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Abstract—This paper investigates the discovery of conditional functional dependencies (CFDs). CFDs are a recent extension of

functional dependencies (FDs) by supporting patterns of semantically related constants, and can be used as rules for cleaning

relational data. However, finding quality CFDs is an expensive process that involves intensive manual effort. To effectively identify data

cleaning rules, we develop techniques for discovering CFDs from relations. Already hard for traditional FDs, the discovery problem is

more difficult for CFDs. Indeed, mining patterns in CFDs introduces new challenges. We provide three methods for CFD discovery.

The first, referred to as CFDMiner, is based on techniques for mining closed item sets, and is used to discover constant CFDs, namely,

CFDs with constant patterns only. Constant CFDs are particularly important for object identification, which is essential to data cleaning

and data integration. The other two algorithms are developed for discovering general CFDs. One algorithm, referred to as CTANE, is a

levelwise algorithm that extends TANE, a well-known algorithm for mining FDs. The other, referred to as FastCFD, is based on the

depth-first approach used in FastFD, a method for discovering FDs. It leverages closed-item-set mining to reduce the search space. As

verified by our experimental study, CFDMiner can be multiple orders of magnitude faster than CTANE and FastCFD for constant CFD

discovery. CTANE works well when a given relation is large, but it does not scale well with the arity of the relation. FastCFD is far more

efficient than CTANE when the arity of the relation is large; better still, leveraging optimization based on closed-item-set mining,

FastCFD also scales well with the size of the relation. These algorithms provide a set of cleaning-rule discovery tools for users to

choose for different applications.

Index Terms—Integrity, conditional functional dependency, functional dependency, free item set, closed item set.

Ç

1 INTRODUCTION

CONDITIONAL functional dependencies (CFDs) [1] were
recently introduced for data cleaning. They extend

standard functional dependencies (FDs) by enforcing
patterns of semantically related constants. CFDs have been
proven more effective than FDs in detecting and repairing
inconsistencies (dirtiness) of data [1], [2], and are expected
to be adopted by data cleaning tools that currently employ
standard FDs (e.g., [3], [4], [5]; see [6], [7] for surveys on data
cleaning tools).

However, for CFD-based cleaning methods to be effec-
tive in practice, it is necessary to have techniques in place
that can automatically discover or learn CFDs from sample
data, to be used as data cleaning rules. Indeed, it is often
unrealistic to rely solely on human experts to design CFDs
via an expensive and long manual process. As indicated in
[8], cleaning-rule discovery is critical to commercial data
quality tools.

This practical concern highlights the need for studying
the discovery problem for CFDs; given a sample instance r of a
relation schema R, it is to find a canonical cover of all CFDs

that hold on r, i.e., a set of CFDs that is logically equivalent
to the set of all CFDs that hold on r. To reduce redundancy,
each CFD in the canonical cover should be minimal, i.e.,
nontrivial and left-reduced (see [9] for nontrivial and left-
reduced FDs).

The discovery problem is, however, highly nontrivial. It is
already hard for traditional FDs since, among other things, a
canonical cover of FDs discovered from a relation r is
inherently exponential in the arity of the schema of r, i.e., the
number of attributes in R. Since CFD discovery subsumes
FD discovery, the exponential complexity carries over to CFD

discovery. Moreover, CFD discovery requires mining of
semantic patterns with constants, a challenge that was not
encountered when discovering FDs, as illustrated by the
example below.

Example 1. The following relational schema cust is taken
from [1]. It specifies a customer in terms of the
customer’s phone (country code (CC), area code (AC),
phone number (PN)), name (NM), and address (street
(STR), city (CT), zip code (ZIP)). An instance r0 of cust is
shown in Fig. 1.

Traditional FDs that hold on r0 include the following:

f1 : ½CC;AC� ! CT

f2 : ½CC;AC;PN� ! STR:

Here, f1 requires that two customers with the same
country- and area-codes also have the same city;
similarly for f2.

In contrast, the CFDs that hold on r0 include not only
the FDs f1 and f2, but also the following (and more):
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�0 : ð½CC;ZIP� ! STR; ð44; k ÞÞ
�1 : ð½CC;AC� ! CT; ð01; 908 k MHÞÞ
�2 : ð½CC;AC� ! CT; ð44; 131 k EDIÞÞ
�3 : ð½CC;AC� ! CT; ð01; 212 k NYCÞÞ:

In �0, (44, _ k _) is the pattern tuple that enforces a
binding of semantically related constants for attributes
(CC, ZIP, STR) in a tuple. It states that for customers in
the UK, ZIP uniquely determines STR. It is an FD that
only holds on the subset of tuples with the pattern
“CC ¼ 44,” rather than on the entire relation r0. CFD �1

assures that for any customer in the US (country code 01)
with area code 908, the city of the customer must be MH,
as enforced by its pattern tuple (01, 908 k MH); similarly
for �2 and �3. These cannot be expressed as FDs.

More specifically, a CFD is of the form ðX ! A; tpÞ,
where X ! A is an FD and tp is a pattern tuple with
attributes in X and A. The pattern tuple consists of
constants and an unnamed variable “ ” that matches an
arbitrary value. To discover a CFD, it is necessary to
find not only the traditional FD X ! A but also its
pattern tuple tp. With the same FD X ! A, there are
possibly multiple CFDs defined with different pattern
tuples, e.g., �1-�3. Hence, a canonical cover of CFDs that
hold on r0 is typically much larger than its FD

counterpart. Indeed, as recently shown by [10], pro-
vided that a fixed FD X ! A is already given, the
problem for discovering sensible patterns associated
with the FD alone is already NP-complete.

Observe that the pattern tuple in each of �1-�3 consists of
only constants in both its LHS and RHS. Such CFDs are
referred to as constant CFDs. Constant CFDs are instance-
level FDs [11] that are particularly useful in object
identification, an issue essential to both data quality and
data integration.

1.1 Prior Work

The discovery problem has been studied for FDs for two
decades [12], [13], [14], [15], [16], [17], [18], [19] for database
design, data archiving, OLAP, and data mining. It was first
investigated in [12], which shows that the problem is
inherently exponential in the arity jRj of the schema R of
sample data r. One of the best-known methods for FD

discovery is TANE [13], a levelwise algorithm [20] that
searches an attribute-set containment lattice and derives
FDs with kþ 1 attributes from sets of k attributes, with
pruning based on FDs generated in previous levels. TANE

takes linear time in the size jrj of input sample r, and works

well when the arity jRj is not very large. The algorithms of
[16], [17], [18] follow a similar levelwise approach. How-
ever, the levelwise algorithms may take exponential time in
jRj even if the output is not exponential in jRj. In light of
this, another algorithm, referred to as FastFD [14], explores
the connection between FD discovery and the problem of
finding minimal covers of hypergraphs, and employs the
depth-first strategy to search minimal covers. It takes
(almost) linear time in the size of the output, i.e., in the
size of the FD cover. It scales better than TANE when the
arity is large, but it is more sensitive to the size jrj. Indeed, it
is in Oðjrj2 log jrjÞ time, when considering data complexity
(jRj is assumed constant). There has also been a bottom-up
approach [15] based on techniques for learning general
logical descriptions in a hypotheses space. As shown in [13],
TANE outperforms the algorithm of [15].

Recently two sets of algorithms have been developed for
discovering CFDs [10], [21]. For a fixed traditional FD fd, [10]
showed that it is NP-complete to find useful patterns that,
together with fd, make quality CFDs. They provide efficient
heuristic algorithms for discovering patterns from samples
w.r.t. a fixed FD. An algorithm for discovering CFDs,
including both traditional FDs and their associated patterns,
was presented in [21], which is an extension of TANE.

Constant CFD discovery is closely related to association
rule mining (e.g., [22]) and in particular, closed- and free-
item-sets mining (e.g., [23], [24]). With 100 percent
confidence, an association rule ðX; tpÞ ) ðA; aÞ is a constant
CFD ðX ! A; ðtp k aÞÞ, where tp is a constant pattern over
attributes X and a is a value in the domain of attribute A.
Better still, there is an intimate connection between left-
reduced constant CFDs and nonredundant association
rules, which can be found by computing closed item sets
and free item sets.

The potential applications of CFDs in data cleaning
highlight the need for further investigations of CFD

discovery. 1) As remarked earlier, constant CFDs are
particularly important for object identification, and thus
deserve a separate treatment. One wants efficient methods
to discover constant CFDs alone, without paying the price of
discovering all CFDs. Indeed, as will be seen later, constant
CFD discovery is often several orders of magnitude faster
than general CFD discovery. 2) Levelwise algorithms [21]
may not perform well on sample relations of large arity,
given their inherent exponential complexity. More effective
methods have to be in place to deal with data sets with a
large arity. 3) A host of techniques have been developed for
(nonredundant) association rule mining, and it is only
natural to capitalize on these for CFD discovery. As we shall
see, these techniques cannot only be readily used in
constant CFD discovery, but also significantly speed up
general CFD discovery. To our knowledge, no previous
work has considered these issues for CFD discovery.

1.2 Contributions

In the light of these considerations, we provide three
algorithms for CFD discovery: one for discovering constant
CFDs, and the other two for general CFDs.

1. We propose a notion of minimal CFDs based on both
the minimality of attributes and the minimality of
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patterns. Intuitively, minimal CFDs contain neither
redundant attributes nor redundant patterns.
Furthermore, we consider frequent CFDs that hold
on a sample data set r, namely CFDs, in which the
pattern tuples have a support in r above a certain
threshold. Frequent CFDs allow us to accommodate
unreliable data with errors and noise. Our algo-
rithms find minimal and frequent CFDs to help users
identify quality cleaning rules from a possibly large
set of CFDs that hold on the samples.

2. Our first algorithm, referred to as CFDMiner, is for
constant CFD discovery. We explore the connection
between minimal constant CFDs and closed and free
patterns. Based on this, CFDMiner finds constant
CFDs by leveraging a latest mining technique
proposed in [24], which mines closed item sets and
free item sets in parallel, following a depth-first
search scheme.

3. Our second algorithm, referred to as CTANE, extends
TANE to discover general CFDs. It is based on an
attribute-set/pattern tuple lattice, and mines CFDs at
level kþ 1 of the lattice (i.e., when each set at the level
consists of kþ 1 attributes) with pruning based on
those at level k. CTANE discovers minimal CFDs only.

4. Our third algorithm, referred to as FastCFD, dis-
covers general CFDs by employing a depth-first
search strategy instead of the levelwise approach. It
is a nontrivial extension of FastFD mentioned above,
by mining pattern tuples. A novel pruning technique
is introduced by FastCFD, by leveraging constant
CFDs found by CFDMiner. As opposed to CTANE,
FastCFD does not take exponential time in the arity
of sample data when a canonical cover of CFDs is not
exponentially large.

5. Our fifth and final contribution is an experimental
study of the effectiveness and efficiency of our
algorithms, based on real-life data (Wisconsin breast
cancer and chess data sets from UCI) and synthetic
data sets generated from data scraped from the Web.
We evaluate the scalability of these methods by
varying the sample size, the arity of relation schema,
the active domains of attributes, and the support
threshold for frequent CFDs. We find that CFDMiner
often outperforms CTANE and FastCFD by three
orders of magnitude. We also find that FastCFD
scales well with the arity: It is up to three orders of
magnitude faster than CTANE when the arity is
between 10 and 15, and it performs well when the
arity is greater than 30; in contrast, CTANE cannot run
to completion when the arity is above 17. On the other
hand, CTANE is more sensitive to support threshold
and outperforms FastCFD when the threshold is
large and the arity is of a moderate size. We also find
that our pruning techniques via item-set mining are
effective: It improves the performance of FastCFD by
5-10 folds and makes FastCFD scale well with the
sample size. These results provide a guideline for
when to use CFDMiner, CTANE or FastCFD in
different applications.

These algorithms provide a set of promising tools to help

reduce manual effort in the design of data quality rules, for

users to choose for different applications. They help make
CFD-based cleaning a practical data quality tool.

1.3 Organization

Section 2 defines minimal and frequent CFDs, and states the
discovery problem. We present CFDMiner, CTANE and
FastCFD in Sections 3, 4, and 5, respectively. The experi-
mental results are given in Section 6, followed by related
work in Section 7 and topics for future work in Section 8.

2 CFDS AND CFD DISCOVERY

In this section, we first review the definition of CFDs [1]. We
then formalize the notions of minimal CFDs and frequent
CFDs. Finally, we state the discovery problem for CFDs.

2.1 Conditional Functional Dependencies

Consider a relation schema R defined over a fixed set of
attributes, denoted by attrðRÞ. For each attribute
A 2 attrðRÞ, we use domðAÞ to denote its domain.

2.1.1 CFDs

A conditional functional dependency (CFD) ’ over R is a pair
ðX ! A; tpÞ, where 1) X is a set of attributes in attrðRÞ, and
A is a single attribute in attrðRÞ, 2) X ! A is a standard FD,
referred to as the FD embedded in ’, and 3) tp is a pattern tuple
with attributes in X and A, where for each B in X [ fAg,
tp½B� is either a constant “a” in domðBÞ, or an unnamed
variable “_” that draws values from domðBÞ.

We denote X as LHSð’Þ and A as RHSð’Þ. If A also
occurs in X, we use AL and AR to indicate the occurrence of
A in the LHSð’Þ and RHSð’Þ, respectively. We separate the
X and A attributes in a pattern tuple with “ k ”.

Standard FDs are a special case of CFDs. Indeed, an FD

X ! A can be expressed as a CFD ðX ! A; tpÞ, where
tp½B� ¼ for each B in X [ fAg.
Example 2. The FD f1 of Example 1 can be expressed as a

CFD ([CC, AC] ! CT, (_, _ k _)); similarly for f2. All of
f1; f2, and �0-�3 are CFDs defined over schema cust. For
�0, for example, LHSð�0Þ is [CC, ZIP] and RHSð�0Þ is
STR.

2.1.2 Semantics

To give the semantics of CFDs, we define an order � on
constants and the unnamed variable “_”: �1 � �2 if either
�1 ¼ �2, or �1 is a constant a and �2 is “_”.

The order � naturally extends to tuples, e.g., (44, “EH4
1DT,” “EDI”) � (44, _, _) but (01, 07974, “Tree Ave.”) 6� (44,
_, _). We say that a tuple t1 matches t2 if t1 � t2. We write
t1 � t2 if t1 � t2 but t2 6� t1, i.e., when t2 is “more general”
than t1. For instance, (44, “EH4 1DT,”“EDI”) � (44, _, _).

An instance r of R satisfies the CFD ’ (or ’ holds on r),
denoted by r � ’, iff for each pair of tuples t1; t2 in r, if
t1½X� ¼ t2½X� � tp½X� then t1½A� ¼ t2½A� � tp½A�.

Intuitively, ’ is a constraint defined on the set r’ ¼
ft j t 2 r; t½X� � tp½X�g such that for any t1; t2 2 r’, if
t1½X� ¼ t2½X�, then 1) t1½A� ¼ t2½A�, and 2) t1½A� � tp½A�.
Here, 1) enforces the semantics of the embedded FD on the
set r’, and 2) assures the binding between constants in tp½A�
and constants in t1½A�. That is, ’ constrains the subset r’ of r
identified by tp½X�, rather than the entire instance r.
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Example 3. The instance r0 of Fig. 1 satisfies CFDs f1; f2 and

�0-�3 of Example 1. It does not satisfy the CFD  ¼ ([CC,

ZIP]! STR, (_, _, k _)). Indeed, t1 and t4 violate  since

t1[CC, ZIP] = t4[CC,ZIP] � (_, _), but t1[STR] 6¼ t4[STR].

Nor does r satisfy  0 ¼ (AC! CT, (131 k EDI)) since t8
violates  0: t8[AC] � (131) but t8[CT] 6� (EDI). From this,

one can see that while two tuples are needed to violate an

FD, CFDs can be violated by a single tuple.

We say that an instance r of R satisfies a set � of CFDs

over R, denoted by r � �, if r � ’ for each CFD ’ 2 �.
For two sets � and �0 of CFDs defined over the same

schema R, we say that � is equivalent to �0, denoted by

� � �0, iff for any instance r of R, r � � iff r � �0.

Remark. CFDs can also be defined as ðX ! Y ; tpÞ, where Y

is a set of attributes and X ! Y is an FD. As in the case of

FDs, such a CFD is equivalent to a set of CFDs with a

single attribute in their RHS. Thus in the sequel, we focus

on CFDs with their RHS consisting of a single attribute.

2.1.3 Classification of CFDs

A CFD ðX ! A; tpÞ is called a constant CFD if its pattern

tuple tp consists of constants only, i.e., tp½A� is a constant

and for all B 2 X, tp½B� is a constant. It is called a variable

CFD if tp½A� ¼ , i.e., the RHS of its pattern tuple is the

unnamed variable “ ”.

Example 4. Among the CFDs given in Example 1, f1; f2; �0

are variable CFDs, while �1; �2; �3 are constant CFDs.

It has been shown in [1] that any set � of CFDs over a

schema R can be represented by a set �c of constant CFDs

and a set �v of variable CFDs, such that � � �c [ �v. In

particular, for a CFD � ¼ ðX ! A; tpÞ, if tp½A� is a constant a,

then there is an equivalent CFD �0 ¼ ðX0 ! A; ðtp½X0� k aÞÞ,
where X0 consists of all attributes B 2 X such that tp½B� is a

constant. That is, when tp½A� is a constant, we can safely

drop all attributes B in the LHS of � with tp½B� ¼ “_”.

Lemma 1 [1]. For any set � of CFDs over a schema R, there exist

a set �c of constant CFDs and a set �v of variable CFDs over R,

such that � is equivalent to �c [ �v.

2.2 The Discovery Problem for CFDs

Given a sample relation r of a schema R, an algorithm for

CFD discovery aims to find CFDs defined over R that hold

on r. Obviously, it is not a good idea to return the set of all

CFDs that hold on r, since the set contains trivial and

redundant CFDs and is unnecessarily large. Thus, we want

to find a canonical cover, i.e., a nonredundant set

consisting of minimal CFDs only, from which all CFDs on

r can be derived via implication analysis. Moreover, real-

life data is often dirty, containing errors and noise. To

exclude CFDs that match errors and noise only, we

consider frequent CFDs, which have a pattern tuple with

support in r above a threshold.
Below we first formalize the notions of minimal CFDs

and frequent CFDs. We then state the discovery problem

for CFDs.

2.2.1 Minimal CFDs

A CFD ’ ¼ ðX ! A; tpÞ over R is said to be trivial if A 2 X.
If ’ is trivial, then either it is satisfied by all instances of R
(e.g., when tp½AL� ¼ tp½AR�), or it is satisfied by none of the
instances in which there is a tuple t such that t½X� � tp½X�
(e.g., if tp½AL� and tp½AR� are distinct constants). In the
sequel, we consider nontrivial CFDs only.

A constant CFD ðX ! A; ðtp k aÞÞ is said to be left-reduced
on r if for any Y 6� X, r 6� ðY ! A; ðtp½Y � k aÞÞ.

A variable CFD ðX ! A; ðtp k ÞÞ is left-reduced on r if
1) r 6� ðY ! A; ðtp½Y � k ÞÞ for any proper subset Y � X,
and 2) r 6� ðX ! A; ðt0p½X� k ÞÞ for any t0p with tp � t0p.

Intuitively, these assure the following: 1) None of its LHS

attributes can be removed, i.e., the minimality of attributes,
and 2) none of the constants in its LHS pattern can be
“upgraded” to “_”, i.e., the pattern tp½X� is “most general,”
or in other words, the minimality of patterns.

A minimal CFD ’ on r is a nontrivial, left-reduced CFD such
that r � ’. Intuitively, a minimal CFD is nonredundant.

Example 5. On the sample r0 of Fig. 1, �2 of Example 1 is a
minimal constant CFD, and f1; f2 and �0 are minimal
variable CFDs. However, �3 is not minimal: if we drop CC
from LHSð�3Þ, r0 still satisfies (AC! CT, (212 k NYC))
since there is only one tuple (t3) with AC ¼ 212 in r0.
Similarly, �1 is not minimal since CC can be dropped.

Consider f1
1 ¼ ðf1; ð01; k ÞÞ, f2

1 ¼ ðf1; ð44; k ÞÞ, f3
1 ¼

ðf1; ð ; 908 k ÞÞ, f4
1 ¼ ðf1; ð ; 212 k ÞÞ, and f5

1 ¼ ðf1;
ð ; 131 k ÞÞ. While these CFDs hold on r0, they are not
minimal CFDs, since they do not satisfy requirement (2)
for left-reduced variable CFDs. Indeed, ðf1; ð ; k ÞÞ is a
minimal CFD on r0 with a pattern more general than any
of fi1 for i 2 ½1; 5�; in other words, these fi1’s are redundant.

2.2.2 Frequent CFDs

The support of a CFD ’ ¼ ðX ! A; tpÞ in r, denoted by
supð’; rÞ, is defined to be the set of tuples t in r such that
t½X� � tp½X� and t½A� � tp½A�, i.e., tuples that match the
pattern of ’. For a natural number k 	 1, a CFD ’ is said to
be k-frequent in r if supð’; rÞ 	 k. For instance, �1 and �2 of
Example 1 are 3-frequent and 2-frequent, respectively.
Moreover, f1 and f2 are 8-frequent.

It should be mentioned that the notion of frequent CFDs
is quite different from the notion of approximate FDs [13],
[18]. An approximate FD  on a relation r is an FD that
“almost” holds on r, i.e., there exists a subset r0 � r such
that r0 �  and the error jr n r0j=jrj is less than a predefined
bound. It is not necessary that r �  . In contrast, a k-
frequent CFD ’ in r is a CFD that must hold on r, i.e., r � ’,
and moreover, there must be sufficiently many (at least k)
witness tuples in r that match the pattern tuple of ’.

2.2.3 Problem Statement

A canonical cover of CFDs on r w.r.t. k is a set � of minimal, k-
frequent CFDs in r, such that � is equivalent to the set of all
k-frequent CFDs that hold on r.

Given an instance r of a relation schema R and a support
threshold k, the discovery problem for CFDs is to find a
canonical cover of CFDs on r w.r.t. k.

Intuitively, a canonical cover consists of nonredundant
frequent CFDs on r, from which all frequent CFDs that hold
on r can be inferred.
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2.3 Discovering CFDs with Pattern Tableaus

So far, we considered CFDs of the form ’ ¼ ðX ! A; tpÞ. In
[1], however, CFDs were allowed to have multiple pattern
tuples. More specifically, a tableau CFD is of the form ’ ¼
ðX ! A; TpÞ where Tp is a pattern tableau consisting of a
finite number of pattern tuples with attributes in X and A.
An instance r of R is said to satisfy ’ if r satisfies every CFD

’tp ¼ ðX ! A; tpÞ with tp 2 Tp. It is easily verified (see [1])
that a tableau CFD ’ ¼ ðX ! A; TpÞ is equivalent to the set
of CFDs f’tp j tp 2 Tpg. Motivated by this equivalence, we
define the support of ’ ¼ ðX ! A; TpÞ, denoted by supð’Þ,
as mintp2Tp supð’tpÞ. Consequently, the discovery of k-
frequent tableau CFDs reduces to the problem of discover-
ing k-frequent CFDs. We remark that an alternative
definition of support for tableau CFDs is considered in [25].

Furthermore, the notion of minimality can be general-
ized to tableau CFDs: A CFD ’ ¼ ðX ! A; TpÞ is minimal
on r if 1) r 6� ðY ! A; TpÞ for any proper subset Y � X,
and 2) the pattern tableau is maximal (it cannot be
extended with more pattern tuples) without violating the
condition that for any two pattern tuples sp and tp, if
sp½X� � tp½X� then tp½A� 6� sp½A�.

It is readily verified that k-frequent minimal tableau CFDs
can be obtained from k-frequent minimal (single pattern
tuple) CFDs. We, therefore, focus on the latter in this paper.

3 DISCOVERING CONSTANT CFDS

In this section, we present CFDMiner, our algorithm for
constant CFD discovery. Given an instance r of R and
a support threshold k, CFDMiner finds a canonical
cover of k-frequent minimal constant CFDs of the form
ðX ! A; ðtp k aÞÞ.

Our algorithm is based on the connection between left-
reduced constant CFDs and free and closed item sets. A
similar relationship was established for so-called nonre-
dundant association rules [23]. In that context, constant
CFDs coincide with association rules that have 100 percent
confidence and have a single attribute in their antecedent.
Nonredundant association rules, however, do not precisely
correspond to left-reduced constant CFDs. Indeed, nonre-
dundancy is only defined for association rules with the
same support. In contrast, left-reducedness requires the
comparison of constant CFDs with different supports.
Finally, whereas [23] provides algorithms based on closed
sets, our algorithm is based on both closed and free sets.
Hence, the need to revisit the relationship between minimal
constant CFDs and item-set mining.

To make the relationship more precise, we first recall the
notions of free and closed item sets [23].

3.1 Free and Closed Item Sets

An item set is a pair ðX; tpÞ, where X � attrðRÞ and tp is a
constant pattern over X.

Given an instance r of the schema R, the support of ðX; tpÞ
in r, denoted by suppðX; tp; rÞ, is defined as the set of tuples
in r that match with tp on the X-attributes.

We say that ðY ; spÞ is more general than ðX; tpÞ, denoted
by ðX; tpÞ 
 ðY ; spÞ, if Y � X and sp ¼ tp½Y �. Furthermore,
ðY ; spÞ is said to be strictly more general than ðX; tpÞ, denoted
by ðX; tpÞ � ðY ; spÞ, if Y � X and tp½Y � ¼ sp. Clearly, if
ðX; tpÞ 
 ðY ; spÞ then suppðX; tp; rÞ � suppðY ; sp; rÞ.

An item set ðX; tpÞ is called closed in r if there exists no
item set ðY ; spÞ such that ðY ; spÞ 
 ðX; tpÞ for which
suppðY ; sp; rÞ ¼ suppðX; tp; rÞ. Intuitively, a closed item set
ðX; tpÞ cannot be extended without decreasing its support.
For an item set ðX; tpÞ, we denote by cloðX; tpÞ the unique
closed item set that extends ðX; tpÞ and has the same
support in r as ðX; tpÞ.

Similarly, an item set ðX; tpÞ is called free in r if there
exists no item set ðY ; spÞ such that ðX; tpÞ 
 ðY ; spÞ for which
suppðY ; sp; rÞ ¼ suppðX; tp; rÞ. Intuitively, a free item set
ðX; tpÞ cannot be generalized without increasing its support.

For a natural number k 	 1, a closed (respectively free)
item set ðX; tpÞ is called k-frequent if jsuppðX; tp; rÞj 	 k.

Example 6. Fig. 2 shows the closed sets in the cust relation
(see Fig. 1) that contain ðCT; ðMHÞÞ. It also shows the
corresponding free sets (closed sets are enclosed in a
rectangle). To simplify the figure, we do not show the
attribute names in the item sets, but we show the size of
the support of the item sets. For example, ð½CC, AC, CT,
ZIP�, ð01; 908, MH, 07974ÞÞ is a closed item set with
support equal to 3. This item set has two free patterns,
ð½CC, AC�, ð01; 908ÞÞ and ð½ZIP�,ð07974ÞÞ, both having
support ¼ 3 as well.

The connection between k-frequent free and closed item
sets and k-frequent left-reduced constant CFDs is as follows:

Proposition 1. For an instance, r of R and any k-frequent left-
reduced constant CFD ’ ¼ ðX ! A; ðtp k aÞÞ, r � ’ iff 1) the
item set ðX; tpÞ is free, k-frequent and it does not contain ðA; aÞ,
2) cloðX; tpÞ 
 ðA; aÞ, and 3) ðX; tpÞ does not contain a smaller
free set ðY ; spÞ with this property, i.e., there exists no ðY ; spÞ
such that ðX; tpÞ 
 ðY ; spÞ, Y � X, and cloðY ; spÞ 
 ðA; aÞ.

Example 7. From Proposition 1 and the closed and free item
sets shown in Fig. 2, it follows that �1: (½CC;AC� ! CT,
ð01; 908 k MHÞÞ of Example 1 is a 3-frequent constant
CFD that holds on the cust relation. Indeed, it is obtained
from the closed pattern ð½CC, AC, CT, ZIP�, ð01; 908, MH,
07974ÞÞ, where the free pattern ð½CC, AC�, ð01; 908ÞÞ is
taken as the LHS of the constant CFD. Fig. 2, however,
shows that this LHS contains a smaller free set (AC,
ð908ÞÞ whose closed set ð½AC, CT�, (908, MH)) contains
(CT, ðMHÞÞ. Hence, �1 is not left-reduced. It is easily
verified that (AC! CT, (908 k MH)) is a 4-frequent left-
reduced constant CFD on cust. Similarly �2 and �3 of
Example 1 can be obtained (although one has to consider
closed patterns that contain ðCT; ðEDIÞÞ for �2).
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3.2 CFDMiner

Proposition 1 forms the basis for our constant CFD

discovery algorithm. Suppose that for a given instance r
and a support threshold k, we have all k-frequent closed
sets and their corresponding k-frequent free sets at our
disposal. Algorithm CFDMiner then finds k-frequent left-
reduced constant CFDs from these sets. As mentioned in
Section 1, there have been various algorithms that provide
these sets [26]. We opt for the GCGROWTH algorithm of [26]
because it, in contrast to other algorithms, simultaneously
discovers closed sets and their free sets. Due to space
limitations, we omit the details of algorithm GCGROWTH;
we refer the reader to [26] for more details. For our
purposes, it is sufficient to know that GCGROWTH returns a
mapping C2F that associates with each k-frequent closed
item set its set of k-frequent free item sets.

Given this mapping, CFDMiner works as follows:

1. For each k-frequent closed item set ðX; tpÞ we add its
free sets, as given by C2F, to a hash table H.

2. For each closed item set ðX; tpÞ, we associate with
each of its free item sets ðY ; spÞ the item set
RHSðY ; spÞ ¼ ðX n Y ; tp½X n Y �Þ. That is, we associate
with each free set the candidate RHS attributes in
their corresponding constant CFDs.

During this process, an ordered list L of all k-
frequent free item sets is constructed as well. item
sets in this list are sorted in ascending order w.r.t.
their sizes.

3. For each free item set ðY ; spÞ in the list L, CFDMiner
does the following:

a. For each subset Y 0 6� Y such that ðY 0; sp½Y 0�Þ 2 L,
i t replaces RHSðY ; spÞ with RHSðY ; spÞ \
RHSðY 0; sp½Y 0�Þ. Indeed, Proposition 1 implies
that only those elements in RHSðY ; spÞ can lead
to a left-reduced constant CFD that is not already
included in some RHSðY 0; sp½Y 0�Þ of one of its
sub-item sets. It is important to remark that the
subset checking can be done efficiently by
leveraging the hash-table H.

b. After all subsets of ðY ; spÞ are checked,
CFDMiner outputs k-frequent constant CFDs
ðY ! A; ðsp k aÞÞ for all ðA; aÞ 2 RHSðY ; spÞ.

As will be verified in Section 6, this yields an efficient
algorithm for discovering constant CFDs.

4 CTANE: A LEVELWISE ALGORITHM

We next present CTANE, a levelwise algorithm for discover-
ing minimal, k-frequent (variable and constant) CFDs. It is an
extension of algorithm TANE [13] for discovering FDs.

CTANE mines CFDs by traversing an attribute-set/
pattern lattice L in a levelwise way. More precisely, the
lattice L consists of elements of the form ðX; tpÞ, where
X � attrðRÞ and tp is pattern tuple over X. In contrast to
the item sets in Section 3, the patterns now consist of
both constants and unnamed variables ( ). We say that
ðY ; spÞ is more general than ðX; tpÞ if Y � X and tp½Y � � sp.
This relationship defines the lattice structure on the
attribute-set/pattern pairs.

We first present CTANE for mining 1-frequent minimal
CFDs. We then describe how to modify CTANE to discover
k-frequent minimal CFDs for a support threshold k.

CTANE starts from singleton sets ðA;�Þ for A 2 attrðRÞ
and � 2 domðAÞ [ f g. It then proceeds to larger attribute-
set/pattern levels in L. When it inspects ðX; spÞ, it checks
CFDs ðX n fAg ! A; ðsp½X n fAg� k sp½A�ÞÞ, where A 2 X.
This guarantees that only nontrivial CFDs are considered.
Furthermore, CTANE maintains for each considered element
ðX; spÞ a set, denoted by CþðX; spÞ, to determine whether CFD

ðX n fAg ! A; ðsp½X n fAg� k sp½A�ÞÞ is minimal. The set
CþðX; spÞ, as will be elaborated below, can be maintained
during the levelwise traversal. Apart from testing for
minimality, CþðX; spÞ also provides an effective pruning
strategy, making the levelwise approach feasible in practice.

4.1 Pruning Strategy

To efficiently discover CFDs, we first extend TANE’s pruning
strategy. For each element ðX; spÞ in L, we provide a set
CþðX; spÞ that consists of elements ðA; cAÞ 2 attrðRÞ �
fdomðAÞ [ f gg, satisfying the following conditions:

1. if A 2 X, then cA ¼ sp½A�,
2. r 6� ðX n fA;Bg ! B; ðsp½X n fA;Bg� k sp½B�ÞÞ for all

B 2 X, and
3. for all B 2 X n fAg, r 6� ðX n fAg ! A; ðsBp k cAÞÞ,

where sBp ½C� ¼ sp½C� for all C 6¼ B and sBp ½B� ¼ .

Intuitively, condition 1 prevents the creation of inconsistent
CFDs; condition 2 ensures that the LHS cannot be reduced;
and condition 3 ensures that the pattern tuple is most
general.

The following is easily verified:

Lemma 2. Let X � attrðRÞ, sp be a pattern over X, A 2 X and
assume that r � ’ ¼ ðX n fAg ! A; ðsp½X n fAg� k sp½A�ÞÞ.
Then ’ is minimal iff for all B 2 X we have that
ðA; sp½A�Þ 2 CþðX n fBg; sp½X n fBg�Þ.

In terms of pruning, Lemma 2 says that we do not need
to consider any element ðX; spÞ of L for which CþðX; spÞ ¼ ;.
Moreover, if CþðX; spÞ ¼ ; then also CþðY ; tpÞ ¼ ; for any
ðY ; spÞ that contains ðX; tpÞ in the lattice. Therefore, the
emptiness of CþðX; spÞ potentially prunes away a large part
of elements in L that otherwise need to be considered by
CTANE.

Algorithm CTANE. We are now ready to present the
algorithm. We denote by L‘ a collection of elements ðX; spÞ
in L of size ‘, i.e., jXj ¼ ‘. We assume that L‘ is ordered
such that ðX; spÞ appears before ðY ; tpÞ if X ¼ Y and tp � sp.
Initially, L1 ¼ fðA; Þ j A 2 attrðRÞg [ fðA; a1Þ j a1 2 �AðrÞ;
A 2 attrðRÞg, Cþð;Þ ¼ L1 and ‘ ¼ 1. We then execute the
following steps as long as L‘ is nonempty:

1. We compute candidate RHS for minimal CFDs with
their LHS in L‘. That is, for each ðX; spÞ 2 L‘ we
compute

CþðX; spÞ ¼
\

B2X
CþðX n fBg; sp½X n fBg�Þ:

2. For each ðX; spÞ 2 L‘ we look for valid CFDs; i.e., for
each A 2 X, ðA; cAÞ 2 CþðX; spÞ we do the following:
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a. check whether r � ’, where

’ ¼ ðX n fAg ! A; ðsp½X n fAg� k cAÞÞ;

b. if r � ’ then output ’. Indeed, if ’ holds on r
then by Lemma 2 and Step 1, ’ is indeed a
minimal CFD,

c. if r � ’ then for all ðX; upÞ 2 L‘ such that
up½A� ¼ cA and up½X n fAg� � sp½X n fAg�, up-
date CþðX; upÞ by removing ðA; cAÞ and ðB; cBÞ
from it, for all B 2 attrðRÞ nX.

3. Next, we prune L‘. That is, for each ðX; spÞ 2 L‘ we
remove ðX; spÞ from L‘ provided that CþðX; spÞ ¼ ;.

4. Finally, we generate L‘þ1 as follows:

a. initially L‘þ1 ¼ ;,
b. for each pair of distinct ðX; spÞ; ðY ; tpÞ 2 L‘ that

agree on the first ‘
 1 attributes:

i. let Z ¼ X [ Y and up ¼ ðsp; tp½Yn�Þ; here Yn
denotes the last attribute in Y ,

ii. if there is a tuple in the projection �ZðrÞ that
matches up then continue with ðZ; upÞ,

iii. if for all A 2 Z, ðZ n fAg; up½Z n fAg�Þ 2 L‘,
then add ðZ; upÞ to L‘þ1,

c. set ‘ ¼ ‘þ 1.

Before we prove the correctness of the algorithm, we first

extend the algorithm to find k-frequent CFDs, and illustrate

how it works with an example.

4.2 CTANE for Finding k-Frequent CFDs

CTANE can be easily modified such that it only discovers

k-frequent minimal CFDs. First, we observe the following:

Let ’ ¼ ðX ! A; ðtp; cAÞÞ be a CFD that holds on r. We

denote by ðXc; tcpÞ the item set consisting of the constant

part of ðX; tpÞ. Then ’ is k-frequent iff suppðXc; tcp; rÞ 	 k
when X 6¼ ; and jrj 	 k.

This tells us that for any reasonable choice of k (i.e.,

smaller than the size of r), we only need to restrict the

elements ðX; spÞ 2 L‘ to those for which ðXc; scpÞ is a k-

frequent item set. This can be achieved by 1) starting with

L1 ¼ fðA; Þ j A 2 attrðRÞg [ fðA; a1Þ j suppðA; a1; rÞ 	 k; A
2 attrðRÞg; and 2) replacing Step 4.b(ii) in CTANE by a step

that only considers ðZ; upÞ if suppðZc; ucp; rÞ 	 k. Both

modifications yield more pruning, and thus improve the

efficiency of CTANE when finding k-frequent CFDs.

Example 8. Consider again the cust relation of Fig. 1. We

give a partial run of algorithm CTANE involving only

attributes CC, AC, ZIP, and STR. Assume a support
threshold k 	 3.

We show in Fig. 3 the first two levels of lattice L and
the third level corresponding to attributes ½CC;AC;
ZIP�. In particular, for each element ðX; spÞ inspected by
CTANE, we list the attribute set X together with the list
of possible patterns, ranked w.r.t. the number of “_” in
them.

We highlight certain points during the execution of
CTANE: A;B;C;D;E; F reached in this order, as
indicated in Fig. 3.

(A) Initially L1 consists of all single attribute/value
pairs that appear at least k times, and each attribute
occurs together with an unnamed variable. Note that k
limits the number of values dramatically for, e.g., the
STR attribute. At this point, all sets CþðA; cAÞ contain
ðA; cAÞ. Since r does not satisfy any CFD with an
empty LHS, none of the Cþ-sets is updated in Step 2.
Similarly, none of the sets is removed from L1 in
Step 3.

(B) In Step 4, CTANE pairs attribute together and
creates consistent patterns. Note that for ðCC;ACÞ the
constant 44 does not appear anywhere (while it did at the
lower level). This is because k ¼ 3.

(C) For the gray shaded patterns, Step 2 finds valid
CFDs: ðZIP! CC; ð07974 k ÞÞ, ðZIP! CC; ð07974 k 01ÞÞ,
ðZIP! AC; ð07974 k ÞÞ, ðZIP! AC; ð07974 k 908ÞÞ, and
ðSTR! ZIP; ð k ÞÞ. This implies that, e.g., Cþð½CC;ZIP�;
ð ; 07974ÞÞ and Cþð½AC;ZIP�; ð ; 07974ÞÞ are updated in
Step 2 by removing ðCC; Þ and ðAC; Þ, respectively.

(D) Step 4 now creates triples of attributes. We only
show the patterns for ðCC;AC;ZIPÞ. In Step 2, CTANE
finds the CFD ð½CC;AC� ! ZIP; ð ; k ÞÞ.

(E) As a result, CTANE updates the Cþ-sets in Step 2.c,
not only of the current patten but also of those with a
more specific pattern on the LHS-attributes. That is,
ðZIP; Þ is removed from the Cþ-set from the first three
patterns. This ensures that CFDs to be generated later
only have the most general LHS-pattern.

(F) Finally, in Step 1 of CTANE, theCþ set of the pattern
tuple ð ; ; 07974Þ is computed. However, recall that both
Cþð½CC;ZIP�; ð ; 07974ÞÞ and Cþð½AC;ZIP�; ð ; 07974ÞÞ
have been updated. As a result, neither ðCC; Þ nor
ðAC; Þ will be included in the Cþ-set of ð ; ; 07974Þ. This
illustrates that the only chance of finding an minimal CFD

in this case is to test ð½AC;CC� ! ZIP; ð ; k 07974ÞÞ,
which in this case does not hold on r. However, this
shows that theCþ-sets indeed reduce the possible RHS for
candidate minimal CFDs.
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4.3 Correctness

As for algorithm TANE, Lemma 2 ensures that Steps 1 and
2.a of algorithm CTANE correctly generates minimal CFDs.
Further, it is easily verified that Steps 1 and 2.c of CTANE
correctly update CþðX; spÞ:
Lemma 3. Suppose that for all ðY ; tpÞ 2 L‘, CþðY ; tpÞ is

correctly computed. Then Steps 1 and 2.c of CTANE correctly
compute CþðX; spÞ for all ðX; spÞ 2 L‘þ1.

4.4 Implementation Details

We now briefly elaborate on the implementation of CTANE.
There are four primary computational aspects important for
an efficient implementation:

1. the maintenance of the sets CþðX; spÞ (Step 1),
2. the validation of the candidate minimal CFDs

(Step 2.b),
3. the generation of L‘þ1 (Step 4), and
4. the checking of support when discovering k-frequent

CFDs (Step 4.b(ii)).

The technique underlying 1) and 2) is based on so-called

partitions. More specifically, given ðX; spÞ we say that two

tuples u; v 2 r are equivalent w.r.t. ðX; spÞ if u½X� ¼
v½X� � sp½X�. Any ðX; spÞ, therefore, induces an equivalence

relation on a subset of r. If we denote by ½u�ðX;spÞ the set of

tuples in r that are equivalent with u, then we can use

�ðX;spÞ ¼ f½u�ðX;spÞ j u 2 rg to partition a subset of r by ðX; spÞ.
The validity of a CFD � ¼ ðX ! A; ðsp k cAÞÞ in r can now be

tested by checking whether j�ðX;spÞj ¼ j�ð½X;A�;ðsp;cAÞÞj. That is,

the number of equivalence classes remains the same. It is

this characterization of the validity of a CFD that provides an

efficient implementation of 2). Moreover, �ðX;spÞ can be used

to eliminate redundant elements in CþðX; spÞ, making this

list as small as possible. In contrast, a naive implementation

of Step 1 might keep around elements that never appear

together with ðX; spÞ in r.
Regarding 3), we adopt a similar techniques used in

TANE to generate partitions corresponding to elements in
L‘þ1 as the product of previously computed partitions.
Moreover, for the generation of the elements in L‘þ1, we
store elements in L‘ lexicographically; from this, one can
efficiently generate candidate patterns ðZ; upÞ.

Finally, when considering k-frequent CFDs, partitions
can be used efficiently to check the support of a newly
created element ðZ; upÞ in Step 4.b(ii). Moreover, when
ðZ; upÞ is obtained from X [ Y and up ¼ ðsp; tp½Yn�Þ with
tp½Yn� ¼ , we can avoid checking suppðZc; ucp; rÞ altogether.
Indeed, the support of this pattern is equal to the support of
suppðX; sp; rÞ, which is assumed to be k-frequent already
since it must belong to L‘ (Step 4.b(iii)).

5 FASTCFD: A DEPTH FIRST APPROACH

In this section, we present FastCFD, an alternative
algorithm for discovering minimal, k-frequent (variable
and constant) CFDs. Given an instance r and a support
threshold k, FastCFD finds a canonical cover of all minimal
CFDs ’ such that supð’; rÞ 	 k. In contrast to the breadth-
first approach of CTANE, FastCFD discovers k-frequent

minimal CFDs in a depth-first way. It is inspired by FastFD
[14], a depth-first algorithm for discovering FDs.

FastCFD first decomposes the problem of finding a
canonical cover by finding canonical covers consisting of
CFDs with a specified right-hand side attribute. More
specifically, for each attribute A in attrðRÞ, FastCFD looks
for all CFDs of the form ’ ¼ ðY ! A; tpÞ such that Y �
attrðRÞ n fAg, ’ is minimal, and moreover supð’; rÞ 	 k. We
denote this set of CFDs by CoverðA; r; kÞ. Clearly, all k-
frequent minimal CFDs in r can then be obtained asS
A2attrðRÞ CoverðA; r; kÞ. The technical challenge of FastCFD,

therefore, shifts to the computation of CoverðA; r; kÞ for a
given A 2 attrðRÞ, r and k 	 0.

It is to compute CoverðA; r; kÞ that FastCFD leverages a
depth-first search strategy. More specifically, the key
observation behind FastCFD is a relationship between
CFDs ’ ¼ ðY ! A; tpÞ in CoverðA; r; kÞ and so-called covers
of difference sets. Intuitively, by using the difference sets of r
with respect to an attribute A and pattern tuple tp, we
identify those attributes (including the attribute A) in which
pairs of tuples in r that match the pattern tuple may
possibly differ. A cover of these difference sets contains at
least one attribute for each pair of tuples. As we will show
below (Lemma 4), the minimal covers of the difference sets
correspond to the left-hand sides of (minimal) CFDs in
CoverðA; r; kÞ. Therefore, FastCFD needs to find all minimal
covers of the difference sets with respect to A and all
pattern tuples tp.

These minimal covers are computed by a procedure,
referred to as FindCover. In a nutshell, procedure FindCover
loops over all relevant pattern tuples ðX; tpÞ (as we will see
below it is sufficient to consider free item sets only). For
each ðX; tpÞ, it invokes a recursive procedure, denoted by
FindMin. This procedure will extend X by all subsets Y in
attrðRÞ nX [ fAg, and test whether the resulting CFD

ð½X;Y � ! ðtp; ; . . . ; jtaÞÞ is minimal. To do this it leverages
the relationship with difference sets to optimally prune
subsets that do not lead to minimal CFDs. As will be
explained in more detail below, FindMin uses a depth-first,
left-to-right traversal of the space of subsets of
attrðRÞ nX [ fAg.

Before we present FastCFD, we first define difference
sets and the develop a pattern pruning strategy.

5.1 Difference Sets

As previously mentioned, to compute CoverðA; r; kÞ in a
depth-first way, we need the notion of difference sets.
Similar to [14], we define the difference set for a pair of tuples
t1; t2 2 r by

Dðt1; t2; rÞ ¼ fB 2 attrðRÞ j t1½B� 6¼ t2½B�g;

i.e., the set of attributes in which t1 and t2 differ. We define
the difference set of r to be DðrÞ ¼ fDðt1; t2; rÞ j t1; t2 2 rg.

We denote by DAðrÞ the set fY n fAg j Y 2 DðrÞ; A 2 Y g,
i.e., the set of attribute sets Y n fAg such that there exist
tuples in r that disagree on all of the attributes in Y ,
including A.

A difference set Y 2 DAðrÞ is said to be minimal if for all
Y 0 2 DAðrÞ such that if Y 0 � Y then Y 0 ¼ Y . We denote the
set of minimal difference sets in DAðrÞ by DmA ðrÞ.
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To characterize the relationship between minimal differ-
ence sets of minimal CFDs in CoverðA; r; kÞ, we need the
following notations. Denote by PðattrðRÞÞ the power set of
attrðRÞ. Let Z � attrðRÞ and X � PðattrðRÞÞ. We say that
Z covers X iff for each Y 2 X, Y \ Z 6¼ ;. Moreover, Z is a
minimal cover for X if no Z

0 � Z covers X.
The relationship between difference sets and the validity

of CFDs is given in the lemma below. Recall that for a
pattern tp, we denote by rtp the set of tuples in r that match
with tp.

Lemma 4.

1. For any constant CFD � ¼ ðX ! A; ðtp k aÞÞ, r � �
and supð�; rÞ 	 k iff jrtp j 	 k, DmA ðrtpÞ ¼ ;, and
�AðrtpÞ ¼ ðaÞ.

2. For any variable CFD � ¼ ðX ! A; ðtp k ÞÞ, r � �
and supð�; rÞ 	 k iff jrtp j 	 k and X covers DmA ðrtpÞ.

Proof. This follows immediately from the semantics of CFDs
and the definition of minimal covers of difference sets. tu

Lemma 4 provides a means of testing whether a CFD

holds in terms of difference sets. Furthermore, it also forms
the basis for finding minimal k-frequent CFDs. Indeed,
consider constant CFDs. To find a minimal k-frequent
constant CFD ðX ! A; ðtp k aÞÞ, Lemma 4 tells us that we
need to find a k-frequent item set ðX; tpÞ in r, such that
DmA ðrtpÞ ¼ ; and DmA ðrtp ½X0�Þ 6¼ ; for any X0 � X of size
jXj 
 1. The constant a is then given by �AðrtpÞ. We refer to
this condition on ðX; tpÞ as condition (a).

Next, consider variable CFDs ðX ! A; ðtp k ÞÞ. Observe
that sets in DmA ðrtpÞ only contain attributes B for which
tp½B� ¼ . It is, therefore, sufficient to only consider constant
pattern tuples in the difference sets. We denote by Xc � X
the set of attributes in X such that tp½Xc� consists of
constants only. The corresponding pattern tuple tp½Xc� is
denoted by tcp. We use Xv to denote the remaining attributes
in X nXc, and tvp ¼ ð ; . . . ; Þ to denote pattern tuple
tp½X nXc�.

Hence, to find a minimal k-frequent variable CFD

ð½Xc;Xv� ! A; ðtcp; tvp k ÞÞ we have to find a k-frequent item
set ðXc; tcpÞ in r such that

b1. Xv is a minimal cover of DmA ðrtcpÞ, i.e., there exists no
Y 0 � Xv of size jXvj 
 1 that covers DmA ðrtcpÞ, and

b2. none of the constants in tcp can be replaced by a “ ”,
i.e., there exists no X0 � Xc of size jXcj 
 1 such that
Xv [ ðXc nX0 Þ covers DmA ðrtcp½X0 �Þ.

Conditions (b1) and (b2) are onXv andXc, respectively. They
guarantee that ð½Xc;Xv� ! A; ðtcp; tvp k ÞÞ is left-reduced.

Procedure FindCover uses a depth-first exploration of all
subsets of attrðRÞ n fAg to find minimal covers of the
difference sets DmA ðrtpÞ for pattern tuples tp satisfying the
conditions (a), (b1), and (b2) described above. Before we
present FindCover in more detail, we describe an additional
optimization when discovering variable CFDs.

5.2 Efficient Pattern Pruning Strategy

We have seen that a minimal k-frequent variable CFDs is of
the form ð½Xc;Xv� ! A; ðtcp; tvp k ÞÞ, where ðXc; tcpÞ is a k-
frequent item set. Similar to the constant CFD case (see

Proposition 1) we now show that it is not necessary to

consider all k-frequent item sets ðXc; tcpÞ when discovering

minimal variable CFDs.
Indeed, the following lemma tells us that it suffices to

consider only k-frequent free item sets. This yields a pruning

strategy, i.e., by only considering free item sets. As we will

see in Section 6, the strategy substantially reduces the

number of constant pattern candidates and significantly

improves the efficiency of CFD discovery.

Lemma 5. Let � ¼ ðX ! A; ðtp k ÞÞ be a variable CFD such that

r � � and supð�; rÞ 	 k. If � is minimal then the constant

pattern in tp, denoted by ðXc; tcpÞ, is a k-frequent free item set.

Algorithm FastCFD. We next describe algorithm

FastCFD and its component procedures FindCover and

FindMin in more detail. As previously mentioned, given r

and k 	 0, FastCFD calls FindCoverðA; r; kÞ for each attribute

A 2 attrðRÞ. The final result is the union of CoverðA; r; kÞ, for

each A 2 attrðRÞ, as returned by FindCover.

Algorithm FindCover. Procedure FindCoverðA; r; kÞ, in

turn, invokes the recursive procedure FindMin. More

specifically, Proposition 1 and Lemma 5 state that it is

sufficient to consider k-frequent free item sets as constant

patterns of CFDs only. Hence, FindCover first extracts the

set of the k-frequent free item sets FrkðrÞ of r, in which item

sets are kept in the ascending order w.r.t. their sizes. To

efficiently retrieve elements in FrkðrÞ, FindCover also

indexes those item sets in a hash table.
Second, for each item set ðX; tpÞ in FrkðrÞ, FindCover

maintains DmA ðrtpÞ, i.e., the set of minimal difference sets

produced from all tuples in rtp . Then, for a given

ðX; tpÞ 2 FrkðrÞ, FindCover recursively calls FindMin to find

a minimal cover Y of DmA ðrtpÞ and tests conditions (a), (b1),

and (b2), previously described.
Algorithm FindMin. Procedure FindMin finds the mini-

mal covers by traversing all subsets of attrðRÞ n fAg in a

depth-first way. That is, we assume an ordering <attr on

attrðRÞ. All subsets of attrðRÞ n fAg are then enumerated

in a depth-first, left-to-right fashion based on the given

attribute ordering. For instance, suppose that attrðRÞ ¼
fA;B;C;Dg and A <attr B <attr C <attr D. Then, starting

from the empty set, the subsets of attrðRÞ n fAg are

generated in the following order: fBg, fB;Cg, fB;C;Dg,
fB;Dg, fCg, fC;Dg, and fDg. It is common to represent

these sets in an enumeration tree according to <attr , in

which each set corresponds to a path from the root, ending

in the node representing that set. For instance, fB;Cg
corresponds to a path ;; B; C in the enumeration tree. In the

following, we abuse notation and represent both the set

Y � attrðRÞ and its corresponding path in the tree by Y .
During the enumeration of the subsets by FindMin, we

denote by Y � attrðRÞ the current path in the enumeration

tree. Furthermore, when inspecting Y , FindMin maintains

the difference sets in DmA ðrtpÞ that are currently not covered yet

by attributes in Y . We denote this set by DmA ðrtpÞ½Y �. Initially,

i.e., when Y ¼ ;, this set is equal to DmA ðrtpÞ. The details of

FindMin are as follows:
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Input: A 2 attrðRÞ, ðX; tpÞ 2 FrkðrÞ, Y � attrðRÞ n fAg,
DmA ðrtpÞ½Y �, and <attr .

Output: Minimal CFDs ’ ¼ ð½X;Y � ! A; ðtp; ; . . . k taÞÞ,
where ta is a constant or “_”.

Base case:

1) If ; 2 DmA ðrtpÞ½Y �, then return an empty set. By

Lemma 4, ð½X;Y �; ðtp; ; . . . ; ÞÞ can never lead to

a valid CFD.

2) If Y contains the last attributes in attrðRÞ n fAg
w.r.t. <attr , but DmA ðrtpÞ½Y � 6¼ ;, then return an empty

set. By Lemma 4, r 6� ð½X;Y � ! A; ðtp; ; . . . ; k ÞÞ
because Y does not cover DmA ðrtpÞ; moreover, since

ð½X;Y �; ðtp; ; . . . ; ÞÞ cannot be further extended, this

pattern does not lead to a valid CFD.

3) If DmA ðrtpÞ½Y � ¼ ;, then Y is a cover of DmA ðrtpÞ. There

are two cases to consider corresponding to the

conditions (a) and (b1-b2).
a) If DmA ðrtpÞ ¼ ;, then by Lemma 4, there exists a

constant ta, r � ðX ! A; ðtp k taÞÞ. In order to check

for minimality, we need to verify whether there is

no X
0 � X of size jXj 
 1 such that r � ðX0 ! A;

ðtp½X
0 � k taÞÞ. If this holds, then output constant

CFD ðX ! A; ðtp k taÞÞ.
b) If DmA ðrtpÞ 6¼ ;, then Lemma 4 implies that

r � ð½X;Y � ! A; ðtp; ; . . . ; k ÞÞ. In order to check
for minimality, we need to verify whether

i) there is no Y
0 � Y of size jY j 
 1 such that Y

0

covers DmA ðrtp½X�Þ,
ii) there is no X

0 � X of size jXj 
 1 such that

Y [ ðX nX0 Þ covers DmA ðrtp½X0 �Þ.
If conditions 1) and 2) are both satisfied, then

output variable CFD ð½X;Y � ! A; ðtp; ; . . . ; k ÞÞ.
Recursive case:

4) For each attribute B that appears after Y w.r.t. <attr ,

we do the following:

a) Let Y
0 ¼ Y [ fBg and DmA ðrtpÞ½Y 0� be the difference

sets of DmA ðrtpÞ½Y � not covered by B.

b) Call FindMinðA; ðX; tpÞ; Y
0
;DmA ðrtpÞ½Y 0�; <attrÞ

recursively following the depth-first strategy.

Before illustrating algorithm FastCFD, we remark the
following. A careful reader might wonder how DmA ðrtp½X0 �Þ is
obtained in Step 3.b(ii). After all, the only difference sets that
are maintained are those related to k-frequent free patterns.
Note, however, that ðX0

; tp½X
0 �Þ is a k-frequent item set due

to the anti-monotonicity property of frequent item sets.
Furthermore, there exist k-frequent free item sets ðZ; spÞ
such that ðZ; spÞ 
 ðX

0
; tp½X

0 �Þ. Because jsuppðX0
; tp½X

0 �Þj ¼
maxfjsuppðZ; spÞjg, DmA ðrtp½X0 �Þ is the same as DmA ðrsp½Z�Þ,
where ðZ; spÞ is the free item set with the maximum
cardinality for all ðZ; spÞ 
 ðX

0
; tp½X

0 �Þ. Since DmA ðrsp½Z�Þ is

maintained, we use this set in Step 3.b(ii).

Example 9. Consider again the cust relation of Fig. 1. We give
a partial run of FindCoverðattrðRÞ n STR; STR; cust,
2) involving only attributes CC;AC;PN;CT;ZIP and
STR. We leave out attribute NM to simplify the discus-
sion. We assume a support threshold k ¼ 2 and assume
that <attr orders attributes alphabetically. Fig. 4 depicts
the following: in the top right corner we have shown a

partial set of the k-frequent free item sets in FrkðrÞ, where
the immediate subsets of the free item sets are illustrated
by dotted arrows; in the bottom left corner we have drawn
a partial execution tree of FindMin for the free pattern
ðCC; 01Þ. We highlight circled pointsA,B,C andDduring
the execution of FindCover. Note that the execution of
FindCover constructs a depth-first search tree for every
free pattern although only the one for ðCC; 01Þ is shown in
the figure.

(A) As outlined above, FindCover passes free patterns
to FindMin. Assume that the first free pattern to be
considered is ;. In this case, the execution of FindMin is
exactly the same as in the FastFD algorithm [14]. After this
step all minimal FDs of the form ðY ! STR; ð ; . . . ; k ÞÞ
are returned.

(B) Next, we consider the free pattern ðCC; 01Þ with
rCC¼01 ¼ ft1; t2; t3; t4; t8g, and minimal difference sets

DmSTRðrCC¼01Þ ¼ f½PN�; ½AC;CT�g:

Hence, FindMin will find a cover for DmSTRðrCC¼01Þ by the
recursive process invoked in Step 4. The (partial)
enumeration tree of the subsets of fAC;CT;PNg accord-
ing to <attr is illustrated in Fig. 4. The corresponding
covers Y of DmSTRðrCC¼01Þ computed are ½AC;PN� and
½CT;PN�. Consider the cover ½AC;PN� and its minimal
CFD candidate

�
0 ¼ ð½CC;AC;PN� ! STR; ð01; ; k ÞÞ

in Step 3.b. Although the algorithm verifies that �
0

is
minimal for rCC¼01 in Step 3.b(i), it still needs to inspect
whether ½CC;AC;PN� covers DmSTRðr;Þ in Step 3.b(ii),
where ; is the only immediate subset of pattern ðCC; 01Þ.
In this case, it finds out that ½CC;AC;PN� covers
DmSTRðr;Þ, which indicates that r � ð½CC;AC;PN� !
STR; ð ; ; k ÞÞ. Thus, �

0
is not a minimal CFD.

(C) Similarly, consider the free pattern ðCC; 44Þ with
rCC¼44 ¼ ft5; t6; t7g and minimal difference sets

DmSTRðrCC¼44Þ ¼ f½AC;CT;ZIP�g:
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The covers of DmSTRðrCC¼44Þ are AC, CT, and ZIP. For the
cover AC, FindMin needs to inspect if its CFD

� ¼ ð½CC;AC� ! STR; ð44; k ÞÞ

is minimal. In Step 3.b(i), it verifies that � is minimal for
rCC¼44, but it still needs to inspect whether ½CC;AC�
covers DmSTRðr;Þ (i.e., DmSTRðrÞ) in Step 3.b(ii), where again
; is the only immediate subset of pattern ðCC; 44Þ. As we
can observe from the cust relation, Dðt2; t4Þ ¼ fPN; STRg,
and ½PN� 2 DmSTRðrÞ (one may compute DmSTRðrÞ to verify
that ½PN� 2 DmSTRðrÞ). This implies that ½CC;AC� cannot
be a cover for DmSTRðrÞ. Thus, � is a minimal CFD.

(D) As a final example, we consider the free set
ðX; tpÞ ¼ ð½CC;AC�; ½01; 908�Þ with rtp ¼ ft1; t2; t4g and
minimal difference sets

DmSTRðrtpÞ ¼ f½PN�g:

The corresponding cover of DmSTRðrtpÞ is ½PN�. Consider
its minimal CFD candidate

�
00 ¼ ð½CC;AC;PN� ! STR; ð01; 908; k ÞÞ

in Step 3.b. Although FindMin verifies that �
00

is minimal
for rtcp in Step 3.b(i), it still needs to inspect all immediate
subsets of ð½CC;AC�; ½01; 908�Þ, i.e., ðCC; 01Þ and ðAC; 908Þ,
for the minimality of �

00
. Suppose that FindMin inspects

ðCC; 01Þ first. It finds out that ½AC;PN� is actually a cover
for DmSTRðrCC¼01Þ. Thus, �

00
is not a minimal CFD.

5.3 Implementation Details and Optimizations

The key differences between FastCFD and its FD-counter-
part FastFD consists of the following: 1) the more
complicated condition for testing the validity of a minimal
CFD � in terms of the minimality of the constant pattern and
unnamed variables in LHSð�Þ, and 2) the fact that we
discover k-frequent CFDs instead of 1-frequent FDs only.
Whereas for FDs, the only difference sets needed are DmA ðrÞ
for A 2 attrðRÞ, Lemma 4 states that for CFDs, difference
sets DmA ðrtpÞ are needed for all rtp , where tp is a k-frequent
free pattern in r. Worse still, when ðX; tpÞ is reached, the
depth-first approach enforces FindMin to use DmA ðrtp½X0 �Þ
during the minimality check for all X0 � X of size jXj 
 1.
These suggest that we need a very efficient way to compute
difference sets. To do so, the following two approaches are
implemented and evaluated.

5.4 NaiveFast

The first one is inspired by the stripped partition-based
approach used by FastFD [14]. Here, for a given ðX; tpÞ the
stripped partition of rtp w.r.t. an attribute A is the partition
of rtp w.r.t. A from which all single-tuple equivalence classes
are removed (see Section 4 for the definition of partition).
The computation of the stripped partitions of rtp for each
A 2 attrðRÞ basically provides sufficient information to
infer for any two tuples on which attributes they agree. By
taking complements, one can then infer the difference sets.
It is important to remark that the stripped partitions are
often much smaller than the instances, making this
approach efficient. We refer to the version that relies on
the partition-based approach as NaiveFast.

5.5 FastCFD

The second approach relies on the availability of Closed2ðrÞ,
which consists of all 2-frequent closed item sets in r. Given
ðX; tpÞ, we can again infer for any two tuples in rtp on which
attributes they agree. Indeed, these sets of attributes are
given by the attributes in those item sets in Closed2ðrÞ that
match tcp (the constant part of tp). By taking the complement
we can infer the desired difference sets efficiently. Our
experimental evaluation (see Section 6) shows that this
approach outperforms the partition-based approach, and is,
therefore, taken as the default implementation for differ-
ence sets in FastCFD.

Finally, since CFDMiner produces ClosedkðrÞ as a side-
product, we can choose to use CFDMiner for constant CFD

discovery and use FastCFD for variable CFDs only. To do
so, we eliminate Step 3.a in FindCover. Taken together,
these lead to significant improvements in efficiency, as will
be reported in the next section.

5.6 Dynamic Attribute Reordering

Similar to FastFD, FastCFD is equipped with a dynamic
reordering of the attributes when enumerating the subsets in
the procedure FindMin. More specifically, instead of keeping
<attr fixed throughout the execution of FindMin, an addi-
tional step (between Steps 4.a and 4.b) is included in which
the remaining attributes are reordered based on a cost model.

FastCFD employs a cost model similar to FastFD, to
dynamically reorder attributes such that attributes that
cover the most difference sets are treated first. We refer to
[14] for more details concerning the cost model.

6 EXPERIMENTAL STUDY

We next present an experimental study of our algorithms for
discovering minimal CFDs: CFDMiner, CTANE, NaiveFast,
and FastCFD given in Sections 3, 4, and 5, respectively. We
investigate the effects of the following factors on the
scalability and the number of minimal CFDs produced:

1. the support threshold k,
2. the size DBSIZE of a sample relation r, i.e., the

number of tuples in r,
3. the arity ARITY of r, i.e., the number of columns in r,
4. a correlation factor (CF) [14], which indicates that the

average range of distinct values in an attribute
domain is CF �DBSIZE.

6.1 Experimental Settings

The experiments were conducted on both real-life data and on
synthetic data sets generated using real data. Our experi-
ments used real data sets from the UCI machine learning
repository (http://archive.ics.uci.edu/ml/), namely, the
Wisconsin breast cancer (WBC) and Chess data sets. The
following table describes the parameters of those data sets:

To evaluate the scalability of the algorithms, we also
used an extension of the relation in Fig. 1, which is a
synthetic data set for tax records generated by populating
the database with data used in [1], via a generator. The
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generator takes parameters ARITY, DBSIZE, and CF, and
produces data sets accordingly.

The algorithms have been implemented in C++. The
program has been tested on AMD Opteron Processor
(2.6GHZ) with 32 GB of memory running Linux operating
system. Our algorithms run entirely in main memory. Each
experiment was repeated over five times and the average is
reported here.

6.2 Experimental Results

We first present our experimental results on generated data,
and then our results with real-life data.

6.2.1 Scalability Experiments

We study the performance of our algorithms by varying
DBSIZE, ARITY, CF, and support threshold k in this set of
experiments.

Scalability w.r.t. DBSIZE. Fixing ARITY ¼ 7 and CF ¼
0:7 we varied DBSIZE from 20K to 1 million tuples. We kept
support ratio SUP percent, which is defined as k

DBSIZE , at 0.1
percent. The response times of our algorithms are reported
in Fig. 5. In particular, CFDMinerð2Þ indicates CFDMiner

with k ¼ 2, which is used in FastCFD for optimization.
The results of Fig. 5 tell us the following. 1) CFDMiner,

which only mines constant CFDs, is multiple orders of
magnitude faster than the other algorithms that discover
both constant and variable CFDs. 2) The naive version of
FastCFD, NaiveFast, outperforms CTANE when DBSIZE is
small. However, it does not scale well w.r.t. DBSIZE. For
example, it outperforms CTANE when DBSIZE is less than
100 K. But when DBSIZE is 300 K, it is 2.5 times slower than
CTANE. This behavior is primarily due to the cost incurred
in the construction of the difference sets in NaiveFast. As
observed for FastFD [14], the difference set construction
contributes most to the cost of NaiveFast. When DBSIZE

becomes larger, there are more item sets with large support
that need to be considered for constructing the difference
sets. This results in a significant performance degradation of
NaiveFast. 3) FastCFD outperforms CTANE and NaiveFast

when DBSIZE is less than one million tuples, which is
reasonably large. This verifies the effectiveness of our
optimization by leveraging the closed-item sets from
CFDMiner for constructing difference sets.

Fig. 6 shows the total number of minimal CFDs discovered
by our algorithms. For clarity, only constant and variable

CFDs of FastCFD are shown because CTANE, NaiveFast and
FastCFD find about the same number of CFDs.

Scalability w.r.t. ARITY. Fixing CF ¼ 0:7, DBSIZE ¼
20 K, and SUP% ¼ 0:1%, we varied ARITY from 7 to 31. As
shown in Fig. 7, CTANE does not scale well with the arity, as
expected. In contrast, NaiveFast and FastCFD scale well as
ARITY increases. Both are orders of magnitude better than
CTANE when ARITY 	 15. In addition, FastCFD is four
times better than NaiveFast when ARITY reaches 31, which
further demonstrates the effectiveness of the optimization
techniques of FastCFD via CFDMiner.

Scalability w.r.t. k. We fixed CF ¼ 0:7, DBSIZE ¼ 100 K,
SUP% ¼ 0:1%, and varied the support threshold k from 50
to 150. As shown in Fig. 8, NaiveFast and FastCFD only
improve slightly when k increases. In contrast, CTANE is
highly sensitive to k. For example, NaiveFast outperforms
CTANE when k is small (e.g., 50), whereas CTANE outper-
forms NaiveFast when k is large (e.g., 150). The perfor-
mance of CTANE improves as k increases. This is because
fewer item sets with large support satisfy k when k becomes
larger, which certainly reduces the number of candidates to
examine at each level by CTANE. On the other hand, the
main cost for NaiveFast and FastCFD is in the construction
of difference sets for item sets with large support, which
does not change significantly when k gets larger.

Fig. 9 shows that the number of minimal CFDs dis-
covered decreases as k increases, as expected. Again, only
constant and variable CFDs of FastCFD are shown because
CTANE, NaiveFast and FastCFD find about the same
number of CFDs.
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Scalability w.r.t. CF. We varied CF from 0.3 to 0.7, while

fixing DBSIZE ¼ 50 K, k ¼ 50 and ARITY ¼ 9. As shown

in Fig. 10, CTANE is very sensitive to the number of distinct

values in an attribute domain. As we fixed the total number

of tuples at 50K, when CF decreases, the number of item

sets with large support increases. For a fixed k, this means

more item sets satisfying the support threshold in CTANE.

Thus, the algorithm has to examine more candidates at each

level, which leads to performance degradation. In contrast,

the performance of NaiveFast and FastCFD only degrades

slightly as CF decreases.

6.2.2 Real Data Experiments

We have conducted experiments on real-life data, including

the Chess, WBC, and synthetic Tax data sets. For each data

set, k was varied. Figs. 11, 12, and 13 show the response

times of CTANE and FastCFD when k is varied, while

Figs. 14, 15 and 16 show the corresponding numbers of

CFDs discovered by the algorithms. Consistent with our

previous experiments, CTANE is sensitive to the support

threshold k, and its performance improves when k

increases. FastCFD is less sensitive to k, and its perfor-

mance only improves slightly as k increases. Both algo-

rithms discover fewer number of CFDs as k increases.

6.2.3 Summary

From the experimental results, we find the following:

1. CFDMiner can be multiple orders of magnitude
faster than CTANE and FastCFD for constant CFD

discovery.
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2. CTANE usually works well when the arity of a sample
relation is small and the support threshold is large, but
it scales poorly when the arity of a relation increases.

3. NaiveFast and FastCFD are far more efficient than
CTANE when the arity of the relation is large.

4. Our optimization technique based on closed-item-set
mining is effective: FastCFD significantly outper-
forms NaiveFast, especially when the arity is large.

7 RELATED WORK

Prior work on conditional dependencies has mostly focused
on the consistency and implication analyses of CFDs [1],
repairing methods to localize and fix errors detected by
CFDs [27], propagation of CFDs from source data to views in
data integration [28], extensions of CFDs by adding
disjunction and negation [29] or adding ranges [10],
confidence of CFDs [30], as well as extensions of inclusion
dependencies with conditions (referred to as CINDs) [31]. To
our knowledge, CFD discovery was only studied in [21],
[10], [32]. Except these, the previous work assumes that
CFDs are already designed and provided.

As remarked in Section 1, there has been a host of work
on minimal FD discovery [12], [13], [14], [15], [16], [17], [18].
Minimal CFDs, however, are more involved than their FD

counterparts; they require both the minimality of attributes
and the minimality of patterns (Section 2). Our algorithms
CTANE and FastCFD extend TANE [13] and FastFD [14],
respectively, for discovering minimal CFDs.

Closer to our work are [10], [21], [32]. For a fixed
traditional FD, [10] proposed criteria for sensible patterns
that, together with the FD, make useful CFDs. It showed that
the problem of finding such patterns is NP-complete, and
developed efficient heuristic algorithms for discovering
patterns from samples. In contrast to [10], this work studies
CFD discovery when the embedded traditional FDs are not
given. An algorithm for discovering CFDs is developed in
[21], which aims to find both traditional FDs and patterns in
CFDs, the same as what this work does. Several interest
measures for discovered CFDs are also proposed there,
including support (which we also consider), conviction and
�2-test. The algorithm of [21] differs from our algorithms in
the following aspects: 1) The algorithm of [21] is an extension
of TANE [13]; as shown in Section 6, levelwise CFD-discovery
algorithms may not scale well with the arity of sample data
sets. It is to deal with such data that FastCFD is provided. In
contrast, this issue is not addressed in [21]. 2) In addition,
constant CFD discovery is not considered in [21], despite its
wide applications in data cleaning and data integration.
3) Moreover, [21] does not consider optimizations based on
closed-item-sets mining, which is employed by FastCFD.

As observed in Sections 1 and 3, CFD discovery is also
closely related to (nonredundant) association rule mining
[22], [23], [24]. In particular, CFDMiner is based on the
mining algorithm proposed in [24]. Recently, an algorithm
was proposed in [32] for mining association rules of the
form Q1 ) Q2, where Q1, Q2 are simple conjunctive queries
and Q2 is contained in Q1. Since CFDs and CINDs can be
viewed as such association rules, the algorithm of [32] may
be used to mine general CFDs and CINDs. The method of
[32], however, can only discover CFDs with 100 percent
confidence, and in addition, the minimality of CFDs is not
investigated in [32]. In contrast, the algorithms of this work
are developed to discover minimal k-frequent CFDs. The
connection between association rule mining and constant
CFD discovery is also observed in [25]. Neither [32] nor [25]
provides any experimental results.

8 CONCLUSIONS

We have developed and implemented three algorithms for
discovering minimal CFDs: 1) CFDMiner for mining minimal
constant CFDs, a class of CFDs important for both data
cleaning and data integration, 2) CTANE for discovering
general minimal CFDs based on the levelwise approach, and
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3) FastCFD for discovering general minimal CFDs based on a

depth-first search strategy, and a novel optimization

technique via closed-item-set mining. As suggested by our

experimental results, these provide a set of tools for users to

choose for different applications. When only constant CFDs

are needed, one can simply use CFDMiner without paying

the price of mining general CFDs. When the arity of a sample

data set is large, one should opt for FastCFD. When k-

frequent CFDs are needed for a large k, one could use CTANE.
There is naturally much to be done. First, we are currently

experimenting with various data sets collected from real life.
Second, we are investigating how to discover minimal CFDs
from a data set rwhen both its arity and its size are large. To our
knowledge, no dependency discovery algorithms scale very
well in this setting, even those for traditional FDs. One way
around this is by sampling r, i.e., to find a subset rs of r by
selectively drawing tuples from r such that rs accurately
represents r and is small enough to be efficiently processed by
FastCFD or CTANE. It is, however, nontrivial to find a
sampling method with performance guarantee, i.e., to ensure
that the estimated inaccuracy rate is below a predefined
bound with high confidence. We are experimenting with the
stratified sampling method [33] for this purpose. Third, while
we have employed in FastCFD techniques for mining closed
item sets, we expect that other mining techniques may also
shed light in improving the performance of discovery
algorithms. Fourth, we plan to explore the use of CFD

inference in discovery, to eliminate CFDs that are entailed
by those CFDs already found. Finally, while the focus of this
work is on algorithmic issues for mining CFDs, a topic for
future work is to assess quality measures for CFDs, including
those studied in [10], [21].
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