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.beAbstra
tA graph-based model for des
ribing s
hemes and instan
es of obje
t databasestogether with a graphi
al data manipulation language based on patternmat
hing are introdu
ed. The data model allows the expli
it modeling of
lasses and relations whi
h 
ontain obje
ts and asso
iations, respe
tively.GOAL 
onsists mainly of two operations, the addition and the deletion.These perform on every part of the instan
e where a 
ertain pattern isfound. We will present the syntax and the semanti
s of the language, andshow its 
omputational 
ompleteness.
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1 Introdu
tionIn traditional database models like the Entity Relationship Model [1℄, NIAM [2℄ and theFun
tional Data Model [3℄, labeled graphs are used to represent s
hemes and sometimesalso instan
es. It is well known that graphi
ally represented s
hemes are often easierto grasp than textual ones. Moreover, with the introdu
tion of more 
omplex datamodels like the semanti
 and, more re
ently, obje
t-oriented data models [4,5,6,7℄, thishas be
ome even more important. If we want to o�er the user a 
onsistent graphi
alinterfa
e to a database then it is desirable that there is also a graphi
al manipulationlanguage. Unfortunately, the manipulation languages of these models are usually eithertextual or graph-based but with limited expressive power.One of the �rst graph based data models that o�ered a graph based manipulationlanguage that was 
omputationally 
omplete was GOOD [8℄ (Graph Oriented Obje
tDatabase Model). The data representation of GOOD is simply a graph with labelednodes and labeled edges between them. In PaMaL [9℄ the data model of GOOD wasextended by labeling nodes expli
itly as either obje
ts, tuples, sets or basi
 values.Furthermore, the manipulation language was adapted to �t the meaning of these nodes.This made it possible to 
onveniently model 
omplex obje
ts in PaMaL.In the data model of GOAL that we will present here, the data model of GOODis extended in a slightly di�erent way. In GOAL we distinguish three kinds of nodesbeing the value nodes, the obje
t nodes and the asso
iation nodes. The value nodes areused to represent the so-
alled printable values su
h as strings, integers or booleans.The obje
t nodes are used to represent obje
ts and the asso
iation nodes are usedto represent asso
iations. Both, obje
ts and asso
iations may have properties thatare represented by edges. The parti
ipants in an asso
iation are also 
onsidered tobelong to the properties of the asso
iation. The main di�eren
e between asso
iationsand obje
ts is that the identity of obje
ts is independent of their properties, whereasasso
iations are 
onsidered identi
al if they have the same properties. Properties maybe either fun
tional i.e. have only one value, or multi-valued i.e. 
onsist of a set ofvalues. The type of a property is not 
onstrained in advan
e su
h that the property ofan obje
t or an asso
iation may be either a basi
 value, an obje
t or an asso
iation.This is in 
ontrast with the Entity Relationship Model where, usually, asso
iations areonly allowed to hold between entities.The language of GOAL 
onsists mainly of two operations, the addition and thedeletion. Both are based on pattern mat
hing i.e. the �nding of all o

urren
es of aprototypi
al pie
e of an instan
e graph. Wherever su
h an o

urren
e is found theaddition spe
i�es whi
h nodes and edges to add, and the deletion spe
i�es whi
h nodesand edges to delete. Furthermore, a �xpoint operation is introdu
ed to enable someform of iteration.The organization of this paper is as follows. In se
tion 2 we introdu
e the data modelof GOAL and how its s
hemes and instan
es 
an be represented as graphs. In se
tion
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3 we present the operations of GOAL. In se
tion 4 we will give some extra examplesof GOAL programs and dis
uss the expressiveness of GOAL. Finally, in se
tion 5, wewill 
ompare GOAL to other data models and graph manipulation languages su
h asPaMaL.2 The Data ModelThe basi
 
on
ept of GOAL is the �nite dire
ted labeled graph. It is used to represents
hemes and instan
es as well as the operations on them. Therefore, we will begin withthe formal de�nition of this 
on
ept.De�nition 2.1 A �nite dire
ted labeled graph with node labels Ln and edge labelsLe is G = hN;E; �i with N a �nite set of nodes, E � N � Le � N a �nite set oflabeled edges, and a labeling fun
tion � : (N ! Ln) [ (E ! Le) that maps nodes tonode labels and edges to edge labels, where for all edges hn1; l; n2i in E it holds that�(hn1; l; n2i) = l.Noti
e that it is not possible in a �nite dire
ted labeled graph that there are twoedges between two nodes with the same label.2.1 Obje
t Base S
hemesTo introdu
e the notion of s
heme, let us 
onsider the employee administration of a
ompany. Figure 1 shows a possible database s
heme of su
h an administration.Here, the re
tangular nodes represent 
lasses, the re
tangular nodes with a diamondshape in it represent relations and the round nodes represent basi
 value types. Thesingle and double headed arrows that are labeled represent the properties of the obje
tsand asso
iations. If a labeled arrow has a single head it means that the property isfun
tional e.g. the single headed edge name indi
ates that every person has only onename. If an arrow has a double head it means that the property is multi-valued e.g.the double headed edge se
tions indi
ates that a department may 
onsist of more thanone se
tion. The double arrows that are unlabeled indi
ate the isa relation e.g. thearrow between manager and employee indi
ates that every manager is an employee.Let us now look at the s
heme of Figure 1 in more detail. Here we see the 
lassPerson whi
h 
ontains persons that have the properties name, date of birth and address.A sub
lass of Person is Employee whi
h 
ontains persons that are 
urrently employedby the 
ompany. A sub
lass of Employee is Manager whi
h 
ontains employees thatare 
onsidered �t to run a se
tion or even an entire department. The se
ond sub
lass ofEmployee is Engineer whi
h 
ontains employees that have te
hni
al skills in a 
ertaindomain. The 
lass Department 
ontains the several departments of the 
ompany thathave a name, a se
retary and a manager assigned to them. A department 
onsists,
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Figure 1: The employee administration database s
hemefurthermore, of several se
tions. The 
lass Se
tion 
ontains these se
tions that have aname and a manager and a set of employees who work with it. A sub
lass of Se
tionis the 
lass Te
hni
al Se
tion whi
h 
ontains se
tions where spe
ialized te
hni
al workis done, and whi
h have to be run by an engineer. The relation Contra
t re
ords the
ontra
ts between a person and a department. Properties of a 
ontra
t are the wage,begin date and end date. Finally, there is the relation Date whi
h 
ontains datesrepresented by a day, a month and a year.The fundamental di�eren
e between obje
ts and asso
iations is that the identityof an obje
t is not dependent upon its properties i.e. two obje
ts with exa
tly thesame properties are not ne
essarily the same obje
t whereas two asso
iations withthe same properties are identi
al. Thus, the relationships of the Entity RelationshipModel and the tuples of obje
t oriented data models 
an be modelled in GOAL withthe same 
on
ept i.e. asso
iation. Examples of this are the Contra
t relation and theDate relation in Figure 1.Before we turn to the formal de�nition of a s
heme we have to de�ne a database
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ontext that 
ontains the preliminary 
on
epts whi
h are system-given.De�nition 2.2 A database 
ontext is de�ned as U = hB; V; Æ; C;R; F;Mi with B a�nite set of basi
 types e.g. int, str, bool et
., V an enumerable set of basi
 values,Æ : B ! 2V maps every basi
 type to its domain i.e. an enumerable subset of the basi
values, C an enumerable set of 
lass names, R a 
ountable set of relation names, Fan enumerable set of fun
tional edge labels and M an enumerable set of multi-valuededge labels. Furthermore, it must hold that B, C and R are pairwise disjoint and F ,M and fisag are pairwise disjoint.The database 
ontext is 
onsidered to be �xed for all the following de�nitions. Weare now ready to de�ne what exa
tly 
onstitutes a s
heme.De�nition 2.3 A s
heme is a �nite dire
ted labeled graph S = hNS; ES; �Si with nodelabels B [ C [R and edge labels F [M [ fisag. Furthermore, it should hold that:� all di�erent nodes have di�erent labels.� edges may not leave from nodes labeled with a basi
 type.� from a node there may not leave two edges with the same label ex
ept isa edges.� the isa edges are only allowed between two nodes labeled with 
lass names or twonodes labeled with relation names.The nodes labeled with a basi
 type are 
alled basi
 type nodes. and are representedby round nodes. The nodes labeled with a 
lass name are 
alled 
lass nodes and arerepresented by re
tangles. The nodes labeled with a relation name are 
alled relationnodes and are represented by re
tangles �lled with a diamond. Edges labeled with afun
tional edge label or multi-valued edge label are 
alled fun
tional edges or multi-valued edges and are represented by single headed arrows or double headed arrows,respe
tively. Edges labeled with isa are 
alled isa edges and are represented by doubleunlabeled bold arrows. Noti
e that isa edges are not only allowed between 
lasses butalso between relations.If we look again at Figure 1 it 
an be veri�ed that it presents a valid s
heme ex
eptthat it has several basi
 type nodes labeled with the same basi
 type. To be formally as
heme, these nodes would have to be merged but, informally, we allow the dupli
ationof basi
 type nodes to in
rease readability.The isa edges in Figure 1 indi
ate that every employee is a person, and that everymanager is an employee. Evidently, it follows that every manager is also a person.Thus, the subtype relation 
an be easily derived from the isa edges.De�nition 2.4 The subtype relation �S for a s
heme S is a subset of (B�B)[ (C�C) [ (R � R) su
h that l1 �S l2 i� there are two nodes n1 and n2 in S with the labelsl1 and l2, respe
tively, and a, possibly empty, dire
ted path of isa edges from n1 to n2.
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Noti
e that the subtype relation holds between 
lass names, relation names andbasi
 types, and not between the nodes of the s
heme. Also noti
e that sin
e isa edgesare not allowed between basi
 type nodes, the only subtype of a basi
 type is the basi
type itself.2.2 Database Instan
esTo introdu
e the notion of instan
e we present a small example of a weak instan
e ofthe employee database in Figure 2.Manager managerdepartment namename person personStr Contra
t Contra
t Str\�nan
e"begin datebegin date\Johnson"
day month year day month yearNum1 Num1 Num90

department
Date Date

Department

Figure 2: A weak instan
e of the employee databaseThe interpretation of the graph is reminis
ent of the interpretation of a s
hemegraph. The re
tangle nodes represent obje
ts, the re
tangle nodes with a diamondinside represent asso
iations and the round nodes represent basi
 values.Here we see a manager with the name \Johnson" who is the manager of the �nan
edepartment. Apparently, Johnson has two 
ontra
ts with his department, both withbegin dates that have the same day, month and year.De�nition 2.5 A weak instan
e is a pair I = hhNI; EI ; �Ii; �Ii where hNI ; EI ; �Ii isa �nite dire
ted labeled graph with node labels B [ C [ R and edge labels F [M . Thepartial fun
tion �I : NI ! V maps nodes labeled with a basi
 type to their basi
 value.Furthermore, it should hold that:
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� for every fun
tional edge label there may at most leave one edge with that labelfrom every node.� exa
tly all the nodes labeled with a basi
 type are labeled with a basi
 value.� the basi
 value of a node labeled with a basi
 type must belong to the domain ofthis basi
 type.The nodes labeled with a basi
 type are 
alled value nodes. The nodes labeled witha 
lass name are 
alled obje
t nodes. The nodes labeled with a relation name are 
alledasso
iation nodes. The �-label and the �-label of a node are said to be the type labeland the value label of a node, respe
tively. Edges labeled with a fun
tional edge label ora multi-valued edge label are 
alled fun
tional edges or multi-valued edges, respe
tively.The graphi
al notation of weak instan
es is identi
al to those of s
hemes. It 
an beeasily veri�ed that the graph presented in Figure 2 is a valid weak instan
e.We now turn to the question when a weak instan
e belongs to a 
ertain s
heme.Firstly, it may be 
lear that the weak instan
e may not 
ontain obje
ts and asso
iationsfrom 
lasses and relations that were not mentioned in the s
heme. Se
ondly, in GOALwe 
onsider all properties to be optional e.g. the property date of birth of the 
lassPerson does not have to be de�ned for all persons. This enables us to 
onvenientlymodel in
omplete information. On the other hand, an obje
t or an asso
iation mayonly have those properties de�ned that are pres
ribed for its type or for a supertype.Finally, the type of a property must be a subtype of all the types that are pres
ribedin the s
heme by the type and the supertypes. For instan
e, in Figure 1 we see thatthe manager of a se
tion must be a manager. It 
an also be seen that the manager ofa te
hni
al se
tion must be an engineer. Therefore the manager of a te
hni
al se
tionmust both be a manager and an engineer.These intuitions about the typing of a weak instan
e 
an be formalized in thefollowing way.De�nition 2.6 A weak instan
e I is of s
heme S whenever:� the type labels in the weak instan
e o

ur in the s
heme.� for every weak instan
e edge hn1; l; n2i there is a s
heme edge hn01; l; n02i su
h that�I(n1) �S �S(n01).� for every weak instan
e edge hn1; l; n2i and s
heme edge hn01; l; n02i it must holdthat if �I(n1) �S �S(n01) then �I(n2) �S �S(n02).From the intuition of the typing of weak instan
es it may already be 
lear that theweak instan
e presented in Figure 2 is a weak instan
e of the s
heme in Figure 1.If we look at the weak instan
e of Figure 2 we see two Date asso
iations withthe same properties. Be
ause the identity of an asso
iation depends fully upon the
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properties it has, these two asso
iations should be merged. But then the propertiesof the two 
ontra
ts would also be
ome identi
al. Therefore, they would have to bemerged also. Informally speaking, two nodes should be merged if they represent thesame value.De�nition 2.7 Two nodes n1 and n2 are said to be value equivalent or n1 �=I n2 i�for all i 2 IN it holds that n1 �=iI n2 where �=iI� NI �NI is de�ned as:� n1 �=0I n2 i� n1 and n2 are asso
iation nodes with the same type label or if theyare the same 
lass node or if they are value nodes with the same type label andthe same value label.� n1 �=i+1I n2 i� n1 �=iI n2 and for every edge hn1; l; n01i there is an edge hn2; l; n02isu
h that n01 �=i n02 and vi
e versa.Noti
e that if two nodes n1 and n2 are labeled with the same relation name, itholds that n1 �=0I n2. Furthermore, it 
an be observed that two value nodes are valueequivalent i� they have the same type and value label, and two obje
t nodes are valueequivalent i� they are the same node.Sin
e we did not forbid asso
iations to dire
tly or indire
tly refer to themselves, it ispossible to represent 
ertain in�nite values in a weak instan
e. Consider, for example,the weak instan
e in Figure 3.List
List List

List List
NumNum1

tailn1
head n3

n5
tail 2

n4head
tailn2

headhead tailtail
head

Figure 3: An instan
e with in�nite valuesHere, the nodes n1, n2 and n3 are asso
iation nodes that represent the same in�nitelist of 1's. They are therefore value equivalent. The nodes n4 and n5 both representin�nite lists with alternating 1's and 2's. They are not value equivalent be
ause n4represents the list starting with a 2 and n5 the one starting with 1.
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We are now ready to de�ne instan
es i.e. weak instan
es that respe
t the notion ofasso
iations without identity.De�nition 2.8 An instan
e is a weak instan
e I for whi
h it holds that all di�erentnodes are not value equivalent.De�nition 2.9 For every weak instan
e there is an instan
e that 
an be obtained bymerging nodes that are value equivalent. This instan
e is 
alled the redu
tion of a weakinstan
e.For example, if in Figure 2 the two 
ontra
ts, the two dates and the two value nodeswith value label 1 would be merged, then we would obtain an instan
e.2.3 Inheritan
e Con
i
tsThe s
heme in Figure 1 has got a small problem. The manager of a se
tion has tobe a manager, but the manager of a te
hni
al se
tion also has to be an engineer. Inthe GOAL data model, obje
ts only belong to the 
lass they are labeled with and itssuper
lasses. This implies that an obje
t 
an only belong to two 
lasses at on
e if these
lasses have a 
ommon sub
lass. Sin
e the 
lasses Manager and Engineer do not havea 
ommon sub
lass there 
an not exist a manager that is an engineer as well. Formally,this does not present a problem sin
e the manager of a te
hni
al se
tion may alwaysbe left unde�ned, thus avoiding the 
ontradi
tion. Of 
ourse, this is not what wasintended with the s
heme. Therefore, we introdu
e the notion of 
onsistent s
hemethat prevents these problems.De�nition 2.10 A 
onsistent s
heme is a s
heme S where for every two edges hn1; l; n2iand hn01; l; n02i in S for whi
h �S(n01) �S �S(n1) it holds that there is a node n3 in Ssu
h that �S(n3) �S �S(n2) and �S(n3) �S �S(n02).Noti
e that the s
heme of Figure 1 
an be made 
onsistent by adding a 
lass Te
h-ni
al Manager that inherits from both Engineer and Manager.3 The LanguageIn this se
tion we will present the operations of GOAL. These operations will all bede�ned over a �xed s
heme S i.e. all begin, intermediate and �nal instan
es must beof this s
heme.
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3.1 Pattern Mat
hingThe language of GOAL 
ontains two operations: the addition (that adds new nodesand/or edges to the running instan
e) and the deletion (that deletes some nodes and/oredges from the running instan
e). Both operations follow the same prin
iple: every-where some \pattern" is found in the running instan
e, the operation is applied. Apattern has the form of a weak instan
e where not ne
essarily all value nodes have avalue label.De�nition 3.1 A pattern is a weak instan
e but with the value fun
tion � allowed tobe unde�ned for some value nodes.Person Contra
t
Num

Se
tionSe
tionyear year
se
tions se
tionsperson departmentbegin date end date Department

Date Date
Figure 4: An example of a patternFigure 4 shows a pattern over the s
heme of Figure 1, that represents all the personsthat have a 
ontra
t that is signed with a department with at least two se
tions andthat has di�erent begin and end dates with identi
al year.Clearly a pattern 
an mat
h with several parts of an instan
e. Ea
h su
h a mat
hingis 
alled an embedding of the pattern into the instan
e.De�nition 3.2 An embedding of a pattern J into a weak instan
e I is a total inje
tivefun
tion � : NJ ! NI su
h that:� pattern nodes are mapped to weak instan
e nodes the type labels of whi
h aresubtypes.� pattern nodes with value labels are mapped to weak instan
e nodes with the samevalue label.� if the edge hn1; l; n2i is in J then h�(n1); l; �(n2)i must be in I.
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The set of all embeddings of J into I is denoted as Emb(J; I).Note that distin
t nodes in the pattern are mapped to distin
t nodes in the instan
e.Furthermore a node in the pattern is mapped to a node in the instan
e with the sametype or with a subtype. Re
alling Figure 1, an Employee node in the pattern 
an bemapped, for example, to a Manager node in the instan
e, indi
ating that the Managernode is 
onsidered here as of type Employee.3.2 AdditionsAn addition is used to add new nodes and/or edges, for every embedding of a givenpattern that is found in the running instan
e. The addition is represented by thatpattern, Jm augmented with the bold nodes and/or edges that have to be added.These bold nodes and edges together with Jm have also to form a pattern, that is
alled Ja.De�nition 3.3 An addition is a pair AhJm; Jai with patterns Jm and Ja where Jmis a subpattern of Ja and both patterns are of the s
heme that the language is de�nedover.
Str

Strnamese
tions\Bergman"
94

employees
begin date

Se
tion \treasury"
department \�nan
e"person name

NumNumContra
tStr
1

Department
Date monthday

nameEmployee year

Figure 5: An example of an additionFigure 5 represents an addition where a new employee Bergman and a 
ontra
t thatstarts on 1-1-94 between Bergman and the �nan
e department is added. Bergman alsobe
omes an employee of the treasury se
tion.A
tually, for every bold node (edge) a new node (edge) is 
reated. But after the
reation of the new nodes and/or edges, we obtain an instan
e that 
an be weak.Therefore the semanti
s of the addition ends with a redu
tion.
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De�nition 3.4 The semanti
s of an addition AhJm; Jai applied to an instan
e I isde�ned as the redu
tion of I 0 the minimal weak superinstan
e of I su
h that everyembedding � 2 Emb(Jm; I) has an extension �0 2 Emb(Ja; I 0) with:� �0 is equal to � on the nodes of Jm.� ea
h pattern node of Ja � Jm is mapped by ea
h extension to a di�erent node,whi
h does not belong to I.Remark, that the addition of Figure 5 
reates a new asso
iation node for the new
ontra
t. A new asso
iation node for the date 1-1-94 is also 
reated, but it merges withthe existing date 1-1-94, if the latter exists in the running instan
e. A new obje
t nodefor Bergman is 
reated of type Employee. If su
h a node would already exist this nodewill not merge with it. The basi
 values su
h as \Bergman", 1 and 94 are also drawnin bold be
ause otherwise the pattern would not mat
h if these values did not alreadyexist in the obje
t base and therefore nothing would be added.Clearly the semanti
s is uniquely de�ned up to an isomorphism on the new obje
tand asso
iation nodes. Noti
e that the semanti
s may sometimes be unde�ned e.g.when a person re
eives a new name without removing the old one. The result wouldthen be a person with two names but sin
e the property name is fun
tional this is notpossible in any instan
e.3.3 DeletionsA deletion is used to delete existing nodes and/or edges, for every embedding of agiven pattern that is found in the running instan
e. The deletion is represented bythat pattern, Jm, where the nodes and/or edges that have to be deleted are drawn indashed lines. The nodes and edges that are not dashed have to form a pattern, 
alledJd.De�nition 3.5 A deletion is a pair DhJm; Jdi with patterns Jm and Jd where Jd is asubpattern of Jm and both patterns are of the s
heme that the language is de�ned over.Figure 6 represents the deletion of the 
ontra
ts that end in 1993 and removes the
ontra
ted employees from the se
tions that belong to the department the 
ontra
t waswith.A
tually, the deletion starts with the removal of the indi
ated nodes and/or edges.But after this removal we obtain an instan
e that 
an be weak. Therefore the semanti
sof the deletion ends with a redu
tion.De�nition 3.6 The semanti
s of a deletion DhJm; Jdi applied to an instan
e I isde�ned as the redu
tion of I 0 the maximal weak subinstan
e of I for whi
h it holds thatfor all embeddings � 2 Emb(Jm; I):
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93Person DepartmentDate
Se
tion

Numperson departmentend date year
se
tionsContra
temployeesFigure 6: An example of a deletion� if a node n in Jm is not in Jd then �(n) is not in I 0.� if an edge hn1; l; n2i in Jm is not in Jd then h�(n1); l; �(n2)i is not in I 0.Clearly the semanti
s is uniquely de�ned up to an isomorphism on the asso
iationnodes that result from a merging during the redu
tion.3.4 Re
ursionA transformation is a �nite list of additions, deletions (and �xpoints). In order tohandle the re
ursion we de�ne a �xpoint of a transformation.De�nition 3.7 A �xpoint is de�ned as FhT i, where T is a transformation, i.e. a�nite list of additions, deletions and �xpoints.The result of a �xpoint is obtained by �rst iterating the list of transformations onthe running instan
e until a �xpoint is rea
hed. If no �xpoint is rea
hed the semanti
sis not de�ned.De�nition 3.8 The semanti
s of a �xpoint FhT i applied to a strong instan
e I isde�ned as the �rst instan
e Ij in the in�nite list I0; I1; I2; : : : for whi
h it holds that Ijis equivalent to Ij+1 up to isomorphism on the value and asso
iation nodes and where:� I0 = I� Ii+1 is the result of 
onse
utively applying the elements of T to Ii� if a node n in Ii is deleted in Ii+1 then it may not return in Ik where k > i.
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PartProd.Class Produ
t parts
lass partsallPartspartsprodu
tsFigure 7: A s
heme for produ
ts and parts
*

;
Produ
t
Partparts allParts Produ
tPartPart

allPartsallParts
parts

Figure 8: An example of the �xpoint operatorFigure 7 shows the s
heme of a database that represents produ
ts that are builtfrom parts, that in their turn are built from parts, and so on. In this s
heme the edgelabeled allParts represents all the parts needed to build a produ
t re
ursively.In Figure 8 a transformation is given that adds all the ne
essary allParts edges ina given instan
e. Remark that we separate the operations by semi
olons and that weuse f g� as a notation for the �xpoint.4 More ExamplesIn this se
tion we will give some more examples of GOAL transformations. The �rstexample in Figure 9 presents the 
al
ulation of what is known in GOOD as an ab-stra
tion. The transformation is de�ned in the 
ontext of the s
heme of Figure 7. Itsintention is to 
reate one Produ
t Class node for every 
lass of produ
ts where a 
lassis de�ned as a set of produ
ts that 
ontain the same parts. In the �rst operation, aprodu
t 
lass is 
reated for every produ
t. Noti
e that these produ
t 
lasses all have adi�erent produ
ts property. This prevents them from being merged into one node. Inthe se
ond operation, the produ
t 
lasses obtain the same parts as the produ
t theybelong to. In the third statement, the produ
t 
lass is stripped of its produ
ts prop-erty. The only property now left is the parts property. Therefore, the produ
t 
lasseswith the same parts will be merged. All produ
ts 
onsisting of the same parts will now
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; ;Produ
t
Prod.Class Prod.Class

Produ
t
Part

Produ
t
lass 
lassparts parts produ
tsProd.Classprodu
ts
Figure 9: The 
omputation of the Produ
t Classespoint to one and the same produ
t 
lass.The next example shows how we 
an simulate 
omputations with numbers. Forthis purpose we use the s
heme as presented in Figure 10.

Num
BA

Zero Pos pred
valold val old

Figure 10: A s
heme for numeri
al 
omputationsHere the 
lasses A and B are meant to ea
h 
ontain one obje
t being the variablesa and b, respe
tively. These variables have two properties, the value and the oldvalue. The value gives the 
urrent value of the variable and the old value is used tohold intermediate results. The relation Number holds numbers that are either Zero orPositive. A positive number points to its prede
essor, thus numbers are representedas a 
hained list of positive numbers ending with a zero. In Figures 11, 12 and 13we present the simulation of some simple 
omputations. In Figure 11 the value of a isin
remented by one. In Figure 12 the value of a is de
remented by one. Noti
e that theold number is not removed be
ause it may be shared with other variables. This is verylikely be
ause nodes that represent the same number are always merged. In Figure 13
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;; ;

ANum ANum A
Num

ANumNumold val val old valpred old
Figure 11: a be
omes a plus 1

;; ;

ANum ANum A
Num

ANumNumold val val oldold valpred
Figure 12: a be
omes a minus 1the value of b is set to zero if the a is zero. Noti
e that the �rst operation of Figure13 does not mat
h if the value of b is already zero. This is be
ause di�erent nodes inthe pattern have to be embedded upon di�erent nodes in the instan
e. The followingaddition would not 
ause any 
hanges either be
ause the edge it tries to add wouldalready exist. The total result would therefore be identi
al to what was intended.Finally, some remarks about the 
ompleteness of GOAL. From the previous exam-ples we 
an observe that together with some form of iteration that 
an be simulatedusing the �xpoint operation, GOAL 
an simulate all 
omputable fun
tions on num-bers. However, sin
e GOAL is meant as an obje
t database manipulation language, itis more interesting to know whether all \reasonable" manipulations 
an be 
omputed.Sin
e GOOD is known to be 
omplete in this sense, [10℄ we 
an make the followingobservation.Theorem 4.1 GOAL is 
omputationally 
omplete.Proof: All operations of GOOD 
an be simulated in GOAL. The te
hni
al details ofthis will be omitted here.
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;

BvalNumBval valZero Zero valA A
Figure 13: b be
omes zero if a is zero5 Con
lusionsIn this paper we presented a graphi
al obje
t-oriented database model and a graph-based manipulation language. This model is the result of the 
ontinuing resear
hdone on GOOD. The most distin
t di�eren
e with GOOD is the presen
e of so-
alledasso
iation nodes. These nodes di�er from normal obje
t nodes be
ause they areautomati
ally merged when they represent the same value. This makes them verysuitable to model both relationships and tuples. They 
an, in fa
t, be seen as auni�
ation of these two 
on
epts from the Entity Relationship approa
h and the Obje
t-Oriented approa
h, respe
tively. Furthermore, the semanti
s of the asso
iation nodesenables us to avoid operations like the abstra
tion in GOOD, whi
h are not 
ompletelypattern based. Another di�eren
e with GOOD (and PaMaL) is the inje
tivity of thepattern mat
hing i.e. two nodes in the pattern 
an not be embedded upon the samenode in the instan
e. Although not an essential feature we feel that it gives in many
ases a more intuitive notion of pattern mat
hing.The operations of GOAL resemble those of PaMaL and share their simpli
ity andexpressiveness. GOAL, however, does not allow di�erent nodes to represent the sametuple or set in intermediate results. Moreover, GOAL o�ers relations to 
onvenientlymodel relationships between more than two obje
ts. Furthermore, GOAL tends to leadto su

in
t data models be
ause not every tuple and set has to be expli
itly representedwith a node. A small disadvantage of GOAL is that asso
iation nodes that representnameless tuples need a relation name. Sin
e these tuples usually represent meaningful
on
epts that deserve a name anyway, this may be 
onsidered more of a feature thana bug. Finally, GOAL provides multiple inheritan
e, even between relations, and ame
hanism to dete
t inheritan
e 
on
i
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