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Abstract

We consider a number of decision problems, that appear in the dynamical systems
and database literature, concerning the termination of iterates of real functions.
These decision problems take a function f : Rn → R

n as input and ask, for example,
whether this function is mortal, nilpotent, terminating, or reaches a fixed point on a
given point in R

n. We associate topologies to functions f : Rn → R
n and study some

basic properties of these topologies. The contribution of this paper is a translation
of the above mentioned decision problems into decision problems concerning well-
known properties of topologies, e.g., connectivity. We also show that connectivity
of topologies on R

n is undecidable for n > 1.
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1 Introduction and summary of results

We consider properties, that originate from dynamical systems theory [1,2,5]
but are also relevant to database theory [3], of iterates of functions f : Rn →
Rn (by R we denote the real numbers). Here, we focus on four such properties.
We abbreviate the origin (0, 0, . . . , 0) of Rn by 0. We call a function f : Rn →
Rn mortal if f(0) = 0 and if for each x ∈ Rn there exists a natural number
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k ≥ 1 such that fk(x) = 0 [2]. A function f : Rn → Rn is called nilpotent
if f(0) = 0 and if there exists a natural number k ≥ 1 such that for all
x ∈ Rn, fk(x) = 0 [2]. Clearly, nilpotency is a more restrictive property than
mortality. The transitive closure of the graph of a function f : Rn → Rn,
viewed as a binary relation over Rn, is traditionally computed by computing
the 2n-ary relations TC1(f), TC2(f), TC3(f), . . . , where TC1(f) = graph(f)
and TCi+1(f) := TCi(f)∪{(x,y) ∈ R2n | (∃z) ((x, z) ∈ TCi(f) ∧ f(z) = y)}.
We call a function f terminating if this iterative computation of the transitive
closure terminates after a finite number of iterations, i.e., if there exists a k ≥ 1
such that TCk+1(f) = TCk(f). Since these are Boolean properties of functions,
we can associate to them a decision problem (i.e., the mapping that takes a
function as input and returns whether the function has the property). Another
decision problem is the point-to-fixed-point problem, which asks whether for a
given algebraic number x and a given piecewise affine function f : Rn → Rn,
the sequence x, f(x), f 2(x), f 3(x), . . . reaches a fixed point, i.e., whether there
exists a k ≥ 1 such that fk(x) = fk+1(x) [1,5].

In the field of dynamical systems, it is often important that these decision
problems are computable (or decidable), in the sense that there exists an algo-
rithm that takes as input some finite representation of a function f : Rn → Rn

and returns as output whether f has the property. About the above men-
tioned decision problems the following is known. Mortality and nilpotency are
known to be undecidable for piecewise affine functions from R2 to R2 and
for functions from R to R the (un)decidability of these properties is open [2].
Termination of functions from R2 to R2 is undecidable but termination of
continuous semi-algebraic functions from R to R is decidable [3]. The decid-
ability of the point-to-fixed-point problem is open for n = 1, even for piecewise
linear functions with only two non-constant pieces [1,5].

The decidability of these decision problems has also implications in the area
of database theory. For example, the decidability of termination of continuous
semi-algebraic functions from R to R was used to obtain extensions of first-
order logics with recursion, based on a transitive-closure operator [3], that are
used as query languages for constraint databases [6]. These extensions of first-
order logics are more expressive than these logics as such and they allow the
expression of recursive queries whose computation is guaranteed to terminate.
Decidability results concerning termination for wider classes of real functions
may lead to even more powerful query languages.

The main contribution of this paper is a translation of these decision prob-
lems into decision problems about topologies. Hereto, we define the following
topologies 1 associated to a function f : Rn → Rn. We call a subset G of Rn

1 The notions from topology that we use can be found in most introductory topology
books, e.g., [4].
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f -closed if for every x in G, also f(x) belongs to G, i.e., if f(G) ⊆ G. We
denote the set of all f -closed subsets of Rn by C f . We call a subset O of Rn

f -open if for every x in O and for every y ∈ Rn for which f(y) = x, also y

belongs to O, i.e, if f−1(O) ⊆ O. We denote the set of all f -open subsets of
Rn by Of .

We remark that the definitions and results presented here hold for arbitrary
sets, rather than just for Rn, but we stick to Rn since the mentioned decision
problems are stated for Rn.

The proofs of the following properties and theorems are postponed to the next
section.

Property 1 Both the structures (Rn,Of) and (Rn,Cf) are topologies. Fur-
thermore, Cf is the set of closed sets of (Rn,Of) and Of is the set of closed
sets of (Rn,Cf). ⊓⊔

So, (Rn,Of) and (Rn,Cf) are topologies in which both the open and the
closed sets form a topology. We remark that these topologies (Rn,Of) and
(Rn,Cf) have no interesting separation properties [4] in the sense that both
(Rn,Of) and (Rn,Cf) are Ti, i = 0, 1, 2, . . . (among which Hausdorff) if and
only if f is the identity. These topologies are also incomparable to the natural
topology of Rn in the sense that none is finer than the other.

A basic property is the following.

Property 2 For any function f : Rn → Rn, f : (Rn,Of) → (Rn,Of) and
f : (Rn,Cf) → (Rn,Cf) are continuous mappings. ⊓⊔

In dynamical systems, when looking at iterates of a function f : Rn → Rn, the
notion of orbit is widely used. For x ∈ Rn, the orbit of x (with respect to f)
is defined as the set {x, f(x), f 2(x), f 3(x), . . .} and we denote it by Orb(x, f).
It is clear from the definition that the set Orb(x, f) is the smallest f -closed
set that contains x. The set of orbits {Orb(x, f) | x ∈ Rn} therefore forms a
basis of (Rn,Cf). This basis is also minimal, in the sense that any other basis
of (Rn,Cf) must contain {Orb(x, f) | x ∈ Rn}. Also, the closure in (Rn,Cf)
of a subset A of Rn is the set ∪

x∈AOrb(x, f).

Since the open sets of the topology Cf are closed under iteration of f , this
topology captures the essential elements one is interested in when looking
at the iteration of function f . Also, the orbits, which play a central role in
studying the iterates of functions in the dynamical systems literature (see,
e.g., [7]), turn out to play a central role in the topology Cf . We remark that
Monks discusses a related topology [8].

We are ready to summarize our main translation results.
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Theorem 1 For any function f : Rn → Rn we have the following equiva-
lences.

(i) f is mortal if and only if f(0) = 0 and (Rn,Cf) is connected;
(ii) f reaches a fixed point on x ∈ Rn if and only if the smallest f-closed set

containing x is finite and contains a singleton closed subset;
(iii) f is terminating if and only if there is a uniform bound on the size of the

elements of the minimal basis of the topology (Rn,Cf);
(iv) f is nilpotent if and only if f is terminating, {0} is f -closed, and the

only f -open set containing 0 is Rn. ⊓⊔

Theorem 1 gives a translation of decision problems from dynamical systems
theory and database theory into decision problems about topologies (and vice
versa). Progress on decision problems about topologies could therefore con-
tribute to both these areas. However, to the best of our knowledge, there
is no literature on results concerning decidable properties of (even finitely-
presented) topologies.

This result has a corollary concerning the undecidability of testing connectivity
of topologies on R2. There are obviously uncountably many topologies on R2,
but if we restrict our attention to those topologies that allow some finite
representation and if we agree that the topology (R2,Cf) can be represented
suitably by some finite description of f , Theorem 1 and the earlier stated
result that says that mortality is undecidable for piecewise affine functions
from R2 to R2 [2], imply that connectivity of topologies on Rn is undecidable,
for n ≥ 2.

Corollary 1 Let f : Rn → Rn be a piecewise continuous linear function. The
connectivity of topologies of the form (Rn,Cf) is undecidable for n > 1. ⊓⊔

The following sections are organized as follows. In Section 2, we prove the
results that were stated in this section. We end the paper with a section
where we discuss the topologies of congruent functions.

2 Proofs of the results

In this section we prove the results from Section 1.

Proof of Property 1: First we show that (Rn,Of) is a topology. It is
immediately clear from the definition that ∅ and Rn are f -open. Let O1 and
O2 belong to Of . If x ∈ O1 ∩ O2 and y ∈ Rn such that f(y) = x, then
also y ∈ O1 and y ∈ O2 and hence y ∈ O1 ∩ O2. Therefore, also O1 ∩ O2 is
f -open. Finally, let Oi (i ∈ I) belong to Of (I is an arbitrary index set, such
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that {Oi | i ∈ I} is an arbitrary subset of Of). We have to show that ∪i∈IOi

belongs to Of . Let x belong to ∪i∈IOi. Then there exists a k ∈ I such that
x ∈ Ok. For all y ∈ Rn with f(y) = x, we have that y ∈ Ok since Ok is
f -open and thus y ∈ ∪i∈IOi. This shows that Of is a topology on Rn.

Next, we show (1) that for any G ∈ Cf , Rn \ G is in Of and (2) that for any
O ∈ Of , Rn \ O is in Cf . If G is in Cf , then abbreviate by O the set Rn \ G.
Let x be in O and suppose y is such that f(y) = x. Suppose that y 6∈ O,
then y ∈ G and thus x = f(y) in G (by definition of Cf). This contradicts
the assumption and (1) is proved. For (2), if O is in Of , then abbreviate by G

the set Rn \O. Let x be in G and suppose y = f(x) and suppose that y 6∈ G.
Then y ∈ O and thus x is in O (by definition of Of). This contradicts the
assumption and proves (2).

From the above it follows that to prove that (Rn,Cf) is a topology it suffices
to show that Of is closed under arbitrary intersections. Let Oi, i ∈ I belong to
Of . We show that ∩i∈IOi belongs to Of . Let x belong to ∩i∈IOi. Then x ∈ Ok

for all k ∈ I. Hence, for all y ∈ Rn with f(y) = x, we have that y ∈ Ok (since
Ok is f -open) for all k ∈ I and thus y ∈ ∩i∈IOi. This completes the proof. ⊓⊔

Proof of Property 2: It suffices to show that for any f -closed set G, f−1(G)
is also closed. Let x be an element of f−1(G). Then f(x) ∈ f(f−1(G)) ⊆ G.
From the given fact that G is closed it therefore follows that f 2(x) ∈ G, and
thus f(x) ∈ f−1(G). Therefore, f−1(G) is closed. ⊓⊔

For a function f : Rn → Rn and a point p ∈ Rn, the set of x ∈ Rn for
which p is the fixed point reached by x, f(x), f 2(x), . . ., will be denoted by
Fix(f,p).

Lemma 1 For any p ∈ Rn, the set Fix(f,p) is open and closed both in
(Rn,Of) and (Rn,Cf).

Proof: If Fix(f,p) is empty then the lemma trivially holds. Otherwise, to
show that Fix(f,p) is closed it suffices to remark that if x, f(x), f 2(x), . . .
reaches p as fixed point, then also f(x), f 2(x), f 3(x), . . . reaches p as fixed
point. To show that Fix(f,p) is open it suffices to remark that if x, f(x),
f 2(x), . . . reaches p as fixed point and if x = f(y), then also y,x, f(x), f 2(x),
f 3(x), . . . reaches p as fixed point. ⊓⊔

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1: For the only-if direction of item (i), assume that f is
mortal. Then f(0) = 0 follows from the definition of mortality. Assume that
there exists a non-empty subset O of Rn such that O is open and closed in
(Rn,Cf). Since O is non-empty there exists an x in O. From the fact that f is
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mortal, it follows that there is a natural number k such that fk(x) = 0. Since
O is open in (Rn,Cf) (so, f -closed), therefore also 0 ∈ O. Since O is closed
in (Rn,Cf) (so, f -open), therefore also Rn ⊆ O. In other words, O = Rn and
(Rn,Cf) is connected since every open and closed subset of Rn is either empty
or Rn.

For the if-direction of item (i), assume that f(0) = 0 and (Rn,Cf) is con-
nected. Since 0 ∈ Fix(f, 0) and since, by Lemma 1, Fix(f, 0) is open and
closed, Fix(f, 0) = Rn, or equivalently, f is mortal.

Item (ii) follows directly from the observation that the smallest f -closed set
containing x is exactly Orb(x, f). The condition that it should contain a sin-
gleton closed subset expresses that there is a fixed point rather than a cycle
of length larger than one.

Item (iii) is straightforward since {Orb(x, f) | x ∈ Rn} is the minimal basis
for (Rn,Cf). A uniform bound k on the orbits Orb(x, f) guarantees that the
transitive closure of the graph of f terminates after at most 2k iterations and
vice versa.

Finally, for the only-if direction of item (iv), assume that f is nilpotent. By
the definition, there is a uniform bound k on the number of elements in all
orbits. Therefore, f is terminating. Since all orbits contain 0, all open sets
containing 0 equal Rn. Since f(0) = 0, clearly {0} is f -closed.

For the if-direction of item (iv), we assume the three given facts. From the
fact that f is terminating, we know that there exists a uniform bound k on the
size of the orbits of f . From the fact that {0} is f -closed, f(0) = 0 follows. It
remains to be shown that for all x ∈ Rn, 0 ∈ Orb(x, f). Suppose, there is an
x ∈ Rn such that 0 6∈ Orb(x, f). Then Rn \ Orb(x, f) is an f -open set that
contains 0 and is not equal to Rn. This contradicts the second given fact. ⊓⊔

3 The topologies of congruent functions

We call two functions f, g : Rn → Rn congruent if there exists a bijection
h : Rn → Rn such that h ◦ f = g ◦ h. Intuitively it is clear that congruent
functions share the same termination properties (such as mortality, nilpotency,
termination and point-to-fixed-point). We can formally prove this by showing
that congruent functions give rise to homeomorphic topologies.

Lemma 2 Let f and g be two functions from Rn to Rn. A mapping h : Rn →
Rn is an homeomorphism between the topological spaces (Rn,Cf) and (Rn,Cg)
if and only if h is a bijection and for all x ∈ Rn, h(Orb(x, f)) = Orb(h(x), g).
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Proof: First, we prove the if-direction. It suffices to prove that both h and h−1

are continuous. Let G′ be any g-closed set, and let G = h−1(G′). We show that
G is f -closed. Indeed, let x be an element of G, and let y ∈ G′ be such that
x = h−1(y). Since G′ is g-closed, Orb(y, g) ⊆ G′ and h−1(Orb(y, g)) ⊆ G.
By the fact that for all x ∈ Rn, h(Orb(x, f)) = Orb(h(x), g), Orb(x, f) =
h−1(Orb(y, g)) ⊆ G, and hence f(x) is also in G. So, G is f -closed and h is
continuous. Similarly, one can show that also h−1 is continuous.

For the only-if direction, we proceed as follows. Clearly, Orb(h(x), g) is a
g-closed set, and by the continuity of h, the set G = h−1(Orb(h(x), g)) is f -
closed. Since x = h−1(h(x)) is an element of G, we have that Orb(x, f) ⊆
G. Similarly, by the continuity of h−1, h(Orb(x, f)) is g-closed and con-
tains Orb(h(x), g). Hence, h(Orb(x, f)) ⊆ h(G) = Orb(h(x), g) and also
Orb(h(x), g) ⊆ h(Orb(x, f)). This implies that h(Orb(x, f)) = Orb(h(x), g)
and also the only-if direction is proven. ⊓⊔

Property 3 Let f and g be two functions from Rn to Rn. If f and g are
congruent by a mapping h, i.e., h ◦ f = g ◦ h, then the topological spaces
(Rn,Cf) and (Rn,Cg) are homeomorphic by the mapping h.

Proof: By Lemma 2 it suffices to verify that for all x ∈ Rn, h(Orb(x, f)) =
Orb(h(x), g). But this follows directly from the fact that h(fk(x)) = gk(h(x))
for any x ∈ Rn. ⊓⊔

This property shows that termination properties such as mortality, nilpotency,
termination and point-to-fixed-point are shared by congruent functions.

Monks states, without proof, that the converse of Property 3 only holds for
acyclic functions, i.e., functions where the only cyclic points are the fixed
points [8] (more precisely, a function f : Rn → Rn is called acyclic if for any
x ∈ Rn, fd(x) = x implies that d is 1). For reasons of completeness, we here
give the proof of this result and give for any cycle length greater than one
examples of functions for which that converse of Property 3 does not hold.

Property 4 Let f and g be acyclic functions. If the topological spaces (Rn,Cf)
and (Rn,Cg) are homeomorphic by a mapping h, then f and g are congruent
by the mapping h, i.e., h ◦ f = g ◦ h.

Proof: Let f and g be acyclic functions and assume that h : (Rn,Cf) →
(Rn,Cg) is a homeomorphism. We have to show that for any x ∈ Rn, h(f(x)) =
g(h(x)).

By Lemma 2, for all x ∈ Rn, h(Orb(x, f)) = Orb(h(x), g). Therefore, for any
x ∈ Rn, there exists a natural number k such that h(f(x)) = gk(h(x)). Denote
by k

x
the minimal such natural number. We distinguish between three cases:

k
x

= 0, k
x

= 1 and k
x

> 1.
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If k
x

= 0, then h(f(x)) = h(x) and thus f(x) = x. Therefore, Orb(x, f) = {x}
and, by Lemma 2, Orb(h(x), g) = {h(x)}. Thus, g(h(x)) = h(x) = h(f(x)).
If k

x
= 1, then we immediately have h(f(x)) = g(h(x)). Finally, assume that

k
x

> 1. From the minimality of k
x

it follows that gℓ(h(x)) 6= h(f(x)) for all
0 ≤ ℓ < k

x
. Also, because g is acyclic, for all 0 ≤ ℓ < k

x
and all integers

p ≥ 0, gℓ(h(x)) 6= gkx+p(h(x)). Therefore, gℓ(h(x)) 6∈ Orb(gkx(h(x)), g) =
h(Orb(f(x), f)). But gℓ(h(x)) ∈ Orb(h(x), g) = h(Orb(x, f)). We can there-
fore conclude that gℓ(h(x)) = h(x) for all 0 ≤ ℓ < k

x
, in particular for

ℓ = k
x
−1. This implies that g(h(x)) = g(gkx−1(h(x))) = gkx(h(x)) = h(f(x)).

This contradicts the minimality of k
x

and makes the third case impossible.
We have shown that for any x ∈ Rn, h(f(x)) = g(h(x)). ⊓⊔

Finally, we show that for any cycle length d > 1, there are non-congruent
functions fd, gd : R → R, such that (R,Cfd

) and (R,Cgd
) are homeomorphic.

Consider the functions fd and gd defined by fd(i) = gd(i) = i + 1 for i =
1, ..., d − 1; fd(d) = gd(d) = 1; fd(

1

2
) = gd(

1

2
) = 1; fd(

1

3
) = gd(

1

3
) = 2; fd(

1

4
) =

gd(
1

4
) = 1

3
; fd(

1

5
) = 2; gd(

1

5
) = 1; and both fd and gd constant 0 elsewhere. It

is clear that both fd and gd have a cycle of length d. Using Lemma 2, it is
readily verified that fd and gd give rise to homeomorphic topologies (R,Cfd

)
and (R,Cgd

). It is also easy to see that fd and gd are non-congruent functions.
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