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Abstract Computing frequent itemsets is one of the most prominent prob-
lems in data mining. Recently, a new related problem, called FREQSAT, was
introduced and studied: given some itemset-interval pairs, does there exist
a database such that for every pair, the frequency of the itemset falls in
the interval? In this paper, we extend this FREQSAT-problem by further con-
straining the database by giving other characteristics as part of the input as
well. These characteristics are the maximal transaction length, the maximal
number of transactions, and the maximal number of duplicates of a transac-
tion. These extensions and all their combinations are studied in depth, and
a hierarchy w.r.t. complexity is given. To make a complete picture, also the
cases where the characteristics are constant; i.e., bounded and the bound
being a fixed constant that is not a part of the input, are studied.

1 Introduction

The frequent itemset mining problem [1] is one of the core problems in data
mining. We are given a database D of sets, called transactions , and a thresh-
old minfreq. The frequency of a set I in D is the number of transactions in
D that contain all items of I divided by the total number of transactions
in D. The frequent itemset problem is to compute all sets I such that the
frequency of I in D is at least minfreq .

The problem FREQSAT [7,12] was introduced in this context: given a collec-
tion of expressions freq (I) ∈ [a, b], does there exist a database of transactions
that satisfies them? For example, {freq ({a}) ∈ [0, 0.5], freq ({a, b}) ∈ [0.6, 1]}
is not satisfiable, because of the monotonicity of frequency. As pointed out
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in [7,12], the study of the FREQSAT-problem is interesting in the context
of condensed representations [11], privacy preserving data mining, and op-
timizing the pruning in frequent itemset mining algorithms: in these three
application areas, the question of what can be derived from some given fre-
quencies is important. In condensed representations, this information can
be used to see whether the frequency of a certain itemset in a collection is
uniquely determined by the other itemsets in that collection. If that is the
case, such a redundant itemset can be removed without loosing information.
This approach has been applied successfully in the Non-Derivable Itemsets
representation of the frequent itemsets [9]. For the privacy-preserving data
mining, FREQSAT and its variants can be used to assess to what extent re-
leased frequency information can lead to the disclosure of the frequencies of
other itemsets. Last, but not least, FREQSAT can help mining algorithms for
pruning itemsets. Based on some frequency information, gathered in previ-
ous iterations, often it can be seen that a candidate itemset can be pruned
because there cannot exist a database that satisfies the already found fre-
quencies together with the constraint that the frequency of the candidate is
above the threshold. To some extent, all frequent mining algorithms already
use this information when they apply the Apriori-principle. With FREQSAT

this pruning can be extended. In the context of the Non-Derivable Itemsets,
this extended pruning, in combination with the derivation of frequencies for
the redundant sets has been applied [9].

In this paper, we extend the original FREQSAT-problem of [7] as follows.
Besides bounds on the frequency of itemsets, also other constraints on the
database are given. These constraints change the FREQSAT problem consid-
erably. Consider, e.g., the following set C of constraints:

{

freq ({a}) =
1

2
, freq ({b}) =

1

2
, freq ({c}) =

1

2
, freq ({a, b, c}) = 0

}

C is satisfiable by the database {a, b}, {a, c}, {b, c}, {}. If we, however, require
that the number of transactions is 2, or that every transaction contains at
most 1 item, C is no longer satisfiable. This simple example already shows
that a seemingly small adaptation of the original problem can have a large
influence. Another important difference is in the entailment. ENTI(C) will
denote the set of all possible frequency values for I given that C holds. For
FREQSAT, ENTI(C) is always an interval of the rational numbers. If we, how-
ever, fix the number of transactions, the set ENTI(C) can be any finite subset
of rational numbers between 0 and 1.

The characteristics we consider are: the maximal transaction size, the
number of transactions , and the maximal number of duplicates of a transac-
tion. The complexity of the problem depends on the additional characteris-
tics. We show that the extension of FREQSAT where, besides a set of frequency
constraints, also an upper bound on the length of the transactions is part
of the input, has the complexity as plain FREQSAT. When an upper bound
on the number of transactions is added as part of the input, the properties
of FREQSAT change drastically, but it is left open whether it increases the
complexity. When the upper bound on the number of duplicate transactions
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Restrictions on D Complexity
ltrans ntrans ndup lower upper

cte P
1 P

NP
• NP

cte≥ 2 NP
cte≥ 3 • NP PSPACE

• NP PSPACE
• • NP PSPACE

• PP PSPACE
cte PP PSPACE

• • PP PSPACE
• • PP PSPACE

• • • PP PSPACE
•: the characteristic is part of the input
cte: the characteristic is a constant expression

Table 1 Summary of the complexity results; every row represents one variant of
FREQSAT. Problems in the same partition (i.e., no horizontal line separates them),
are proven to be equivalent w.r.t. logspace reductions. Problems separated by a
double horizontal line, are proven not to be equivalent(assuming P 6= NP 6= PP).

is added to the input, the problem provably becomes more complex (assum-
ing PP 6= NP). To make a complete picture, we also study the case where
the extra constraints on the allowable databases are fixed; i.e., they are not
counted as a part of the input. The complexities of the FREQSAT-variants that
are proven in the paper, have been summarized in Table 1.

The organization of the paper is as follows. In Section 2, we formally
introduce important notions, and define the problems studied in the paper.
In Section 3, many important properties of FREQSAT without the extensions,
that will be needed throughout this paper, are revisited. Then, in Sections 4,
5, and 6, FREQSAT is gradually extended with bounds on the transaction
length, on the number of transactions, and on the number of duplicates.
Section 7 discusses applications and gives connections between on the one
hand FREQSAT and its extensions and on the other hand, related works in data
mining and probabilistic logics. Section 8 summarizes the most important
results and concludes the paper.

2 Preliminaries

In this section we revisit the definition of the FREQSAT-problem, and we for-
malize the extensions studied in this paper.

2.1 Itemsets, Frequencies, and Databases

Let I be a finite set, called the set of items. A transaction over I is a pair
(tid, J), with tid an identifier, and J a subset of I. A database over I is a finite
set of such transactions where no two transactions have the same identifier. In
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the following, we assume that the transaction identifiers are strictly positive
integers. Hence, a transaction is a pair (tid, I), with tid ∈ {1, 2, 3, . . .}, and
I ⊆ I.

Let I be some set of items. We say that the transaction (tid, J) contains
I, denoted I ⊆ (tid, J), if I ⊆ J . The support of I in D, denoted supp(I,D),
is the absolute number of transactions in D that contain I. The frequency of I
in D, denoted freq (I,D), is supp(I,D) divided by the number of transactions
in D.

In all what follows, D is a database of transactions over I.

2.2 Frequency Constraints

A Frequency Constraint is an expression freq (I) ∈ [l, u], with I an itemset,
and 0 ≤ l, u ≤ 1 rational numbers. We say that D satisfies this expression,
denoted D |= freq (I) ∈ [l, u], if the frequency of I in D is in the interval
[l, u]. D satisfies a set of frequency constraints, if it satisfies all of them.

A set of frequency constraints C entails a constraint freq (I) ∈ [l, u],
denoted C |= freq (I) ∈ [l, u], if every database D that satisfies C, satisfies
freq (I) ∈ [l, u] as well. The entailment is said to be tight , denoted C |=tight

freq (I) ∈ [l, u], if for every smaller interval [l′, u′] ⊂ [l, u], C does not entail
freq (I) ∈ [l′, u′]. That is, if [l, u] is the best interval that can be derived for
I, based on C.

For notational convenience, we use the shorthand freq (I) = f to denote
freq (I) ∈ [f, f ].

Example 1 Consider the following set of frequency constraints:

C =

{
freq ({a}) ∈ [0.75, 1], freq ({b}) ∈ [0.5, 0.75],
freq ({c}) = 0.75, freq ({a, b}) = 0.5

}

.

This set of constraints is satisfied by the database

D = {(1, {a, b}), (2, {a, c}), (3, {c}), (4, {a, b, c})} .

The constraint freq ({a, b, c}) = 0.5 is not entailed by the constraints in
C. The database D is a counter example; it satisfies C, but it does not satisfy
freq ({a, b, c}) = 0.5.

The constraint freq ({a, b, c}) = [0, 0.5] is entailed by C. Indeed, because
of the monotonicity of frequency, the frequency of {a, b, c} must always be
less than or equal to the frequency of {a, b}. Therefore, in every database
that satisfies freq ({a, b}) = 0.5, the frequency of {a, b, c} will be less than
0.5. The entailment is not tight, however, because the interval [0, 0.5] can
be made smaller; in every database that satisfies C, the frequency of {a, b, c}
must be at least 0.25. This can easily be seen as follows: because of the
constraints freq ({c}) = 0.75 and freq ({a, b}) = 0.5, 75% of the transactions
of a satisfying database for C contains item c, and 50% contains items a
and b. Therefore, there must be an overlap of at least 25% transactions that
contain item c and that contain items a and b.
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The entailed interval [0.25, 0.5] for {a, b, c} from C is tight. We can prove
this by showing, with examples, that the lower and upper bound are indeed
both feasible. The tightness of the lower bound follows from the database D.
For the upper bound, the following database shows the tightness:

{(1, {a, b, c}), (2, {a, b, c}), (3, {a, c}), (4, {b})} .

2.3 Other Database Constraints

In realistic situations, often, more characteristics of a database of transactions
are known than only the frequencies of some sets. We now describe what extra
information we will consider in this paper.

Transaction Length The number of items is, of course, always an upper
bound for the maximal number of items in a transaction. Often, however, the
maximal size of the transactions is given. Moreover, it is a common practice
in frequent itemset mining to start from a relational table R(A1, . . . , An),
and to encode this table as a database of transactions before mining. This
transformation is carried out as follows: for every attribute-value pair (A, v)
of R, an item I(A,v) is introduced. A tuple (v1, . . . , vn) is represented by the
transaction {I(A1,v1), . . . , I(An,vn)}. In such a situation, if the original schema
is known, also the maximal transaction size is known.

Number of Transactions The size of the database |D| is often known to
the user. Knowing the number of transactions seriously affects the properties
of FREQSAT.

Number of Duplicates In our definition of frequent set mining we did
not require that the set of items in a transaction is unique; due to the iden-
tifier, two different transactions can have the same set of items. In many
practical situations, however, duplicates cannot occur, or a maximal num-
ber of duplicates is known. For example, in the case that the database of
transactions was created from a relational table, no duplicate transactions
can be present. Even if some attributes of the original table are filtered away,
the maximal possible number of duplicates might be known. Suppose that
the table R(A1, . . . , An) is transformed as described above, but some, binary
valued, attributes A1, . . . , Ak are filtered away. In that case, the number of
duplicates is at most 2k.

2.4 Problem Statement

We are now ready to state the main problems studied in this paper: FREQSAT
under additional constraints.

In [7], the following problem FREQSAT was introduced:

Problem 1 (FREQSAT)
Input: A set of frequency constraints

C = {freq (Ij) ∈ [lj , uj ], j = 1 . . .m}

Accept: iff there exists a database D over
⋃m

j=1 Ij that satisfies C.
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In this paper we study extensions of FREQSATwherein more characteristics
of the database D are known. Formally, these characteristics are:

ltrans(D) := max{|J | | (tid, J) ∈ D}

ntrans(D) := |D|

ndup(D) := max
J⊆I

|{tid | (tid, J) ∈ D}|

FREQSAT{c1, . . . , ck} is the variant of FREQSATwhere upper bounds on the
characteristics c1, . . . , ck are part of the input as well. Under this conven-
tion, FREQSAT{ltrans, ndup} denotes the variant in which besides frequency
constraints, also a maximal transaction length and a maximal number of
duplicates have been given.

Problem 2 (FREQSAT{c1, . . . , ck})
Input: A tuple (C, v1, . . . , vk), with

C = {freq (Ij) ∈ [lj, uj ], j = 1 . . .m}

a set of frequency constraints and v1, . . . , vk numbers.
Accept: if and only if there exists a database D over

⋃m
j=1 Ij that satisfies

C and for all l = 1 . . . k, cl(D) ≤ vl.

In the paper we also discuss cases where some of the characteristics are
bounded, but not part of the input. These fixed-parameter cases are defined
as follows. Let C1 = {c1, . . . , cp}, and C2 = {cp+1, . . . , ck} be disjoint subsets
of {ltrans, ntrans, ndup}, and let v1, . . . , vp be positive integers. The param-
eterized variant FREQSAT{c1 = v1, . . . , cp = vp, cp+1, . . . , ck} of FREQSAT is
now defined as follows.

Problem 3 (FREQSAT{c1 = v1, . . . , cp = vp, cp+1, . . . , ck})
Input: A tuple (C, vp+1, . . . , vk), with

C = {freq (Ij) ∈ [lj, uj ], j = 1 . . .m}

a set of frequency constraints and vp+1, . . . , vk numbers.
Accept: if and only if there exists a database D over

⋃m
j=1 Ij that satisfies

C and for all l = 1 . . . k, cl(D) ≤ vl.

The main question in this paper is: what are the computational com-
plexities of the different FREQSAT-variants, and what are the relations and
differences between them? We will focus mainly on Problem 2.

Example 2 Suppose that the following set of frequency constraints C is given:







freq ({a, b}) ∈ [3/4, 1], freq ({a, c}) ∈ [3/4, 1], freq ({b, c}) ∈ [3/4, 1],
freq ({d, e}) ∈ [3/4, 1], freq ({d, f}) ∈ [1/2, 1], freq ({e, f}) ∈ [1/2, 1],
freq ({a, b, c, d, e, f}) = 0






.
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C is in FREQSAT, because it is satisfiable by the following database:

D =

TID Items TID Items

1 a, b, c, d, e 5 a, b, c, e, f
2 a, b, c, d, e 6 a, b, d, e, f
3 a, b, c, d, e 7 a, c, d, e, f
4 a, b, c, d, f 8 b, c, d, e, f

The satisfying database D has ltrans(D) equal to 5, ntrans(D) equal to 8,
and ndup(D) equal to 3. Thus, (C, 5) ∈ FREQSAT{ltrans}, and (C, 8, 3) ∈
FREQSAT{ntrans, ndup}.

On the other hand, however, (C, 4) is not in FREQSAT{ntrans}, and (C, 2)
is not in FREQSAT{ndup}. The reason for this is because in every database,
the following relations between the frequencies hold [10]:

freq ({a, b, c}) ≥
freq ({a, b}) + freq ({a, c}) + freq ({b, c})− 1

2
(1)

= 5/8

freq ({d, e, f}) ≥
freq ({d, e}) + freq ({d, f}) + freq ({e, f})− 1

2
(2)

= 3/8

freq ({a, b, c, d, e}) ≥ freq ({a, b, c}) + freq ({d, e})− 1 = 3/8 (3)

Suppose that there exists a database that satisfies C and that has at most 4
transactions. Then, because of equations (1) and (2), and the fact that in the
database, every frequency must be of the form p/q with q ≤ 4, the frequencies
of {a, b, c} and {d, e, f} are respectively at least 3/4 and at least 1/2. There-
fore, there must be an overlap of at least 1/4 of the transactions containing
{a, b, c} and the transactions containing {d, e, f}, such that the frequency
of {a, b, c, d, e, f} is at least 1/4. This is however in contradiction with the
frequency constraint freq ({a, b, c, d, e, f}) = 0 in C. Thus, there cannot exist
a database with at most 4 transactions that satisfies C, and hence, (C, 4) is
not in FREQSAT{ntrans}. This line of reasoning can be extended to show that
the smallest database satisfying C needs to have at least 8 transactions.

For (C, 2) not in FREQSAT{ndup}, it suffices to notice that equation (3),
together with the fact that every satisfying database has at least 8 trans-
actions, proves that in every satisfying database there must be at least 3
transactions with the same set of items {a, b, c, d, e}. Indeed, since the set
of items is {a, b, c, d, e, f}, and there are no transactions containing all items
(freq ({a, b, c, d, e, f}) = 0 is in C), the only way to make (3) true is by having
at least 3 out of 8 transactions of the form (tid, {a, b, c, d, e}).

3 FREQSAT Revisited

In this section, we revisit important and well-known properties of FREQSAT
that will play an important role in the rest of this paper. These properties
include the implementation of FREQSAT as a linear program and the fact that
we can simulate constraints on the frequency of arbitrary Boolean expressions
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over items in FREQSAT, as well as a multiplication lemma that states that we
can express that the frequency of an itemset I is a multiple of the frequency
of another itemset J .

3.1 FREQSAT as a Linear Program

Theorem 1 ([6]) Let C = {freq (Ij) ∈ [lj , uj] | j = 1 . . .m} be a FREQSAT-
instance, and let I =

⋃m
j=1 Ij . C is satisfiable if and only if the following

linear program has a solution:

Does there exist a 2|I|-vector (the entries in the vector are indexed by
the subsets I of I)

(X{}, X{i1}, X{i1}, . . . , X{i1,i2}, . . . , XI) ,

with all entries larger than or equal to 0, such that the following system
LP(C) of inequalities is satisfied?







∑

I⊆I

XI = 1

li ≤
∑

Ii⊆I⊆I

XI ≤ ui ∀i = 1, . . . ,m

Intuitively, the variables XI in the linear program LP(C) represent the num-
ber of transactions having exactly I as set of items. Notice that the program
can have an exponential number of variables in the size of the input. Fur-
thermore, the additional constraints in the previous section can easily be
incorporated into the program as follows: an upper bound k on the length
of the transactions (i.e., ltrans(D) ≤ k), translates to setting all variable XI

with |I| > k to zero (or, equivalently, removing these variables from the linear
program.) The bound on the number of transactions, i.e., ntrans(D) ≤ n,
and the bound on the number of duplicates, i.e., ndup(D) ≤ d, can be ex-
pressed into a similar linear integer program. These reductions, however,
only provide very rude upper bounds on the complexity of the variants of
FREQSAT. In the subsequent sections we will show more subtle reductions.

From Theorem 1, the following corollary is easy to prove, using standard
techniques from linear programming:

Corollary 1 ([6]) If there exists a satisfying database for an instance C of
the FREQSAT- problem, with |C| = m constraints, then there exists a database
D such that number of transactions with different sets of items, |{J | (tid, J) ∈
D}|, is at most 3m + 1, and the total number of (non-unique) transactions
is at most 2p(m). (p is a fixed polynomial, independent of C.)



9

3.2 Constraints on the Frequency of Arbitrary Boolean Formulas

We now extend the FREQSAT-problem from frequency constraints over sets to
frequency constraints over arbitrary Boolean formulas.

Definition 1 Let I be a set of items. A Boolean formula over I is recursively
defined as follows:

– for all i ∈ I, i is a Boolean formula over I;
– if ϕ and ψ are Boolean formulas over I, then also (¬ϕ), (ϕ ∧ ψ) and

(ϕ ∨ ψ) are Boolean formula’s over I.
– Nothing else is a Boolean formula over I.

We recursively define if a transaction (tid, J) satisfies ϕ as follows:

– For all i ∈ I, (tid, J) satisfies i if and only if i ∈ J ;
– (tid, J) satisfies (¬ϕ) if and only if it does not satisfy ϕ;
– (tid, J) satisfies (ϕ ∧ ψ) if it satisfies both ϕ and ψ;
– (tid, J) satisfies (ϕ ∨ ψ) if it satisfies at least one of ϕ and ψ.

Let D be a database, and ϕ be a formula over I. freq (ϕ,D) is defined as
follows:

freq (ϕ,D) :=
|{(tid, J) ∈ D | (tid, J) satisfies ϕ}|

|D|

An extended frequency constraint over I is an expression freq (ϕ) ∈ [l, u],
with ϕ a Boolean formula over I, and 0 ≤ l, u ≤ 1 rational numbers. We
say that database D satisfies freq (ϕ) ∈ [l, u], if freq (ϕ,D) ∈ [l, u]. We say
that D satisfies a set of extended frequency constraints, if it satisfies every
constraint in C.

The extended FREQSAT problem is now defined as the problem of deciding
if, given set of extended frequency constraints, there exists a database that
satisfies this set.

In [7,12], it is proven that extended FREQSAT, i.e., deciding satisfiability of
a set of extended frequency constraints, can be simulated in regular FREQSAT.

Definition 2 Let E be an extended FREQSAT-problem, and let ϕ be a Boolean
formula over the items in E . The set of entailed frequency for ϕ given E is
defined as the following set:

ENTϕ(E) := {freq (ϕ,D) | D |= E} .

Theorem 2 ([12]) There exists a polynomial reduction R from extended
FREQSAT to FREQSAT, such that for any extended FREQSAT-instance E, R(E)
is satisfiable if and only if E is. Furthermore, ENTϕ(E) = [l, u], if and only
if ENT{d,iϕ}(R(E)) = [l/2, u/2].

There exists a database D that satisfies E and the additional constraints
ltrans(D) = lt, ntrans(D) = nt, and ndup(D) = nd if and only if there exists
a database D′ that satisfies R(E), with ltrans(D′) = c+ lt (c is a parameter
that is polynomial in the size of C), ntrans(D′) = 2 ·nt, and ndup(D′) = nd.
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Proof sketch; full proof can be found in [12] Let E = {freq (ϕ1) ∈
[l1, u1], . . . , freq (ϕm) ∈ [lm, um]} be an extended FREQSAT-instance. For every
subexpression σ of the formulas ϕ1, . . . , ϕm (also for the items), we introduce
two new items, tσ and fσ. tσ stands for “σ is true,” and fσ for “σ is false.”
Let T = (tid, J) be a transaction. VT denotes the truth assignment VT that
assigns true to all items i such that ti ∈ J , and false to the other items.

R(E) includes the following constraints enforcing that tσ is in a transac-
tion T if and only if the truth assignment VT makes σ true. The main crux
in this construction is that in a database that satisfies R(E), only half of
the transactions represent valid truth assignments. These transactions will
be marked by the fact that they contain the item d, and the others contain
item d (hence, d is in fact not d):

freq ({d}) = 0.5, freq
(
{d}

)
= 0.5, freq

(
{d, d}

)
= 0 .

Furthermore, for every subexpression σ, R(E) includes the following con-
straints:

freq ({tσ}) = 0.5, freq ({fσ}) = 0.5, freq ({tσ, fσ}) = 0 , and

if σ = i : freq ({i, ti}) = 0.5, freq ({i}) = 0.5
if σ = σ1 ∨ σ2 : freq ({d, tσ, fσ1

, fσ2
}) = 0, freq ({d, fσ, tσ1

}) = 0,
freq ({d, fσ, tσ2

}) = 0.
if σ = σ1 ∧ σ2 : freq ({d, fσ, tσ1

, tσ2
}) = 0, freq ({d, tσ, fσ1

}) = 0,
freq ({d, tσ, fσ2

}) = 0.
if σ = ¬σ1 : freq ({d, tσ, fσ1

}) = 0, freq ({d, fσ, tσ1
}) = 0.

In this way, we make sure that every transaction contains either tσ, or fσ,
but not both. We use the transactions containing d to compensate the fact
that we do not know how many trues and falses we need for σ. For example,
for a ∨ ¬a, half of the transactions will contain {d, ta∨¬a}, and the other half
contains {d, fa∨¬a}. Hence, even though only half of the transactions contain
ta∨¬a, all transactions representing valid truth assignments contain ta∨¬a.

Within the d-part of a satisfying database, the trues and falses are consis-
tent with each other. For example, a transaction representing a truth assign-
ment cannot contain ta∨b, fa, and fb at the same time. The consistency is
enforced for every subexpression σ. Notice that the number of subexpressions
of σ is bounded by the number of symbols in it, and thus is polynomial.

Hence, for every subexpression σ, every transaction contains either tσ or
fσ, but not both. Every transaction T that contains d contains tσ if and only
if VT (σ) is true. Furthermore, for all j = 1 . . .m, R(E) contains the constraint

{freq
(
{d, tϕj

}
)
∈ [l/2, u/2]} .

That is, we only measure the frequency of the formulas ϕ within the fraction
of the database with d, that is, the valid truth assignments. Since exactly half
of the transactions contain d, the bounds of the intervals have to be divided
by 2.

We denote the resulting FREQSAT-instance by R(E). It is now true that
R(E) is satisfiable if and only if E is. Henceforth, we can reduce extended
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FREQSAT to FREQSAT. It is easy to see that if D satisfies E , we can construct a
database D′ that satisfies R(E), by adding the items d, d, tσ, fσ, etc. and vice
versa. Furthermore, to every transaction of D, the same number of items is
added (1+the number of sub-formulas σ). This number depends polynomial
on E . The number of duplicates remains the same. ⊓⊔

3.3 Multiplication Lemma

In this section, we introduce the Multiplication Lemma. This lemma states
that it is possible, for a given n, to write frequency constraints that express
that the frequency of ϕ is exactly n times the frequency of ψ. Here we will
only sketch the proof of the lemma. For a full proof we refer the reader to
[12].

The definition of the construction MULTn(ϕ, ψ) is as follows. Let ϕ be
a Boolean formula, and let m be an item, not in ϕ. The following frequency
constraint, denoted m = ϕ, expresses that m is in exact those transactions
that satisfy ϕ:

m ≡ ϕ := (freq ((m ∧ ¬ϕ) ∨ (¬m ∧ ϕ)) = 0) .

Lemma 1 D satisfies m ≡ ϕ if and only if

{(tid, J) ∈ D | m ∈ J} = {(tid, J) ∈ D | (tid, J) satisfies ϕ} .

Proof D satisfies m ≡ ϕ, if and only if, by definition,

freq ((m ∧ ¬ϕ) ∨ (¬m ∧ ϕ),D) = 0 .

This is equivalent with

freq ((m ∧ ¬ϕ),D) = 0

and
freq ((¬m ∧ ϕ),D) = 0 .

Therefore D satisfies m ≡ ϕ if and only if there are no transactions in D
that contain m and do not satisfy ϕ, because such transactions would satisfy
(m ∧ ¬ϕ)), and there are no transactions that satisfy ϕ and do not contain
m, because such transactions would satisfy (¬m∧ϕ). Hence, m is in exactly
those transactions that contain ϕ.

The main construction in the expression MULTn(ϕ, ψ) is the following
expression κ(ϕ1, ϕ2) (κ stands for copy) that expresses that ϕ1 and ϕ2 have
exactly the same frequency. Notice that this is different from ϕ1 ≡ ϕ2, be-
cause κ does not require that the two expressions must be equivalent in the
database; only the frequency must be the same.

κ(ϕ1, ϕ2) := { freq (ϕ1 ∧ ¬ϕ2 ∧ r) = 0, freq ((ϕ1 ∧ ¬ϕ2) ∨ r) = 0.5,
freq (¬ϕ1 ∧ ϕ2 ∧ r) = 0, freq ((¬ϕ1 ∧ ϕ2) ∨ r) = 0.5 }
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Lemma 2 Let C be a set of extended frequency constraints that does not
involve item r. There exists a database D that satisfies C ∪ κ(ϕ1, ϕ2) if and
only if there exists a database that satisfies C, and in which freq (ϕ1,D) =
freq (ϕ2,D).

Proof If D satisfies κ(ϕ1, ϕ2), then, by definition, freq (ϕ1 ∧ ¬ϕ2 ∧ r) = 0,
and freq (¬ϕ1 ∧ ϕ2 ∧ r) = 0. As such, r can only be in those transactions
that either contain both ϕ1 and ϕ2, or none of them. Hence,

freq ((ϕ1 ∧ ¬ϕ2) ∨ r,D) = freq ((ϕ1 ∧ ¬ϕ2),D) + freq (r,D) and

freq ((¬ϕ1 ∧ ϕ2) ∨ r,D) = freq ((¬ϕ1 ∧ ϕ2),D) + freq (r,D) .

From this it follows that:

freq ((ϕ1 ∧ ¬ϕ2),D) = freq ((¬ϕ1 ∧ ϕ2),D) ,

and therefore,

freq (ϕ1,D) = freq (ϕ1 ∧ ϕ2,D) + freq (ϕ1 ∧ ¬ϕ2,D)

= freq (ϕ1 ∧ ϕ2,D) + freq (¬ϕ1 ∧ ϕ2,D)

= freq (ϕ2,D) .

Hence, any database that satisfies C and κ(ϕ1, ϕ2) also satisfies both C and
freq (ϕ1,D) = freq (ϕ2,D).

For the other direction, let D be a database that satisfies C, and in which
the frequency of ϕ1 equals that of ϕ2. We will add to some transactions of
this database the item r. As such, the resulting database D′ will still satisfy
C. Because ϕ1 and ϕ2 have equal frequency,

freq (ϕ1 ∧ ¬ϕ2,D) = freq (¬ϕ1 ∧ ϕ2,D) .

Any database that results from adding the item r to half of the transactions
that satisfy neither ϕ1 ∧ ¬ϕ2, nor ¬ϕ1 ∧ ϕ2 satisfies κ(ϕ1, ϕ2). ⊓⊔

In many constructions, we use more than one κ-expression at the same
time. It is then understood that for each use of κ, a new item is substituted
for r. That is, if we use the set of constraints C ∪ κ(ϕ1, ϕ2) ∪ κ(ϕ3, ϕ4), we
implicitly assume that the item r in κ(ϕ1, ϕ2) differs from the one used in
κ(ϕ3, ϕ4).

Using the κ-construction, we can also express that the frequency of one
expression is exactly twice the frequency of another expression. The following
set of constraints δ(ϕ1, ϕ2) expresses that the frequency of ϕ2 is exactly twice
the frequency of ϕ1 (δ stands for double):

δ(ϕ1, ϕ2) := κ(ϕ1, k1) ∪ κ(ϕ1, k2) ∪ {freq (k1 ∧ k2) = 0, ϕ2 ≡ (k1 ∨ k2)} .

Lemma 3 There exists a database that satisfies C and δ(ϕ1, ϕ2) if and only
if there exists a database D that satisfies C and 2 · freq (ϕ1,D) = freq (ϕ2,D).
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Proof The lemma follows easily from Lemma 2 and Lemma 1: there exists a
database that satisfies C and δ(ϕ1, ϕ2) if and only if there exists a database
D that satisfies C and δ(ϕ1, ϕ2) \ κ(ϕ1, k1) and freq (ϕ1,D) = freq (k1,D).
Let f be freq (ϕ1,D). Hence, D satisfies C ∪ {freq (ϕ1) = f, freq (k1) = f}
and δ(ϕ1, ϕ2) \ κ(ϕ1, k1). By Lemma 2, such a database exists if and only if
there exists a database D2 that satisfies C∪{freq (ϕ1) = f, freq (k1) = f} and
δ(ϕ1, ϕ2) \ κ(ϕ1, k1) \ κ(ϕ1, k2) and freq (ϕ1,D) = freq (k2,D2). Hence, D2

satisfies C, freq (ϕ1) = freq (k1) = f , freq (ϕ1) = freq (k2), freq (k1 ∧ k2) = 0,
and ϕ2 ≡ (k1 ∨k2). Because of Lemma 1, this last constraint is equivalent to
freq (ϕ2,D2) = freq (k1 ∨ k2,D2). Since freq (k1 ∧ k2) = 0,

freq (ϕ2, D2) = freq (k1,D2) + freq (k2,D2) = 2 · freq (ϕ1,D2) ,

which proves the lemma. ⊓⊔

Obviously, we can also multiply by 3, 4, . . ., by making enough copies of
ϕ1 with κ, and setting ϕ2 equal to k1 ∨ k2 ∨ . . . This method, however, has
a big disadvantage: the formulas to multiply with n would be exponentially
large in the size of the representation of n. This can easily be solved though,
by iterative doubling and adding: let n be a positive integer with binary rep-

resentation bℓ . . . b0. That is, n =
∑ℓ

j=0 bj2
j. The following set of constraints

MULTn(ϕ1, ϕ2) expresses that the frequency of ϕ2 is exactly n times the
frequency of ϕ1 as follows:

MULTn(ϕ1, ϕ2) := κ(ϕ1, b0) ∪ δ(b1, b0) ∪ . . . ∪ δ(bℓ, bℓ−1)
∪{freq (bj ∧ bj) = 0 | 0 ≤ i < j ≤ ℓ, bi = bj = 1}

∪
{

ϕ2 =
∨

{bj | 0 ≤ j ≤ ℓ, bj = 1}
}

Lemma 4 (Multiplication Lemma [12]) If D satisfies the set of fre-
quency constraints

MULTn1
(ϕ1

1, ϕ
1
2) ∪ . . . ∪MULTnℓ

(ϕℓ
1, ϕ

ℓ
2) ,

then for all j = 1 . . . ℓ,

nj · freq
(

ϕj
1,D

)

= freq
(

ϕj
2,D

)

.

Proof sketch; full proof can be found in [12] The proof of this lemma
is very similar to the proof of Lemma 3. The different κ- and δ-expressions
can be eliminated one by one using a similar technique, using Lemma 2 and
Lemma 3 repeatedly. ⊓⊔

In [12,7], it is shown that the multiplication lemma allows for expressing
conditional probabilities, and, as such, association rules.
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4 FREQSAT{ltrans}

In this section we show that knowing an upper bound on the length of the
transactions does not affect the complexity of the FREQSAT-problem. More-
over, for any subset C of {ntrans, ndup}, FREQSAT({ltrans}∪C) is equivalent
to FREQSAT(C). As the original FREQSAT-problem does not impose any bound
on the length of the transactions whatsoever, this result shows that adding
the length of the transactions to the input of the problem does not add
complexity to the problem; the frequency constraints are powerful enough
to express this constraint. On the other hand, FREQSAT easily reduces to
FREQSAT{ltrans} by setting ltrans equal to the number of items.

A straightforward approach to prove the equivalence would be to add
constraints freq (i1 . . . ik+1) = 0 to C for all i1, . . . ik+1 ∈ I, to enforce that
all transactions have maximally length k. This reduction, however, can ex-
ponentially blow up the set of constraints. Indeed, the number of constraints

added is as large as
(
|I|
k

)
= O(|I|k). In this section we give a more involved

reduction that does not have this disadvantage.

Lemma 5 Let J be a finite set of items, n = |J |, k is an integer with
1 ≤ k ≤ n.

Let D be a database of transactions that satisfies the following collection
Lk[J ] of frequency expressions:

∀j ∈ J : freq ({j}) =

(
n− 1

k − 1

)/(
n

k

)

∀j1 6= j2 ∈ J : freq ({j1, j2}) =

(
n− 2

k − 2

)/(
n

k

)

Then, for all transactions (tid, J) in D, |J ∩ J | = k.

Proof Let for all i = 0 . . . n,

δi := |{(tid, J) ∈ D | |J ∩ J | = i}| .

That is, δi is the number of transactions that contain exactly i items of J .
It is clear that δ := |D| =

∑n
i=0 δi. Let

Si :=
∑

I⊆J ,|I|=i

supp(I,D)

be the sum of the supports of all itemsets of size i that are subset of J . E.g.,
S1 =

∑

j∈J freq (j). (Recall that freq (I,D) = supp(I,D)/|D|.)

Because D satisfies Lk[J ],

S0 = δ,

S1 = δn

(
n− 1

k − 1

)/(
n

k

)

,

S2 = δ

(
n

2

)(
n− 2

k − 2

)/(
n

k

)
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From these equalities we directly derive the following relations between
S0, S1, and S2.

k(k − 1)S0 = (k − 1)S1 = 2S2 (4)

Another way to compute S0, S1, and S2 is as follows. Every transaction of
length i has i subsets of length 1, and i(i−1)/2 subsets of length 2. Therefore,
we also obtain

S0 =

n∑

i=0

δi, S1 =

n∑

i=0

iδi, S2 =

n∑

i=0

i(i− 1)δi/2

These last equalities in combination with (4), lead to

0 = kS0 − S1 =

n∑

i=0

(k − i)δi (5)

0 = (k − 1)S1 − 2S2 =

n∑

i=0

i(k − i)δi (6)

From (5), it follows that

k−1∑

i=0

(k − i)δi =
n∑

i=k+1

(i− k)δi , (7)

and from (6), it follows that

k−1∑

i=0

i(k − i)δi =

n∑

i=k+1

i(i− k)δi , (8)

We now have:

(k − 1)
k−1∑

i=0

(k − i)δi ≥
k−1∑

i=0

i(k − i)δi

=

n∑

i=k+1

i(i− k)δi using (8)

≥ (k + 1)

n∑

i=k+1

(i− k)δi

= (k + 1)

k−1∑

i=0

(k − i)δi using (7)

Thus,
k−1∑

i=0

(k − i)δi =
n∑

i=k+1

(i− k)δi = 0 ,

and hence, for all i 6= k, δi = 0. Therefore, δk = δ, and all transactions have
exactly k items in common with J . ⊓⊔
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TID Items

1 a, b, d
2 b, c, d

−→

TID Items

1 a, b, c
2 a, b, c
3 a, b, d δ
4 a, b, d
5 a, c, d
6 a, c, d
7 b, c, d δ
8 b, c, d

Fig. 1 Embedding of the database D with 2 transactions of constant length 3 in
the database

⊕

2
D3.

The set of constraints Lk[J ] is satisfied by the following database Dk: for
every subset J of J of length k there is exactly one transaction (tid, J). E.g.,
for J = {a, b, c}, D2 denotes the database {(1, {a, b}), (2, {a, c}), (3, {b, c})}.
Consider now an arbitrary database D with n transactions, all of length k,
over the set of items J . This database can be embedded into the database
⊕

n Dk that consists of n copies of Dk; that is,
⊕

n Dk is the database con-

sisting of n copies of every transaction in Dk. E.g., for J = {a, b, c},
⊕

3 D
2

denotes the database {(1, {a, b}), (2, {a, b}), (3, {a, b}), (4, {a, c}), (5, {a, c}),
(6, {a, c}), (7, {b, c}), (8, {b, c}), (9, {b, c})}. The n transactions of

⊕

n Dk that
form the embedding of D can be marked by adding a new item δ, not in J .
Then, for every itemset J ⊂ J , freq (J,D) =

(
n
k

)
freq

(
J ∪ {δ},

⊕

n Dk
)
. See

Fig. 2 for an example of this construction. The next definition and theorem
are based on this observation.

Definition 3 Let C be the following set of frequency constraints:

C = {freq (I1) ∈ [l1, u1], . . . , freq (Im) ∈ [lm, um]} .

Let J =
⋃m

j=1 Ij , n = |J |, 1 ≤ k ≤ n, and let δ be an item not in J .

λk(C) :=

{

freq ({δ}) = 1
/(

n

k

)}

∪ Lk[J ] ∪

m⋃

j=1

{

freq ({δ} ∪ Ij) ∈

[

lj

/(
n

k

)

, uj

/(
n

k

)]}

Example 3 Consider the following set of frequency constraints

C = {freq ({a, b, d}) = 0.5, freq ({b, c, d}) ∈ [0.4, 0.6]} ,

together with the constraint ltrans = 3. In Fig. 1 (left), a database has been
given that satisfies these constraints. We show now that the set of frequency
constraints, λ3(C), without any length constraints, is equivalent. A database
that satisfies λ3(C) is also given in Fig. 1 (right).

The set of constraints is over the items J = {a, b, c, d}. Hence, L3[J ]
consists of the constraints:

freq ({a}) = 3/4, freq ({b}) = 3/4, freq ({c}) = 3/4, freq ({d}) = 3/4
freq ({a, b}) = 1/2, freq ({a, c}) = 1/2, freq ({a, d}) = 1/2,
freq ({b, c}) = 1/2, freq ({b, d}) = 1/2, freq ({c, d}) = 1/2.
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|D|







|D|







|D|







i1 . . . ik−1 ik δ
. . .

i1 . . . ik−1 ik
i1 . . . ik−1 ik+1 δ

. . .
i1 . . . ik−1 ik+1

. . .

in−k+1 . . . in−1 in δ
. . .

in−k+1 . . . in−1 in

σδD
i1 . . . ik−1 ik
i1 . . . ik−1 ik+1

. . .
in−k+1 . . . in−1 in

Fig. 2 Construction in Theorem 3

These constraints enforce that every transaction contains exactly 3 of a, b, c, d.
Indeed; these constraints give the exact frequency for all itemsets of size 1 and
2. Thus, these constraints allow us to determine the sum of the frequencies
of all itemsets of size 1 (S1 = 3), and of size 2 (S2 = 3). Let now, similarly
as in the proof of Lemma 5, δi be the fraction of transactions (tid, J) with
|J ∩ {a, b, c, d}| = i. These δi’s allow us to give the following alternative
characterization of S1 and S2. Hence, we get the following equalities:

1 = δ0 + δ1 + δ2 + δ3 + δ4 (9)

S1 = 3 = δ1 + 2 · δ2 + 3 · δ3 + 4 · δ4 (10)

S2 = 3 = δ2 + 3 · δ3 + 6 · δ4 (11)

We now get 6δ0 + 3δ1 + δ2 = 6 · eq(9) − 3 · eq(10) + eq(11) = 0. As all δi
are positive, δ0 = δ1 = δ2 = 0. If we combine this with 9 and 10, we easily
get that δ4 = 0, and δ3 = 1. Hence, all transactions must have exactly 3 of
{a, b, c, d}. The proof of the next theorem comes down to a similar reasoning
in a more general setting.

Furthermore, λ3(C) contains the constraints

freq ({δ}) = 1/4, freq ({a, b, d, δ}) = 1/8, and freq ({b, c, d, δ}) ∈ [1/10, 3/20]

As the database satisfying C and the length constraint given in Fig. 1 (left)
contains two transactions, and the transaction length is 3, it can be embedded
into

⊕

2 D
3. The transactions making up the embedding are marked with the

item δ. The database in Fig. 1 (right) is an example of a database satisfying
λ3(C).

Theorem 3 A set C of frequency constraints is satisfiable by a database with
all transactions of length equal to k if and only if λk(C) is in FREQSAT.

If D satisfies λk(C), then the following database satisfies C:

σδD := {(tid, J) | (tid, J ∪ {δ}) ∈ D}
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encoding of

D







compensation

space for

expressing

complements







extra items to

reduce duplicates
︷ ︸︸ ︷

transactions

padded with bi’s
︷ ︸︸ ︷

complements
︷ ︸︸ ︷

d t01 . . . t0k+n−1 t0k+n b1 b2 b3 . . . blt a1 a2 a3 . . . alt

· t01 . . . t0k+n−1 t0k+n b2 b3 . . . blt a1 a2 a3 . . . alt

· t01 . . . t0k+n−1 t0k+n b3 . . . blt a1 a2 a3 . . . alt

· t01 . . . t0k+n−1 t0k+n . . . blt a1 a2 a3 . . . alt

· t01 . . . t0k+n−1 t0k+n D blt a1 a2 a3 . . . alt

d t01 . . . t0k+n−1 t0k+n a1 a2 a3 . . . alt

d t01 . . . t0k+n−1 t0k+n c1 c2 c3 . . . clt a1 a2 a3 . . . alt

· t01 . . . t0k+n−1 t1k+n b1 c2 c3 . . . clt a1 a2 a3 . . . alt

· . . . . . . . . . . . . b1 b2 c3 . . . clt a1 a2 a3 . . . alt

· . . . . . . . . . . . . b1 b2 b3 . . . clt a1 a2 a3 . . . alt

· t11 . . . t1k+n−1 t0k+n b1 b2 b3 clt a1 a2 a3 . . . alt

d t11 . . . t1k+n−1 t1k+n b1 b2 b3 . . . blt a1 a2 a3 . . . alt

Fig. 3 Illustration of the construction in the proof of FREQSAT{ltrans, ndup} ≤
FREQSAT{ndup}.

Proof Let C be {freq (I1) ∈ [l1, u1], . . . , freq (Im) ∈ [lm, um]}, and let J be
the set of items

⋃m
j=1 Ij .

If : Suppose that D satisfies λk(C). The number of transactions in σδD
is |D|/

(
n
k

)
, and the number of transactions in σδD that contain Ij lies be-

tween |D|lj/
(
n
k

)
and |D|uj/

(
n
k

)
. Hence, its frequency in σδD is between lj

and uj . Therefore, σδD satisfies C. Furthermore, because D satisfies Lk[J ],
Lemma 5 states that every transaction in D contains exactly k items from
J . Henceforth, all transactions in σδD have length k (δ is not in J ).

Only If : Suppose that D is a database with all transactions of length k
that satisfies C. We construct a database D′ with |D|

(
n
k

)
transactions that

satisfies λk(C). For every subset I of size k of J , there will be supp(I,D)
transactions (tid, I ∪ {δ}), and |D| − supp(I,D) transactions (tid, I) in D′.
Thus, the absolute number of transactions containing I ∪ {δ} in D′ is the
same as the frequency of I in D, but |D′| is

(
n
k

)
times larger than |D|. Hence,

the frequency of Ij ∪ {δ} in D′ equals freq (Ij ,D) /
(
n
k

)
. The frequency of δ is

|D|/(|D|
(

n
k

)
) = 1/

(
n
k

)
. It also holds that D′ satisfies Lk[J ]; the projection of

D′ on J consists of |D| copies of I, for every subset I of J of size k. ⊓⊔

Corollary 2 For all C ⊆ {ntrans, ndup},
FREQSAT(C ∪ {ltrans}) ≡ FREQSAT(C) .
(≡ denotes equivalence under logspace reductions.)

Proof Let C = {freq (Ij) ∈ [lj , uj] | j = 1 . . .m} be a set of frequency con-
straints, and let I =

⋃m
j=1 Ij , |I| = n.

FREQSAT(C ∪ {ltrans}) ≥ FREQSAT(C): the number of items is an upper
bound for transaction length, and hence, (C, v1, . . . , vk) is a satisfiable in-
stance of the problem FREQSAT{c1, . . . , ck} if and only if (C, n, v1, . . . , vk) is
in FREQSAT{ltrans, c1, . . . , ck}.

FREQSAT(C∪{ltrans}) ≤ FREQSAT(C): the proof of this direction is based
on Lemma 5. Let C be a set of frequency constraints. Assume that C is
satisfiable by a database of transactions D, and D has a maximal transaction
size of lt. Since Lemma 5 only holds for databases of length exactly lt, we



19

need to add extra items to compensate for transactions that are too short.
When C includes ndup, some care is required to avoid that the new items
change the number of duplicates.

Construction in the presence of ndup. Assume that C is satisfiable
by a database of transactions D, and D has a maximal transaction length
lt, and a maximal number of duplicates nd. Since Lemma 5 only holds for
databases of length exactly lt, we need to add extra items to compensate for
transactions that are too short. We denote the result of the construction C′.

As a first step, we introduce two new items d, and d. The transactions that
contain d will be the ones that encode D, the ones with d the complement.
The following constraints are introduced:

freq ({d}) = 0.5, freq
(
{d}

)
= 0.5 freq

(
{d, d}

)
= 0

Thus, half of the transactions will embed the satisfying database, while the
other half will play an important role in the reduction. The frequency con-
straints in C thus become:

{freq (I1 ∪ {d}) ∈ [l1/2, u1/2], . . . , freq (Im ∪ {d}) ∈ [lm/2, um/2]} .

We add auxiliary items b1, . . . , blt to pad transactions that are too short.
However, adding auxiliary items potentially decreases the number of dupli-
cates. Indeed, I ∪{b1} is no longer a duplicate of I ∪{b2}. Therefore, we will
require that all transactions can be padded in only one way. We do this by
requiring that every bj can only occur together with bj+1. Henceforth, a trans-
action that is k items short, can only be padded by adding blt−k+1, . . . , blt.
For this purpose, we also introduce the items a1, . . . , alt, a1, . . . , alt and the
following constraints:

freq ({aj}) = 0.5, freq ({aj}) = 0.5, freq ({aj, aj}) = 0
freq ({bj}) = 0.5, freq ({aj, bj}) = 0.5, freq ({d, bj, aj+1}) = 0

Thus, the new items aj occur in exactly those transactions having bj, and
aj in exactly those that do not have bj . The constraint freq ({d, bj, aj+1}) =
0 thus ensures that within the d-part, no bj is in a transaction without
aj+1 which are exactly the transactions without bj+1 as well. This rather
cumbersome construction with the aj’s and aj ’s is necessary because it allows
for expressing the complement of bj while adding the exact same number of
items to every transaction.

There is still a problem, however: the transactions that contain d, can
be too short, and there can be too many duplicates in the part of the
database having d. To solve the problem of being too short, we add extra
items c1, . . . , clt that can only appear in the d-part:

freq ({c1, . . . , clt}) ∈ [0, 1], and for all i = 1, . . . lt : freq ({ci, d}) = 0.

By adding these items, we can be sure that in the d-part, every transaction
has the same length lt.

We still need to solve the problem of too many duplicates in the d-part.
Let 2k−1 < nd ≤ 2k. Notice that the number of transactions of D is bounded
by 2k+n, as there are 2n different transactions which can be duplicated at
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most 2k times. We add 2(k + n) new items t01, . . . , t
0
k+n, t11, . . . , t

1
k+n. These

new items can reduce the number of duplicates in the d-part to 1; to every
transaction we can, e.g., add either t01 or t11 and t02 or t12, and t03 or t13, etc.
The number of such possibilities is 2k. We however do not want to reduce
the duplicates in the d-part, and therefore, we add for all j = 1 . . . k + n the
following constraint: freq

(
{d, t1j}

)
= 0, thus only allowing t0j , j = 1 . . . k + n

to be added to a transaction in the d-part.
C is satisfiable by a database D with ntrans(D) ≤ nt, ndup(D) ≤ nd,

and ltrans(D) ≤ lt if and only if C′ is satisfiable by a database of transac-
tions D′ with ntrans(D′) ≤ 2 · nt, ndup(D′) ≤ nd, and all transactions of
length exactly 1 + 2lt+ k+ n. Indeed, suppose D satisfies C, then items and
transactions can be added to D as depicted in Fig. 3, to get a database that
satisfies C′ and the additional constraints ntrans(D′) ≤ 2·nt, ndup(D′) ≤ nd,
and all transactions of length exactly 1 + 2lt+ k + n. This addition of items
and transactions is as follows. We assume without loss of generality, that the
transactions (tid, J) of D all have tid ∈ {1, . . . , |D|}. Let (tid, J) be a trans-
action of D. Let e1 . . . ek+n be the binary encoding of tid. D′ will contain for
every such transaction (tid, J), two transactions (tid, J ′) and (tid+ |D|, J ′),
with:

J = J ∪ {d, t01, . . . , t
0
k+n} ∪ {bi | i > |J |} ∪ {ai | i > |J |} ∪ {ai | i ≤ |J |}

J ′ = {d} ∪ {ti0 | ei = 0, i = 1 . . . n+ k} ∪ {ti1 | ei = 1, i = 1 . . . n+ k}

∪{ci | i > |J |} ∪ {bi | i ≤ |J |} ∪ {ai | i > |J |} ∪ {ai | i ≤ |J |}

On the other hand, from every database that satisfies C′, ntrans(D′) ≤ 2 ·nt,
ndup(D′) ≤ nd, and all transactions of length exactly 1 + 2lt+ k+n, we can
extract a database that satisfies C and ntrans(D) ≤ nt, ndup(D) ≤ nd, and
ltrans(D) ≤ lt as follows: let D′ = {(tid, J) ∈ D′ | d ∈ J}.

Now, because of Theorem 3, and the proof of this theorem, C′ in turn has
a solution D′ with ntrans(D′) ≤ 2 · nt, ndup(D′) ≤ nd, and all transactions
of length exactly 1 + 2lt+ k + n if and only if λ1+2lt+k+n(C′) has a solution

D′′ with ntrans(D′′) =
(
2n+k+2lt+1
1+2lt+k+n

)
nt, and ndup(D′′) = nd. ⊓⊔

4.1 Fixed Parameter Variants

A natural question that arises now is what happens if the maximal transac-
tion length is not given as part of the input, but is a fixed parameter instead.
This case is handled by the next theorem.

Theorem 4 For fixed k, the problem FREQSAT{ltrans = k} can be solved in
deterministic polynomial time. Furthermore, for all C ⊆ {ntrans, ndup},
FREQSAT(C ∪ {ltrans = k}) ≤ FREQSAT(C) .

Proof Let I be the set of all items in a FREQSAT-instance C, and let |I| = n. If

the length of the transactions is fixed to k, there are maximally
∑k

i=0

(
n
k

)
=

O(nk+1) different transactions. Therefore, using Theorem 1, we can rewrite
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the existence of a database that satisfies C, as the following linear program
of polynomial size in n:

xJ ≥ 0 ∀J ⊆ I, with |J | ≤ k
∑

J⊆I, with |J|≤k

xJ = 1

∑

J⊆I

xJ ≥ l for all (freq (I) ∈ [l, u]) ∈ C

∑

J⊆I

xJ ≤ u for all (freq (I) ∈ [l, u]) ∈ C

As linear programming can be performed in polynomial time, and the size of
the system is polynomial in C, FREQSAT with a constant maximal transaction
length can be solved in polynomial time.

The second part of the proof, FREQSAT(C ∪ {ltrans = k}) ≤ FREQSAT(C)
follows directly from the proof of Corollary 2, as this direction nowhere re-
quires that ltrans is not a fixed parameter. ⊓⊔

Obviously, the direction FREQSAT(C ∪ {ltrans = k}) ≥ FREQSAT(C) does
not hold in general; for C = {}, FREQSAT(C ∪ {ltrans = k}) can be solved in
polynomial time, while FREQSAT(C) is NP-complete. Furthermore, the case
C = {ntrans} is handled in Theorem 8. Notice also that the reduction given
in Theorem 4 does not imply that FREQSAT{ltrans = k} is fixed-parameter
tractable, as the size of the linear program that is constructed exponentially
depends on k. The fixed-parameter complexity of FREQSAT{ltrans = k} is
hence still open.

5 FREQSAT{ntrans}

In the last section we saw that knowing a maximal transaction length does
not add expressive power to FREQSAT. For the number of transactions ntrans,
the question whether it adds to the complexity is open. In this section we give
some indications of FREQSAT{ntrans} being more complex. The crux here is
that, unlike for FREQSAT and FREQSAT{ltrans}, FREQSAT{ntrans} cannot be
solved using linear programming. Instead, linear integer programming should
be used, having far less attractive mathematical properties and complexity
than linear programming; linear programming can be solved in deterministic
polynomial time, where integer linear programming is complete for NP.

We show that FREQSAT reduces to FREQSAT{ntrans}, and that the prob-
lem FREQSAT{ntrans} is equivalent to the Intersection Pattern Problem (IP)
[17] w.r.t. computational complexity. IP is the following problem: given an
n× n matrix C with integer entries, do there exist sets S1, . . . , Sn such that
|Si ∩ Sj | = C[i, j]? If such sets exist, C is called an intersection pattern.
In [17], it is claimed that IP is NP-complete. However, the inclusion in NP
has only been proven for the case the entries in the matrix C are bounded
by a fixed constant [14]. For the general problem, the inclusion of IP in NP
is still open.
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For the entailment, we show that, unlike for FREQSAT, the set ENTn
I (C) =

{freq (I,D) | D |= C, |D| ≤ n}, is no longer an interval of the rational num-
bers. This is of course hardly surprising, since the frequencies in a database
with at most n transactions can only be of the form p

q
, with 0 ≤ p ≤ n,

and 1 ≤ q ≤ n. Therefore, it would be more fair to ask the following ques-
tion: if p1

q
, p2

q
∈ ENTn

I (C), is it true that for every p with p1 ≤ p ≤ p2, also
p
q
∈ ENTn

I (C)? We will answer this question negatively. Moreover, given an

arbitrary set R = {r1, . . . , rk} of rational numbers, we will show that there
exists a set of constraints C, an itemset I, and a positive integer n, all having
description size polynomial in the size of R, such that ENTn

I (C) = R. This
shows that the properties of the FREQSAT-problem change fundamentally if
we restrict the number of transactions.

Another illustration that we cannot just assume that ntrans is a trivial
extension without repercussions on complexity, is the fact that for any fixed
constant k, FREQSAT{ltrans = k}, is decidable in polynomial time, as we saw
in last section, while FREQSAT{ltrans = 3, ntrans} is already NP-hard!

Finally we show that if the bound on the number of transactions is a fixed
constant c, the problem is NP-complete if c ≥ 2. We denote the problem:
does there exist a database D with at most 2 transactions that satisfies a
given set of constraints, FREQSAT{ntrans = 2}.

5.1 Relation with FREQSAT

Theorem 5 FREQSAT ≤ FREQSAT{ntrans}

Proof Given a FREQSAT-problem C, by Corollary 1, there exists an upper
bound nC (with representation size polynomial in C), such that if C is satis-
fiable, then C is satisfiable by a database of size maximally nC . Hence, C is
in FREQSAT if and only if (C, nC) is in FREQSAT{ntrans}. ⊓⊔

5.2 INTERSECTION PATTERN

We show that IP is equivalent to FREQSAT{ntrans}, in the sense that on the
one hand, IP is logspace reducible to FREQSAT{ntrans}, and on the other
hand, FREQSAT{ntrans} is non-deterministic polynomial many-one reducible
to IP. That is, there exists a non-deterministic polynomial-time procedure
R, such that for every instance C of FREQSAT{ntrans}, there is at least one
execution path of R on input C that results in a satisfiable instance of IP if
and only if C is satisfiable. Such a reduction shows that if IP is in NP, then
FREQSAT{ntrans} is as well. Indeed; the concatenation of a non-deterministic
polynomial time many-one reduction R with a non-deterministic polynomial
time decision procedure is again a non-deterministic polynomial time decision
procedure.
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5.2.1 Reduction From IP to FREQSAT{ntrans}

Intuitively, the IP problem can be seen as a special case of FREQSAT{ntrans};
the set of elements Si in a realization of an intersection pattern can be simu-
lated by the set of transactions that contain the dedicated element si. Because
the given numbers of elements in the intersections are absolute cardinalities,
ntrans is needed. The following definition and theorem confirm the correct-
ness of this intuition.

Definition 4 Let C be an n × n matrix over the positive integers. N(C)
denotes the number

∑

1≤i≤n C[i, i]. C[C] denotes the following instance of

the FREQSAT{ntrans}-problem over the set of items {e, s1, . . . , sn}:

C[C] := {freq (e) = 1/N(C)}

∪ {freq ({si, sj}) = C[i, j]/N(C) | 1 ≤ i ≤ j ≤ n}

Example 4 Let C =

(
2 1
1 1

)

. The following sets form a realization of C:

S1 = {1, 2}, S2 = {1}. The corresponding FREQSAT{ntrans}-problem is (C, 3)
with

C =

{
freq ({e}) = 1/3, freq ({s1}) = 2/3,
freq ({s2}) = 1/3, freq ({s1, s2}) = 1/3

}

.

The satisfying database of C that corresponds with the realization S1 =
{1, 2}, S2 = {1} is:

D =

TID Items

1 s1, s2
2 s1
3 e

Theorem 6 C is an intersection pattern if and only if C[C] is satisfiable by
a database with at most N(C) transactions.

Proof If an n×n matrix C is an intersection pattern, then there exists a real-
ization S1, . . . , Sn ofC such that |

⋃n
i=1 Si| ≤

∑

1≤i≤n |Si| =
∑

1≤i≤n C[i, i] =

N(C). The constraint freq ({e}) = 1/N(C) makes sure that every satisfying
database of C[C] has exactly N(C) transactions. If D is a satisfying database,
then the sets Si = {tid | (tid, J) ∈ D, si ∈ J}, for i = 1 . . . n form a realiza-
tion of C, and vice versa. ⊓⊔

5.2.2 Reduction From FREQSAT{ntrans} to IP

We give a non-deterministic polynomial many-one reduction from the prob-
lem FREQSAT{ntrans} to IP. Such a reduction shows that if IP is in NP,
then so is FREQSAT{ntrans}.

Let (C, nt) be an instance of the FREQSAT{ntrans} problem. The first
step in the reduction is to (non-deterministic, many-one) reduce C to a set of
frequency constraints C′, in which every frequency constraint is of the form
freq (I) = f , with |I| at most 2. Before going into the technical details, we
illustrate this step with an example.



24

Example 5 The first step in the reduction is to reduce the cardinalities of the
sets in the input to 2. For example; a constraint freq ({a, b, c, d}) ∈ [0.1, 0.3] in
C, must be replaced with a number of constraints that only involve itemsets
of cardinality at most 2. This would be easy if we knew the frequencies of the
prefixes of {a, b, c, d}. Indeed; suppose that we know that freq ({a}) = 0.5,
freq ({a, b}) = 0.3, freq ({a, b, c}) = 0.2, and freq ({a, b, c, d}) = 0.1. Then we
could introduce new items i{a,b}, i{a,b,c}, and i{a,b,c,d}. These items replace
respectively {a, b}, {a, b, c}, and {a, b, c, d}. We enforce these semantics as
follows:

freq
(
{i{a,b}}

)
= 0.3, freq

(
{i{a,b}, a}

)
= 0.3,

freq
(
{i{a,b}, b}

)
= 0.3, freq ({a, b}) = 0.3

freq
(
{i{a,b,c}}

)
= 0.2, freq

(
{i{a,b,c}, i{a,b}}

)
= 0.2,

freq
(
{i{a,b,c}, c}

)
= 0.2, freq

(
{i{a,b}, c}

)
= 0.2

freq
(
{i{a,b,c,d}}

)
= 0.1, freq

(
{i{a,b,c,d}, i{a,b,c}}

)
= 0.1,

freq
(
{i{a,b,c,d}, d}

)
= 0.1, freq

(
{i{a,b,c}, d}

)
= 0.1

In this way, we can replace itemsets of high cardinality by a chain of sets
of cardinality at most 2. Of course, in general, we do not know the exact
frequencies of the prefixes of the sets that are too long. Therefore, in the non-
deterministic polynomial many-one reduction, we start by guessing them. If
C has a solution, then there exists a correct guess.

In the second step, we have to encode the FREQSAT{ntrans}-problem as
a matrix C. We can at this point assume that C only contains itemsets of
cardinality at most 2, and that the frequencies are given exactly (that is, no
intervals). We guess the total number of transactions n, under the constraint
0 ≤ n ≤ nt. In the matrix C, every row and column corresponds to one item.
The entry C[i, j] that corresponds to the item i and the item j is filled as
follows: if there is an expression freq ({i, j}) = f in C′, then C[i, j] = f · n.
Else, the entry C[i, j] is filled randomly by a number between 0 and n. If in
the end, one of the entries in C is not an integer, we reject, since one of the
guesses was wrong. In the other case, an instance for IP has been constructed.
The full proof now consists in showing that there exists a series of guesses
that leads to an intersection pattern C if and only if the original problem
(C, nt) is in FREQSAT{ntrans}.

Definition 5 Let I be a set of items. We assume an order on I. For P, I ⊆ I,
P ≤ I denotes that P is a prefix of I; that is, the first element in I \ P is
larger than any element in P w.r.t. the order on I.

Let I1, . . . , Im be subsets of I. Let P(I1, . . . , Im) denote the set {P | ∃j :
1 ≤ j ≤ m : P ≤ Ij , P 6= {}}. (I1, . . . , Im) will be omitted from the notation
if it is clear from the context. Assume that for every P ∈ P(I1, . . . , Im),
a frequency fP has been given. Two({fP | P ∈ P}) denotes the following
system of frequency constraints over the set of items I ∪ {iP | P ∈ P} (For
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every P ∈ P , iP denotes a new, distinct item):

Two =

{
freq

(
{i{a}, a}

)
= f{a},

freq ({a}) = f{a}

∣
∣
∣ {a} ∈ P

}

⋃







freq
(
{iP∪{a}, a}

)
= fP∪{a},

freq ({iP , a}) = fP∪{a},
freq

(
{iP , iP∪{a}}

)
= fP∪{a}

∣
∣
∣ P, P ∪ {a} ∈ P , |P | ≥ 1







⋃
{freq ({iP}) = fP | P ∈ P}

Lemma 6 Let C = {freq (I1) ∈ [l1, u1], . . . , freq (Im) ∈ [lm, um]} be a set
of frequency constraints. C is satisfiable by a database with at most ntrans
transactions if and only if there exists, for every set P ∈ P(I1, . . . , Im), a
rational number 0 ≤ fP ≤ 1 such that:

– ∀j : 1 ≤ j ≤ m : fIj
∈ [lj , uj ] ∩ {a

b
| 0 ≤ a ≤ b, 1 ≤ b ≤ ntrans}

– Two({fP | P ∈ P}) is satisfiable by a database with at most ntrans
transactions.

Proof if: Let D be a database with at most ntrans transactions that satisfies
C. Let fP = freq (P,D) for all P ∈ P(I1, . . . , Im). We construct a database
D′ that satisfies Two({fP | P ∈ P}) as follows. For every transaction T =
(tid, I) ∈ D, let T ′ denote the following transaction:

(tid, I ∪ {iP | P ⊆ I, P ∈ P}

The database D′ := {T ′ | T ∈ D} satisfies Two({fP | P ∈ P}): it suffices to
note that for every P ∈ P , iP is in exactly those transactions that contain
P , and hence, e.g.,

freq ({iP},D
′) = freq (P,D′) = freq (P,D) = fP ,

and

freq
(
{iP∪{a}, a},D

′
)

= freq (P ∪ {a},D′) = freq (P ∪ {a},D) = fP∪{a} .

In this way, all constraints in Two can easily be shown to hold. Furthermore,
as D satisfies C, fIj

= freq (Ij ,D) must be in [lj, uj ] for all 1 ≤ j ≤ m, and
fIj

∈ {a
b
| 0 ≤ a ≤ b, 1 ≤ b ≤ ntrans} follows from the fact that D has at

most ntrans transactions.
only if: Let 0 ≤ fP ≤ 1, P ∈ P be rational numbers, and let fIj

∈ [lj , uj]
for 1 ≤ j ≤ m. We show that any database D that satisfies Two, also satisfies
C. To show this claim, it suffices to prove, for any P ∈ P , that iP must be
in exactly those transactions of D that contain every element of P . We will
show this claim by induction on the size of P .

– Base case, P = {a} ∈ P . Two contains the following constraints:

freq
(
{i{a}, a}

)
= f{a}, freq ({a}) = f{a}, freq

(
{i{a}}

)
= f{a}

Hence, freq ({a}) = freq
(
{i{a}}

)
= freq

(
{i{a}, a}

)
, and thus, any trans-

action of D that contains i{a} also contains a and vice versa.
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– |P | ≥ 2, P ∈ P . Let a be the last item of P w.r.t. the order on I.
Then, P \ {a} must be in P as well. As such, Two contains the following
constraints:

freq ({iP , a}) = fP , freq
(
{iP\{a}, a}

)
= fP ,

freq
(
{iP\{a}, iP }

)
= fP , freq ({iP }) = fP

Hence,

freq ({iP }) = freq ({iP , a}) = freq
(
{iP\{a}, a}

)
= freq

(
{iP\{a}, iP}

)
,

and thus, any transaction of D that contains iP\{a} and a at the same
time, also contains iP , and vice versa. Furthermore, by induction, a trans-
action contains iP\{a} if and only if it contains all items in P \ {a}. Com-
bining these two facts proves the claim for P .

It now follows that freq (Ij ,D) = freq
(
iIj
,D

)
= fIj

∈ [lj , uj ], since 1 ≤ j ≤
m, Ij ∈ P . ⊓⊔

Lemma 7 Let I = {i1, . . . , in} be a set of items, and let, for all 1 ≤ k, l ≤ n,
a rational number 0 ≤ fk,l ≤ 1 be given, and let ntrans be a positive integer.

The system of inequalities

C = {freq ({ik, il}) = fk,l | 1 ≤ k, l ≤ n}

is satisfiable by a database with N transactions if and only if

– For all 1 ≤ k, l ≤ n, Fk,l = N · fk,l is an integer, and
– the following (n+ 1) × (n+ 1) matrix CN (C) is an intersection pattern:

– ∀1 ≤ k, l ≤ n : C[k, l] = Fk,l,
– ∀1 ≤ k ≤ n : C[n+ 1, k] = C[k, n+ 1] = Fk,k,
– C[n+ 1, n+ 1] = N .

Proof if. Let the sets S1, . . . , Sn+1 be a realization of C; i.e., |Sk∩Sl| = C[k, l]
for all 1 ≤ k, l ≤ n + 1. We assume, without loss of generality, that the
elements of the sets Sk, k = 1 . . . n + 1 are positive integers. Then, the
following database has exactly N elements and satisfies C:

D = {(t, {ik | 1 ≤ k ≤ n, t ∈ Sk}) | t ∈ Sn+1} .

Indeed, since C[n + 1, n+ 1] = N , Sn+1 and hence also D has N elements.
Furthermore, because C[n + 1, k] = C[k, k] for all k = 1 . . . n, Sk ⊆ Sn+1.
Therefore,

freq ({ik, il},D) =
|{t ∈ Sn+1 | t ∈ Sk, t ∈ Sl}| = |Sk ∩ Sl|

|D|
=
C[k, l]

N
= fk,l .

only if. Let D be a databases that satisfies C, and has exactly N trans-
actions. Then, for all 1 ≤ k, l ≤ n:

N · fk,l = N · freq ({ik, il},D)

= N ·
|{(tid, J) ∈ D | ik, il ∈ J}|

|D|

= |{(tid, J) ∈ D | ik, il ∈ J}|
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Thus,N ·fk,l is an integer. Let Sn+1 = {tid | (tid, J) ∈ D}, and for k = 1 . . . n,
Sk = {tid | (tid, J) ∈ D, ik ∈ J}. S1, . . . , Sn+1 is a realization of C. For
1 ≤ k, l ≤ n:

Sk ∩ Sl = {tid | (tid, J) ∈ D, ik, il ∈ J} ,

and thus,

|Sk ∩ Sl| = |D| · freq ({ik, il},D) = N · fk,l = C[k, l] .

The constraints for Sn+1 are fulfilled as for all k = 1 . . . n+1, Sk∩Sn+1 = Sk.
⊓⊔

Theorem 7 FREQSAT{ntrans} is non-deterministically many-one reducible
to IP.

Proof Let C = {freq (I1) ∈ [l1, u1], . . . , freq (Im) ∈ [lm, um]} be a set of
frequency constraints, and let ntrans be a positive integer. By Lemma 6, C
is satisfiable by a database with at most ntrans transactions, if and only if
there exists, for every P ∈ P , a rational number fP ∈ {a

b
| 0 ≤ a ≤ b, 1 ≤ b ≤

ntrans} such that Two({fP | P ∈ P}) is satisfiable by a database with at
most ntrans transactions, and for j = 1 . . .m, fIj

∈ [lj, uj ]. Let J be the set
of all items that occur in Two({fP | P ∈ P}). It is clear that Two({fP | P ∈
P}) is satisfiable by a database with at most ntrans transactions if and
only if there exist numbers f{i1,i2} ∈ {a

b
| 0 ≤ a ≤ b, 1 ≤ b ≤ ntrans} for

all i1, i2 ∈ J , such that these numbers are consistent with the system of
inequalities Two; i.e., for all (freq ({i1, i2}) = f1,2) in Two, f{i1,i2} = f1,2,
and the system of inequalities

C′ = {freq ({i1, i2}) = f{i1,i2} | i1, i2 ∈ J } (12)

is satisfiable. Indeed; since Two ⊆ C′ (Two only contains constraints over
sets of at most 2 elements), any database that satisfies C′, satisfies Two as
well, and for the other direction, if D satisfies Two, then we can choose the
numbers as follows: for all i1, i2 ∈ J , f{i1,i2} = freq ({i1, i2},D). Then, D
satisfies C′ as well.

C′ is satisfiable by a database with at most ntrans transactions, if and
only if there exists an integer N ≤ ntrans, such that there exists a database
with exactly N transactions that satisfies C′, which, by Lemma 7, is equiva-
lent with: for all i1, i2 ∈ J , N · f{i1,i2} is a positive integer and CN (C′) is an
intersection pattern.

Hence, FREQSAT{ntrans} is non-deterministically polynomial many-one
reducible to IP; C is satisfiable by a database with at most ntrans transac-
tions if and only if there exists a positive integer N ≤ ntrans, and a choice
of rational numbers f{i1,i2} ∈ {a

b
| 0 ≤ a ≤ b, 1 ≤ b ≤ ntrans, b|N}, for all

i1, i2 ∈ J , with f{Ij} ∈ [lj , uj ], for all j = 1 . . .m, such that CN (C′), as con-
structed in the proof, is an intersection pattern. The reduction R maps the
system C non-deterministically to the intersection pattern associated with
one of these choices. C is satisfiable, if and only if one of the branches of R(C)
is an intersection pattern. ⊓⊔

Corollary 3 IP is in NP if and only if FREQSAT{ntrans} is in NP.

Proof The if-direction follows from Theorem 6, and the only-if direction fol-
lows directly from Theorem 7. ⊓⊔
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5.3 Entailment

In this section we show that, in contrast to FREQSAT, where the entailed inter-
val on the frequency of an itemset is always an interval, in FREQSAT{ntrans},
the entailed set can be any finite set of rational numbers. Moreover, given a
set of rational numbers R, there exists a system of constraints of polynomial
size in the description of R, such that the entail set of a target set given the
system of constraints is exactly R, thus effectively showing that the entail
sets do not have any connectedness or compactness properties that can be
exploited in algorithms.

To make the construction less involved, we will be using extended FREQSAT-
expressions; that is, we allow expressions involving the conjunction, disjunc-
tion, and negation of items. This does not change the problem, because
from Theorem 2, we know that we can extend FREQSAT{ntrans} to arbi-
trary Boolean formulas without adding extra complexity or fundamentally
changing the entail sets1.

We first illustrate the principle on a small example. Then the example
will be generalized.

Example 6 Assume that the maximal number of transactions is set to nt.
Consider the following set of expressions over the items a, b, c:

freq ({i}) = 1/nt freq ({a, b}) = 0
freq ({a, c}) = 0 freq ({b, c}) = 0
freq (a ∨ c) = k/nt freq (b ∨ c) = k/nt

The first constraint makes sure that there are exactly nt transactions. The
next three constraints enforce that the transactions with a, the ones with b,
and the ones with c are disjoint. Let A be the set of transactions with a, B
the ones with b, and C the ones with c. The last two constraints express that
|A∪C| = |B∪C| = k/nt. Let’s now consider the set ENTnt

a∨b(C). Suppose that
C contains l items, 0 ≤ l ≤ k. Then, both A and B contain k− l transactions,
and hence, |A ∪ B| = 2(k − l). Therefore, ENTnt

a∨b(C) = { 2·l
nt

| l = 0 . . . k}.

Thus, 0/nt, 2/nt ∈ ENTnt
a∨b(C), but 1/nt is not in ENTnt

a∨b(C).

Construction in general. We now show that we can express every arbi-
trary set. Let R = {r1, . . . , rk} be a set of positive rational numbers between
0 and 1. First, we equalize the denominators, that is, let R = { p1

q
, . . . , pk

q
}.

In the construction we use new items, ni and di for i = 1 . . . , k, and the item
j. The bound on the number of transactions is q, and the set of constraints
is the following:







freq ({j}) = 1/q,
freq (d1 ∨ . . . ∨ dk) = 1/q
freq (di ∧ dj) = 0 1 ≤ i < j ≤ k







k⋃

i=1

Mpi
(di, ni)

1 It must be remarked, though, that in the reduction from extended FREQSAT to
FREQSAT, a factor 2 has to be taken into account; that is, if the entail set for ϕ given
an extended FREQSAT problem is R, the entail set for the corresponding itemset
{d, tϕ} given the reduction to FREQSAT will be {r/2 | r ∈ R}. This complication,
however, is immaterial for our claim that the entail set in FREQSAT{ntrans} does
not possess any connectedness or compactness property.
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The first constraint makes sure that the number of transactions is exactly q.
The second and third line ensure that exactly one di, i = 1 . . . k has frequency
1/q; the others have frequency 0. Let dl be the non-zero one. Then, the
Multiplication Lemma 4 is used to express that for all i = 1 . . . k, freq (ni) is
pi times the frequency of di. Hence, the frequency of nl is pl/q, the frequencies
of the other ni’s are zero. Therefore, the frequency of n1 ∨ . . . ∨ nk is pl/q.
Because l was chosen arbitrary, it holds that ENTq

n1∨...∨nk
(E) = R.

Example 7 Consider the set R = {1/2, 1/3, 1/4}. First we equalize the de-
nominators: R = {6/12, 4/12, 3/12}. We set the upper bound on the number
of transactions to 12 and make sure that there are exactly 12 transactions
by adding the constraint freq ({j}) = 1/12.

New items d1, d2, d3 are introduced. We add the following constraints
to ensure that for exactly one i = 1, 2, 3, freq (di) = 1/12 and the other
freq (di) = 0.

freq (d1 ∨ d2 ∨ d3) = 1/12, freq (d1 ∧ d2) = 0
freq (d1 ∧ d3) = 0, freq (d2 ∧ d3) = 0

Next, the items n1, n2, n3 are introduced that have a frequency of respectively
3 · freq (d1), 4 · freq (d2), and 6 · freq (d3):

M3(d1, n1),M4(d2, n2),M6(d3, n3)

Hence, exactly one of freq (dj) is 1/12, the other are 0. Therefore, either
freq (n1) = 3/12, freq (n2) = 0, freq (n3) = 0, or freq (n1) = 0, freq (n2) =
4/12, freq (n3) = 0, or freq (n1) = 0, freq (n2) = 0, freq (n3) = 6/12.

Finally, the set of frequencies for n1 ∨ n2 ∨ n3 entailed by this set of
constraints equals {3/12, 4/12, 6/12}.

5.4 Fixed Parameter Variants

We now study some cases of FREQSAT(C ∪ {ntrans}), where some of the
parameters are fixed.

5.4.1 FREQSAT{ltrans = 3, ntrans} is NP-Hard

Another illustration of the complexity of giving the number of transactions
as part of the input, is the fact that FREQSAT{ltrans = k} can be solved in
polynomial time, while adding the number of transactions to the input makes
the problem NP-hard.

The NP-hardness will be shown by reducing the following triangle parti-
tion problem to FREQSAT{ltrans = 3, ntrans}: given a graph G, with |V | =
3k, can G be divided into disjoint triangles; that is, is it possible to partition
the vertices into V1, . . . , Vk, such that for all i = 1 . . . k, |Vi| = 3, and for all
v, w ∈ Vi, there is an edge between v and w. This problem is known to be
NP-complete [17].

Theorem 8 FREQSAT{ltrans = 3, ntrans} is NP-Hard.
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a

b

c

d
e f

gh

TID Items TID Items

1 a, e, f 5 b, c, g
2 a, b, f 6 c, g, h
3 a, d, e 7 c, d, h
4 b, f, g 8 d, e, h

Fig. 4 A graph G that cannot be triangulated, with a database satisfying CG

Proof Let G(V,E) be a graph, |V | = 3k. Consider now the following set of
frequency constraints CG over the set of items V :

freq ({v}) = 3/|V | ∀v ∈ V
freq ({v, w}) = 0 ∀(v, w) 6∈ E

(C, ntrans = k) is in FREQSAT{ltrans = 3, ntrans} if and only if G can be
triangulated in disjoint triangles. Indeed; V1, . . . , Vk is a triangulation if and
only if {(1, V1), . . . , (k, Vk)} satisfies C. ⊓⊔

Example 8 Consider the graph given in Fig. 4. This graph G clearly cannot
be triangulated, as the number of vertices (8) is not a multiple of 3. Thus,
the system of frequency constraints CG cannot be satisfied by a database of
transactions with at most 8/3 transactions of length at most 3. To illustrate
the impact of the bound on the number of transactions, a database that does
satisfy CG, and the bound on the transaction length, but without a bound
on the number of transactions is given in the figure as well.

5.4.2 FREQSAT{ntrans=2} is NP-complete

For ntrans given as part of the input, we do not know the exact implica-
tions for the complexity, although some evidence has been given that it sub-
stantially alters the problem. For a fixed number of transactions, though,
we do have the exact complexity. We will show that if the fixed bound
on the number of transactions is at least 2, the problem is NP-complete.
Hence, FREQSAT{ntrans = k} is in NP-complete and is thus clearly not
fixed-parameter tractable (assuming P 6= NP.)

Theorem 9 FREQSAT{ntrans=2} is NP-complete.

Proof Let C be an instance of the FREQSAT{ntrans = c}-problem over the
set of items I, with c ≥ 2. FREQSAT{ntrans = c} is clearly in NP, because
a satisfying database has size at most c · |I|, and can thus be used as a
certificate for membership.

For the hardness, we reduce 3-colorability to FREQSAT{ntrans = 2}. Let
G(V,E) be a graph. We define COL(G) over the following set of items:
{Rv, Gv, Bv, Rv, Bv, Gv | v ∈ V } ∪ {c}. Rv (Gv, Bg) stands for “vertex v is

red (green, blue)”, and Rv (Gv, Bg) stands for “vertex v is NOT red (green,
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blue).” The item c will mark one of the two transactions as the one containing
the coloring of G as follows:

∀v ∈ V :
freq ({Rv}) = 0.5 freq ({Gv}) = 0.5 freq ({Bv}) = 0.5
freq

(
{Rv}

)
= 0.5 freq

(
{Gv}

)
= 0.5 freq

(
{Bv}

)
= 0.5

freq
(
{Rv, Rv}

)
= 0 freq

(
{Gv, Gv}

)
= 0 freq

(
{Bv, Bv}

)
= 0

freq ({c, Rv, Gv}) = 0 freq ({c, Rv, Bv}) = 0 freq ({c,Gv, Bv}) = 0
∀(v, w) ∈ E :
freq ({c, Rv, Rw}) = 0 freq ({c,Gv, Gw}) = 0 freq ({c, Bv, Bw}) = 0

freq ({c}) = 1/2

The first 9 constraints ensure that both transactions contain for every vertex
exactly one of Rv, Rv (Bv, Bv, Gv, Gv). The next three constraints make sure
that within the transaction with c, every vertex has “at most one color”. The
next three constraints ensure that for every edge (v, w), v and w “do not have
the same color” in the transaction with c.

It is now easy to see that the graph G is 3-colorable if and only if COL(G)
is satisfiable by a database with 2 transaction. ⊓⊔

The problem FREQSAT{ntrans = 1} is in P. This can be seen as follows:
every constraint in C has one of the following three forms:

freq (I) = 0, freq (I) = 1, freq (I) ∈ [0, 1].

Every other constraint can straightforwardly be transformed to one of these
three forms. Constraints of the third form can be omitted, as they are always
fulfilled. So, let

C = {freq (Ij) = 0, j = 1 . . . k} ∪ {freq (Ij) = 1, j = k + 1 . . .m} .

C is satisfiable if and only if for all l = k+1 . . .m it holds that Il \(
⋃k

j=1 Ij) is

non-empty. In that case is the database {(1,
⋃k

j=1 Ij)} a satisfying database.

Also the other direction holds: if C is not satisfiable, then {(1,
⋃k

j=1 Ij)} is not
a satisfying database. As we only need to check one database, the problem
FREQSAT{ntrans = 1} is clearly in P.

6 FREQSAT{ndup}

In this section we study FREQSAT{ndup}. First we show that we can al-
ways reduce a FREQSAT{ndup}-instance (C, nd) to an instance (C′, 1). Hence,
we show that the following problem: given C, decide whether (C, 1) is in
FREQSAT{ndup}, is equivalent to FREQSAT{ndup}. We denote this problem
FREQSAT{ndup = 1}.

We furthermore show that FREQSAT{ntrans} reduces to FREQSAT{ndup},
and that FREQSAT{ndup = 1} is PP-hard. Hence, knowing the number of
duplicates does add complexity to the FREQSAT-problem (assuming NP 6=
PP).
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6.1 Fixed Parameter Variant

For ndup, we start with the fixed parameter variant, because we will use the
results here to simplify the proofs for the general case. The following theorem
states that fixing ndup to 1 does not change the complexity of the problem.

Theorem 10 Let C ⊆ {ltrans, ntrans}.

FREQSAT(C ∪ {ndup}) ≡ FREQSAT(C ∪ {ndup = 1}) .

Proof Let C be a set of frequency constraints, and let nd be a positive integer.
Let the binary representation of nd be Bl . . . B0. We introduce l + 1 new
items, b0, . . . , bl. We use the bj ’s to eliminate duplicates. That is, nd + 1
transactions with set of items I, will be replaced by transactions with set of
items: I, I∪{b0}, I∪{b1}, I∪{b0, b1}, . . . , I ∪{bj | Bj = 1}. Let I ∪B be an
itemset, with B ⊆ {b0, . . . , bl}, and I ∩ {b0, . . . , bl} = ∅. ν(I ∪ B) is defined
as the number associated with I; that is:

ν(I ∪B) =
∑

bj∈B

2j .

We have to make sure that the numbers of the transactions are never higher
than nd. This can be done as follows: for all ℓ such that Bℓ = 0, add the
constraint freq ({bj | Bj = 1, j > ℓ} ∪ {bℓ}) = 0. For example, for 5 = 101b,
the constraint freq ({b2, b1}) = 0 would be added, disallowing for bit 2 and
bit 1 to be 1 at the same time, because bit 1 and 2 being 1 together, would
result in at least 6. Let Bnd be the set of these constraints.

∆nd(C) := C ∪ Bnd−1 .

The constraints in Bnd−1 allow to reduce the number of duplicates from
nd to 1, because every set I can be extended with a B ⊆ {b0, . . . , bl},
with ν(B) ranging from 0 to nd − 1. It is now true that (C, nt, nd) is in
FREQSAT{ntrans, ndup}, if and only if (∆nd(C), nt) is a satisfiable instance of
the FREQSAT{ntrans, ndup = 1}-problem, and (C, nd) is in FREQSAT{ndup},
if and only if ∆nd(C) is in FREQSAT{ndup = 1}. For the other sets C that
include ltrans, it suffices to notice that FREQSAT(C∪{ndup}) is always equiv-
alent to FREQSAT(C \ {ltrans} ∪ {ndup}). ⊓⊔

Example 9 The binary representation of 10 is 1010. Hence, B10 is the follow-
ing set of constraints:

{freq ({b3, b2}) = 0, freq ({b3, b1, b0}) = 0} .

Every database that satisfies these constraints can have transactions (tid, J)
with J ∩ {b0, b1, b2, b3} equal to:

{}, {b0}, {b1}, {b0, b1}, {b2}, {b0, b2}, {b1, b2}
{b0, b1, b2}, {b3}, {b0, b3}, {b1, b3}
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These transactions have respectively as associated numbers 0, . . . , 10. The
constraints in B10 disallow transactions that contain

{b3, b1, b0}, {b3, b2}, {b3, b2, b0}, {b3, b2, b1}, {b3, b2, b1, b0} .

These transactions have respectively as associated numbers 11, . . . , 15.

Therefore, adding the items b0, . . . , b3, and B10 makes it possible to reduce
the number of duplicates with a factor 11.

6.2 General Case

Theorem 11
FREQSAT{ndup} ≡ FREQSAT{ntrans, ndup}
FREQSAT{ntrans} ≤ FREQSAT{ndup}

Proof FREQSAT{ndup} ≤ FREQSAT{ntrans, ndup}: With n items and nd du-
plicates, one can have maximally nd · 2n transactions. Hence, (C, nd) ∈
FREQSAT{ndup} if and only if (C, nd · 2n, nd) ∈ FREQSAT{ntrans, ndup}.

For the other direction, FREQSAT{ndup} ≥ FREQSAT{ntrans, ndup}, we
will use Theorem 10, and show the equivalent statement FREQSAT{ndup =
1} ≥ FREQSAT{ntrans, ndup = 1}. Let C = {freq (Ij) ∈ [lj , uj], j = 1 . . .m},
I =

⋃

j=1m Ij . Let bl . . . b0 be the binary representation of the bound on the
number of transactions, nt.
(C, nt) ∈ FREQSAT{ntrans, ndup = 1} if and only if

{freq ({d} ∪ Ij) ∈ [lj/2, uj/2], j = 1 . . .m}
∪ {freq ({d}) = 0.5, freq

(
d
)

= 0.5, freq
(
d, d

)
= 0}

∪ Bnt−1 ∪ {freq ({bj, d}) = 0, j = 1 . . . l}
∪ {freq

(
{i, d}

)
= 0 | i ∈ I}

is in FREQSAT{ndup = 1}. In this reduction, the simulating database is split
into two equally sized parts. The actual database consists of the transactions
containing d. In the other part, every transaction contains d and some items
of {b0, . . . , bl}. Since Bnt−1 holds, and the number of duplicates is 1, the

d-part has maximally nt transactions. Because both parts have equal size,
the actual database, that is embedded as the d-part, contains maximally nt
transactions as well.

FREQSAT{ntrans} ≤ FREQSAT{ndup}:
(C, nt) is a satisfiable instance of FREQSAT{ntrans} if and only if (C, nt, nt)
is in FREQSAT{ntrans, ndup}. Indeed; any database with at most nt transac-
tions has at most nt duplicates, and, obviously, any database with at most
nt transactions and nt duplicates has at most nt transactions. Therefore,
FREQSAT{ntrans} reduces to FREQSAT{ntrans, ndup}, which is equivalent to
FREQSAT{ndup}, as shown in the first part of this proof. ⊓⊔



34

6.2.1 FREQSAT{ndup = 1} is in PSPACE

We will now show an upper bound on the complexity of FREQSAT{ndup = 1}.
Because of Theorems 10 and 11, this upper bound is an upper bound on the
complexity of all problems studied in this paper.

Theorem 12 FREQSAT{ndup = 1} is in PSPACE.

Proof Let C = {freq (Ij) ∈ [lj , uj ], j = 1 . . .m}, and let I =
⋃m

j=1 Ij .

Every database D that satisfies C, and with ndup(D) ≤ 1, has at most 2|I|

transactions.
We show a non-deterministic procedure to decide the satisfiability of C

that uses at most polynomial space in the length of C. In this way we show
that FREQSAT{ndup = 1} is in NPSPACE, and thus by Savitch’s Theo-
rem [26, p. 149-150], also in PSPACE.

We “guess” a databaseD, transaction by transaction. We avoid generating
the same transaction twice, by requiring that every new transaction comes
lexicographically strictly after the previous one. During database generation,
we maintain m counters for I1, . . . , Im, and 1 counter for |D|. For every new
transaction (tid, J), we increment the counter |D|, and we do the checks
Ij ⊆ J . For all j such that Ij ⊆ J , the counter for Ij is incremented. After at

most 2|I| guesses, we stop the database generation. We then check whether
Counter(Ij)/Counter(|D|) is within the interval [lj , uj]. If this is the case
for all j = 1 . . .m, we accept, otherwise, we reject. ⊓⊔

6.2.2 FREQSAT{ndup} is PP-hard

In this section we show that the complexity of FREQSAT{ndup} is provably
harder than the complexity of FREQSAT (assuming NP 6= PP.)

We say that a language L is in PP if there exists a non-deterministic poly-
nomially bounded Turing machine N such that, for all inputs x, x ∈ L if and
only if more than half of the computations of N on input x end up accepting.
We say that N decides L “by majority”. It is known that NP is included in
PP. It is also widely believed that this inclusion is strict, for a number of
reasons. First, PP is closed under complement, whereas NP is believed to
be not. Second, Toda’s theorem states that the polynomial hierarchy PH is a

subset of PPP. Hence, PP = NP would cause the polynomial hierarchy PH

to collapse to PNP. PPP is included in PSPACE. The MAJSAT-problem,
asking if more than half of the truth assignments for a given formula φ are
accepting, is PP-complete.

Theorem 13 FREQSAT{ndup} is PP-hard.

Proof By Theorem 2, we know that we can use arbitrary Boolean formulas
instead of itemsets, without loss of generality.

We reduce MAJSAT to FREQSAT{ndup = 1, ntrans}. This reduction proves
the theorem, as, by Theorems 10 and 11, FREQSAT{ndup = 1, ntrans} is
equivalent to FREQSAT{ndup}. Let ϕ be the given formula with variables
x1, . . . , xn. We construct a set of constraints C, such that (C, 2n) is in FREQSAT{ndup =
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1, ntrans} if and only if more than half of the truth assignments of ϕ are
accepting.

We introduce items x and x for every variable in ϕ. These items will
express respectively “x is true”, and “x is false”. For every variable x, we
add the following constraints:

freq ({x}) = 0.5, freq ({x}) = 0.5, freq ({x, x}) = 0

Because the number of transactions is set to 2n, and no duplicates are allowed,
for every truth assignment A for ϕ, there will be exactly one transaction
(tid, J) with x ∈ J iff A(x) = 1, and x ∈ J iff A(x) = 0.

The requirement that ϕ is true in more than half of the truth assignments
can thus now be stated as follows:

freq (ϕ) ∈ [(2n−1 + 1)/2n, 1] .

⊓⊔

Notice that it is unlikely that this PP lower bound is also an upper bound
on the complexity of FREQSAT{ndup}. Intuitively, it is not very likely that
FREQSAT{ndup} is equivalent to co-FREQSAT{ndup}; the former asks if there
exists one database satisfying certain constraints, while the latter asks if for
every database it holds that certain constraints are violated. It is unlikely that
the one problem can be reduced to the other. On the other hand, however,
PP is closed under complement.

7 Related Work and Applications

In this section we discuss related work and applications in the area of prob-
abilistic logics, privacy preserving data mining, condensed representations,
and pruning in frequent set mining.

Probabilistic Logics. The FREQSAT- problem is very much related to
probabilistic logic [18] and reasoning about uncertainty and belief [27], stud-
ied in the field of artificial intelligence. E.g., as was proven in [7], the com-
plexity of the pSAT-problem introduced by Nilsson [25], and extensions to
intervals, conditional constraints, etc. [20,19,16,22,21] are closely related to
the FREQSAT-problem. The main difference between the work we present in
this paper, and the literature on probabilistic logics is in the extra constraints
we put on the database of transactions. These constraints, that are quite
natural in the context of itemset mining, would correspond to less natural
constraints on the underlying probability distributions of the probabilistic
logics.

Privacy Preserving Data Mining. Data Mining can be a serious
threat to the privacy. Therefore, methods are developed to adapt databases
in such a way that still meaningful data mining results can be produced from
it, but the privacy of the individual data are not compromised [2]. It is, how-
ever, conceivable that the mining is done by a trusted party. In that case,
there is no risk of disclosure based on the original data. Even though, the
results of the mining themselves can disclose more of the original data than is
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desirable. The process of trying to reconstruct parts of the original database
from data mining results is called inverse data mining [24]. The FREQSAT-
problem, its various variants and the entailment problems can be situated
in this context. The results of a frequent set mining operation can be repre-
sented as an instance of FREQSAT. Inverse data mining would then amount
to deriving the frequencies of other itemsets, not in the result set. In this
context, the high complexities of the problems studied in this paper are bad
news: suppose that we want to publish some itemsets with their frequencies,
but first we want to assess how much these frequencies disclose of the original
dataset. This problem can be stated as one of the variants of FREQSAT. The
high complexity of the FREQSAT-problems in this paper, however, shows that
there is little hope that it is effectively possible to assess the degree of disclo-
sure. On the bright side, the high complexity means also that it is potentially
very hard to break the privacy. However, the situation is different from that
of, for example, public key encryption. In inverse mining, partial information
can be derived with incomplete methods, whereas, in general, in public key
encryption, the code cannot be partially broken. Hence, in inverse mining,
the more computing power one has, the more one can derive. Therefore, un-
less one has superior computing power over potentially malicious parties, the
results of mining cannot be guaranteed to be safe.

In [28], the following problem of approximate inverse frequent itemset
mining is studied. Given some itemsets with their absolute support, does
there exist a database such that these support constraints are approximately
satisfied, in the sense that a difference proportional to the number of con-
straints given is allowed. This problem is shown to be NP-complete. Also an
approximate algorithm to determine information leakage is given.

In [29,13], heuristic methods for generating a database (approximately)
satisfying given frequency constraints are given. The idea behind this database
generation is to, instead of publishing a confidential database, generate a
new database with the same frequency information that can be published for
analysis purposes. The feasibility of these approaches depends highly on the
assumption that many of the items are (conditionally) independent.

Condensed Representations. Another application is making condensed
representations [23] of frequent itemsets. For an overview of condensed repre-
sentations for the itemset domain, see [11]. In such condensed representations
typically only non-redundant information is stored. Entailment of frequencies
as in the FREQSAT-problem allows for derivation of frequencies. The stronger
the deduction mechanism, the more redundancy in the set of frequencies can
be found. The complexity results in this paper indicate that complete de-
duction in the most general context is infeasible, and hence, incomplete, yet
tractable methods are more appropriate. In [9], for a special case of FREQSAT,
entailment can be decided in polynomial time. This special case is then used
to make the Non-Derivable Itemsets representation. In this representation,
all itemsets are removed if their frequency can be derived perfectly from the
other frequencies in the set.

Frequent Itemset Mining Algorithms. A third application is im-
proving the pruning of frequent itemset mining algorithms. All frequent set
mining algorithms use the monotonicity rule to prune substantial parts of the
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FREQSAT

FREQSAT{ltrans,ntrans,ndup}

FREQSAT{ndup=cte}

FREQSAT{ntrans}

FREQSAT{ntrans,ndup}

FREQSAT{ltrans,ndup}

FREQSAT{ltrans,ntrans}

FREQSAT{ltrans}

IP

PSPACE

NPC
NP hard

PP hard

FREQSAT{ndup}

P

FREQSAT{ntrans=1}

FREQSAT{ltrans=cte}

FREQSAT{ntrans=cte>1}
FREQSAT{ltrans=3,ntrans}

Fig. 5 Visualization of the different complexity results. “cte” indicates a fixed
parameter (constant expression)

search space. This monotonicity rule can be seen as a very simple example of
deduction. Based on partial frequency information of some itemsets, bounds
on the frequencies of yet to be counted sets are derived. If these bounds es-
tablish that a certain set must be certainly frequent or certainly infrequent,
the counting of it can be omitted in some cases. In the context of FREQSAT,
frequency constraints can be used to model the frequency information gath-
ered in previous scans over the database of transactions. The deduction can
then be used to identify sets that are certainly frequent/infrequent. In [3,4,
8,9], in some form, deduction rules are used in order to improve pruning and
speed up frequent set mining algorithms. In [15] it is studied how the pruning
in candidate-based algorithms influences their performance. Improving prun-
ing with FREQSAT might result in a higher success rate for these algorithms.
Other complexity results in frequent set mining include [5] and [30], settling
complexity issues in the context of mining maximally frequent itemsets.

8 Summary and Conclusion

The complexity of different variants of the the FREQSAT-problem, where extra
characteristics of the underlying database of transactions are known was
studied. Figure 5 illustrates the relations between the different variants.

The main open questions remain the complexity of FREQSAT{ntrans} and
of FREQSAT{ndup}. For FREQSAT{ntrans}, we showed that it is NP-complete
if IP is in NP. We also illustrated that FREQSAT{ntrans} has different prop-
erties than FREQSAT by showing that the set ENTnt

I (C) can be any set of
rational numbers, whereas in FREQSAT, this set is always an interval of the
rational numbers.

FREQSAT{ndup} is the most complex of the different variants of FREQSAT.
Its complexity is between PP and PSPACE. The exact complexity is un-
known. Assuming that NP 6= PP, FREQSAT{ndup} is provably harder than
FREQSAT.
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Finally, for the different characteristics, also the complexity when they
are fixed are studied. For ltrans, the switch from input-parameter to fixed
parameter results in a reduction in complexity from P to NP. For ntrans,
this switch results in certainty about the membership in NP, while for ndup,
the switch does not change anything at all. Notice that for the fixed parameter
setting, not all combinations were studied.

We consider as further work: the study of the exact complexities for all
cases, and the study of the missing combinations for the fixed parameter
setting. It would also be very interesting to see if parameters can be found
for the FREQSAT-problem for which the problem is fixed-parameter tractable.
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24. Taneli Mielikäinen. On inverse frequent set mining. In 2nd Workshop on
Privacy Preserving Data Mining (PPDM), 2003.

25. N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.
26. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
27. J. B. Paris. The Uncertain Reasoner’s Companion. Tracts in Theoretical

Computer Science 39. Cambridge University Press, 1994.
28. Y. Wang and X. Wu. Approximate inverse frequent itemset mining: Privacy,

complexity, and approximation. In Proc. IEEE Int. Conf. on Data Mining,
2005.

29. Xintao Wu, Ying Wu, Yongge Wang, and Yingjiu Li. Privacy aware market
basket data set generation: A feasible approach for inverse frequent set mining.
In Proc. SIAM Int. Conf. on Data Mining, 2005.

30. Guizhen Yang. The complexity of mining maximal frequent itemsets and max-
imal frequent patterns. In KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 344–
353, New York, NY, USA, 2004. ACM Press.


