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ABSTRACT
Checking and analyzing various executions of different Busi-
ness Processes can be a tedious task as the logs from these
executions may contain lots of events, each with a (possibly
large) number of both numerical and categorical attributes.
We developed a way to automatically model the behavior
captured in log files with dozens of these attributes. The
advantage of our method is that we do not need any prior
knowledge about the data or the attributes. We introduce
a new algorithm that is able to learn a model of a log file
starting from the data itself. The learned model can then be
used to detect anomalous executions in the data. To achieve
this we extend Dynamic Bayesian Networks with numerical
attributes and functional dependencies to better model the
normal behavior found in log files. The model is capable
of scoring events and cases, even when previously unseen
values or new combinations of values appear in the log file.
An important benefit of our model is the ability to give a
decomposition of the score that indicates the root cause of
the anomalies. We also conducted a comparison with other
state-of-the-art algorithms for detecting anomalies in Busi-
ness Processes which shows that our approach outperforms
other algorithms.

CCS Concepts
•Information systems → Business intelligence;

Keywords
Anomaly Detection, Probabilistic models, Event log and
Workflow data

1. INTRODUCTION
We propose a way of detecting different types of anomalous
behavior in Business Processes (BPs). A BP is a series of
ordered structured activities in order to perform a task [27].
Such a sequence of events that together form an instantia-
tion of a BP is called a case of the business process. In order
to monitor a BP, activities are logged in a log file. This file
consists of different events and every line in the log file rep-
resents a single event. Often log files already indicate which
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Table 1: Example Log file containing normal (black)
and anomalous (red) cases. The normal events are
used for training the model.

Time ID Type Activity UID UName URole tID

0 0 System Log in 001 User1 employee 1
1 1 System Logged in 001 User1 employee 1
1 2 Request Create 001 User1 employee 1
2 3 Request Send Mail 001 User1 employee 1
3 4 System Log in 002 User2 manager 2
4 5 System Logged in 002 User2 manager 2
6 6 Request Create 001 User1 employee 2
7 7 Request Send Mail 001 User1 employee 2
8 8 Request Disapproved 002 User2 manager 2
9 9 System Log in 003 User3 employee 3
10 10 System Logged in 003 User3 employee 3
10 11 Request Create 003 User3 employee 3
11 12 Request Approved 002 User2 manager 1
12 13 Request Send Mail 003 User3 employee 3
17 14 Request Approved 004 User4 sales 3
18 15 System Log in 001 User1 manager 4
19 16 System Logged in 001 User1 manager 4
20 17 Request Create 001 User1 manager 4
21 18 Request Approved 001 User1 manager 4
21 19 Request Send Mail 001 User1 manager 4

events belong together in the same case. If not, we can apply
a clustering algorithm as described in [17] for identifying the
different cases. In this paper, we assume that events have
already been grouped into cases. Events often contain extra
information about the executed activity like duration, re-
source, documents used, department, sensor-data, ... These
extra attributes can be either categorical or numerical.

Example 1. The log file in Table 1 was generated by a
Business Process where an employee needs to log in to a
system to create a request. This request is then sent to his
or her manager who can approve or reject the request. The
log contains 7 attributes: Time, (event)ID, Type, Activity,
UID, UName and URole. We also keep track of the case to
which an event belongs. In total we have 4 users, each with
a unique ID and Name. Every user has a role from a limited
set of roles. For the sake of simplicity we have only captured
a subset of all possible actions that can or should occur.

In the context of Business Processes, the detection of anoma-
lous behavior is an important problem. Therefor, in this pa-
per we describe an anomaly detection system that can find
deviating cases. This is done by learning the structure and
parameters of a model that reflects the normal behavior of
a system. Our model does this by taking both the categori-
cal and numerical attributes into account, together with the
different relations between the attributes. Attributes in a
BP influence each other within events and between different
events within a single case, therefor giving useful extra in-
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sights in the log file. We also exploit different possible struc-
tures of relations between attributes. Our model uses more
information than existing techniques from the BP domain
[25]. Besides missing or wrongly ordered activities, there
can be constraints that enforce that two activities must be
performed by the same person or that a person needs to
have a certain role to perform an action. Our model cap-
tures these relations too.

Diagrams like BPMN [14] are a great tool for human un-
derstanding of a Business Process. For applications such
as anomaly detection, BPMN models are, however, insuf-
ficiently powerful as they lack the ability to easily express
joint probability distributions over multiple attributes; they
focus on a single perspective (i.e. the resource-activity per-
spective). Therefore, in order to take advantage of all pos-
sible relations between attributes in a log file, we create a
model based on Dynamic Bayesian Networks (DBNs) [22].
DBNs are extensions of Bayesian Networks that are able
to incorporate the sequential nature of business processes.
DBNs link events to their predecessors in order to find rela-
tions between these events rather than only relations within
one event.

This paper is an extended version of [19]. In [19] we intro-
duced the Extended Dynamic Bayesian Networks which are
an extension of the Dynamic Bayesian Networks where we
solved some of the shortcomings of DBNs when it comes to
modeling the allowable sequences of a business process:

• DBNs are not able to handle unseen values in a way
appropriate for business process logs.

• The case where a value always occurs together with an-
other value describes a common structure in log files.
We can model these relations in a DBN but only im-
plicit, which may lead to less effective structures.

In this extension we further extended the EDBN in the fol-
lowing way:

• We also take the duration between attributes into ac-
count, and are thus able to detect anomalous execution
times

• Our model is now able to handle numerical attributes
which may depend on other numerical or categorical
attributes.

The structure of our paper is as follows. Section 2 describes
existing approaches for detecting anomalies in BP logs. Sec-
tion 3 introduces the model for describing normal behavior
in log files. We then use this model in Section 3.5 in order to
discover anomalies in BP logs. The learning of the structure
of the model is described in Section 4. We evaluate our new
method in Section 5.

2. RELATED WORK
The problem we are interested in is that of finding anoma-
lous sequences (cases) within a large database of multivari-
ate sequences (BP logs). Different techniques have been pro-
posed to solve this problem (partially) both in the anomaly

detection field [2, 9, 30], as in the process mining field [5, 6,
15, 21]. Some of these techniques use signatures of known
anomalies that can occur in the system. It is clear that these
systems cannot recognize new types of anomalies and are too
limited for our purpose. We are interested in model-based
anomaly detection techniques, such as Markov Chains that
represent normal behavior of a system.

A first type of algorithms works on a database of univari-
ate sequences; i.e., they only take the activity perspective
into account. Bezerra et al. [5] investigated the detection
of anomalies in a log file using existing Process Mining al-
gorithms in order to build a model of the process. Then
they use conformance checking to detect deviating traces of
activities.

Other algorithms work on databases consisting of multivari-
ate sequences. Bertens [2] uses MDL to identify multivari-
ate patterns that help to detect and describe anomalies. A
code table consisting of mappings between encodings and
frequently occurring patterns is first generated by their al-
gorithm called DITTO [3]. An anomaly score is then defined
by the negative log of the fraction of the length of the en-
coded sequence given the code table over the length of the
sequence.

Nolle et al. [15] propose unsupervised anomaly detection
methods based on neural networks in business process event
logs. They explicitly divide the log in the control flow and
a data perspective. These two perspectives are then used as
inputs for their neural network that predicts both perspec-
tives for the next event. The use of neural networks makes it
possible to reduce the impact of noise in the dataset, where
other methods need a training dataset without anomalies as
a reference set. The major downsides of this method are
that it can only handle a few attributes in the data perspec-
tive that is not able to cope with unseen values (both in the
activity and data perspective).

Bohmer et al. [6] introduce a probabilistic model that is
able to score events in the BP logs. First a Basic Likeli-
hood Graph is constructed where all activities are nodes and
the edges between nodes indicate the probability that given
the previous activity, a certain activity happens next. In
the next phase this graph is extended by adding context at-
tributes such as resource and weekday between two activities
that correspond to the resource that performed the previous
action on a particular weekday. Using this graph it is pos-
sible to compute a baseline-score given the occurrence of a
particular activity. This baseline-score is compared to the
actual score given to an execution case by the model. To
score a case, Bohmer et al. use the data in the graph with
the corresponding probabilities. Besides data present in the
graph, the model is also able to deal with new values. They
do not describe and test the use of more attributes in detail,
but their model can be extended in a straightforward way
to other attributes as well.

In the field of detecting anomalies in Business Processes not
much work has been done on exploiting the temporal per-
spective. Rogge-Solti et al. [21] proposed a method for
detecting temporal anomalies in Business Processes. They
propose a Bayesian model that can be inferred from the
Petri net representation of a BP. Their main idea for finding
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Table 2: Summary of Related Work in comparison with our proposed method

Multi-Dim Sequential Continuous Time Method
Our method X X X DBN
Bezerra [5] X Process Mining
Nolle [16] X X Neural Networks
Bertens [2] X X MDL
Bohmer [6] X X Probabilistic Model
Rogge-Solti [21] X X Parzen-Windows

outliers in the duration of activities is based on a hypoth-
esis test, in which they determine the probability that a
particular observation x was taken from a learned distribu-
tion. Their method is based on a method that uses Parzen-
Windows for network intrusion detection [31]. The biggest
drawbacks of this method are runtime when trying to ana-
lyze large log files and the fact that it cannot cope with new
activities that occur in the log file.

A summary of the different techniques is found in Table 2.

3. EXTENDED DYNAMIC BAYESIAN NET-
WORKS

In this section we extend Dynamic Bayesian Networks to
create a model which is more flexible and powerful when
dealing with log files. To do so we first introduce Bayesian
Networks, next we explain how we incorporate the sequential
nature of our log file in the model, and finally we discuss the
different types of relations that together make up the joint
distribution expressed by the Extended Dynamic Bayesian
Network.

3.1 (Dynamic) Bayesian Networks
A (Dynamic) Bayesian Network ((D)BN) represents a joint
distribution for a set of random variables (X1, . . . , Xn). It
does so by capturing the relations between the random vari-
ables. A DBN represents these relations in a directed acyclic
graph (DAG). Every variable is represented by a vertex in
the DAG. When a variable X influences another variable Y
there exists an edge in the DAG from X to Y . We call X
the parent of variable Y , a single variable can have multi-
ple parents. We denote the parents of a node Y as Pa(Y )
and the actual values of the parents as v Pa(Y ). The joint
distribution of a BN with variables X1, . . . , Xn is:

P (X1, . . . , Xn) =
n∏

i=1

(Xi|Pa(Xi)) (1)

The joint distribution thus gets decomposed into different
factors, one factor for every variable in the model. This fac-
tor can be specified in different ways depending on the type
of variable. For our model we use Conditional Dependencies,
Functional Dependencies and Kernel Density Estimates.

3.2 K-contextlog
In order to incorporate the sequential aspect of the log in
our model we create a k-contextlog, where every event also
contains the information of its k previous events. But first
we formally define a (BP) log.

Definition 1. We assume that A = {A1, . . . , An}, an
ordered set of attributes, is given. For each attribute Ai a
set of allowed values dom(Ai) is also given. Furthermore we
have Ac ⊆ A and An ⊆ A containing the categorical vari-
ables respectively the numerical variables, with Ac∪An = A
and Ac ∩ An = ∅.
An event e is a triplet (ID, desc, T ) with ID a (unique)
identifier, desc an event description and T the timestamp
of the event. An event description is a tuple (a1, . . . , an)
with ai ∈ dom(Ai); desc.Ai denotes ai. We use e.Ai as a
shorthand notation for e.desc.Ai and e.T for the timestamp
of the event.
A case C = 〈e1, . . . , ei〉 is a sequence of events. A log L is
a set of cases, where all events in the cases have a different
identifier.

We use X (uppercase) for attributes and x (lowercase) to
denote a value of attribute X.

The k-contextlog consists, in contrast to the original log,
out of the k-contexts of the events, where the k-context of
an event is defined as follows:

Definition 2. The k-context of an event e is a new event
containing both the attributes from event e together with the
attributes of the k events before e. When there is no such
preceding event for e we use the value None as a placeholder
to indicate that no previous events were present. Alongside
the attributes we also keep track of the duration between ev-
ery two events. We denote the k-context of an event e as
Ck(e).

Example 2. For the log in Table 1, the 2-context of the
event with ID 3 is the tuple (System2, Logged in2, 0012,
User12, employee2, Request1, Create1, 0011, User11,
employee1, Request, Send Mail, 001, User1, employee) and
dur2 = 0 and dur1 = 1. We use the subscript i to indicate
the i-th timestep before the current event. For the current
event we omit these subscripts.

In the remainder of this paper we always consider the k-
contextlog without explicitly talking about which attribute
originates from which time step. Since events are only in-
fluenced by preceding events we only consider Y ∈ Pa(X)
with Y is not later in time than X.

3.3 Relations between attributes
DBNs model the joint probability over a set of random vari-
ables as described in Section 3.1. In our extended model
we use three different dependencies for describing the be-
havior of a BP log. First we introduce the Conditional and
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Table 3: CPT based on the example from Table 1

URole UName P (UName|URole)
employee User1 0.5
employee User3 0.5
manager User2 1
sales User4 1

Functional Dependencies which are only used for categorical
attributes. Next we introduce Kernel Density Estimations
for modeling dependencies between numerical and categori-
cal attributes.

3.3.1 Conditional Dependencies
A DBN models the joint probability distribution over a num-
ber of random variables (attributes) by making use of the
conditional dependencies between the attributes. These con-
ditional dependencies are represented using Conditional Prob-
ability Tables (CPTs). An example of such a CPT is given
in Table 3.

Definition 3. A CPT (X | Y) is a table where each row
contains the conditional probability for a value of X given
a combination of values of Y. There is one row for each
combination of values.

3.3.2 Functional Dependencies
The following example indicates the problems we have when
using only Conditional Probabilities for describing BP log
files:

Example 3. Consider the situation where every User has
a particular Role and certain activities can only be executed
by certain roles. The attribute Role depends on attributes
User and Activity in this example. When building a single
CPT we have to add a row for every possible combination of
values for User and Activity, resulting in a large table with
all probabilities equal to 1. Also, when a new user is added
to the system, all combinations with this user would have to
be added to the CPT.

This observation certainly is not new, and in the literature
several proposals exist to deal with large CPTs on the one
hand [4, 13, 11] and new values on the other [8]. In this
paper, however, we have chosen to use so-called Functional
Dependencies (FDs) to deal with these problems. We ex-
plain the reasons for this choice after the formal definition
of functional dependencies.

Definition 4. Given a log L, a Functional Dependency
A → B holds in L if for all events e, f ∈ L holds that if
e.A = f.A 6= None, then e.B = f.B for attributes A and B.

A functional dependency between attributes X and Y can be
represented by a function FDX→Y : a dom(X)→ a dom(Y ),
FDX→Y (x) = y, with x and y the respective values for at-
tributes X and Y . The set a dom(A) is defined as follows:

Definition 5. Let L be a log over A and {Ai1 , . . . , Aik} ⊆
A(L). We define the active domain a dom(Ai1 , . . . , Aik ) =
{(e.ai1 , . . . , e.aik ) |∃C ∈ L : e ∈ C} as the set containing all
values that occur in the log for the given attributes.

Example 4. In the log in Table 1, UID → URole is a
Functional Dependency. Every value of UID maps to a sin-
gle value of URole. A particular value in URole can however
occur together with multiple values of UID . We have the
following mappings in our log:

{001 7→ employee, 002 7→ manager,

003 7→ employee, 004 7→ sales}

A first benefit of using FDs is that they are well-studied and
several highly efficient methods for listing all (approximate)
functional dependencies exist [29]. They also ensure a more
easy learning phase for the CPTs as some edges are already
added by the FDs and should not be examined again by
the Bayesian Net learning algorithm. Another benefit is the
compactness of the model. Every FD is kept in a separate
table, making it also possible to give a better, more detailed
explanation of which particular FD has been violated.

Besides FDs we could also choose to use Decision Trees
(DTs) [4], Association Rules (ARs) [13] or probabilistic mod-
eling languages (like ProbLog [11]). These first two ap-
proaches have the disadvantage that they work on value-
level. ProbLog, however, does allow for expressing func-
tional dependencies, thanks to its use of variables. The ad-
vantage of FDs as compared to ProbLog is that ProbLog
is a general purpose probabilistic modeling language, and
learning ProbLog programs is a harder task than learning
FDs. An interesting avenue for future work is to mine, next
to functional dependencies, other specialized patterns and
use ProbLog as a language to express all patterns together
and use its powerful inference mechanism to exploit them.

FDs allow for enforcing constraints on unseen values, unlike
ARs and DTs. Indeed, suppose that we discover an FD
UID → UName. Such rule would allow for spotting the
inconsistency of two events with the same UID but different
UName, even if they were never observed before.

3.3.3 Kernel Density Estimations
When we want to extend our model to numerical attributes
we can no longer use the Conditional and Functional De-
pendencies as defined above, as the number of possible val-
ues is infinite. Thanks to the decomposability of the total
probability we can introduce a new way of scoring the con-
ditional probabilities for numerical attributes without hav-
ing to change how we score the categorical attributes. The
model, however, has to take the type (categorical or numer-
ical) of the attributes into account.

Often numerical methods assume that the data always fol-
lows the same kind of distribution (for example a gaussian
distribution), however in real-life applications this is often
not the case. We therefor use a more general approach.

A method that is able to describe a distribution without
making assumptions on how the data looks like is Kernel
Density Estimation (KDE) [7]. In our case we use KDE
with a gaussian kernel and bandwidth α. We denote it as
KDE(x;X,α), where x is the value we want to score, X
is the set of values used to build the distribution and α
is the bandwidth of the kernels used. The α parameter is
determined during the learning phase, as will be explained in
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Section 4. One of the advantages of KDE is that it can also
be used for multidimensional distributions. As such we can
use them to get the conditional probability for a numerical
attribute, given its numerical parents, because

P (X|Pa(X)) =
P (X,Pa(X))

P (Pa(X))
(2)

where both P (X,Pa(X)) and P (Pa(X)) can be expressed
by KDEs.

Besides numerical parents, a numerical attribute also can
have categorical parents. Given Y a set of numerical parents
and Z a set of categorical parents, if we want the conditional
probability for X given both Y and Z we have:

P (X| Y,Z) =
P (X ∩ Y ∩ Z)

P (Y ∩ Z)
(3)

Without changing the correctness we can add P (Z) to both
the nominator and denominator. We then have:

P (X ∩ Y ∩ Z)

P (Y ∩ Z)
=
P (X ∩ Y ∩ Z)

P (Z)
∗ P (Z)

P (Y ∩ Z)
=
P (X ∩ Y |Z)

P (Y |Z)
(4)

P (X ∩Y ) and P (Y ) can be calculated using KDE. The con-
ditioning on Z can be done by partitioning the training data
according to Z and train different KDEs for every partition.
Next we also train a general version of the KDEs without
having a conditioning on Z in case we encounter an unseen
combination of values for the categorical parents.

For attribute X with numerical parents Y1, . . . , Yl and cate-
gorical parents Yl+1, . . . , Ym we then have:

P (x|y1, y2, . . . , ym) =

KDE
(
(x, y1, . . . , yl); (X × Y1 × . . .× Yl)

∣∣
Yl+1,...,Ym

, α
)

KDE
(
(y1, . . . , yl); (Y1 × . . .× Yl)

∣∣
Yl+1,...,Ym

, α
)

(5)

When an attribute has no numerical attributes the KDE in
the denominator is set to 1.

An example Kernel Density Estimation for a given set of
datapoints can be found in Figure 1.

In the remaining of this article we always use the notation
P (X|Pa(X)) when referring to the conditional probability
for both the categorical and numerical case, although the
way of calculating them is different for both types of vari-
ables.

3.4 Unseen Categorical Values
BP logs often encounter values that have not been seen be-
fore (eg. a new customer or employee). These unseen values
do not indicate a possible anomaly in the data as long as
they do not brake any of the already known dependencies
in the log. When using the CPTs and FDTs as introduced
in the previous section we would simply assign 0 to these
values. Smoothing can be used to overcome this problem

Figure 1: Example of a KDE estimation given the
datapoints [1,1,1,1,2,4,5,5,7,8,10]. The crosses indi-
cate the datapoints, the bars indicate the histogram
and the curve indicates the estimated density.

but may be inappropriate for attributes that allow for new
values to appear frequently. We thus want a way of indi-
cating which attributes are more likely to encounter unseen
values. To do so we use a known technique used in the area
of Probabilistic Databases (PDBs) as presented by Ceylan
et al. [8]. They return an interval of probabilities for a given
query that contains known facts (seen values) and unknown
facts (unseen values). Instead of calculating for all unseen
values a different probability we calculate the probability
of encountering a new value in the log for every attribute.
When a new value is encountered we simple multiply the
score by this probability, when a known value is encoun-
tered we multiply by 1 minus the probability. We use the
same principle for unseen combinations of parent values for
the Categorical CDs as explained in Section 4.

Example 5. The attribute URole will never take a new
value as these are fixed within the organization, while UN-
ame can contain new values when a new user is added to the
system.

3.5 Detecting anomalies
To find anomalous sequences of events we use a score-based
approach. The score is obtained by calculating the proba-
bility for a case 〈e1, . . . , es〉 given a model M . We normalize
the result using the s-th root, with s the number of events
in the case. This normalization makes sure that longer cases
are not penalized.

Score(〈e1, . . . , es〉) =
s√
P (〈e1, . . . , es〉) (6)

Sequences with a high score thus have a high probability
of occurring and are most likely to represent normal behav-
ior, whereas low scores indicate higher chances of being an
anomaly. We return an ordered list of cases, sorted by their
scores. The idea is that a user can only handle the first
k anomalies detected. Since we can score any sequence of
events, we do not have to wait for a complete case before we
can score it. The model can thus be used to detect anomalies
in ongoing cases.
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4. LEARNING THE MODEL
We build our model using a reference dataset. Ideally this
dataset only contains normal executions of the process(es).
But we show that our learning algorithm also produces a
reliable model when the reference dataset contains a small
amount of noise or anomalies. Recall that the timing aspect
is incorporated by using the k-contextlog, so we can just
assume we are working with a multivariate dataset. We only
use the specific sequential aspect for determining the allowed
causal relations between attributes, that is no Y ∈ Pa(X)
with Y later in time than X.

All dependencies present in our model should only indicate
a causality relation; events in the present cannot influence
events in the past. Therefore edges that do not represent a
causal relation are blacklisted. This blacklist is created by
adding all edges that do not end in the current time step.

The complete algorithm can be found in Algorithm 1. In
the remaining of this section we explain the important steps
in more detail.

Function LearnEDBN
Data: k-log, A, FDThreshold
Result: The learned EDBN
FDR = {X → Y : X ∈ A∗c , Y ∈ A0

c , U(X|Y ) >
FDThreshold}

blacklist =
{X → Y : X ∈ Ai, Y ∈ Aj with i ≥ j > 0}

whitelist = FDR
G(V, E) = LearnBayesianNetwork(A, FDR,
blacklist)
FD = ConstructFDFunctions(FDR)
CPT = ConstructCPTables(E \ FDR)
CPK = ConstructCPKernels(E)

NV = {X 7→ |a dom(X)|
| L | : ∀X ∈ Ac}

NR = {X 7→ |a dom(Pa(X))|
| L | : ∀X ∈ Ac}

VIOL = {X × Y 7→ |{e∈L:FDRX→Y (e.X)6=e.Y }|
|L| :

∀(X,Y ) ∈ FDR}
return EDBN(G(V, E \ FD), FDR, CPT , CPK,
FD, NV, NR, VIOL)

Algorithm 1: Algorithm for learning the structure
and parameters of EDBNs

In a first step the algorithm searches for Functional Depen-
dencies among the categorical attributes. In order to dis-
cover them, the Uncertainty Coefficient [20] is applied to
all allowed combinations of attributes in the k-contextlog,
which is defined as follows for the categorical attributes X
and Y :

U(X|Y ) =
I(X;Y )

H(X)
,

with H(X) the entropy [23] of X and I(X;Y) the Mutual
Information [10] given as:

I(X;Y ) =
∑

y∈a dom(Y )

∑
x∈a dom(X)

p(x, y) log
p(x, y)

p(x)p(y)

H(X) =−
∑

x∈a dom(X)

p(x)log(p(x))

The Uncertainty Coefficient is the normalized form of Mu-
tual Information. It gives information about how much the
values of an attribute depend on another attribute. We use it
to determine what attributes are related to each other and
how much they relate to each other. The measure ranges
from 0 (no correlation between the two attributes) to 1 (full
determination of X by Y , thus indicating the existence of
a Functional Dependency) [28]. If U(X|Y ) > threshold,
we will assume that the FD Y → X holds. This threshold
has to be chosen according to the amount of noise in the
data. A higher threshold means a more strict Functional
Dependency is used that is less able to cope with noise.

In order to deal with the unseen values for an attribute
A ∈ Ac we introduce new value(A), new relation(A) and
violation(X,Y ) as follows:

new value(A) :
|a dom(A)|
| L | ,

new relation(A) :
|a dom(Parents(A))|

| L |

violation(X,Y ) :
|{e ∈ L : FDX→Y (e.X) 6= e.Y }|

| L |

This choice reflects the main idea as proposed by Ceylan
et al. [8], where they add unseen tuples to the Probabilis-
tic Database, each with a certain probability, possibly de-
pending on the values of other attributes. We consider all
unseen values as equally likely and the probability they re-
ceive should reflect only the behavior of the attribute itself,
therefor we assign to every unseen value of an attribute the
probability of encountering a new value for this attribute in
the database.

Example 6. When considering the log from Table 1 the
unseen probability for attribute Type is equal to 0.1, indi-
cating that new values are not often encountered in the log.
While attribute UID has an unseen probability of 0.2, indi-
cating that this attribute does encounter more unseen values
and should therefor less penalize the total score when a new
value has to be scored.

4.1 Learning the Bayesian Network Structure
With a standard Bayesian Network learning algorithm we
can discover the Conditional Dependencies present in the
data. It is possible to use any learning algorithm that uses
data to learn the network structure. We use a greedy algo-
rithm that tries to optimize a model score. This score takes
three aspects into account. The first aspect is the prior dis-
tribution over all different models, the second is the score
for the current found network structure and the last one is a
penalty for overcomplicated networks. We thus want a good
network that is not overly complex, without this penalty
for the structure we would end up with a complete graph.
We can drop the prior distribution, who favors more sim-
ple models, from the score as we include this aspect in the
penalty part of the score. An important property of the
model score used is its decomposability. When using a score
that can be decomposed into the contribution of every single
attribute we can use a different way of scoring categorical
and numerical attributes. A categorical attribute can only
have categorical parents, whereas a numerical attribute can
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have both categorical and numerical parents. A numerical
attribute thus needs a different way of scoring than a cate-
gorical attribute.

Since dependencies between categorical attributes are either
conditional or functional we do not want the BN learning
algorithm to label already found functional dependencies as
conditional. Therefor we add these edges to a whitelist that
is past on to the learning algorithm. The learning algorithm
should always include the edges from the whitelist in the
model. This way the FDs are taken into account for calcu-
lating the score of a network but are not added a second time
by the algorithm. One possible problem with this approach
is that FDs do allow for cycles, but CDs do not. Therefor
we consider a cycle of FDs as a single variable in the BN
learning algorithm. Since the FDs fully determine each oth-
ers values we can do this without loosing any information
from the data. This way we do not introduce cycles in the
whitelisted relations in the BN learning algorithm and are
still able to learn dependencies to and from this cycle of FDs.
An important constraint on both FDs and CDs is that nodes
can only influence nodes in the current time step. Otherwise
dependencies between attributes can be accounted for twice
when scoring a case.

After running the greedy algorithm we have found the Con-
ditional and Functional Dependencies that define the struc-
tures present in our data. We can then combine them into
one single model. The next step in building the model is fill-
ing in all Conditional Probability Tables, constructing the
Functional Dependency functions and learning all the Ker-
nel Density Estimations. As a last step we learn the different
unseen values probabilities for all categorical attributes.

To score the quality of a model, we use a combination of
likelihood and a penalty term to discourage overly complex
models. The total score of a model is the sum of the score
for each of the factors.

Score(M) =
∑
A∈A

Score(A)− penalty(A) (7)

We now describe the score for each of the factor types sep-
arately.

4.1.1 Categorical Attributes
For the categorical attributes we use the Akaike Informa-
tion Criterion (AIC) [1] as the score for the current network
structure. The score for a categorical attribute is defined as
follows:

2 ∗ k − 2 ∗ ln(L), (8)

with k the number of distinct parent configurations of a
variable (the complexity aspect) and L equal to:∑

x∈a dom(X)

freq(x) ∗ p(x) (9)

4.1.2 Numerical Attributes
Recall that for numerical attribtues, we represent the dis-
tribution using Kernel Density Estimation. For a numerical
attribute A with categorical parents C and numerical parents
N , its score was decomposed as

P (A|Pa(A)) = P (A| C ∪ N ) =
P (A,N| C)
P (N| C) (10)

P (A, C| C) and P (N| C) are subsequently represented by a
KDE for each instantiation of the categorical attributes C.
Hence, for each c ∈ a dom(C), we estimate the distribution
p(A,N| C = c) with a KDE based on the set of numerical
values {(a, n)| ∃c ∈ L, ∃e ∈ C : e.A = a, e.N = n, e.C = c}.

In theory this means that we can never represent P (A,N| C =
c) more compactly than by enumerating the complete dataset.
However, it is possible to sample the found KDE and only
use this sample for determining the KDE without loosing
much of the accuracy of the KDE. Silverman et al. [24]
showed the minimum sample size needed to obtain a good
approximation given the dimensionality of the data. There-
for the complexity penalty is independent of the attribute,
but only depends on the dimensionality. The series of mini-
mum sample sizes is the following:

[4, 19, 67, 223, 768, 2790, 10700, 43700, 187000, 842000] (11)

Where the first element denotes the sample size for a dis-
tribution of 1 dimension, the second for 2 dimensions, etc.
Since we have multiple KDEs when categorical parents are
present, we multiply the minimum sample size with the num-
ber of categorical parents.

The overal score for attribute A in a log L is hence:∑
c∈L

∑
e∈c

log
(
p
(
e.A|Pa(A)

))
− penalty(A), (12)

where p(e.A|Pa(A)) is estimated using the KDE. To avoid
that e.A itself is used to estimate p(e.A|Pa(A)) we can use
the leave-one-out cross-validation log-likelihood. But since
we are using large datasets to train the model we can use
the log-likelihood itself without sacrificing any performance.

5. EXPERIMENTS
We perform several experiments to illustrate the effective-
ness of our EDBN algorithm for anomaly detection.

1. We illustrate that our algorithm can achieve high ac-
curacy on datasets with tons of attributes of mixed
categorical and numerical type.

2. We compare our KDE-based approach to deal with
numerical attributes with the standard discretiza-
tion approach, showing that KDEs slightly outper-
form discretization.

3. We compare our EDBN with the state-of-the-art
techniques proposed by Bohmer et al. [6] and Nolle
et al. [15]. We show that we clearly outperform the
Likelihood Graphs proposed by Bohmer and on most
datasets also performed better than the techniques in-
troduced by Nolle.

4. Lastly, a qualitative analysis is performed on the
BPI 2018 Challenge. In this experiment we use the
EDBN scores to detect Concept Drift, and exploit
the decomposable nature of our score for Root Cause
Analysis.
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Table 4: Mean AUROC values for different combinations of anomalies for the Synth dataset over 10 runs.

Test
% Anomalies 0.1 0.5 1.0 2.5 5.0 10.0 25.0 50.0

Training

0.0 0.96 0.95 0.93 0.93 0.94 0.94 0.94 0.94
0.5 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
1.0 0.87 0.91 0.90 0.90 0.90 0.90 0.90 0.90
2.5 0.91 0.92 0.90 0.90 0.90 0.90 0.90 0.90

Table 5: Mean AUROC values for different combinations of anomalies for the Synth-duration dataset over
10 runs.

Test
% Anomalies 0.1 0.5 1.0 2.5 5.0 10.0 25.0 50.0

Training

0.0 0.93 0.94 0.93 0.93 0.92 0.93 0.93 0.93
0.5 0.91 0.92 0.91 0.91 0.92 0.92 0.92 0.92
1.0 0.88 0.92 0.92 0.91 0.91 0.91 0.90 0.91
2.5 0.90 0.92 0.91 0.90 0.90 0.90 0.91 0.91

For these experiments we used a multitude of datasets, listed
in table 6. In order to fully evaluate our proposed model.

A serious complication in our experimental validation is the
absence of large business process logs with labeled anoma-
lies. To alleviate these problems, we use a combination
of synthetic datasets, real non-sequential datasets, and one
real-life log in which we use our anomaly detection technique
indirectly to detect known concept drifts.

All code to reproduce the shown experiments can be found
on our GitHub repository1 (including code used from Nolle
et al.).

5.1 Evaluation
In this first part of our experiments we test the basic anomaly
detection capabilities (both categorical anomalies and dura-
tion anomalies) and want to test how well our model per-
forms when more anomalies are present in the training and
test data. We use the area under the Receiver Operating
Characteristic curve (AUROC) to measure the quality of
the predictions. We choose this method because our model
returns an anomaly score for every case, which we then sort
from most to least anomalous. The AUROC value gives an
indication of the ROC curve itself, without having to plot
graphs for every experiment. A score of 1 indicates a per-
fect curve, meaning no false positives and false negatives
occurred during the testing phase, a score of 0.5 means the
detection was just random.

We built a data generation tool that allows us to create
log files containing different relations between events. In
order to do so we first create a model of sequential activities
with depending attributes. The model is based on a BP
for shipping goods. Goods can have a value and an extra
insurance can be taken. Goods with an extra insurance need
a different workflow from goods without extra insurance.
The data consists of 13 attributes. We create one model for
normal execution and one model for anomalous execution,
where we explicitly changed the order of events or use the

1https://github.com/StephenPauwels/edbn

wrong flow of events according to the insurance chosen. Next
we introduce extra attributes where some of these attributes
depend on other attributes. For the anomalous cases we
added random values on random places and changed the
order of activities.

We generated multiple set-ups with a variable number of
anomalies in both training and test data. We added anoma-
lies in our training data to check and show that our approach
does not require a flawless log file as training data but is able
to deal with a small amount of unexpected behavior in the
data. To minimize the impact of the random generation of
the data we run every test 10 times and report the mean
AUROC value of all runs. The AUROC-scores for different
amounts of anomalies in both training and test data can be
found in Table 4. This test shows that our algorithm is able
to find the relations mentioned in Section 3, even when the
training set contains a small amount of noise or anomalies.

In order to test the detection of duration anomalies we use
a synthetic dataset with an easy process, meaning few vari-
ations in activities. In order to determine the duration be-
tween two events we use Gaussian distributions, where we
use unique Gaussians for every combination of activities.
Furthermore we also added a user that performed the ac-
tivity and a random attribute. The results can be found
in Table 5. These results show that our model performs
evenly well when detecting temporal anomalies as when de-
tecting categorical anomalies in datasets containing multiple
attributes.

5.2 Evaluate Numerical Attributes
Next we want to test the the performance of our KDEs in
comparison with a discretization method. Since there exist
no business process log containing both numerical attributes
and labeled anomalies, we use three existing non-sequential
datasets containing labeled anomalies. These datasets are
the Breast Cancer Wisconsin (breast)2, the Cardiotocogra-

2http://odds.cs.stonybrook.edu/breast-cancer-wisconsin-
original-dataset/
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Table 6: Summary of synthetic datasets used for comparison.

Name #Activities #Cases #Events #Attr. #Attr. Values

Synth 6 10,000 50,000 - 60,000 13 2 - 100
Synth-Dur 7 10,000 50,000 - 60,000 4 2 - 1,000
Breast - - 683 9 1 - 10
Mammo - - 11,183 6 numerical
Cardio - - 1,831 21 numerical
P2P 27 5,000 48,477 3 13 - 140
Small 41 5,000 55,058 3 13 - 141
Medium 65 5,000 39,956 3 13 - 140
Large 85 5,000 61,789 3 13 - 141
Huge 109 5,000 46,919 3 13 - 140
Gigantic 152 5,000 38774 3 13 - 141
Wide 63 5,000 39,678 3 13 - 140
BPIC18 41 43,809 2,514,266 22 1 - 225,270

(a) Precision-Recall curve (b) ROC curve

Figure 2: Results for the continuous datasets

phy (cardio)3 and Mammography (mammo)4. We tested
these datasets both using discretization and without. The
discretized version generates a model containing only cate-
gorical variables, while the original version generates a model
containing numerical variables. Figure 2 shows the ROC
curve and the Precision-Recall curve for the continuous data-
sets. We can see that the darker curves (corresponding to
the discretized version) are always below the light curves.
Meaning that the model using numerical variables performs
better in detecting anomalies. The difference for the breast
dataset is very small because of only a limited amount of
attributes which have only integer values instead of floating
point values. Although the KDEs outperform the discretiza-
tion this experiment does show that even with a discretized
approach our EDBN method also performs well.

5.3 Comparison
In order to compare with state-of-the-art methods we have
chosen to compare with the Likelihood graph [6] and neu-
ral network methods [15]. This comparison cannot be per-

3http://odds.cs.stonybrook.edu/cardiotocogrpahy-dataset/
4http://odds.cs.stonybrook.edu/mammography-dataset/

formed in a straightforward way. This because every method
works in a different manner. The Likelihood graph and neu-
ral networks all return for every case if it is an anomaly or
not, while our method just returns a score for every case. For
the Likelihood graph we were able to easily transform the bi-
nary classification into scores indicating how likely it is that
the cases are anomalous. The Likelihood graph calculates
the likelihood for the ongoing case and compares this with
a baseline score in order to indicate if a case is an anomaly.
But since the baseline score is based on the last event seen
so far we can ignore this baseline because all our cases are
considered done and all have the same end activity that in-
dicates the end of the case. The lower the ongoing likelihood
the more likely it is that the case contains an anomaly. Due
to the way the neural networks work, and their complex way
of determining if a trace is anomalous or not we were not
able to transform this method. In the comparison we thus
will return the Precision-Recall curve for our method and
the Likelihood graph, and indicate the precision-recall re-
sults of the neural networks as single points in these graphs.

Another difference between the methods is the use of train-
ing and testing datasets. The Likelihood graph needs a clean
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(a) Small (b) Medium

(c) Large (d) Huge

(e) Gigantic (f) Wide (g) p2p

Figure 3: Comparison of precision-recall values.
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(a) Case scores (b) Median values of the decomposed scores for every year

Figure 4: Concept drift detection

training dataset and a different testing dataset, as every case
that occurs in the training dataset is assumed to be normal
and will never be flagged as anomalous. The neural net-
works use the same dataset for both training and testing.
This mainly because they cannot cope with the occurrence
of unseen values. In the previous section we showed that
our model is capable of dealing with a training dataset that
contains anomalies. In order to be able to compare with
both the Likelihood graph and the neural networks we al-
ways include two variants of the EDBN results. The first is
a variant were we use a clean training set, as for the Likeli-
hood graph. For the second variant we use the same dataset
for training and testing, as in the neural network methods.

To prevent any bias towards our own model we used the
datasets generated by Nolle et al. [15]. Because the Like-
lihood Graph was optimized in a setting with 3 attributes
(activity, resource, weekday) we use the datasets containing
only these three attributes, as described in Table 6. The
results for the 7 datasets can be found in Figure 3. Which
show that in most datasets we outperform the other algo-
rithms. It also indicates that our algorithm does perform
best when a clean training dataset is used, but that the
performance does not diminish much when using the full
dataset for training. The Likelihood Graphs score worst, in-
dicating that they are not able to deal with more complex
dependencies between the attributes and events in a log file.

5.4 Root Cause Analysis in Concept Drift
To further show the usefulness of EDBNs we show how we
use them to detect deviations in the form of Concept Drift
and use the decomposability of the score to find the cause(s)
of the drifts. The data we used is from the BPI Challenge
2018 [26] and consists of applications for agricultural grants
over a period of three years. Between the years changes
may occur as legislation and documents change. For a more
detailed analysis of this data we refer our work in [18]. For
testing purposes we remove all information about the date
and year events occurred. We only maintain the order in
which events and traces occur.

The basic workflow that is being followed is to train the
model on the first cases of the data. Next we score all cases
in the data using the trained model. Instead of using the
formula introduced in Section 3.5 we use the mean score of
all event-scores in the case. We made this choice because we
want to find the degree of deviation of a case from the refer-
ence training set rather than the indication that something
is wrong. To detect drifts we plot all these case-scores in a
single graph as shown in Figure 4a. Using the Kolmogorov-
Smirnov statistical test we can, in detail, determine the pos-
sible drift points. The found drift points are indicated with
red lines on the graph. To explain the drifts we decompose
the scores per attribute and plot the median value for every
drift period as in Figure 4b. This graph shows large differ-
ences between drift periods in the attributes area, doctype
and subprocess which is in line with the expectations that
are given as part of the dataset.

This qualitative experiment shows the correctness of the
learned model in a more semantic way. And shows that
EDBN can be used for solving other problem settings.

6. CONCLUSION
In this paper we further extended Dynamic Bayesian Net-
works by introducing the use of numerical variables in or-
der to deal with hybrid log files generated by process-aware
information systems, that is logfiles containing both cate-
gorical and numerical data. We further investigated and
solved some of the shortcomings of standard DBNs for an-
alyzing these log files. Next to Conditional Dependencies
and Functional Dependencies we added Numerical Depen-
dencies based on Kernel Density Estimation. Next we de-
scribed our algorithm for creating models that reflect the
multidimensional and sequential nature of log files. We con-
ducted different types of experiments: the first experiment
confirmed that our algorithm achieves high performance in
different settings with different amounts of anomalies in both
training and test sets. Next we explicitly tested our model
with numerical anomaly datasets, showing that the KDE
methods performs better than discretizing the numerical at-
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tributes. We also compared our approach with existing solu-
tions where we showed that we were able to perform better
than other state-of-the-art methods. Previously proposed
methods either needed to train on the same data as the one
which was tested (Nolle et al.) or needed to train using
a clean training set (Bohmer et al.). In the evaluation we
showed that we created a more hybrid method that is both
able to learn using a clean or dirty training dataset. Fi-
nally we showed the broader range of problems that could
be solved using our extended model by taking advantage of
the decomposability of the total anomaly score.

7. REFERENCES
[1] H. Akaike. A new look at the statistical model

identification. IEEE transactions on automatic
control, 19(6):716–723, 1974.

[2] R. Bertens. Insight Information: from Abstract to
Anomaly. Universiteit Utrecht, 2017.

[3] R. Bertens, J. Vreeken, and A. Siebes. Keeping it
short and simple: Summarising complex event
sequences with multivariate patterns. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
735–744. ACM, 2016.

[4] A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin,
and A. Strehl. Conditional probability tree estimation
analysis and algorithms. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pages 51–58. AUAI Press, 2009.

[5] F. Bezerra, J. Wainer, and W. M. van der Aalst.
Anomaly detection using process mining. In
Enterprise, business-process and information systems
modeling, pages 149–161. Springer, 2009.
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