empirically shown to yield good performance in previous work [103, 212].
We aim to answer the following research questions:

RQ1 How does the logarithmic IPS (or PIL) estimator R̂ln(IPS) impact existing off-
policy learning methods?

RQ2 How do the various methods presented in this paper compare in terms of
performance in a recommendation setting?

RQ3 How sensitive is the performance of the learned models with respect to the
quality of the initial logging policy π0?

RQ4 How do the number of items n and the number of available samples N influ-
ence performance?

Logging policies

We now describe the logging policies that we employ to generate logged bandit
feedback samples that serve as the training datasets to our methods.

Uniform. The uniform logging policy chooses its actions uniformly at random.
Thus, every item’s probability of being recommended is πuniform(a|x) = 1

n , indepen-
dent of the context. As a consequence, IPS reweighting does not have any impact,
because all the weights would be identical. Data logged uniformly at random con-
tains no biases, and learning from it is a considerably easier task than otherwise.
Nevertheless, real-world data will usually not be logged under this type of policy, as
complete randomisation can significantly impair user satisfaction. It is an idealised
and unrealistic setting, but it provides interesting insights nonetheless.

Popularity-based. A simple yet effective baseline policy is to sample actions with
probabilities proportionate to the occurrence frequency of the item in the user’s
historical organic interactions. In a toy setting with 3 products and a user state of
[3,1,0], this means we sample item 1 with probability 3

4 , item 2 with probability 1
4 ,

and we don’t sample item 3. In general, for a user history x, πpop(a|x) = xa∑n
i=1 xi

. This

policy does not have full support over the item catalogue, violating the assumptions
that guarantee importance sampling to yield an unbiased estimate [156]. As a
consequence, learning an effective policy from data logged under such a policy can
become problematic (especially for value-based methods). This can be mitigated
by adopting an ε-greedy scheme: with probability ε, take an action uniformly at
random; with probability 1− ε, sample from the original probability distribution.
Clearly, when ε= 0, this reverts to the original policy. Although learning from data
logged under a policy that does not have full support over the item catalogue loses
some theoretical guarantees, we believe it to be closer to a realistic environment.
In many real-world use-cases, various items may be non-recommendable, due
to recency, stock, licensing, business rules, et cetera. Furthermore, as real-world
item catalogues are usually vast, it is realistic to randomise over a smaller set of
candidate items. To reflect these real-world constraints, we include both variants in
our experiments.
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Figure 6.2: Experimental results from a range of A/B-tests for different settings in
the RecoGym environment. Every column corresponds to a different logging policy,
rows correspond to action spaces with n ∈ {10,25,100}. The size of the training
sample is increased over the x-axis, the y-axis shows the average attained CTR over 5
runs, along with the 95% confidence interval.

Discussion

We simulate A/B-tests for varying amounts of training data logged under the different
policies presented in the previous subsection, and report the approaches’ attained
CTR measurements in Figure 6.2. A more in-depth overview of our experimental
setup can be found in the reproducibility appendix. The logging policy is denoted as
π0, an oracle policy that always performs the action with the highest probability of
leading to a click is shown as π∗. While such a skyline is unattainable, it is interesting
to analyse the regret of the competing methods. We do not show the horizontal
skyline on the row corresponding to n = 100 as it skews the y-axis limit of the plots,
but it occurs around 2.44%. All reported results are averaged out over multiple runs,
and show the 95% confidence interval.

As discussed in Section 6.2, the “CB” objective is equivalent to a policy gradient
method with a single-step horizon. “Log-CB” corresponds to the PIL-IML objec-
tive [129], without an accompanying IML term. As we don’t suffer from propensity
overfitting in this setup, and most logging policies are severely skewed, our hyper-
parameter tuning procedure showed the optimal weight for this term to be 0. This



6.4. EXPERIMENTAL RESULTS 103

was also the case for the Lagrange multiplier λ from BanditNet [88], reverting it back
to the CB formulation. “Log-POEM” is POEM with the logarithmic estimator, “DB”
and “Log-DB” are the Dual Bandit objective for the traditional and lower-bound
estimators respectively. Every column represents a different logging policy. From
left to right, these plots can be interpreted as going from the “most” to “least” re-
alistic settings. Every row represents a differently sized action space, going up to
100. Larger action spaces are very relevant to the recommendation use-case, and
we wish to study the generalisability of our results to them in future work. From
a scalability perspective, this would require several adaptations to be made to the
model formalisation in Section 6.2.

Effects of the Convex Policy Lower-bound (RQ1) We observe that the logarithmi-
cally transformed estimator positively influences results for both the popularity-
based and the uniform logging policy. Moreover, we observed much more stable
learning behaviour over various runs when using R̂ln(IPS). As we increase the num-
ber of users in the training data, the performance of methods trained using R̂ln(IPS)

consistently improves. Methods using R̂IPS showed far less consistent behaviour, as
well as more variance across runs. This is consistent with the findings from Ma et al.,
as they primarily use the logarithm as a variance reduction technique. Aside from
that, the logged estimator forces the model to take positive samples for all actions
into account, leading to less overfitting on solely the best empirical actions.

While still improving over the logging policy and showing consistent behaviour,
R̂ln(IPS) hurts performance for the ε-greedy logging policy. Because it does not allow a
single clicked sample to be missed, it is all the more sensitive to clicks on rare actions
that might actually be suboptimal recommendations. Recent work on addressing
click noise due to trust bias might provide a way of handling noisy training data in
policy learning too [5].

Our experiments deal with the setting where the logging propensities π0(a|x)
are known and exact. As a consequence, there isn’t always a need to be conservative,
which is what the convex lower bound does. Related work addresses settings where
the logging propensities are unknown, learning an approximate π̂0 alongside their
new policy [25]. In combination with highly stochastic rewards and small treatment
effects, distinguishing the empirically optimal action becomes even more trouble-
some and noisy (see Fig. 6.1, for larger sample sizes, small variations on π̂0 may
entirely flip the optimum). We expect the conservative logarithmic estimator to
prove its worth even further in these settings.

Performance comparison (RQ2-4) Key observations from these results are the
following: 1. In virtually all settings, the Dual Bandit approach achieves the best
performance. Gains are the most tangible in cases where the logging policy does
not randomise over the entire action space, as this is where classical value-based
methods tend to fail. Policy-based methods can still improve upon the logging
policy in these cases, but their performance does not seem to greatly improve with
the size of the training sample. The Dual Bandit exhibits significant benefits over
solely using value- or policy-based approaches. This suggests these families are
complementary, and capture different relationships from the data. 2. As the logging
policy randomises more uniformly, the performance of competing methods tends
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to converge. A logging policy with support over the entire action space positively
influences the performance of the value-based approaches, but the Dual Bandit
either improves or reproduces their performance (forα= 1). 3. In many cases, SVP as
used in POEM has a positive impact on the traditional contextual bandit approach,
but the regularisation strength λ is not straightforward to tune. The parameter is
essentially unbounded and highly dependent on the variance in the data. An SVP
term could straightforwardly be added to the DB objective. IPS reweighting for MLE
disturbs the stability of the method, providing mixed results. In the majority of the
cases, it causes a significant drop in performance. 4. Most of the compared methods
gain significantly in performance when the size of the training sample increases. For
sufficiently large enough samples, we expect all methods to slowly converge to the
optimum. The most interesting and realistic results deal with large action spaces,
finite samples, and limited randomisation, which is exactly where the Dual Bandit
shows its superiority.

6.5 Conclusions

In this work, we have motivated the use of methods that exploit bandit feedback for
recommendation tasks. Due to the limitations of offline datasets, we introduced
simulation environments as an alternative and reproducible evaluation approach.
We have presented an overview of the state-of-the-art in counterfactual learning,
reviewing commonalities and key differences in existing algorithms. In doing so, we
highlighted the fact that value- and policy-based approaches can be formulated with
an identical parameterisation. This insight enabled us to propose a new combined
MLE-CRM objective, aiming to unify both families. Various experiments underline
the superiority of this Dual Bandit approach, excelling the most in the presence
of finite samples and limited randomisation. Additionally, we discussed specific
properties of the recommendation task such as stochastic and sparse rewards, small
treatment effects, and large action spaces. To effectively deal with some of these
issues, we introduced a logarithmic variant of the conventional IPS estimator and
empirically show how it can further improve performance in the right environments
but hurt in the wrong ones, connecting it to analogous findings in related work.
Our findings represent the first general empirical study of the use of counterfactual
techniques in a bandit-feedback recommendation scenario.

We believe that our work opens up many interesting directions for future re-
search. First, we wish to include additional recent an advanced policy learning and
evaluation methods in our comparison, such as DM, DR, MRDR, CAB and others.
We specifically wish to further explore the relation between DR and our Dual Bandit
approach. Second, the limitations of value-based approaches can be handled in
other ways than we presented. Probabilistic models and Bayesian approaches that
incorporate priors are a way forward in this aspect, as they can naturally handle the
uncertainty that arises in recommendation scenarios. All the models discussed in
this work require O (n2) parameters. By using latent embeddings for the user-state,
we could significantly reduce the parameter space to O (kn). This would enable
much larger action spaces to be considered, and is very relevant to the recommen-
dation use-case. As the quality of the learned models is then also dependent on the
quality of the embeddings, we leave this for future work. Finally, we can extend the
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value-based methods we compare in this work to higher-order models with non-
linearities such as deep neural networks, and extend our analysis to include recent
advances in counterfactual learning for top-K recommendations [25], two-stage
recommendation pipelines [128], or multiple iterations of logging and learning,
touching on the exploration-exploitation trade-off.

Reflections

The overview presented in this Chapter maps ideas and methods from the broader
machine learning field to the specific problem of recommendation. In order to keep
things focused – many simplifying assumptions were made that should be tackled in
order to properly represent a real-world use-case. Dealing with slate instead of single-
item recommendations, as well as more dynamic environments make up interesting
avenues for future work that fit the spirit of this thesis. Moreover, although the
“Dual Bandit” objective is empirically motivated and validated, a deeper theoretical
perspective on the connections with doubly robust methods would be interesting
and valuable.
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6.6 Reproducibility Appendix

In what follows, we describe our experimental set-up in further detail. We make use
of publicly available simulators to aid in the reproducibility of our work. Implemen-
tations of all methods are written in Python3.7, using PyTorch [162].6

Derivation of R̂IPS lower bound

We derive the lower bound for the empirical IPS estimator as follows:

R̂IPS(πθ,D) =
n∑

i=1

ci

π0(ai |xi )
πθ(ai |xi )

= 1∑n
i=1

ci
π0(ai |xi )

n∑
i=1

ci

π0(ai |xi )

n∑
i=1

ci

π0(ai |xi )
πθ(ai |xi )

=
n∑

i=1

ci

π0(ai |xi )

n∑
i=1

ci

π0(ai |xi )

1∑n
i=1

ci
π0(ai |xi )

πθ(ai |xi )

Subsequently taking the logarithm and applying Jensen’s inequality (that says
log(E(x)) ≥ E(log(x)), we have that:

log(R̂IPS(πθ,D)) ≥ log
( n∑

i=1

ci

π0(ai |xi )

)
+

n∑
i=1

ci

π0(ai |xi )

1∑n
i=1

ci
π0(ai |xi )

log(πθ(ai |xi ))

The RecoGym Environment

We make use of the RecoGym simulation environment in our experiments [176].7 An
OpenAI Gym-inspired framework, it provides a standard, robust and reproducible
way of evaluating recommendation approaches through simulation. It provides
functionality to generate offline logs under a given logging policy (for training and/or
counterfactual evaluation), and additionally allows for the opportunity to simulate
online experiments such as A/B-tests [82]. Below, we provide an overview of the ac-
tual simulation framework behind RecoGym. Note that this is not our contribution,
and all merit should go to the authors of the original paper [176]. We merely aim to
provide a comprehensive overview of its inner workings for the interested reader, as
the original paper only presents it from a higher level perspective.

Users and items are modelled via an underlying latent-factor model, as is widely
accepted in the literature [98]. When the environment is set up, the system generates
an embedding consisting of k latent factors for every item. These embeddings are
represented in a real-valued matrixΓ ∈Rn×k and drawn from a multivariate Gaussian
distribution centred around 0 with unit variance: Γ ∼ N (0,1). A notion of item
popularity is modelled as an additive bias per item: µ ∈Rn , normally distributed with
a configurable variance: σ2

µ. Γ and µ directly impact how users organically interact

6Source code available at https://github.com/olivierjeunen/dual-bandit-kdd-2020.
7https://github.com/criteo-research/reco-gym

https://github.com/olivierjeunen/dual-bandit-kdd-2020
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Parameter k σµ σu n

Value 5 3 0.1 {10,25,100}

Table 6.2: Parameter configurations for the RecoGym environment we used for our
experiments.

with these items. The RecoGym authors argue that a given user’s bandit behaviour
for an item would be different, but similar to the organic behaviour between that user
and item. The rationale being that users’ natural browsing behaviour and reactions
to recommendations are related, but not an exact one-to-one mapping. As such,
bandit embeddings and popularities are obtained by performing a transformation f
on the organic parameters: B ,µ

′ = f (Γ,µ). We will not go further in-depth on how
this transformation f is performed, and refer interested readers to the RecoGym
source code for further information.

Users are described by vectors that conceptually reside in the same latent space
as the items. That is, a user embedding ω ∈ Rk is sampled from a multivariate
Gaussian distribution with configurable variance: ω∼N (0,σ2

u). Users are simulated
sequentially and independently. The behaviour of a single user is modelled as a
Markov chain, being either in an “organic” or “bandit” state. The organic state
implies the user is currently browsing the item catalog, and generates organic user-
item interactions. The bandit state on the other hand requires interventions from
the agent, and generates the labeled training data we use for learning throughout
this work. We use the default values for the state transition probabilities.

The next item a user views organically is sampled from a categorical distribution,
where the individual probabilities for every item are proportional to how similar the
user and the respective item’s latent organic embeddings are. Formally, given u we
draw

i ∼ Categorical(ρ), where ρi ∝ exp(ωΓᵀi ,·+µi ).

When an action a is performed by an agent, the probability of it actually leading
to a click is Bernoulli-distributed, with the probability of success being dependent
on the similarity between the user and the recommendation’s bandit embedding:

c ∼ Bernoulli(p), where p ∝σ(ωBᵀ
a,·+µ

′
a).

Naturally, consistently taking the action a∗ with the highest probability of leading to
a click leads to an optimal recommendation policy:

a∗ = argmax
a

ωBᵀ
a,·+µ

′
a .

This is exactly the skyline policy π∗ shown in Figure 6.2. Naturally, none of these
parameters are accessible to the learning algorithms we consider in our work: all
they observe and learn from are the (x, a, p,c)-samples as introduced in Section 6.2.
Furthermore, the relation between the user history of organic interactions x and the
probability of a click for a given action is non-linear, whereas all the approaches we
study model them as such.
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Experimental Setup

Here, we list the details for the experimental setup used throughout Section 6.4.
We vary the number of items n ∈ {10,25,100}. As we model users in a bag-of-word
fashion and our models consist of n2 parameters, this prohibits us to increase n
significantly. Modelling users with latent embeddings is a solution for this, but falls
outside the scope of this work. Our experimental observations are general and trans-
late to larger action spaces, with the exception that effect sizes typically diminish.
The number of unique users in the training sample varies in {1 000, 2 000, 4 000,
6 000, 8 000, 10 000 12 000, 14 000, 16 000}. These settings lead to anywhere 80 000
and 1 280 000 bandit feedback samples. The empirical CTR for the logging policy in
the training data varies from 1.1% to 1.4%, yielding a wide spread between roughly
10 and 1 800 positive samples per item on average. Every contending method was
trained until convergence and subsequently tested in a simulated A/B-test with
10 000 users. This process was repeated with 5 different random seeds, aggregating
results to provide a robust CTR estimate with a tight confidence interval. We report
the 95% confidence interval with error bars on the plot. Hyper-parameters were
optimised through a grid-search where the training set consisted of 5 000 users,
and validated through simulated A/B-tests with 10 000 users as outlined above,
albeit with different random seeds as to ensure the training, validation and test
users to be disjoint. Grid searches were analogously repeated and results averaged
out over 5 runs to reduce the inherent noise of the simulation. Note that results
from the grid-search with only 5 000 users for training might not yield the optimal
hyper-parameters for smaller or larger training samples. Furthermore, optimising
hyper-parameters through online experiments might not accurately reflect a real-
world situation, but it ensures a fair comparison among algorithms. We varied the
SVP-strength for POEM λ ∈ {.0,0.05, .1, .25, .5,1.0,1.5,2.0} and DB’s CRM-MLE bal-
ance α ∈ {.0, .8, .85, .925, .95, .975,1−1e2,1−1e3,1−1e4,1.0}, and report results only
for the optimal values. However, we observed much more stable results for varyingα
than for varying λ. α= 0 corresponds to the (Log-)CB objective, α= 1 to MLE. Analo-
gously, λ= 0 corresponds to (Log-)CB, whereas λ→∞ goes to the logging policy. As
we mentioned in Section 6.4, none of the weights ε for the IML-term used in PIL-IML
improved performance. We varied the weight ε ∈ {.0, .05, .1, .15, .20, .25, .50,1.0}, and
observed a steady decrease in attained CTR. The Lagrange multiplier γ for BanditNet
was varied over {.0, .125, .25, .5, .75, .875, 1.0}, and was equally unable to improve
results. Note that for γ= 1.0, the model only learns from the non-clicks and ignores
the clicks. In this setting, propensity overfitting occurs. We observed that adding
an additional IML term to BanditNet was then indeed able to prevent this, but the
quality of the learned models remained subpar to those optimised for the original
objectives.

Behaviour of Convex Policy Lower-Bound

Section 6.3 and Figure 6.1 discuss how the logarithmic IPS lower bound penalises
policies that miss a single positive action in the training sample, leading to an
allocation of probability mass that is proportional to the observed reward per action.
Figure 6.3 shows how this only impacts the optimum of the objective function when
rewards are stochastic. In the deterministic multi-class example, only class a is
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Figure 6.4: Impact of the SVP term on both the R̂IPS (left) and R̂ln(IPS) (right) estima-
tors, for varying strengths λ and the stochastic example setup in Figure 6.1. The
logarithmic estimator penalises degenerate policies, and SVP encourages imitation
of the logging policy.

correct. In the deterministic multi-label example, labels a and b are both equally
correct and R̂IPS becomes indifferent. In the stochastic multi-label case, actions a
and b are not equally likely to lead to a positive reward, and the optimum for R̂ln(IPS)

diverges from that of R̂IPS.
Figure 6.4 shows the impact of adding an additional SVP term to the optimisation

objectives with varying strengths λ, for the stochastic multi-label setup. λ is the SVP
strength, σ̂2 an empirical estimate of the variance. Naturally, as λ→∞, the objective
is increasingly dominated by the SVP term and the optimal policy moves towards the
logging policy (the uniform distribution in this toy example). Intuitively, we can see
that adding an SVP term to the original estimator R̂IPS has similar effects as using the
logarithmic variant: extreme values (0 and 1) are increasingly penalised, making the
objective better behaved. Adding the SVP term to the logarithmic estimator R̂ln(IPS)

has less dramatic effects and does not change the shape of the objective function as
much, as it was concave to begin with. It shifts the optimum towards imitating the
logging policy (P (a) =π0(a)).



CHAPTER 7
Pessimistic Reward Models for

Off-Policy Learning in
Recommendation

Methods for bandit learning from user interactions often require a model
of the reward a certain context-action pair will yield – for example, the
probability of a click on a recommendation. This common machine
learning task is highly non-trivial, as the data-generating process for
contexts and actions is often skewed by the recommender system itself.
Indeed, when the deployed recommendation policy at data collection
time does not pick its actions uniformly-at-random, this leads to a se-
lection bias that can impede effective reward modelling. This in turn
makes off-policy learning – the typical setup in industry – particularly
challenging. In this work, we propose and validate a general pessimistic
reward modelling approach for off-policy learning in recommendation.
Bayesian uncertainty estimates allow us to express scepticism about our
own reward model, which can in turn be used to generate a conservative
decision rule. We show how it alleviates a well-known decision making
phenomenon known as the Optimiser’s Curse, and draw parallels with
existing work on pessimistic policy learning. Leveraging the available
closed-form expressions for both the posterior mean and variance when
a ridge regressor models the reward, we show how to apply pessimism
effectively and efficiently to an off-policy recommendation use-case. Em-
pirical observations in a wide range of environments show that being
conservative in decision-making leads to a significant and robust in-
crease in recommendation performance. The merits of our approach are
most outspoken in realistic settings with limited logging randomisation,
limited training samples, and larger action spaces.1

1This chapter is based on work published in the Proceedings of the 2021 ACM RecSys Conference as
“Pessimistic Reward Models for Off-Policy Learning in Recommendation” by Olivier Jeunen and Bart
Goethals [78].
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7.1 Introduction

Many modern web services deploy machine-learnt models on their websites to
help steer traffic towards certain items. Retail websites try to predict which of their
recommendations might lead to a sale, music streaming platforms suggest songs in
your queue to optimise engagement metrics, search engines will often rank items in
decreasing estimated probability of receiving a click, et cetera. These models are
generally part of a 1. collect data, 2. train model, 3. deploy model loop, where models
are iteratively retrained and earlier versions influence the training data that is used
for future iterations. This correlation between the deployed model and the collected
training data can impede effective learning if we are unable to somehow correct
for the bias it creates. Recent work has shown how such “algorithmic confounding”
leads to feedback loops when left untreated, which can be detrimental to the users,
the platforms, and the models themselves [22, 130]. Traditional recommendation
research assumes organic user-item interaction data to bypass any feedback loops
that might occur due to deployed systems. In this work, we wish to learn directly
from the logs of the deployed recommender system, casting the recommendation
task in a bandit learning framework [25, 218].

Learning from biased data is not a novel problem, and many unbiased learning
procedures have proven to be effective in counteracting position, presentation, trust
and selection bias [87, 4, 25, 5, 151]. These methods typically make use of importance
sampling or Inverse Propensity Score (IPS) weighting, in order to obtain an unbiased
estimate of the counterfactual value-of-interest [156]. They aim to answer questions
of the form: “What click-through-rate would this new policy have obtained, if it were
deployed instead of the old policy”? The policy that maximises the answer to this
question is the policy we want to deploy. Answering this question effectively and
efficiently, however, is not an easy feat.

IPS is the cornerstone of counterfactual reasoning [19], but by no means a silver
bullet. It is plagued by variance issues that are exacerbated at scale, often making
it hard to deploy these systems reliably in the real world [49]. Furthermore, the
randomisation requirements for IPS to remain unbiased are often unrealistic or sim-
ply unattainable. Recent work explores the effectiveness of counterfactual models
in cases where IPS assumptions in the training data are violated, highlighting an
interesting area for future research and a commonly-encountered yet understudied
problem [178, 84].

An alternative family of approaches are so-called “value-based” models. These
methods rely on an explicit model of the reward conditioned on a context-action
pair – for example, the probability of a user clicking on a given recommendation
when it is shown [137, 59]. When prompted, the model then simply takes the action
that maximises the probability of a positive reward, given the presented context
and the learnt model. Aside from the typical problems of model misspecification in
supervised learning [132], another issue with value-based methods is that learning
an accurate model of the reward is not straightforward when the collected training
data is heavily influenced by the model that was deployed in production at the time.
Methods that use IPS to re-weight the data as if it were unbiased exist [191], but their
performance when deployed as recommendation policies is often disappointing
in comparison with policy-based methods or even vanilla reward models [146, 84].
Furthermore, the logging policy is not always known before-hand, and even when we
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do obtain unbiased value estimates we should expect the true obtained reward from
acting on them to be disappointing with respect to the estimates – a phenomenon
known as “the Optimiser’s curse” [194].

In this paper, we focus on improving the recommendation performance of
policies that rely on value-based models of expected reward. We propose and
validate a general pessimistic reward modelling framework, with a focus on the task
of off-policy learning in recommendation. Bayesian uncertainty estimates allow us
to express scepticism about our own reward model, which can then in turn be used
to generate conservative decision rules based on the resulting reward predictions
– instead of the usual ones based on Maximum Likelihood (MLE) or Maximum A
Posteriori (MAP) estimates. We show how closed-form expressions for both the
posterior mean and variance can be leveraged to express pessimism when a ridge
regressor models the reward, and how to apply them effectively and efficiently to
an off-policy recommendation use-case. Our approach is agnostic to the logging
policy, and does not require (a model of) propensity scores to quantify selection
bias. As a result, we are not bound to the strict assumptions that make IPS work, and
abide by statistical conjectures such as the likelihood principle [14]. Additionally, we
show how our proposed framework lifts the Optimiser’s Curse and effectively limits
post-decision disappointment.

The empirical performance of counterfactual learning methods is often reported
with a supervised-to-bandit conversion on existing multi-class or multi-label classifi-
cation datasets [88, 129, 206]. As publicly available datasets with propensity informa-
tion are scarce, this inhibits robust and reproducible evaluation of such methods on
off-policy recommendation tasks. In line with recent work [84, 180, 81, 77], we adopt
the RecoGym simulation environment in our experiments to yield reproducible
results that are aligned with the specifics of real-world recommendation scenarios,
such as stochastic rewards, limited randomisation and small effect sizes [176]. An
added advantage of adopting such a simulation framework is the freedom gained to
change environmental parameters and better understand how these changes affect
the trade-offs between different methods.

Empirical observations for a wide range of configurations show that our pro-
posed approach of pessimistic decision-making leads to a significant and robust
increase in recommendation performance. The merits of our method are most out-
spoken in realistic settings where the amount of randomisation in the logging policy
is limited, training sample sizes are small, and action spaces are large. All source code
to reproduce the reported results is available at github.com/olivierjeunen/pessimism-
recsys-2021. To summarise, the main contributions we present in this work are:

1. We propose the use of explicit pessimism in reward models for off-policy
recommendation use-cases.

2. We introduce the decision-making phenomenon known as the Optimiser’s
Curse in the context of recommendation, and show how naive reward models
suffer from it. In contrast, principled pessimism lifts the curse.

3. We show how to leverage closed-form estimates for the posterior mean and
variance of a ridge regressor to express pessimism, and how to apply this
effectively and efficiently to an off-policy recommendation use-case.

https://github.com/olivierjeunen/pessimism-recsys-2021
https://github.com/olivierjeunen/pessimism-recsys-2021
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4. Empirical observations from reproducible simulation experiments highlight
that explicit pessimism significantly and robustly improves online recommen-
dation performance, compared to ML or MAP-based decision-making.

7.2 Background and Related Work

We are interested in modelling recommendation systems following the “Batch Learn-
ing from Bandit Feedback” (BLBF) paradigm [210]: a general machine learning
setting that properly characterises the off-policy recommendation use-case as it
widely occurs in practice. A recommender system is modelled as a stochastic policy
π that samples its recommendations from a probability distribution over actions
conditioned on contexts: P(A|C ,π), often denoted π(A|C ). Note that π is modelled
to be stochastic for generality, but that deterministic systems are implied when
P(A|C ,π) is a degenerate distribution. Contexts are drawn from some unknown
marginal distribution P(C ) and can represent a variety of information about the
user visiting the system, such as their consumption history, the time of day and the
device they are using. When talking about the feature vector for a specific context,
we denote it as c . Analogously, feature vectors for specific actions are represented
as a. The sets of all possible contexts and actions are C and A , respectively. The
combined feature representation of a context-action pair is x :=Φ(c , a), whereΦ is a
function that maps context- and action-features to a joint space. Note that this step
– including interaction terms between contexts and actions – is necessary to allow
for linear models to learn personalised treatments. Φ can be anything from a simple
Kronecker product between one-hot-encoded contexts and actions [146], to a spe-
cialised neural network architecture that learns a shared embedding for multi-task
learning [127, 254, 213]. In the off-policy or counterfactual setting, we have access
to a dataset consisting of logged context-action pairs and their associated rewards:
D := {(c, a,r )}, where c ∼ P(C ), a ∼ π0(a|c) and r ∼ P(R|C , A). Here, r represents
the reward that the system obtained from recommending a to c. In the general
case this reward can be binary (e.g. clicks), real-valued (e.g. dwell time), or higher-
dimensional to support multiple objectives (e.g. fairness and relevance) [138, 140].
The policy that was deployed at data collection time is called the logging policy
(π0). This type of setting is called “bandit feedback”, as we only observe the reward
of the actions chosen by the contextual bandit π0. We place this paradigm at the
focal point of our work, as it is the most closely aligned with the recommendation
use-case that practitioners typically face in industry.

Learning to recommend from organic user-item interactions Most traditional
approaches to recommendation do not make use of this type of experimental data
tying recommendations to observed outcomes. Instead, they typically adopt ob-
servational datasets consisting of “organic” interactions between users and items,
such as product views on retail websites. By framing the recommendation task as
next-item prediction in such a setting, the goal of these systems is no longer that
of learning optimal interventions. Maybe unsurprisingly, offline evaluation results
in such environments are notoriously uncorrelated with online success metrics
based on shown recommendations, making it harder to discern true progress with
regard to online gains [48, 177, 75, 32]. Nevertheless, it is a very active research



7.2. BACKGROUND AND RELATED WORK 115

area that yields many interesting publications and results every year. Recent trends
are geared towards the use of Bayesian techniques that explicitly model uncer-
tainty [116, 40, 189, 126], and linear item-based models that achieve state-of-the-art
performance whilst being highly efficient to compute [147, 200, 85, 26, 28].

Off-policy learning from bandit feedback The bandit feedback setup described
above finds its roots in the field of offline reinforcement learning (RL), with the
additional simplifying assumption that past actions do not influence future states
(more formally, the underlying Markov Decision Process consists of a single time-
step) [108]. This type of learning setup is not specific to the recommendation task,
and many learning methods are evaluated on simulated bandit feedback scenarios
using general purpose multi-class or multi-label datasets. Approaches for off-policy
learning optimise a parametric policy for some counterfactual estimate of the reward
it would have obtained, if deployed.

The go-to technique that enables this type of counterfactual reasoning is impor-
tance sampling [156, 19]. Equation 7.1 shows how it obtains an empirical estimate
for the value of a policy π, using data D, and a model of the logging policy π̂0. Many
learning algorithms in this family aim to mitigate the increased variance that is a
consequence of the IPS weights. Capping the probability ratio to a fixed value [69],
self-normalising the weights [212, 88], imposing variance regularisation [134, 210],
imitation learning [129] or distributional robustness [44, 192] on the learnt policy
are commonly used tools to trade off the unbiasedness of IPS for improved variance
properties in finite sample scenarios. Many of these techniques can be interpreted
as a form of principled pessimism, where we would rather be conservative with the
IPS weights than over-estimate the value of an action to a policy.

V̂IPS(π,D) = ∑
(c,a,r )∈D

r · π(a|c)

π̂0(a|c)
(7.1)

V̂DM(π,D) = ∑
(c,a,r )∈D

∑
a′∈A

π(a′|c) · r̂ (a′,c) (7.2)

A conceptually simpler family of approaches are value-based methods, often
referred to as Q-learning in the RL community, or the “Direct Method” (DM) in the
bandit literature. Equation 7.2 shows how DM obtains an empirical estimate of pol-
icy π’s value w.r.t. a dataset of logged bandit feedback D. Value-based counterfactual
estimators do not rely on a model of the logging policy, but rather learn a model of
the reward an action will yield in a given context: r̂ (a,c) ≈ E[R|C = c , A = a]. In prac-
tice, the available bandit feedback D is often split into disjoint training sets for the
optimisation of the reward model and the resulting policy respectively. Nevertheless,
it is easy to see that the optimal policy π∗

DM with respect to a given reward model
places all its probability mass on the action with the highest estimated reward:

π∗
DM(a|c) =

 1 if a = argmax
a′∈A

r̂ (a′,c),

0 otherwise.
(7.3)

As a consequence, we can directly obtain a decision rule from the reward esti-
mates and train the reward estimator on all available data [84]. Value-based methods
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as laid out above are typically biased, but exhibit more favourable variance proper-
ties than IPS-based models. While policy-based methods for learning from bandit
feedback need (a model of) the logging propensities [218, 25], this is not a constraint
for the value-based family. When multiple logging policies are at play (e.g. during
an A/B-test), this complicates the use of standard importance sampling techniques
even further [3, 41].

A unifying family of doubly robust methods aims to marry these two types of
approaches in an attempt to get the best of both worlds [36]. Recent advances in
doubly robust learning typically optimise the trade-off between DM and IPS [205],
optimise the reward model to minimise the overall variance of the estimator [43],
or transform the IPS weights to minimise bounds on the expected error of the esti-
mate [206]. Nevertheless, the performance of the reward model remains paramount
for doubly robust approaches to attain competitive performance [81].

Off-policy learning for recommendation Methods that apply ideas from the ban-
dit and RL literature to recommendation problems have seen increased research
interest in recent years. Chen et al. extend a policy gradient-based method with a
top-K IPS estimator and show significant gains from exploiting bandit feedback in
online experiments [26]. In the top-1 use-case we consider with the additional inde-
pendence assumption between current and future iterations, their method yields a
policy that is analogous to one optimised for V̂IPS (Equation 7.1). This work has been
extended to deal with two-stage recommender systems pipelines that are typically
adopted to deal with large action spaces [128]. Xin et al. adopt a Q-learning perspec-
tive to deal with sequential recommendation tasks, exploiting both self-supervised
(organic) and reinforcement (bandit) signals [236]. Analogously, Sakhi et al. propose
a probabilistic latent model that combines organic and bandit signals in a Bayesian
value-based manner [180]. The work of Jeunen et al. studies the performance of both
value- and policy-based approaches when the organic data is only used to describe
the context, proposing a joint policy-value approach that outperforms stand-alone
methods without the need for an external reward model [84]. Their experimental
set-up is the closest to the one we tackle in this work.

On-policy learning for recommendation Off-policy methods learn from data
that was collected under a different policy. In contrast, on-policy methods learn
from data that they themselves collect. In such cases, the well-known exploration-
exploitation trade-off becomes important, as the policy needs to balance the imme-
diate reward with the informational value of an action [114, 136]. Successful methods
use variants of Thompson sampling [23, 135, 37] or confidence bounds [112]; recent
work benchmarks a number of different exploration approaches to predict clicks on
advertisements when the reward model is parameterised as a neural network [54].
Although the use-case we tackle in this work does not include any interactive com-
ponent, we draw upon existing work in learning from on-policy bandit feedback to
obtain improved, uncertainty-aware decision strategies in the off-policy setting.

Uncertainty estimation Both Thompson sampling and confidence-bound-based
methods make use of a posterior distribution for the reward estimates, instead of the
usual point estimate that is obtained from uncertainty-agnostic models. Principled
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Bayesian methods can be used to obtain closed-form expressions for exact or ap-
proximate posteriors, but they are often restricted to specific model classes [23, 112].
The Bootstrap principle [38], its extensions [152] (originally proposed in the context
of Q-learning), and Monte Carlo Dropout [46] can provide practical uncertainty
estimates for general neural network models. The work of Guo et al. proposes a
hybrid Bootstrap-Dropout approach, and validates the effectiveness of the obtained
uncertainty estimates in an on-policy recommendation scenario [54]. Finally, other
recent work shows promising results in inferring model uncertainty from neuron ac-
tivation strength [27]. All these uncertainty estimation methods are complementary
to the framework we propose in this paper.

7.3 Methodology and Contributions

The Optimiser’s Curse in Recommendation

In what follows, we introduce the Optimiser’s Curse [194] in the context of off-policy
learning in recommendation scenarios. For illustratory purposes, we assume an
immediate binary reward (e.g. a click) that follows a Bernoulli distribution with
parameter p that is conditioned on the relevance of the given context-action pair.
Nevertheless, the Optimiser’s Curse is a general phenomenon that is by no means
bound to these assumptions.

Suppose we have an action space A and for simplicity, but without loss of
generality, assume that the probability of a positive reward is independent of the
context. Now, every action ai ∈ A has a true probability of leading to a click:
P(R = 1|A = ai ) = p∗

i . The goal of a reward model is to estimate these true Bernoulli-
parameters p∗

i , yielding the estimated parameters r̂ (ai ) = p̂i . Widely used esti-
mation methods include Maximum Likelihood (MLE) and Maximum A Posteriori
(MAP) estimation. We aim to learn such a model based on a previously acquired
log of training data, and assume that our obtained value estimates are conditionally
unbiased in that ∀i ∈ {1, . . . , |A |} : E[p̂i |p∗

1 , . . . , p∗
|A |] = p∗

i . Note that this assumption
is already quite idealistic for many real world applications, and that it cannot be
checked when we do not know the true parameters p∗. In practice, we can minimise
the bias between the reward model and the empirical reward in the training sample.2

Nevertheless, even in such an idealised setting, problems arise.
Once we have a reward model, we are ready to start showing recommendations

to users. Analogous to Equation 7.3 we take the action with the highest estimated
reward or Bernoulli-parameter, indexed by i∗ :

ai∗ = argmax
ai∈A

r̂ (ai ). (7.4)

After showing this recommendation to a user, we get to observe a sample from
the true reward distribution: ri∗ ∼ Bernoulli(p∗

i∗ ). Now, the difference between the
observed and estimated rewards (ri∗ − p̂i∗ ) can be seen as the post-decision surprise
we get from acting on the model r̂ . Repeating this process and averaging the ob-
served post-decision surprise yields the average expected surprise: E[p∗

i∗ − p̂i∗ ]. The

2This type of “calibration” of the reward model with respect to the empirical reward distribution
is often a requirement in computational advertising [137, 59], as a downstream bidding strategy then
depends on the reward model.
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Optimiser’s Curse states that, even though the reward estimates are conditionally
unbiased, this process leads to a negative expected surprise: E[p∗

i∗ − p̂i∗ ] ≤ 0, mean-
ing that we incur less reward than predicted. This disappointment on average is not
merely a result of the model itself (as it is unbiased), but rather a consequence of the
decision making process that only considers the action with the highest estimated
value p̂i∗ , leaving us especially vulnerable to actions with over-estimated rewards.

Smith and Winkler provide an excellent overview of this phenomenon, showing
how it can be mitigated by adopting Bayesian methods with well-chosen priors [194].
They prove that, in the settings they consider, choosing actions based on MAP esti-
mates alleviates any post-decision surprise when these posteriors are unbiased. This
elegant theoretical finding is of limited practical use in our use-case. Indeed, we
have no way to guarantee that the reward estimates we end up with are unbiased
with respect to the true reward distribution parameters p∗. We can only check
unbiasedness with respect to the empirically observed reward, which can be highly
skewed due to the logging policy. Additionally, underfitting and model misspecifica-
tion make this assumption of converging to the true parameters sound especially
utopian [132]. To make matters worse, the training data D that is used to obtain
the reward model r̂ is also highly dependent on this logging policy π0, impeding
effective reward modelling even before we take part in an ill-suited decision making
process. Indeed, standard Empirical Risk Minimisation (ERM) focuses its efforts
on context-action regions that are well-explored in the training data. This leaves
us vulnerable when naively handling the resulting reward estimator r̂ , because a
single erroneously optimistic reward estimate can disturb the recommendation
policy and decimate performance. The probability of this happening grows with the
size of the action space and the level of “determinism” in the logging policy (more
formally, decreasing entropy). Using (estimated) propensity scores to redistribute
the errors in the model fit does not guarantee performance improvements in such
cases [191, 146, 84].

Heteroscedasticity in Reward Estimates

Logging policies are typically not solely optimised for data collection. The currently
deployed system will take actions with a higher estimated reward more often than it
will take those with lower estimates. This skews the training data for future model
iterations, which in turn leads to heteroscedasticity in the reward estimates. The
most common frequentist approaches to reward modelling based on MLE – be it
parameterised by simple linear models or deep neural networks – do not provide
information about an estimated posterior distribution out-of-the-box. As a result,
detecting pathological cases where gross over-estimation occurs is highly non-trivial.
Well-chosen priors and the resulting MAP estimates can partially alleviate this, but
are hard to validate and yield no guarantees.

As a simple example, consider a Beta-Bernoulli model with three actions [145,
§7.2.1]. Rewards for action ai are drawn as ri ∼ Bernoulli(pi ), with pi ∼ Beta(α0 +
αi ,β0 +βi ). In this setup, αi and βi can be seen as the number of observed clicks
and non-clicks for action ai . For illustratory purposes, assume α1 = β1 = 1,α2 =
3,β2 = 4,α3 = 33,β3 = 60. We assume a prior probability of receiving a click for the
posterior predictive of 25%, so we set α0 = 1,β0 = 3. Now, we can compute the ML
and MAP estimates for these actions, and deduct the optimal policies. Figure 7.1
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Figure 7.1: Illustration of the likelihood, prior and posterior estimates for the toy
example in Section 7.3, showing different estimates for the reward distribution for
action a1.
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Figure 7.2: Illustration of the likelihood, prior and posterior estimates for the toy
example in Section 7.3, showing different decision-making strategies for competing
actions.

shows the resulting likelihood and posterior distributions for action a1, Figure 7.2
shows that the MLE prefers action a1, whereas the MAP estimate prefers a2 (we will
introduce the Lower-Confidence-Bound in Section 7.3). For well-explored context-
action pairs, we see that the variance in the posterior predictive of the reward model
is reduced, leading to a tighter credible interval. For under-explored context-action
pairs, however, the error and variance grow to be quite substantial. The de facto
decision making process of taking the action with the highest reward estimate, is
then even more vulnerable to post-decision disappointment due to this type of
heteroscedasticity, and thus prone to provide over-estimations of the true expected
reward. There only needs to be a single action with a badly calibrated reward
estimate for this situation to occur (due to the argmax in Eq. 7.4), and the probability
of encountering such lesser explored actions will typically grow with the size of the
action space (for realistic logging policies). If our posterior means are unbiased
conditional on the value estimates, the results of Smith and Winkler show that the
expected post-decision surprise will be zero. This is, however, an unreasonable
assumption in complex real-world environments where correct model specification
is often impossible, and the range of conjugate priors might not be expressive
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enough to allow for this to happen. Furthermore, as we often deal with small effect
sizes (i.e. |p∗

i −p∗
j | < ε), even slight errors in the reward estimates can have significant

impact on the actions taken by the resulting policy. If there is some probability of
our recommendation policy taking a suboptimal action, the inequality bounding
expected surprise even becomes strict: E[p∗

i∗ − p̂i∗ ] < 0 [194].
The Optimiser’s Curse can lead to a significant disparity between what we expect

will happen based on the reward model, and what will actually happen when we act
according to its estimates. Nevertheless, we can significantly improve recommenda-
tion performance by treating our reward estimates with a healthy dose of principled
scepticism.

Pessimistic Decision-Making

Small effect sizes, bias and heteroscedasticity in the reward estimates are the main
reasons why reward models typically perform more poorly than expected. The con-
ceptually simplest way of mitigating this unevenly distributed variance is to mitigate
selection bias altogether by adopting a uniformly random logging policy. However,
showing recommendations to users independently of the estimated relevance of the
action might not be in the best interest of the platform or the users, at least not from
a business perspective. In what follows, we explore our decision-making options,
borrowing ideas from the related on-policy bandit literature.

Traditional models generate point estimate predictions, which we can reasonably
assume to be contained by the posterior shown in Figure 7.2. Possible actions are
then ranked by r̂ (ai ), as these approaches cannot quantify differences between
recommendations a1, a2 and a3 in any other way. This is problematic due to all the
reasons laid out above.

In an on-policy world, typical approaches make use of uncertainty estimates to
balance the expected reward with the informational value of an action. Methods
based on Thompson Sampling (TS) repeatedly sample reward estimates from an
approximate posterior [23], and optimistic extensions to this paradigm are known
to further improve performance [135]. Upper Confidence Bound (UCB) methods
also follow the “optimism in the face of uncertainty” adage, explicitly taking the
action with the highest posterior quantile instead of the MAP estimate [112]. For our
example on Figure 7.2, this would lead to a ranking of a1 > a2 > a3 (which coincides
with ranking by the MLE). On-policy approaches are optimistic because it provably
pays off; they get to observe the outcome of the chosen action and use this new
data point to adjust reward estimates. Intuitively, this makes that reward estimates
will never be overly optimistic for long, as the posterior will tend to converge to the
lower, true p∗

i as more data comes in. This “self-correcting” property then naturally
bounds metrics like regret in an online setting, and makes TS and UCB provably
efficient. In an off-policy setting, we do not have the luxury to instantly learn from
the outcome of our actions. All we have is a finite log of context-action-reward
triplets, collected by a different policy, with which we will have to make do. It is
clear that optimism will not help us in such cases, as we cannot reap the fruit of
informational value that comes with it.

Optimism is not the way to go – but the naive decision-making procedure that
purely focuses on the maximal reward estimates, is still likely to yield exactly those
that were over-estimated. Even without explicitly encoding optimism, this still leads
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to inflated expectations and subpar performance. We can offset this unwarranted
over-estimation by treating our model predictions pessimistically. This is exactly
what Smith and Winkler suggest when saying: “model the uncertainty in the value es-
timates explicitly and use Bayesian methods to interpret these value estimates” [194].
With a suitable prior distribution and unbiased posterior means, their suggested
approach effectively encourages principled conservatism which provably limits
disappointment. We have argued how their proposed solution breaks down in com-
plex environments, and additionally note that advanced prior distributions tend to
complicate the reward modelling procedure and can hurt scalability by surrendering
conjugacy. Ranking the actions in Figure 7.2 according to their posterior means
leads to a ranking of: a2 > a3 > a1. Because of the vastly reduced variance from a2

to a3 and the small difference in their posterior means, we argue that a3 should
be the safe choice. One might argue that the MAP choosing a2 is merely the result
of an inappropriate prior, but small effect sizes combined with heteroscedasticity
make this highly non-trivial to tune and validate properly. Optimising the prior as a
hyper-parameter to achieve exactly zero post-decision disappointment is theoret-
ically possible in controlled environments when Bayesian methods are used, but
this is highly complex and intractable in real-world environments where we have
approximate uncertainty estimates for general model classes like neural networks.
Furthermore, as a simple bias term directly influences post-decision surprise with-
out altering the actions that are being taken, it is clear that maximising the online
performance of the deployed recommendation policy should still be the overarching
objective compared to blindly limiting disappointment.

Instead of pursuing unbiasedness through appropriate priors, we propose to be
even more sceptical of our own reward model, and to make decisions based on the
maximal lower quantile of the posterior distribution. By adopting a Lower Confi-
dence Bound (LCB)-driven decision-making strategy, we effectively penalise actions
with high variance and pick the action with the best worst-case outcome. This is
visualised as the α−LCB in Figure 7.1. Following our toy example from Figure 7.2,
this inverts the UCB and flips the MAP ranking to obtain a3 > a2 > a1. Reward pre-
dictions based on posterior lower bounds are designed to be conservative and thus

strictly lower than the estimated posterior means: p̂i∗ > �pLCB
i∗ . As a consequence, it

naturally follows that the post-decision disappointment from acting on these maxi-
mal lower bound predictions (actions j∗) will be strictly lower than if we had picked

them according to their posterior mean predictions: E[p∗
j∗ − p̂ j∗ ] < E[p∗

j∗ − �pLCB
j∗ ].

Note that this result is quite loose and holds for any �pLCB
j∗ < p̂ j∗ ; the posterior lower

bounds still need to be constructed sensibly to improve the online performance of
the resulting policy. As backed up by empirical observations from a wide range of
experiments, our proposed pessimistic decision-making strategy leads to a signifi-
cant and robust increase in recommendation performance. Naturally, the potential
performance gains will be highest in those settings where traditional reward mod-
els fail: limited training sample sizes in large action spaces collected under highly
skewed logging policies, as is often the case in real-world systems.

Pessimism in Policy Learning. The idea of scepticism, conservatism or pessimism
is not novel in itself and lies at the heart of many advances in policy-based meth-
ods for off-policy learning as well, albeit often implicitly. One of the most widely
used extensions to IPS weighting is that of capping the weights to a certain max-
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imum value m [69, 49]. In doing so, we effectively choose to be sceptical about
our reweighted rewards when things are too good to be true, replacing the proba-

bility ratio in Equation 7.1 with min
(
m, π(a|c)

π̂0(a|c)

)
. Capped IPS is known to improve

the accuracy of the estimator and the performance of the resulting learnt policy,
even when the logging propensities are known and exact. The use of such tech-
niques is often justified by claiming an improved bias-variance trade-off, but the
connections to over-estimation in reward models deserve mentioning. The same
parallels can be drawn for several other policy learning tricks such as variance regu-
larisation [134, 210], imitation learning [129], distributional robustness [44, 192] and
estimator lower bounds [122, 84]. Several concurrent recent works provide a deeper
understanding of the value of pessimism in more general offline RL scenarios, be it
in policy- or Q-learning-based methods [94, 245, 120, 100]. We point the interested
reader towards the work of Jin et al. for more theoretical underpinnings [86].

Closed-Form Lower-Confidence-Bounds with Bayesian Ridge Regression

By looking at the problem of learning an optimal recommendation policy through
the lens of the “Direct Method”, we effectively cast it as a classification or regression
problem. As a consequence, the parameterisation of r̂ can take many forms. The
pessimistic LCB method we propose in this work is generally applicable and not
bound to any specific model class, with the exception that it relies on uncertainty
estimates to generate sensible bounds. In what follows, we show how to obtain
closed-form expressions for both the posterior mean and variance when a ridge
regressor models the reward. The interpretability and efficiency of linear models
makes them an attractive and common choice for practitioners that need to decide
on a reward model [137, 59, 136, 146, 84]. An ongoing line of research in traditional
approaches to recommendation has repeatedly shown the effectiveness of linear
models in collaborative filtering tasks as well [147, 187, 200, 85, 26]. Other recent
work reports empirical advantages of squared loss over cross-entropy loss [67], which
could explain the effectiveness of item-based least-squares models like SLIM [147]
and EASER [200], even when labels are binary. The model we propose here can be
interpreted as a pessimistic, off-policy, bandit variant of the latter.

In line with the item-based paradigm, we model users based on their historical
organic interactions with other items in the catalogue: c ∈R|A |; additionally normal-
ising samples according to their respective `1-norms to deal with varying-length
user histories. Recommendations are represented as one-hot encoded vectors:
a ∈ {0,1}|A |. Action- and context-features are mapped to a joint space via a Kro-
necker product: x = Φ(c , a) = c ⊗ a. When we denote the model parameters by

θ ∈R|A |2 , a linear model estimates the reward as shown in Equation 7.5 (omitting a
bias-term for brevity).

P̂(R = 1|C = c, A = a,θ) = xᵀθ = cᵀθ|a (7.5)

Here, θ|a holds the parameters that are relevant for action a: the |A | parameters
ending at index i · |A | for actions i ∈ {1, . . . , |A |}. The final equation holds because
we use a one-hot encoding for actions and a Kronecker product to link context and
action features. This implementation trick makes computations significantly less
expensive, as we now deal with vectors of size |A | instead of its square. If we define
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X ∈ R|D|×|A |2 as the design matrix holding joint context-action features for every
sample in the training set D, y as the vector of rewards to be predicted, andΘ the
parameter space, we can formally define our optimisation problem as follows:

θ̂ = argmin
θ∈Θ

(∥∥X ᵀθ− y
∥∥2

2 +λ‖θ‖2
2

)
. (7.6)

The Tikhonov-regularisation in Equation 7.6 is key to the Bayesian interpreta-
tion of this ridge regression problem. Indeed, it is known that this formulation is
equivalent to imposing independent Gaussian priors with constant variance on the
parameters, as well as on the errors in the rewards [145]:

θ ∼N (0,σ2
x ), y ∼N (xᵀθ,σ2

y ). (7.7)

When λ = σ2
y

σ2
x

, the solution to the ridge regression problem in Equation 7.6 is

equivalent to the MAP estimate for θ. A key advantage to the efficiency of this
procedure is that both the posterior mean and covariance can be computed with
the analytical formulas presented in Equation 7.8:

θ̂ = (X ᵀX +λI )−1 X ᵀy , Σ̂= (X ᵀX +λI )−1. (7.8)

The main bottleneck here is the inversion of the |A |2 × |A |2 Gramian matrix,
which can quickly grow to be cumbersome for larger action spaces. In similar spirit
to the implementation trick in Equation 7.5, we can decompose this inversion into
one per target action. This leads to |A | matrix inversions of size |A | × |A |, and
is possible because of the sparse, block-diagonal structure we acquire from the
Kronecker product combined with one-hot encoded action vectors. We now end
up with a model that is similar to the disjoint linear models used in the LinUCB
procedure for on-policy bandit applications [112], although our prior variance ratio
λ can be tuned whereas theirs is fixed (reducing to the MLE when λ = 0). Also in
contrast with their approach, we will use the posterior mean and covariance to
obtain a lower confidence bound reward estimate for a given context-action pair:

P̂LCB(R = 1|C = c, A = a) = xᵀθ̂−α
√

xᵀΣ̂x = cᵀθ̂|a −α
√

cᵀΣ̂|a c . (7.9)

Let Σ̂|a denote the sub-matrix of Σ̂ that is relevant to action a. That is, the |A |
rows and columns ending at index i · |A | for actions i ∈ {1, . . . , |A |}. From this formu-
lation, it is clear that values in Σ̂ off of this block-diagonal will never be used, and
thus never need to be computed. The hyperparameter α is related to the coverage
of the approximate posterior induced by P̂LCB [229]. Note that this hyperparameter
is not specific to the ridge regression parameterisation, and will also occur when a
nonlinear neural network models the reward and uncertainty estimates are obtained
from the approximation techniques described in Section 7.2. Replacing the reward
model in the direct method with this pessimistic alternative for the estimator based
on the posterior mean (P̂LCB vs P̂), yields the optimal deterministic LCB policy:

π∗
LCB(a|c) =

 1 if a = argmax
a′∈A

r̂LCB(a′,c),

0 otherwise.
(7.10)
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7.4 Experimental Results

A key component of recommender systems is their interactive nature: evaluating
recommendation policies on offline datasets is not a straightforward task, and
conclusions drawn from offline results often contrast with the online metrics that
we care about [48, 177, 75], which motivates casting recommendation as a bandit
learning problem [82]. Recent work either shows empirical success with supervised-
to-bandit conversions on organic user-item datasets [128], through live experi-
ments [136, 25, 140], or by adopting open-source simulation environments [180, 84].
To aid in the reproducibility of our work, we make use of the RecoGym simulation
environment [176]. RecoGym provides functionality to simulate organic user-item
interactions (e.g. users viewing products on a retail website), as well as bandit inter-
actions under a given logging policy (users clicking on shown recommendations).
Publicly available datasets that contain both types of data (observational and ex-
perimental) are scarce, and still insufficient for reliable counterfactual evaluation.
A considerable advantage of RecoGym is the opportunity to simulate online ex-
periments such as A/B-tests, that can then be used to reliably estimate the online
performance of an intervention policy. We refer the interested reader to the source
code of the simulator3 or the reproducibility appendix of [84] for an overview of the
inner workings of the simulation environment. The source code to reproduce our ex-
periments is publicly available at github.com/olivierjeunen/pessimism-recsys-2021.
The research questions we wish to answer are the following:

RQ1 Can we find empirical evidence of the Optimiser’s Curse in off-policy recom-
mendation environments?

RQ2 Can our proposed LCB decision-making strategy effectively limit post-decision
disappointment?

RQ3 Can we increase online performance with a recommendation policy using a
reward model with LCB predictions?

RQ4 How are these methods influenced by the amount of randomisation in the
logging policy?

RQ5 How are these methods influenced by the number of training samples and the
size of the action space?

Logging Policies An important factor to take into account when learning from
bandit feedback is the logging policy that was deployed at the time of data collection.
Deterministic policies make bandit learning near impossible, whereas a uniformly
random logging policy generates unbiased data, but is an idealised case in practice.
Realistic logging policies will aim to show recommendations that they perceive to
be relevant, whilst allowing other actions to be taken in an explorative manner. We
adopt a simple but effective personalised popularity policy based on the organic
user-item interactions that have preceded the impression opportunity. For a context
c consisting of historical counts of organic interactions with items (as laid out

3github.com/criteo-research/reco-gym

https://github.com/olivierjeunen/pessimism-recsys-2021
https://github.com/criteo-research/reco-gym
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in the parameterisation in Section 7.3), the logging policy πpop samples actions
proportionately to their organic occurrences. This policy is deficient, as it does
not assign a non-zero probability mass to every possible action in every possible
context [178]. Deficient logging policies violate the assumptions made by IPS to
yield an unbiased reward estimate [156], which poses a significant hurdle for policy-
based methods. Nevertheless, they are realistic to consider in real-world off-policy
recommendation scenarios. This extreme form of selection bias impedes effective
reward modelling as well, as we will show in the following section. Indeed, when a
context-action pair has zero probability of occurring in the training sample, we need
to resort to appropriate priors or conservative decision making. The deficiency of
πpop can be mitigated easily by adopting an ε-greedy exploration mechanism, where
we resort to the uniform policy with probability ε ∈ [0,1]. Naturally, this implies both
πpop and πuni when ε is respectively 0 or 1. For arbitrarily small values of ε, π0 is no
longer deficient in theory, but extremely unlikely to explore the full context-action
space within finite samples.

π0(a|c) =
{
πpop(a|c) with probability 1−ε,

πuni(a|c) otherwise,

where πpop(ai |c) = c i∑|A |
j=1 c j

, and πuni(a|c) = 1

|A | .
(7.11)

We vary ε ∈ {0,10−6,10−4,10−2,1} in our experimental setup. Note that this type of
logging policy is equivalent to the ones used in previous works [146, 81, 84, 77, 180],
but that we explore a wider range of logging policy randomisation to highlight the
effects on naïve reward modelling procedures.

Optimiser’s Curse (RQ1-3)

To validate whether the theoretical concept of the Optimiser’s Curse actually oc-
curs when reward models are learned in off-policy recommendation settings, we
adopt the following procedure: 1. Generate a dataset containing organic and bandit
feedback, 2. train a reward model as described in Section 7.3 – optimising the regu-
larisation strength λ to minimise Mean Squared Error (MSE) on a validation set of
20%, 3. simulate an A/B-test and log the difference between the reward estimates
p̂i∗ and the true reward probability p∗

i∗ for the actions selected by the competing
decision strategies. We then vary the logging policy in (1), and repeat this process 5
times to ensure statistically robust and significant results. Every generated training
set and every simulated A/B-test consists of 10 000 users, leading to approximately
800 000 bandit opportunities in the training set as well as 800 000 online impressions
per evaluated policy. We report the average empirical disappointment (p̂i∗ −p∗

i∗ )
for both the standard decision-making strategy of taking the MAP action (α = 0),
and our pessimistic lower-confidence-bound strategy, varying the lower posterior
quantile α. Note that the hyperparameter α plays an important role here, and that it
can always be increased to achieve zero post-decision disappointment (and even
lower). While this sets more realistic expectations for the performance of the reward
model, this does not guarantee an improvement in the online metrics we care about.
For this, we additionally report an estimate of the policy’s attained click-through-rate
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(CTR) in the A/B-test. Also note that this type of experimental procedure would not
be feasible without the use of a simulation environment, as we usually don’t have
access to the true reward probability p∗

i . In such cases, we would need to resort to
empirical averages based on the observed reward. Figure 7.3 visualises the results
from these experiments.

Empirical Observations. First, we see clear empirical evidence of the Optimiser’s
Curse in action: when acting based on just the posterior mean, we encounter post-
decision disappointment regardless of the logging policy. As our trained reward
models are even slightly under-calibrated w.r.t. the empirical training sample (i.e.
negative mean error), this result can seem counter-intuitive and is not straightfor-
ward to mitigate with a bias term tuned on offline data. Second, we observe that
pessimistic decision-making based on predictive uncertainty consistently decreases
disappointment, and that it can significantly increase the policy’s attained CTR in
A/B-tests. The optimal value of α with respect to online performance also brings the
absolute surprise closer to zero, indicating that these values are closely related. α’s
interpretation relating to the coverage of the approximate posterior of r̂ helps when
tuning it [229]. Naturally, when the variance on the reward estimates is homoscedas-
tic w.r.t. the actions, LCB does not affect the ordering of the reward estimates or
the resulting policy. This explains why online performance is not significantly im-
pacted when the logging policy is uniform, while post-decision disappointment can
consistently be alleviated.

Performance Comparison (RQ3-5)

To further assess when our proposed pessimistic decision-making procedure can
lead to an offline learnt policy with improved online performance, we train models
on a range of datasets generated under different environmental conditions and
report results from several simulated A/B-tests. The resulting CTR estimates with
their 95% credible intervals are shown in Figure 7.4. Every row corresponds to a dif-
ferently sized action space (|A | ∈ 10,25,50,100,250), every column shows results for
a different amount of randomisation in the logging policy. The amount of available
training data for the reward model increases over the x-axis for every plot. We report
CTR estimates for policies that act according to reward models based on ML or MAP
estimates, and those that use lower confidence bounds with a tuned α. Additionally,
we show the CTR attained by the logging policy π0, and an unattainable skyline
policy π∗ that acts based on the true reward probabilities p∗. Every measurement
shown in Figure 7.4 shows a 95% credible interval over 5 runs with 10 000 evaluation
users, totalling 1000 simulated A/B-tests with five competing policies each, or more
than three billion impressions summed up. As our reward models are agnostic to
the logging propensities, we do not include policy-based approaches that would
require them (either purely based on IPS [19], hybrid [84] or doubly robust [36]). We
do note that our results are directly comparable to those presented in [146, 84], and
both our novel LCB method and MAP baseline show significant improvements over
all their policy- and value-based competitors.

Empirical Observations. In line with our observations from Figure 7.3, we see
that LCB decision-making yields a robust and significant improvement over naively
acting on ML or MAP estimates. This result is consistent over varying training sample
sizes, action spaces and logging policies, but most outspoken in cases where the
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Figure 7.4: Experimental results for a range of simulated A/B-tests. The amount of
training data is increased over the x-axis, the attained CTR is shown on the y-axis
(shaded 95% credible interval). Every column corresponds to a different amount
of randomisation in the logging policy (increasing from left to right); every row
corresponds to a differently sized action space (increasing from top to bottom). We
observe a significant increase in CTR for the pessimistic model, most apparent for
smaller training samples, larger action spaces, and limited randomisation. The CTR
improvements for LCB over MAP average to 16% over all measurements, and range
up to 95%.

amount of randomisation and the number of available training samples are limited,
and the action space is larger. As explicit randomisation and data collection can
be expensive in practice, the environments where LCB excels are the ones that
are most commonly encountered in real-world systems. Additionally, we observe
more consistent and robust behaviour for policies that use LCB decisions compared
to those that do not. This decreased variance in online performance can also be
attributed to pessimistic decision making: because we no longer take our chances
with high-uncertainty predictions, we fall back to more robust alternatives. We
know what the reward model does not know, and this gained knowledge significantly
benefits the interpretation of reward predictions, and the resulting decisions.

Limitations of our study design. Off-policy approaches for learning from bandit
feedback are typically evaluated in set-ups where the size of the action space is a few
dozen at most [210, 88, 206]. As a result, methods for counterfactual learning in rec-
ommendation are often evaluated in modestly sized action spaces too [84, 180, 146].
Therefore, the reported results are most relevant to personalisation use-cases where
the number of alternatives is limited, such as personalising tiles or rows on a home-
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page, recommending news articles from a set of recently published ones, or pre-
dicting clicks within a slate. The size of the item catalogue in general purpose
recommendation scenarios can be in the hundreds of thousands, warranting further
research into off-policy recommendation for very large action spaces [123]. In such
environments, learning continuous item embeddings as opposed to the discrete
representation we have adopted can provide a way forward. Moreover, the lack
of publicly available datasets for the off-policy recommendation task can be pro-
hibitive for reproducible empirical validation of newly proposed methods. The few
alternatives that do exist [106, 179], still deal with comparatively small action spaces
and need to resort to counterfactual evaluation procedures with high variance and
limited statistical power (compared to simulated online experiments). Furthermore,
a single dataset would be comparable to a single measurement in Figure 7.4, limiting
the range of environmental parameters we can change to observe effects on the on-
line performance for competing methods. Because of these reasons, we believe the
RecoGym environment to be an appropriate choice for the experimental validation
of our methods [176].

7.5 Conclusions and Future Work

In this work, we have advocated in favour of pessimistic reward modelling in bandit
feedback settings. We have proposed a general framework for sceptic decision-
making in off-policy recommendation use-cases, and have shown how to translate
uncertainty estimates for ridge regressors into a conservative decision rule. Our
proposed method lifts the Optimiser’s Curse whilst achieving a significant and robust
boost in recommendation performance for a variety of settings. In future work, we
wish to investigate whether pessimistic reward predictions can lead to improved
doubly robust learning [77], to study the generalisability of our results to larger
action spaces, and to investigate the effects of scepticism on the informational value
of data collected under such a policy.

Reflections

This work largely focuses on offline learning instead of offline evaluation. Neverthe-
less, as we have mentioned before in this thesis, one of the main motivations for the
adoption of the bandit feedback paradigm is that learning and evaluation become
two sides of the same coin. The insights with respect to the Optimiser’s Curse pre-
sented throughout this Chapter suggest that offline learning is most effective when
the offline estimator is free from over-estimated rewards, a connection that is worth
studying more in-depth.

Similar to Chapter 6, it would be interesting to extend the current work to slate
instead of single-item recommendations, and investigate whether the update mech-
anisms proposed in Chapters 2 and 3 would be applicable to the closed-form ridge
regression solution that we leverage in this Chapter.





CHAPTER 8
Conclusions

This thesis has dealt with the broad field of recommender systems in its various
flavours. We have presented several novel research contributions to the field, with
seemingly very different focuses. This is undeniably true: whereas the first Chap-
ters in this thesis focus on scalability and efficiency, the middle two shine a light
on offline evaluation procedures and the final two cast the recommendation task
as a bandit learning problem. At first sight, these parts may seem disconnected.
Nevertheless, the overarching research questions that motivate and unite this thesis
should now be clear:

Can we shift the offline paradigm towards methods that directly
target success in online environments?

How do we ensure that academic research contributions translate to
improved recommendations in practical settings?

Certainly, it can be argued that: 1. the importance of scalability, efficiency and
models that are up-to-date is most palpable in real-world applications, 2. offline
evaluation procedures are only effective when they provide reasonable estimates
of online performance, and 3. the off-policy bandit setting is the predominant
realisation of recommendation systems encountered by practitioners. We believe
that it is of crucial importance for the field moving forward to keep an eye on the
environments that our methods need to perform and thrive in, and to work towards
the goals that are dictated by these environments. Only by doing this, can we ensure
that our research progress will have impact in the real-world. In this concluding
Chapter, we summarise our contributions and propose a scope for future research.

131
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8.1 Main Contributions

• In Chapter 2, we have proposed the Dynamic Index algorithm for efficiently
computing similarity between sparse, high-dimensional vectors. As the main
computational cost for item-based nearest neighbours algorithms in collab-
orative filtering is exactly that, we applied our method to this use-case. Dy-
namic Index is an incremental algorithm by design, making it suitable for real-
time recommendation scenarios. Additionally, we presented a MapReduce-
inspired parallellisation procedure to efficiently distribute computations. Fur-
thermore, we introduced the concept of item recommendability, and have
shown how it can be exploited to further improve the computational efficiency
of our method.

• In Chapter 3, we have introduced the Dynamic EASER method for efficiently
updating an existing item-based ridge regression model for collaborative
filtering. By exploiting parts of the Dynamic Index algorithm and subsequently
applying the Woodbury matrix identity, we can incrementally update such
models when new data arrives, instead of recomputing the entire model on
the updated dataset. We showed how exact DYN-EASER significantly improves
the efficiency with which EASER-like models can be kept up-to-date, and
additionally proposed an approximate variant of the algorithm that improved
the efficiency even further without a significant decrease in recommendation
accuracy.

• In Chapter 4, we have presented SW-EVAL, a novel offline evaluation method
for implicit-feedback recommender systems. SW-EVAL adheres much more
tightly to the dynamic environments that deployed recommender systems
need to perform in than traditional alternatives, and generates evaluation
results that are more reliable with respect to online performance. Additionally,
we presented an empirical study on the impact of live recommendation algo-
rithms during data collection time on the collected data – and found that there
can be a significant bias from the logging policy on this data. This Missing-
Not-At-Random (MNAR) bias impedes effective offline evaluation, and it is
paramount to take this into account. To this end, we proposed a scope for
future research towards fair offline evaluation procedures in such settings.

• In Chapter 5, we have presented an overview of how recommendation algo-
rithms are typically evaluated, contrasting the dynamic online environments
that occur in practice with the typical static offline evaluation setups used in
the literature. We have highlighted key differences between these paradigms,
and proposed ways to improve. Specifically, we have presented a research
agenda that focuses on temporal information, off-policy evaluation that mod-
els MNAR biases, and have advocated in favour of using information regarding
to impressions and user inaction to facilitate the distinction between missing
and negative feedback.

• In Chapter 6, we have presented an empirical study of counterfactual learning
methods for recommendation. These methods make use of bandit feedback –
logged recommendations and their outcomes – in contrast to the traditional
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organic user-item interactions that are used in the majority of recommender
systems research. We presented an overview of various existing algorithms for
learning from bandit feedback, and showed how they can be applied to the
off-policy recommendation task. We highlighted where existing methods tend
to fail, and proposed a logarithmic lower bound on the traditional importance
sampling estimator to account for stochastic rewards and low treatment effects
combined with finite samples. Finally, we introduced a joint policy-value
learning objective called the Dual Bandit, and showed how it can be used to
obtain superior performance compared to stand-alone policy or value-based
methods.

• In Chapter 7, we have shone a light on reward models learnt from bandit feed-
back in off-policy recommendation scenarios. We introduced the Optimiser’s
Curse – a general phenomenon that occurs in decision-making scenarios
where only the highest estimated alternatives are considered. We have shown
how it relates to the recommendation problem, and how it typically incurs
post-decision disappointment on behalf of the recommendation algorithm.
Furthermore, the traditional Bayesian solution of taking actions according to
the mean of the posterior predictive distribution is insufficient in real-world
scenarios where checking for unbiasedness is highly non-trivial. To this end,
we have proposed a general-purpose conservative decision-making frame-
work that takes actions based on a lower quantile of the posterior predictive,
corresponding to a form of principled scepticism in decision making. We have
shown how our uncertainty-aware reward modelling framework both lifts the
Optimiser’s Curse and allows for a significant boost in online recommendation
accuracy.

8.2 Supplementary Contributions

The Chapters in this thesis and the contributions laid out above correspond to peer-
reviewed manuscripts we published over the course of the past four years. Several
additional research activities led to other peer-reviewed contributions to workshops
and conferences in the form of research papers, demonstrations and tutorials. These
contributions often (but not always) consist of supporting work in the context of the
chapters of this thesis. In what follows, we briefly summarise them.

In Jeunen and Goethals [76], we propose a session-based recurrent neural net-
work architecture to predict how users will interact with items in a session. We
empirically validated our approach in the context of the 2019 ACM WSDM Cup on a
dataset provided by Spotify, where the task was to predict whether a user would skip
a song or listen to it in its entirety. Our proposed method achieved 5th place.

In Moens et al. [142], we propose an episode mining approach to analysing
recommender system data. We demonstrate how to use SNIPER, a tool for interactive
pattern mining, to analyse and understand the behaviour of recommender systems
for explorative offline evaluation purposes.

In Jeunen et al. [82], we explore the value of bandit feedback for the offline
evaluation of recommender systems. We show how inverse propensity scoring
estimators can provide reliable offline estimates of online performance metrics – in
contrast with traditional IR-inspired metrics based on observational and organic
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user-item interactions. This work follows our review of offline evaluation techniques
in Chapters 4 and 5, and motivates the bandit view adopted in Chapters 6 and 7.

In Mykhaylov et al. [146], we present three methods for training on bandit feed-
back from the literature, summarising their histories and assumptions. We review
the literature around this fundamental yet often overlooked choice in the literature.

In Jeunen et al. [81], we present an overview of the state-of-the-art in learning
from bandit feedback – specifically focused on the task of off-policy learning in
recommendation environments. This work provided the basis for the literature
overview in Chapter 6.

In Vasile et al. [218], we cast the recommendation problem as counterfactual
policy learning. We give a structured overview of the conceptual frameworks be-
hind current state-of-the-art recommender systems, explain their underlying as-
sumptions, resulting methods and their shortcomings. We go over the theoretical
guarantees that counterfactual policy learning gives, and how it can address the
shortcomings of the previous frameworks.

In Jeunen et al. [85], we study the applicability of item-based ridge regression
models to implicit-feedback collaborative filtering when additional side-information
or metadata about items is available. Two complementary extensions to the EASER

paradigm are proposed, based on collective and additive models, and we show how
they naturally retain analytically computable solutions.

In Jeunen and Goethals [77], we provide an empirical evaluation of doubly robust
learning methods in the off-policy recommendation scenario. In line with previous
work, our results highlight that the stochasticity of the logging policy is the main fac-
tor deciding between the superiority of value- or policy-based methods. In contrast
with previous work, our results indicate that recommendation policies learned via
standard doubly robust estimation can often be outperformed by either their stan-
dalone value- or policy-based component. We present a scope for future research
to improve doubly robust estimation methods when the reward model performs
poorly. This work motivated the uncertainty-aware decision-making framework
presented in Chapter 7.

In Vasile et al. [219], we use the rich language of decision theory to present
policy- and value-based methods to recommendation in a common framework. We
offer side-by-side comparisons between these methods outlining their strengths
and weaknesses, such as estimator variance, model misspecification, tractability
and ease-of-use. By identifying the modes of failure for every class, we provide
practical guidelines for future practitioners as to which method to apply in which
types of environments. This tutorial provides a novel and unifying view on policy-
and value-based methods for recommendation.

In Jeunen and Goethals [79], we study how the top-K contextual bandit problem
relates to issues of disparate exposure, and how this disparity can be minimised. We
propose a personalised exposure-aware arm selection algorithm that handles this
relevance-fairness trade-off on a user-level. Our model-agnostic algorithm deals
with arm selection instead of utility modelling, and can therefore be implemented
on top of any existing bandit system with minimal changes. We conclude with
a case study on carousel personalisation in music recommendation: empirical
observations highlight the effectiveness of our proposed method and show that
exposure disparity can be significantly reduced with a negligible impact on user
utility.
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8.3 Outlook and Future Work

Reproducibility in Bandit Learning for Recommendation

Reproducibility is the cornerstone of the scientific method. This especially rings true
in a field that relies heavily on empirical validation for newly proposed methods. One
of the main reasons why the field has predominantly focused on recommendation
from organic user-item interactions, is that publicly available datasets facilitating
empirical validation in this setting are plentiful. When we wish to move to the
off-policy bandit learning paradigm, a need arises for large-scale publicly available
datasets containing logs of recommendations and their outcomes. This alone might
not be sufficient – as it allows for learning models to be optimised, but still forces us
to resort to off-policy evaluation procedures for their validation. While these can be
a significant step forward compared to metrics based on organic interactions [82],
they come with limited statistical power due to their typical high variance [49, 106].
Furthermore – many publicly available datasets with bandit feedback do not in-
clude any information regarding the logging policy (e.g. [155]), inhibiting the use of
counterfactual estimators entirely. Recent work has introduced the “Open Bandit
Pipeline”, alleviating some of these issues [179]. Further work on releasing publicly
available real-world datasets that support effective counterfactual evaluation (e.g.
via a heavily randomised logging policy) could significantly further the field.

Alternatively, validating empirical results that are obtained through simulation
frameworks by correlating them with results obtained on real-world data could help
better understand how generalisable observations stemming from such frameworks
really are [176, 68]. This gap between simulated and real-world environments is a
well-known problem in the reinforcement learning community, often referred to as
the “Reality Gap” [247].

Jointly Leveraging Organic and Bandit Feedback

Our work so far has treated bandit and organic feedback in very different ways. In
both Chapters 6 and 7, we have used organic user-item interactions to describe the
user’s history for contexts in which actions were taken by the logging policy. This
decoupling is naive, as information about organic co-occurrences between items
could very well indicate a positive correlation in the bandit space too. Recent work
exploits both types of data to learn improved value-based recommendation models,
either in a Bayesian latent factor model [180] or a self-supervised manner [236]. In
future work, we wish to investigate how such mechanisms can be adapted for policy
learning scenarios. This is especially useful when the amount of bandit interactions
to learn from are limited, or to transfer the organic signal between bandit arms in
cold-start situations [121].

Exploiting Natural Variations versus Forced Exploration

The core assumption behind inverse propensity score weighting is that all recom-
mendations have a non-zero probability of being shown in any given context – a
stringent assumption that has hindered the widespread adoption of such techniques
in real-world environments. The work of Sachdeva et al. challenges this assumption,
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leading to impactful insights on why and when randomisation is necessary [178].
Other related work proposes to use “intervention harvesting” to quantify position
biases in search engines [6, 42]. The rationale behind this technique is to exploit
natural variations in the data instead of relying on explicit randomisation. Further
related work has shown how experimental groups from online A/B tests can be
used as instrumental variables when estimating a causal graph [165]. Exploring
how intervention harvesting could be used to alleviate selection bias in off-policy
recommendation – both for learning and effective offline evaluation – is another
exciting area for future research.

Mehrotra et al. study user responses to explicitly randomised recommendations
– finding that these responses differ significantly among user groups and that they
can be predicted [139]. This paves the way to smart, targeted and personalised
randomisation, in contrast with the alternative of uniform randomisation.

Multi-Objective Optimisation for Offline Bandits

Recommender systems are seldom evaluated using a single metric, especially when
deployed on digital platforms that need to service multiple stakeholders [138]. There-
fore, recommendation algorithms often need to be optimised for multiple objectives
at the same time, some of which might be conflicting. Several multi-objective
optimisation approaches have been proposed for traditional organic [174], learning-
to-rank in e-commerce [118] and online music recommendation [140] settings, but
none that are specifically tailored towards the off-policy setting. The uncertainty-
aware decision making strategy we proposed in Chapter 7 might prove especially
applicable in such settings. This, too, provides an exciting avenue for future research.

Fairness as an Optimisation Criterion

Recommendation systems and information retrieval applications in general can
have a significant impact on the world around them. It is often desirable for these
systems to actively mitigate potentially harmful biases that might otherwise be per-
petuated by the actions they take. One of the multiple objectives to be optimised
can therefore be a notion of amortised fairness – often related to the “equity of
attention” [16] or “equity of expected exposure” [35] principles. Recent work pro-
poses a learning algorithm to simultaneously optimise fairness and relevance in
dynamical learning-to-rank scenarios [143]. Learning algorithms targeted specif-
ically at the off-policy setting are an open area, where much work remains to be
done. To ensure fairness at data collection time, a form of safe exploration would be
imperative [72]. For on-policy bandit settings, we propose an exposure-aware arm
selection algorithm in [79].

Towards Recommendations with Causal Effect

In Chapter 6, we argued in favour of using bandit feedback instead of organic user-
item interactions to estimate the value of recommendations, and to eventually
optimise models for a counterfactual estimate of this value. In doing so, we ef-
fectively focus on the interventionist nature of the recommendation problem, but
we turn a blind eye towards the organic user-item interactions that also occur on
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the system. Accurately predicting that you will listen to a musical artist if I recom-
mend them is one thing, but would you have listened to them had they not been
recommended to you?

Answering this type of question requires an understanding of cause and effect,
for which we need to resort to tools from the field of causal inference [164]. Bonner
and Vasile propose to learn a model that predicts interactions both in the presence
and absence of a recommendation – thus targeting the uplift or treatment effect of
the recommendation algorithm [17]. Sato et al. propose an alternative method to
optimise rankings for causal effect that uses a label transformation approach [184].

Other work focuses on alleviating confounding bias, which arises when the
treatment assignment and outcome are not conditionally independent [185]. Wang
et al. tackle confounding bias from observational data alone, first fitting an exposure
model that is followed by a preference model that accounts for biased exposure [233].

There are still many exciting open research questions in this space – especially
combining aspects of causal reasoning with the potential avenues for future work
laid out above, such as exploiting natural variations, supporting multiple objec-
tives, and replacing the relevance notion in the expected exposure principle with
that of the treatment effect. In this way, we could account for the fact that not all
impressions are equally valuable for various stakeholders.
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Summary

Recommender systems are information retrieval applications that provide users
with algorithmic recommendations, in order to assist decision-making when suffi-
cient knowledge about the various options is lacking. These systems have known
widespread adoption in recent years and are extensively used by digital platforms
to suggest restaurants, books, musical artists, retail products and even romantic
partners – much like the recommendations you could provide for a friend.

Modern approaches to recommendation typically follow the collaborative filter-
ing paradigm, making use of a large dataset of user behaviour to infer preferences,
and to subsequently predict your preferences based on your historical behaviour.
Impressive advances in machine learning in recent years have found their way to
the recommendation field, and these systems are becoming ever more accurate
when it comes to learning and predicting user preferences. There is, however, a gap
between the recommendation use-case that is often posed in academic research
and the use-case that practitioners typically face in industry.

First, the research literature typically deals with a single static dataset on which a
model is trained once and then evaluated with respect to its prediction capabilities.
In contrast, recommendation models in the real world are often part of a much more
dynamic ecosystem where new data is constantly coming in and models need to
be kept up-to-date to remain competitive. In such settings, a clear need arises for
models that can be computed efficiently and incrementally.

Second, newly proposed methods in the research literature are often evaluated
using offline procedures on datasets containing user-item interactions. While this is
common practice in the broader machine learning field, recommendation datasets
often lack true labels, and currently existing evaluation procedures conflate inter-
actions with preference expressions and more dubiously, a lack of interaction with
negative feedback. This is especially problematic when recommendations skew item
exposure. Consequently, results obtained from offline procedures are notoriously
uncorrelated with those obtained via the golden standard in industry of using online
experiments such as randomised control trials – also known as A/B-tests.

Third, most approaches to recommendation learn from observational datasets
consisting of user-item interactions. As they do not take any information regard-
ing previously shown recommendations and their outcomes into account – they
take a purely passive stance that focuses on prediction, which contrasts with the
interventionist nature of the problem in practice. Indeed, we wish to show recom-
mendations to users in hopes of encouraging additional interactions. As such data
is being generated by every online platform with a recommendation component – it
comes naturally that the value of such datasets needs to be explored.
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Contributions

• In Chapter 1, we briefly review the history of the recommendation field, from
rating prediction and the Netflix prize to the implicit-feedback setting that is
more prevalent in modern research. We introduce the recommendation task
as it often occurs in the literature and in practice, and present some classi-
cal families of approaches to solving it. We contextualise and motivate the
research questions and contributions that make up the rest of this dissertation.

• In Chapter 2, we deal with the problem of efficiently computing all pairwise
similarities for a set of sparse, high-dimensional vectors. As such vectors are
typical for the data that is used in implicit-feedback recommender systems,
general methods for efficiently computing these similarities are especially
well-suited for item-based collaborative filtering approaches. We propose the
Dynamic Index algorithm to compute all exact pairwise similarities between
items in collaborative filtering scenarios, and show how it can effectively ex-
ploit vector sparsity to improve upon the efficiency of competing approaches.
Our algorithm consists of a single pass over the data, making it naturally suited
for incremental computations and streaming, real-time updates. We present
our algorithm with a MapReduce-inspired parallellisation procedure that
scales favourably with the number of available computational cores. Addition-
ally, we introduce the concept of item “recommendability” – as many items
in the catalogue might not be suitable recommendations at any given time
due to limited stock, recency, licensing or any other reason. We incorporate
this naturally occurring phenomenon into our method and show how it can
further improve the computational efficiency of our proposed method.

• In Chapter 3, we focus on item-based models optimised through ridge re-
gression for collaborative filtering tasks, as recent work has shown that they
can achieve highly competitive results compared to more complex and less
efficient alternative methods. The main reason for this improved efficiency, is
that the solution to the regression problem has an analytically computable
solution. As this computation involves the inversion of the Gramian item-
item matrix, it is only suitable in situations where the number of items in
the catalogue is modest. Indeed, matrix inversion scales cubically with the
dimensions of the matrix, quickly becoming intractable as it grows. When
the model needs to be recomputed iteratively to incorporate new incoming
data, this pressure on computation time can become even more problematic.
To this end, we propose Dynamic EASER (DYN-EASER), a novel algorithm that
efficiently updates an existing ridge regression model when new data arrives.
DYN-EASER adopts parts of the Dynamic Index algorithm to efficiently update
the Gramian matrix, and then uses the Woodbury matrix identity to incremen-
tally update its inverse. We additionally introduce an approximate variant
that updates the inverse with a low-rank approximation of the model update,
trading in the exactness of the solution for a gain in computational efficiency.
We theoretically analyse our methods, and empirically show significant effi-
ciency gains for collaborative filtering use-cases where the environment is
highly dynamic.
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• In Chapter 4, we look at the currently predominant offline evaluation proce-
dures in the literature. Stemming from the machine learning field, recommen-
dation models are typically trained on user-item interactions available in a
training set and evaluated on their performance to predict which interactions
are part of a test set, which was randomly sampled and held out from the
full dataset. Two issues arise with this paradigm: 1. the sequential nature
of user-item interactions is entirely neglected for the train-test split, so we
effectively evaluate models based on their ability to predict the past from
the future, and 2. deployed recommendation algorithms at data collection
time are ignored, while they can significantly bias item exposure and lead to
interactions that are Missing-Not-At-Random (MNAR).

Results stemming from such evaluation procedures seldom align with those
from online experiments – indicating that these issues have a significant im-
pact on results. To alleviate (1), we propose an alternative evaluation approach
that adheres much more tightly to the inherent characteristics of web-based
recommender systems: Sliding Window Evaluation (SW-EVAL). Empirical
observations indicate that SW-EVAL is less prone to over-estimate model per-
formance, correctly identifies the power of popularity-based baselines, and
generally ranks competing algorithms much differently than widely used al-
ternative methods. Using real-world data from a Belgian retail website, we
highlight that (2) severely influences results, and skews them in favour of
those approaches that mimic the logging policy. We present a scope for future
research to model these MNAR biases and take them into account during
training and evaluation to attain unbiased performance estimates.

• In Chapter 5, we revisit currently existing offline evaluation procedures for
implicit-feedback recommender systems. We briefly review offline and online
procedures, highlighting where they tend to diverge. Online approaches are
highly effective in measuring what we care about, but are often very expensive
and thus inefficient. Offline approaches, in contrast, are much more efficient
but often ineffective at predicting true online performance when deployed. In
this Chapter, we study why they diverge, and how we can realign the offline
objective to reflect online performance. We identify three ways to improve
and extend current work on offline evaluation methodologies. First, as we
also highlighted in Chapter 5, it is of crucial importance to correctly abide
by sequential constraints in the data, and temporal evaluation procedures
can provide ways forward in this regard. Second, to alleviate MNAR biases
that skew collected data, we need to model the logging policy to be able to ac-
count for it. We draw parallels with the problem of off-policy evaluation in the
reinforcement learning literature, and map these concepts to the recommen-
dation problem. Third, we believe there is much to gain by using more data
than just views and clicks to evaluate recommendation performance. Indeed,
as we often have information regarding recommendations that were shown,
together with user inaction, we can use it to distinguish between missing and
negative feedback. We propose a research agenda focused on these three
topics, with the goal of devising offline evaluation procedures that accurately
reflect online performance.
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• In Chapter 6, we explore how methods that learn from shown recommenda-
tions and their outcomes can be used for recommendation tasks. Since we
do not know whether users would have clicked on items we did not show,
learning directly from such data can be highly non-trivial. Several methods for
so-called off-policy or counterfactual learning have been proposed for general
machine learning tasks in recent years, but their efficacy as recommendation
policies remains understudied. We present an overview of existing methods in
the context of the recommendation problem, and conduct a broad empirical
study to validate their worth. We show that existing off-policy learning meth-
ods tend to fail when rewards are stochastic and highly sparse, and we show
how a logarithmic lower-bound on the traditional importance sampling esti-
mator can alleviate these issues. Additionally, the logarithmic transformation
convexifies the optimisation objective and facilitates convergence. We show
how value- and policy-based families of approaches can be formulated with an
identical parameterisation, and propose a novel model that jointly optimises
both types of objectives. We show that this Dual Bandit approach is highly
competitive with the state-of-the-art, especially in the realistic cases where
the amount of logging randomisation and the size of the training sample are
limited, while the action space is large.

• In Chapter 7, we turn towards reward models learned from bandit feedback –
such as models that predict the probability of a click on a given recommenda-
tion. Learning such models accurately is no easy feat when the logging policy
that chooses actions at data collection time is highly skewed. That is, it greedily
shows recommendations it deems relevant, and only rarely explores alterna-
tives. This is known as item selection bias, and it leads to heteroscedastic
variance on the resulting reward estimates. We show how this can be detri-
mental to the recommendation performance of a recommendation policy
relying on such a model of reward. Additionally, we show how this exacer-
bates a problem known as the “Optimiser’s Curse”, where the post-decision
disappointment from acting on these reward estimates will be non-negative
in many realistic cases. To counteract these problems, we propose a general
uncertainty-aware decision-making framework that treats the predictions of
the reward model with a healthy dose of scepticism. Bayesian uncertainty
estimates can reveal what the reward model does not know, and we can use
this gained knowledge to fall back to best worst-case decisions instead of
the usual uncertainty-ignorant ones. Extensive experiments show how our
proposed method can lead to significant and robust gains in recommendation
performance.

• In Chapter 8, we conclude by summarising the research contributions pre-
sented throughout this dissertation and showing how they are connected to
one another. We present a scope for future research to bridge the gap between
recommendations in industry and academia – focusing on realistic extensions
of the bandit learning paradigm that alleviate some of its rigid assumptions,
so they ultimately provide a better reflection of the real world.



Samenvatting

Aanbevelingssystemen zijn toepassingen die gebruikers algoritmische aanbevelin-
gen geven, met het doel om beslissingen te vergemakkelijken wanneer er een gebrek
is aan voldoende kennis over de alternatieven. Deze systemen zijn de afgelopen
jaren wijdverspreid geraakt en worden gebruikt door digitale platformen om restau-
rants, boeken, artiesten, producten en zelfs romantische partners voor te stellen –
net zoals de aanbevelingen die u zou kunnen geven aan een vriend.

Moderne aanbevelings-methoden volgen doorgaans het “collaborative filtering”
paradigma, waarbij gebruik wordt gemaakt van een grote dataset van gebruikers-
gedrag om voorkeuren af te leiden en vervolgens uw voorkeuren te voorspellen op
basis van uw historisch gedrag. Een indrukwekkende vooruitgang in machinaal
leren in de afgelopen jaren heeft zijn weg gevonden naar het aanbevelingsveld, en
deze systemen worden steeds nauwkeuriger als het gaat om het leren en voorspellen
van gebruikersvoorkeuren. Er is echter een kloof tussen de use-case van aanbeve-
lingen die vaak wordt gesteld in academisch onderzoek en de use-case waarmee
beoefenaars doorgaans in de industrie worden geconfronteerd.

Ten eerste behandelt de onderzoeksliteratuur typisch een enkele statische data-
set waarop een model eenmalig wordt berekend en vervolgens geëvalueerd met be-
trekking tot zijn voorspellings-nauwkeurigheid. Aanbevelingsmodellen in de echte
wereld maken daarentegen vaak deel uit van een dynamischer ecosysteem waar
voortdurend nieuwe data binnenkomen en modellen up-to-date moeten worden
gehouden om competitief te blijven. In dergelijke situaties ontstaat een duidelijke
behoefte aan modellen die efficiënt en incrementeel kunnen worden berekend.

Ten tweede worden nieuw voorgestelde methoden in de onderzoeksliteratuur
vaak geëvalueerd met behulp van offline evaluatie-procedures op datasets met in-
teracties tussen gebruikers en items. Hoewel dit een gangbare praktijk is in het
bredere onderzoeksveld m.b.t. machinaal leren, missen aanbevelingsdatasets vaak
echte labels, en huidige evaluatie-procedures verwarren interacties met voorkeurs-
uitdrukkingen en, erger nog, een gebrek aan interactie met negatieve feedback. Dit
is vooral problematisch wanneer aanbevelingen de blootstelling van gebruikers
aan verscheidene items kromtrekken. Resultaten verkregen uit offline procedu-
res zijn notoir slecht gecorreleerd met die verkregen via de gouden standaard van
online experimenten zoals gerandomiseerde controleproeven – beter gekend als
A/B-testen.

Ten derde leren de meeste aanbevelings-methoden uit observationele datasets
die bestaan uit interacties tussen gebruikers en items. Omdat ze geen rekening
houden met eerder getoonde aanbevelingen en hun gevolgen, nemen ze een puur
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passieve houding aan om te voorspellen, wat in contrast staat met het interventionis-
tische karakter van het aanbevelings-probleem in de praktijk. We willen inderdaad
aanbevelingen aan gebruikers tonen in de hoop om bijkomende interacties aan
te moedigen. Aangezien dergelijke data worden gegenereerd door elk online plat-
form met een aanbevelingscomponent, is het vanzelfsprekend dat de waarde van
dergelijke datasets interessant is om te onderzoeken.

Bijdragen

• In Hoofdstuk 1 bespreken we kort de geschiedenis van het onderzoeks-veld
rond aanbevelings-systemen, van het voorspellen van ratings en de Netflix-
prijs tot de impliciete feedback-setting die vaker voorkomt in modern onder-
zoek. We introduceren het aanbevelings-probleem zoals het vaak voorkomt
in de literatuur en in de praktijk, en bespreken enkele klassieke families van
methoden om het op te lossen. We contextualiseren en motiveren de onder-
zoeksvragen en bijdragen die de rest van dit proefschrift opmaken.

• In Hoofdstuk 2 behandelen we het probleem van het efficiënt berekenen van
alle paarsgewijze gelijkenissen voor een reeks ijle, hoog-dimensionale vec-
toren. Aangezien dergelijke vectoren typerend zijn voor de data die worden
gebruikt in aanbevelingssystemen met impliciete feedback, zijn algemene me-
thoden voor het efficiënt berekenen van deze gelijkenissen bijzonder geschikt
voor op “item-based collaborative filtering” modellen. We stellen het Dynamic
Index algoritme voor om alle exacte paarsgewijze gelijkenissen tussen items in
collaborative filtering scenario’s te berekenen, en we tonen hoe het effectief de
ijlheid van de vectoren kan benutten om de efficiëntie van concurrerende me-
thoden te verbeteren. Aangezien onze methode maar éénmalig over de data
gaat, is ze geschikt voor incrementele berekeningen en streaming, real-time
updates. We presenteren ons algoritme met een op MapReduce geïnspireerde
parallellisatie-procedure die gunstig schaalt met het aantal beschikbare re-
kenkernen. Daarnaast introduceren we het concept van “recommendability”:
aangezien veel items in de catalogus op eender welk moment ongeschikt
kunnen zijn om aan te bevelen vanwegede voorraad, recentheid, licenties of
andere redenenen. We integreren dit natuurlijk voorkomende fenomeen in
onze methode en laten zien hoe het de rekenefficiëntie van Dynamic Index
nog verder kan verbeteren.

• In Hoofdstuk 3 richten we ons op “item-based collaborative filtering” model-
len die zijn geoptimaliseerd door middel van ridge-regessie, aangezien recent
werk heeft aangetoond dat ze zeer competitieve resultaten kunnen behalen in
vergelijking met meer complexe en minder efficiënte alternatieve methoden.
De belangrijkste reden voor deze verbeterde efficiëntie is dat de oplossing voor
het regressieprobleem een analytisch berekenbare oplossing heeft. Aangezien
deze berekening de inversie van de Gramiaanse item-item matrix inhoudt, is
deze alleen geschikt in situaties waarin het aantal items in de catalogus relatief
laag is. Inderdaad, aangezien matrix-inversie kubiek schaalt met de dimensie
van de matrix, wordt dit al gauw onhandelbaar in hoge dimensies. Wanneer
het model iteratief opnieuw moet worden berekend om nieuwe inkomende
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data te verwerken, kan deze druk op de rekentijd nog problematischer wor-
den. Om dit probleen aan te pakken, stellen we Dynamic EASER (DYN-EASER)
voor, een nieuw algoritme dat op efficiënte wijze een bestaand ridge-regressie-
model bijwerkt wanneer nieuwe data binnenkomen. Vervolgens gebruiken
we de Woodbury-matrix-identiteit om de geïnverteerde matrix stapsgewijs
bij te werken. We introduceren ook een benaderende variant die de inver-
sie bijwerkt met een lage-rang benadering van de model-update, waarbij de
nauwkeurigheid van de oplossing wordt ingeruild voor een winst in rekeneffi-
ciëntie. We analyseren onze methoden theoretisch en tonen empirisch een
significante efficiëntiewinst aan wanneer we aan collaborative filtering doen
in dynamische omgevingen.

• In Hoofdstuk 4 kijken we naar de vaakst voorkomende offline evaluatie-
procedures in de literatuur. Voortkomend uit het onderzoeksveld van machi-
naal leren, worden aanbevelings-modellen doorgaans getraind op interacties
tussen gebruikers en items die beschikbaar zijn in een trainingsset. Ze wor-
den dan geëvalueerd op hun prestaties om te voorspellen welke bijkomende
interacties voortkomen in een testset, die willekeurig werd gesampled en uit
de trainings-dataset werd gehouden. Bij dit paradigma doen zich twee proble-
men voor: 1. de sequentiële aard van interacties tussen gebruikers en items
wordt volledig genegeerd bij de train-test-splitsing, dus evalueren we model-
len in feite op basis van hun vermogen om het verleden te voorspellen op basis
van de toekomst, en 2. aanbevelings-systemen die werkzaam zijn tijdens het
data-verzamelings-proces worden genegeerd, terwijl ze de blootstelling van
gebruikers aan items aanzienlijk kunnen beïnvloeden en leiden tot interacties
die Missing-Not-At-Random (MNAR) zijn.

Resultaten die voortvloeien uit dergelijke evaluatieprocedures komen zelden
overeen met die van online experimenten – wat aangeeft dat deze problemen
een aanzienlijke impact hebben op de resultaten. Om probleem (1) aan te
pakken, stellen we een alternatieve evaluatie-procedure voor die veel nauwer
aansluit bij de inherente omgevings-aspecten van aanbevelingssystemen op
het wereld-wijde web: Sliding Window Evaluation (SW-EVAL). Empirische
observaties tonen aan dat SW-EVAL minder vatbaar is voor overschatting van
modelprestaties, de kracht van populariteits-gebaseerde baselines correct
benadert, en in het algemeen concurrerende algoritmen anders rangschikt
dan andere veelgebruikte methoden. Door gebruik te maken van data verza-
meld op een Belgische retailwebsite, tonen we dat (2) de resultaten ernstig
beïnvloedt en ze bevooroordeelt ten gunste van systemen die de getoonde
aanbevelingen nabootsen. We presenteren een plan van aanpak voor toekom-
stig onderzoek om deze MNAR-invloed te modelleren en er rekening mee te
houden tijdens training en evaluatie.

• In Hoofdstuk 5 herbekijken we de huidige bestaande offline evaluatieproce-
dures voor aanbevelingssystemen met impliciete feedback. We bespreken
kort offline en online procedures, waarbij we aangeven waar de verschillen
en gelijkenissen liggen. Online procedures zijn zeer effectief in het meten van
wat we belangrijk vinden, maar zijn vaak erg duur en dus inefficiënt. Offline
methoden zijn daarentegen veel efficiënter, maar vaak niet effectief in het
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voorspellen van de prestaties in de echte wereld. In dit hoofdstuk bestuderen
we waarom ze uiteenlopen en hoe we de offline doelstellingen kunnen afstem-
men op online prestaties. We identificeren drie manieren om het huidige werk
aan offline evaluatie-methoden te verbeteren en uit te breiden. Ten eerste,
zoals we ook hebben benadrukt in Hoofdstuk 4, is het van cruciaal belang
om rekening te houden met de sequentialiteit van interacties in de data, en
temporele evaluatieprocedures kunnen in dit opzicht vooruitgang boeken.
Ten tweede, om de MNAR-invloed op verzamelde data te verminderen, moe-
ten we de getoonde aanbevelingen modelleren om er dan rekening mee te
kunnen houden. We trekken parallelen met het probleem van off-policy eva-
luatie in de literatuur over reinforcement learning, en linken deze concepten
met het aanbevelingsprobleem. Ten derde valt er veel te winnen door meer
data te gebruiken dan alleen weergaven en clicks om de prestatie van aan-
bevelingen te evalueren. Inderdaad, aangezien we vaak informatie hebben
over aanbevelingen die werden getoond, en ook de inactie van de gebruiker,
kunnen we deze gebruiken om onderscheid te maken tussen ontbrekende
en negatieve feedback. We stellen een onderzoeksagenda voor die gericht is
op deze drie onderwerpen, met als doel om offline evaluatie-procedures te
bekomen die online prestaties nauwkeurig kunnen weerspiegelen, met het
doel om onbevooroordeelde performantie-schattingen te bekomen.

• In Hoofdstuk 6 onderzoeken we hoe methoden die leren uit getoonde aan-
bevelingen en hun gevolgen, kunnen worden gebruikt voor aanbevelingsta-
ken. Omdat we niet weten of gebruikers zouden hebben geklikt op items
die we niet hebben getoond, kan het rechtstreeks leren van dergelijke data
erg complex zijn. Verschillende methoden voor zogenaamd off-policy of con-
trafeitelijk leren zijn de afgelopen jaren voorgesteld voor algemene machine
learning-taken, maar hun doeltreffendheid als aanbevelings-systeem blijft
onderbelicht. We presenteren een overzicht van bestaande methoden in de
context van aanbevelingen en voeren een brede empirische studie uit om ze
te valideren. We tonen dat bestaande contrafeitelijke leer-methoden falen
wanneer positieve uitkomsten van aanbevelingen stochastisch en schaars zijn,
en we laten zien hoe een logaritmische ondergrens op de traditionele inverse-
propensiteits-schatter deze problemen kan verlichten. Bovendien convexeert
de logaritmische transformatie het optimalisatiedoel en vergemakkelijkt het
daardoor convergentie. We laten zien hoe de policy- en value-gebaseerde
families van methoden kunnen worden geformuleerd met een identieke pa-
rametrisering, en stellen een nieuw model voor dat gezamenlijk beide typen
doelstellingen optimaliseert. We laten zien dat deze Dual Bandit-aanpak zeer
competitief is met de state-of-the-art, vooral in de realistische gevallen waarin
de hoeveelheid randomisatie in de getoonde aanbevelingen en de grootte van
de trainings-set beperkt zijn, maar het aantal items groot.

• In Hoofdstuk 7 richten we ons op beloningsmodellen die zijn geleerd uit
bandit feedback - zoals modellen die de waarschijnlijkheid van een klik op
een bepaalde aanbeveling voorspellen. Het nauwkeurig leren van dergelijke
modellen is niet eenvoudig wanneer het systeem dat acties kiest op het mo-
ment van data-verzameling niet-uniform is. Dat wil zeggen, het toont gretig
aanbevelingen die het relevant acht, en verkent slechts zelden alternatieven.
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Dit staat bekend als item selection bias, en het leidt tot heteroscedastische va-
riantie op de resulterende beloningsschattingen. We laten zien hoe dit nadelig
kan zijn voor de aanbevelingsprestaties van een systeem dat steunt op een
dergelijk beloningsmodel. Bovendien tonen we hoe dit een probleem verer-
gert dat bekend staat als de Optimiser’s Curse, waarbij de teleurstelling na de
beslissing door het handelen op basis van deze beloningsschattingen in veel
realistische gevallen niet-negatief zal zijn. Om deze problemen tegen te gaan,
stellen we een algemeen onzekerheids-bewust besluitvormings-beleid voor
dat de voorspellingen van het beloningsmodel behandelt met een gezonde do-
sis scepsis. Bayesiaanse onzekerheidsschattingen kunnen onthullen wat het
beloningsmodel niet weet, en we kunnen deze opgedane kennis gebruiken om
terug te vallen op de best worst-case beslissingen in plaats van de gebruikelijke
aanbevelingen die blind zijn voor onzekerheden. Uitgebreide experimenten
tonen hoe onze voorgestelde methode kan leiden tot aanzienlijke en robuuste
verbeteringen in de prestatie van aanbevelingen.

• In Hoofdstuk 8 besluiten we door de onderzoeksbijdragen die in dit proef-
schrift zijn gepresenteerd samen te vatten, en tonen we hoe ze met elkaar
verbonden zijn. We presenteren onze visie op en een agenda voor toekomstig
onderzoek om de kloof tussen aanbevelingen in de industrie en de academi-
sche wereld te overbruggen – gericht op realistische uitbreidingen van het
bandit leerparadigma die sommige huidige rigide aannames verlichten, zodat
ze uiteindelijk een betere weerspiegeling kunnen zijn van de echte wereld.


	Acknowledgements
	Contents
	Publications
	List of Figures
	List of Tables
	Introduction
	A Brief History of Recommender Systems
	Latent Factor Models
	Item-Based Models
	Sequence-Aware Models and Beyond
	Contextual Bandits

	Efficient and Incremental Computations
	Offline Evaluation Methodologies
	Effective Learning from Bandit Feedback

	Efficient and Incremental Computations
	Efficient Similarity Computation for Collaborative Filtering in Dynamic Environments
	Introduction
	Related Work
	Background
	Preliminaries
	Baseline Approaches

	Methodology
	Recommendable Items
	Incremental Similarity Computation
	The Dynamic Index Algorithm
	Parallellisation Procedure
	Incremental Model Updates with Dynamic Recommendability

	Experimental Results
	Efficiency of Dynamic Index (RQ1)
	Efficiency of Parallellisation Procedure (RQ2)
	Efficiency of Restricted Recommendability (RQ3)

	Conclusions
	Reflections


	Embarrassingly Shallow Auto-Encoders for Dynamic Collaborative Filtering
	Introduction
	Background and Related Work
	Item-based Models, slim & easer
	Item-Based Models with Side-Information
	Incremental Collaborative Filtering
	Neural Auto-Encoders

	Methodology and Contributions
	Low-Rank Model Updates with the Woodbury Matrix Identity
	Computational Complexity Analysis of Eigen-Decomposition
	Efficient Estimation and Upper Bounding of the Update's Rank
	Approximate dyn-easer Updates via Truncated Eigen-Decomposition

	Experimental Results and Discussion
	Efficiency of exact dyn-easer (RQ1)
	Correlating the rank of the update with the runtime of dyn-easer (RQ2)
	Analysing bounds for the rank of the update (RQ3)
	Efficiency and effectiveness of approximate dyn-easer (RQ4)
	Computation time for approximate dyn-easer
	Recommendation accuracy for approximate dyn-easer


	Conclusions
	Reflections



	Offline Evaluation Methods
	Fair Offline Evaluation with Missing-Not-At-Random Data
	Introduction
	Methodology
	Preliminaries
	Evaluation Procedure
	Evaluation Metric
	LOOCV vs. SW-EVAL
	Impact of Logging Policy

	Experiments
	Algorithms
	Dataset
	LOOCV vs. SW-EVAL
	Impact of Logging Policy

	Conclusions
	Future Work
	Reflections


	Revisiting Offline Evaluation for Implicit-Feedback Recommender Systems
	Introduction
	Temporal Evaluation
	Debiasing Logged Feedback
	Beyond Just Clicks
	Missing vs Negative Feedback
	Impression-data for Presentation Bias

	Conclusions
	Reflections



	Effective Learning from Bandit Feedback
	Joint Policy–Value Learning for Recommendation
	Introduction
	Background and Related Work
	Value-based Approaches
	Policy-based Approaches

	Learning for Recommendation
	Logarithmic IPS for Stochastic Rewards
	Joint Policy-Value Optimisation

	Experimental Results
	Logging policies
	Discussion

	Conclusions
	Reflections

	Reproducibility Appendix
	Derivation of IPS lower bound
	The RecoGym Environment
	Experimental Setup
	Behaviour of Convex Policy Lower-Bound


	Pessimistic Reward Models for Off-Policy Learning in Recommendation
	Introduction
	Background and Related Work
	Methodology and Contributions
	The Optimiser's Curse in Recommendation
	Heteroscedasticity in Reward Estimates
	Pessimistic Decision-Making
	Closed-Form Lower-Confidence-Bounds with Bayesian Ridge Regression

	Experimental Results
	Optimiser's Curse (RQ1-3)
	Performance Comparison (RQ3-5)

	Conclusions and Future Work
	Reflections


	Conclusions
	Main Contributions
	Supplementary Contributions
	Outlook and Future Work
	Reproducibility in Bandit Learning for Recommendation
	Jointly Leveraging Organic and Bandit Feedback
	Exploiting Natural Variations versus Forced Exploration
	Multi-Objective Optimisation for Offline Bandits
	Fairness as an Optimisation Criterion
	Towards Recommendations with Causal Effect


	Bibliography
	Summary
	Samenvatting


