GOAL,
A Graph-based Object and Association Language

Jan Hidders Jan Paredaens
Dept. of Math. and Comp. Science Dept. of Math. and Comp. Science
Eindhoven University of Technology (TUE) University of Antwerp (UIA)
P.0O.Box 513, 5600 MB Eindhoven Universiteitsplein 1, B-2610 Antwerp
the Netherlands Belgium
e-mail: hidders@win.tue.nl e-mail: pareda@wins.uia.ac.be
Abstract

A graph-based model for describing schemes and instances of object databases
together with a graphical data manipulation language based on pattern
matching are introduced. The data model allows the explicit modeling of
classes and relations which contain objects and associations, respectively.
GOAL consists mainly of two operations, the addition and the deletion.
These perform on every part of the instance where a certain pattern is
found. We will present the syntax and the semantics of the language, and
show its computational completeness.

J. Hidders, J. Paredaens: “GOAL”

1 Introduction

In traditional database models like the Entity Relationship Model [1], NTAM [2] and the
Functional Data Model [3], labeled graphs are used to represent schemes and sometimes
also instances. It is well known that graphically represented schemes are often easier
to grasp than textual ones. Moreover, with the introduction of more complex data
models like the semantic and, more recently, object-oriented data models [4,5,6,7], this
has become even more important. If we want to offer the user a consistent graphical
interface to a database then it is desirable that there is also a graphical manipulation
language. Unfortunately, the manipulation languages of these models are usually either
textual or graph-based but with limited expressive power.

One of the first graph based data models that offered a graph based manipulation
language that was computationally complete was GOOD [8] (Graph Oriented Object
Database Model). The data representation of GOOD is simply a graph with labeled
nodes and labeled edges between them. In PaMaL [9] the data model of GOOD was
extended by labeling nodes explicitly as either objects, tuples, sets or basic values.
Furthermore, the manipulation language was adapted to fit the meaning of these nodes.
This made it possible to conveniently model complex objects in PaMal..

In the data model of GOAL that we will present here, the data model of GOOD
is extended in a slightly different way. In GOAL we distinguish three kinds of nodes
being the value nodes, the object nodes and the association nodes. The value nodes are
used to represent the so-called printable values such as strings, integers or booleans.
The object nodes are used to represent objects and the association nodes are used
to represent associations. Both, objects and associations may have properties that
are represented by edges. The participants in an association are also considered to
belong to the properties of the association. The main difference between associations
and objects is that the identity of objects is independent of their properties, whereas
associations are considered identical if they have the same properties. Properties may
be either functional i.e. have only one value, or multi-valued i.e. consist of a set of
values. The type of a property is not constrained in advance such that the property of
an object or an association may be either a basic value, an object or an association.
This is in contrast with the Entity Relationship Model where, usually, associations are
only allowed to hold between entities.

The language of GOAL consists mainly of two operations, the addition and the
deletion. Both are based on pattern matching i.e. the finding of all occurrences of a
prototypical piece of an instance graph. Wherever such an occurrence is found the
addition specifies which nodes and edges to add, and the deletion specifies which nodes
and edges to delete. Furthermore, a fixpoint operation is introduced to enable some
form of iteration.

The organization of this paper is as follows. In section 2 we introduce the data model
of GOAL and how its schemes and instances can be represented as graphs. In section

J. Hidders, J. Paredaens: “GOAL”

3 we present the operations of GOAL. In section 4 we will give some extra examples
of GOAL programs and discuss the expressiveness of GOAL. Finally, in section 5, we
will compare GOAL to other data models and graph manipulation languages such as
PaMaL.

2 The Data Model

The basic concept of GOAL is the finite directed labeled graph. It is used to represent
schemes and instances as well as the operations on them. Therefore, we will begin with
the formal definition of this concept.

Definition 2.1 A finite directed labeled graph with node labels L, and edge labels
L. is G = (N,E,\) with N a finite set of nodes, E C N x L, x N a finite set of
labeled edges, and a labeling function X : (N — L,) U (E — L.) that maps nodes to
node labels and edges to edge labels, where for all edges (ny,l,ns) in E it holds that

)\(<’I’L1, l, ’I’L2>) = l

Notice that it is not possible in a finite directed labeled graph that there are two
edges between two nodes with the same label.

2.1 Object Base Schemes

To introduce the notion of scheme, let us consider the employee administration of a
company. Figure 1 shows a possible database scheme of such an administration.
Here, the rectangular nodes represent classes, the rectangular nodes with a diamond
shape in it represent relations and the round nodes represent basic value types. The
single and double headed arrows that are labeled represent the properties of the objects
and associations. If a labeled arrow has a single head it means that the property is
functional e.g. the single headed edge name indicates that every person has only one
name. If an arrow has a double head it means that the property is multi-valued e.g.
the double headed edge sections indicates that a department may consist of more than
one section. The double arrows that are unlabeled indicate the isa relation e.g. the
arrow between manager and employee indicates that every manager is an employee.
Let us now look at the scheme of Figure 1 in more detail. Here we see the class
Person which contains persons that have the properties name, date of birth and address.
A subclass of Person is Employee which contains persons that are currently employed
by the company. A subclass of Employee is Manager which contains employees that
are considered fit to run a section or even an entire department. The second subclass of
Employee is Engineer which contains employees that have technical skills in a certain
domain. The class Department contains the several departments of the company that
have a name, a secretary and a manager assigned to them. A department consists,

J. Hidders, J. Paredaens: “GOAL”

day |month | year

date of birth
name Date

name
Person begin date end date

address m WDepartment
Contr}
@/ sections
wage

secretary
Employee manager Section
) / \ employees
domain /
. manager
Engineer Manager Tech.Sect.

\ manager

Figure 1: The employee administration database scheme

furthermore, of several sections. The class Section contains these sections that have a
name and a manager and a set of employees who work with it. A subclass of Section
is the class Technical Section which contains sections where specialized technical work
is done, and which have to be run by an engineer. The relation Contract records the
contracts between a person and a department. Properties of a contract are the wage,
begin date and end date. Finally, there is the relation Date which contains dates
represented by a day, a month and a year.

The fundamental difference between objects and associations is that the identity
of an object is not dependent upon its properties i.e. two objects with exactly the
same properties are not necessarily the same object whereas two associations with
the same properties are identical. Thus, the relationships of the Entity Relationship
Model and the tuples of object oriented data models can be modelled in GOAL with
the same concept i.e. association. Examples of this are the Contract relation and the
Date relation in Figure 1.

Before we turn to the formal definition of a scheme we have to define a database

J. Hidders, J. Paredaens: “GOAL”

context that contains the preliminary concepts which are system-given.

Definition 2.2 A database context is defined as U = (B,V,0,C, R, F, M) with B a
finite set of basic types e.g. int, str, bool etc., V an enumerable set of basic values,
§: B — 2V maps every basic type to its domain i.e. an enumerable subset of the basic
values, C' an enumerable set of class names, R a countable set of relation names, F
an enumerable set of functional edge labels and M an enumerable set of multi-valued
edge labels. Furthermore, it must hold that B, C' and R are pairwise disjoint and F,
M and {isa} are pairwise disjoint.

The database context is considered to be fixed for all the following definitions. We
are now ready to define what exactly constitutes a scheme.

Definition 2.3 A scheme is a finite directed labeled graph S = (Ng, Es, As) with node
labels BU C U R and edge labels F'U M U {isa}. Furthermore, it should hold that:

e all different nodes have different labels.
e edges may not leave from nodes labeled with a basic type.
e from a node there may not leave two edges with the same label except isa edges.

e the isa edges are only allowed between two nodes labeled with class names or two
nodes labeled with relation names.

The nodes labeled with a basic type are called basic type nodes. and are represented
by round nodes. The nodes labeled with a class name are called class nodes and are
represented by rectangles. The nodes labeled with a relation name are called relation
nodes and are represented by rectangles filled with a diamond. Edges labeled with a
functional edge label or multi-valued edge label are called functional edges or multi-
valued edges and are represented by single headed arrows or double headed arrows,
respectively. Edges labeled with isa are called isa edges and are represented by double
unlabeled bold arrows. Notice that isa edges are not only allowed between classes but
also between relations.

If we look again at Figure 1 it can be verified that it presents a valid scheme except
that it has several basic type nodes labeled with the same basic type. To be formally a
scheme, these nodes would have to be merged but, informally, we allow the duplication
of basic type nodes to increase readability.

The isa edges in Figure 1 indicate that every employee is a person, and that every
manager is an employee. Evidently, it follows that every manager is also a person.
Thus, the subtype relation can be easily derived from the isa edges.

Definition 2.4 The subtype relation <g for a scheme S is a subset of (B x B)U(C x
C)U (R x R) such that l; =g ly iff there are two nodes ny and ny in S with the labels
Iy and ly, respectively, and a, possibly empty, directed path of isa edges from ny to ns.

J. Hidders, J. Paredaens: “GOAL”

Notice that the subtype relation holds between class names, relation names and
basic types, and not between the nodes of the scheme. Also notice that since isa edges
are not allowed between basic type nodes, the only subtype of a basic type is the basic
type itself.

2.2 Database Instances

To introduce the notion of instance we present a small example of a weak instance of
the employee database in Figure 2.

manager
Manager Department

department

name
name person person department
Contr} Con@
P » “finance”
Johnson begin date begin date

1 1 90

Figure 2: A weak instance of the employee database

The interpretation of the graph is reminiscent of the interpretation of a scheme
graph. The rectangle nodes represent objects, the rectangle nodes with a diamond
inside represent associations and the round nodes represent basic values.

Here we see a manager with the name “Johnson” who is the manager of the finance
department. Apparently, Johnson has two contracts with his department, both with
begin dates that have the same day, month and year.

Definition 2.5 A weak instance is a pair I = ((Ny, Er, \1), vr) where (N, Er, A1) is
a finite directed labeled graph with node labels BU C U R and edge labels FFU M. The
partial function vy : Ny — V' maps nodes labeled with a basic type to their basic value.
Furthermore, it should hold that:

J. Hidders, J. Paredaens: “GOAL”

e for every functional edge label there may at most leave one edge with that label
from every node.

e czactly all the nodes labeled with a basic type are labeled with a basic value.

e the basic value of a node labeled with a basic type must belong to the domain of
this basic type.

The nodes labeled with a basic type are called value nodes. The nodes labeled with
a class name are called object nodes. The nodes labeled with a relation name are called
association nodes. The A-label and the v-label of a node are said to be the type label
and the value label of a node, respectively. Edges labeled with a functional edge label or
a multi-valued edge label are called functional edges or multi-valued edges, respectively.

The graphical notation of weak instances is identical to those of schemes. It can be
easily verified that the graph presented in Figure 2 is a valid weak instance.

We now turn to the question when a weak instance belongs to a certain scheme.
Firstly, it may be clear that the weak instance may not contain objects and associations
from classes and relations that were not mentioned in the scheme. Secondly, in GOAL
we consider all properties to be optional e.g. the property date of birth of the class
Person does not have to be defined for all persons. This enables us to conveniently
model incomplete information. On the other hand, an object or an association may
only have those properties defined that are prescribed for its type or for a supertype.
Finally, the type of a property must be a subtype of all the types that are prescribed
in the scheme by the type and the supertypes. For instance, in Figure 1 we see that
the manager of a section must be a manager. It can also be seen that the manager of
a technical section must be an engineer. Therefore the manager of a technical section
must both be a manager and an engineer.

These intuitions about the typing of a weak instance can be formalized in the
following way.

Definition 2.6 A weak instance I is of scheme S whenever:
e the type labels in the weak instance occur in the scheme.

e for every weak instance edge (ny,l, ny) there is a scheme edge (n!,l,n}) such that
)\](nl) js)\5(%’1)

o for every weak instance edge (ny,l,ny) and scheme edge (n\,l,ny) it must hold
that if Aj(n1) S5 As(ny) then Ar(ng) =5 As(n).

From the intuition of the typing of weak instances it may already be clear that the
weak instance presented in Figure 2 is a weak instance of the scheme in Figure 1.

If we look at the weak instance of Figure 2 we see two Date associations with
the same properties. Because the identity of an association depends fully upon the

J. Hidders, J. Paredaens: “GOAL”

properties it has, these two associations should be merged. But then the properties
of the two contracts would also become identical. Therefore, they would have to be
merged also. Informally speaking, two nodes should be merged if they represent the
same value.

Definition 2.7 Two nodes ny and ny are said to be value equivalent or ny =y ny iff
for all 1 € IN it holds that ny =% ny where =,C Ny x Ny is defined as:

o ny =Y ny iff ny and ny are association nodes with the same type label or if they
are the same class node or if they are value nodes with the same type label and
the same value label.

o 0y 2 ny iff ny 2 ny and for every edge (ny,1,n}) there is an edge (n, 1, nh)
such that n' 22' ni and vice versa.

Notice that if two nodes n; and n, are labeled with the same relation name, it
holds that n; %? ny. Furthermore, it can be observed that two value nodes are value
equivalent iff they have the same type and value label, and two object nodes are value
equivalent iff they are the same node.

Since we did not forbid associations to directly or indirectly refer to themselves, it is
possible to represent certain infinite values in a weak instance. Consider, for example,
the weak instance in Figure 3.

ny List s i

taiI LiSt LiSt
head head w
head
Num
head 1 head
2
n2 List List n3

tail 7

tail

Figure 3: An instance with infinite values

Here, the nodes ny, ny and ns are association nodes that represent the same infinite
list of 1’s. They are therefore value equivalent. The nodes nys and ns both represent
infinite lists with alternating 1’s and 2’s. They are not value equivalent because n,
represents the list starting with a 2 and ns the one starting with 1.

J. Hidders, J. Paredaens: “GOAL”

We are now ready to define instances i.e. weak instances that respect the notion of
associations without identity.

Definition 2.8 An instance is a weak instance I for which it holds that all different
nodes are not value equivalent.

Definition 2.9 For every weak instance there is an instance that can be obtained by
merging nodes that are value equivalent. This instance is called the reduction of a weak
instance.

For example, if in Figure 2 the two contracts, the two dates and the two value nodes
with value label 1 would be merged, then we would obtain an instance.

2.3 Inheritance Conflicts

The scheme in Figure 1 has got a small problem. The manager of a section has to
be a manager, but the manager of a technical section also has to be an engineer. In
the GOAL data model, objects only belong to the class they are labeled with and its
superclasses. This implies that an object can only belong to two classes at once if these
classes have a common subclass. Since the classes Manager and Engineer do not have
a common subclass there can not exist a manager that is an engineer as well. Formally,
this does not present a problem since the manager of a technical section may always
be left undefined, thus avoiding the contradiction. Of course, this is not what was
intended with the scheme. Therefore, we introduce the notion of consistent scheme
that prevents these problems.

Definition 2.10 A consistent scheme is a scheme S where for every two edges (ny, [, no)
and (n',l,nb) in S for which As(n}) =g Ag(ny) it holds that there is a node ng in S
such that Ag(n3) <5 As(ng) and Ag(n3) =g Ag(nl).

Notice that the scheme of Figure 1 can be made consistent by adding a class Tech-
nical Manager that inherits from both Engineer and Manager.

3 The Language

In this section we will present the operations of GOAL. These operations will all be
defined over a fixed scheme S i.e. all begin, intermediate and final instances must be
of this scheme.

J. Hidders, J. Paredaens: “GOAL”

3.1 Pattern Matching

The language of GOAL contains two operations: the addition (that adds new nodes
and/or edges to the running instance) and the deletion (that deletes some nodes and/or
edges from the running instance). Both operations follow the same principle: every-
where some “pattern” is found in the running instance, the operation is applied. A
pattern has the form of a weak instance where not necessarily all value nodes have a
value label.

Definition 3.1 A pattern is a weak instance but with the value function v allowed to
be undefined for some value nodes.

Person \/ Con%Department \%ﬂcg\

person department
_ sections Section
begin date end date
Date Date
Section
year year

Figure 4: An example of a pattern

Figure 4 shows a pattern over the scheme of Figure 1, that represents all the persons
that have a contract that is signed with a department with at least two sections and
that has different begin and end dates with identical year.

Clearly a pattern can match with several parts of an instance. Fach such a matching
is called an embedding of the pattern into the instance.

Definition 3.2 An embedding of a pattern .J into a weak instance I is a total injective
function ¢ : Ny — Ny such that:

e pattern nodes are mapped to weak instance nodes the type labels of which are
subtypes.

e pattern nodes with value labels are mapped to weak instance nodes with the same
value label.

e if the edge (ny,l,na) is in J then (¢(n1),l, ¢(ng)) must be in I.

J. Hidders, J. Paredaens: “GOAL”

The set of all embeddings of J into I is denoted as Emb(J, I).

Note that distinct nodes in the pattern are mapped to distinct nodes in the instance.
Furthermore a node in the pattern is mapped to a node in the instance with the same
type or with a subtype. Recalling Figure 1, an Employee node in the pattern can be
mapped, for example, to a Manager node in the instance, indicating that the Manager
node is considered here as of type Employee.

3.2 Additions

An addition is used to add new nodes and/or edges, for every embedding of a given
pattern that is found in the running instance. The addition is represented by that
pattern, .J,, augmented with the bold nodes and/or edges that have to be added.
These bold nodes and edges together with J,, have also to form a pattern, that is
called J,.

Definition 3.3 An addition is a pair A(J,,,J,) with patterns J,, and J, where Jp,
is a subpattern of J, and both patterns are of the scheme that the language is defined
over.

Employee person nanV
“finance”
Department
name
sections /
employees]
Section name

“Bergman”

“treasury”
Figure 5: An example of an addition

Figure 5 represents an addition where a new employee Bergman and a contract that
starts on 1-1-94 between Bergman and the finance department is added. Bergman also
becomes an employee of the treasury section.

Actually, for every bold node (edge) a new node (edge) is created. But after the
creation of the new nodes and/or edges, we obtain an instance that can be weak.
Therefore the semantics of the addition ends with a reduction.

J. Hidders, J. Paredaens: “GOAL”

Definition 3.4 The semantics of an addition A{Jpy,J,) applied to an instance I is
defined as the reduction of I' the minimal weak superinstance of I such that every
embedding ¢ € Emb(J,,, I) has an extension ¢' € Emb(J,, ') with:

o ¢ is equal to ¢ on the nodes of J,,.

e cach pattern node of J, — J,, is mapped by each extension to a different node,
which does not belong to I.

Remark, that the addition of Figure 5 creates a new association node for the new
contract. A new association node for the date 1-1-94 is also created, but it merges with
the existing date 1-1-94, if the latter exists in the running instance. A new object node
for Bergman is created of type Employee. If such a node would already exist this node
will not merge with it. The basic values such as “Bergman”, 1 and 94 are also drawn
in bold because otherwise the pattern would not match if these values did not already
exist in the object base and therefore nothing would be added.

Clearly the semantics is uniquely defined up to an isomorphism on the new object
and association nodes. Notice that the semantics may sometimes be undefined e.g.
when a person receives a new name without removing the old one. The result would
then be a person with two names but since the property name is functional this is not
possible in any instance.

3.3 Deletions

A deletion is used to delete existing nodes and/or edges, for every embedding of a
given pattern that is found in the running instance. The deletion is represented by
that pattern, .J,,,, where the nodes and/or edges that have to be deleted are drawn in
dashed lines. The nodes and edges that are not dashed have to form a pattern, called
Jy.

Definition 3.5 A deletion is a pair D{J,, Jy) with patterns J,, and J; where Jy is a
subpattern of J,, and both patterns are of the scheme that the language is defined over.

Figure 6 represents the deletion of the contracts that end in 1993 and removes the
contracted employees from the sections that belong to the department the contract was
with.

Actually, the deletion starts with the removal of the indicated nodes and/or edges.
But after this removal we obtain an instance that can be weak. Therefore the semantics
of the deletion ends with a reduction.

Definition 3.6 The semantics of a deletion D{.J,, J;) applied to an instance I is
defined as the reduction of I' the maxzimal weak subinstance of I for which it holds that

for all embeddings ¢ € Emb(Jy,, I):

J. Hidders, J. Paredaens: “GOAL”

year
Date Num
end date %3

person | 77T department

Person vl _QQHtI‘&_C_t L ~Department

V A .
N
E sections
employees

py ---------------- Section

Figure 6: An example of a deletion

e if a node n in J,, is not in Jy then ¢(n) is not in I'.
e if an edge (ny,l,ny) in Jp, is not in Jy then (¢(n1),l, d(n9)) is not in I'.
Clearly the semantics is uniquely defined up to an isomorphism on the association

nodes that result from a merging during the reduction.

3.4 Recursion

A transformation is a finite list of additions, deletions (and fixpoints). In order to
handle the recursion we define a fixpoint of a transformation.

Definition 3.7 A fixpoint is defined as F(T), where T is a transformation, i.e. a
finite list of additions, deletions and fixpoints.

The result of a fixpoint is obtained by first iterating the list of transformations on
the running instance until a fixpoint is reached. If no fixpoint is reached the semantics
is not defined.

Definition 3.8 The semantics of a fizpoint F(T) applied to a strong instance I is
defined as the first instance I; in the infinite list Iy, I, I», ... for which it holds that I;
is equivalent to I 11 up to isomorphism on the value and association nodes and where:

[] Ig =1
o [,y is the result of consecutively applying the elements of T to I;

e if a node n in I; is deleted in I; then it may not return in I where k > 1.

J. Hidders, J. Paredaens: “GOAL”

class parts

@01} Product Part \j
parts

products allParts
parts

Figure 7: A scheme for products and parts

a A
Product *
allParts
Product allParts
parts \l/ allParts '
V Part
Part parts

Part

_ J

Figure 8: An example of the fixpoint operator

Figure 7 shows the scheme of a database that represents products that are built
from parts, that in their turn are built from parts, and so on. In this scheme the edge
labeled allParts represents all the parts needed to build a product recursively.

In Figure 8 a transformation is given that adds all the necessary allParts edges in
a given instance. Remark that we separate the operations by semicolons and that we
use { }* as a notation for the fixpoint.

4 More Examples

In this section we will give some more examples of GOAL transformations. The first
example in Figure 9 presents the calculation of what is known in GOOD as an ab-
straction. The transformation is defined in the context of the scheme of Figure 7. Its
intention is to create one Product Class node for every class of products where a class
is defined as a set of products that contain the same parts. In the first operation, a
product class is created for every product. Notice that these product classes all have a
different products property. This prevents them from being merged into one node. In
the second operation, the product classes obtain the same parts as the product they
belong to. In the third statement, the product class is stripped of its products prop-
erty. The only property now left is the parts property. Therefore, the product classes
with the same parts will be merged. All products consisting of the same parts will now

J. Hidders, J. Paredaens: “GOAL”

] e

products class , parts class , V products
Y y
Product Product Product
parts
Part

Figure 9: The computation of the Product Classes

point to one and the same product class.
The next example shows how we can simulate computations with numbers. For
this purpose we use the scheme as presented in Figure 10.

A B
old ve\\ old / val
Num
/ v pred
Zero Pos

Figure 10: A scheme for numerical computations

Here the classes A and B are meant to each contain one object being the variables
a and b, respectively. These variables have two properties, the value and the old
value. The value gives the current value of the variable and the old value is used to
hold intermediate results. The relation Number holds numbers that are either Zero or
Positive. A positive number points to its predecessor, thus numbers are represented
as a chained list of positive numbers ending with a zero. In Figures 11, 12 and 13
we present the simulation of some simple computations. In Figure 11 the value of a is
incremented by one. In Figure 12 the value of a is decremented by one. Notice that the
old number is not removed because it may be shared with other variables. This is very
likely because nodes that represent the same number are always merged. In Figure 13

J. Hidders, J. Paredaens: “GOAL”

old\l/ val . val . old val . old

Num Num Num

pred

Num

Figure 11: a becomes a plus 1

A A A A
old \l/ val . val . old val . old
b} y)) y
Num Num Num Num
pred
Num

Figure 12: a becomes a minus 1

the value of b is set to zero if the a is zero. Notice that the first operation of Figure
13 does not match if the value of b is already zero. This is because different nodes in
the pattern have to be embedded upon different nodes in the instance. The following
addition would not cause any changes either because the edge it tries to add would
already exist. The total result would therefore be identical to what was intended.

Finally, some remarks about the completeness of GOAL. From the previous exam-
ples we can observe that together with some form of iteration that can be simulated
using the fixpoint operation, GOAL can simulate all computable functions on num-
bers. However, since GOAL is meant as an object database manipulation language, it
is more interesting to know whether all “reasonable” manipulations can be computed.
Since GOOD is known to be complete in this sense, [10] we can make the following
observation.

Theorem 4.1 GOAL is computationally complete.

Proof: All operations of GOOD can be simulated in GOAL. The technical details of
this will be omitted here.

J. Hidders, J. Paredaens: “GOAL”

val V val . val val

Zero Num Zero

Figure 13: b becomes zero if a is zero

5 Conclusions

In this paper we presented a graphical object-oriented database model and a graph-
based manipulation language. This model is the result of the continuing research
done on GOOD. The most distinct difference with GOOD is the presence of so-called
association nodes. These nodes differ from normal object nodes because they are
automatically merged when they represent the same value. This makes them very
suitable to model both relationships and tuples. They can, in fact, be seen as a
unification of these two concepts from the Entity Relationship approach and the Object-
Oriented approach, respectively. Furthermore, the semantics of the association nodes
enables us to avoid operations like the abstraction in GOOD, which are not completely
pattern based. Another difference with GOOD (and PaMal) is the injectivity of the
pattern matching i.e. two nodes in the pattern can not be embedded upon the same
node in the instance. Although not an essential feature we feel that it gives in many
cases a more intuitive notion of pattern matching.

The operations of GOAL resemble those of PaMaL and share their simplicity and
expressiveness. GOAL, however, does not allow different nodes to represent the same
tuple or set in intermediate results. Moreover, GOAL offers relations to conveniently
model relationships between more than two objects. Furthermore, GOAL tends to lead
to succinct data models because not every tuple and set has to be explicitly represented
with a node. A small disadvantage of GOAL is that association nodes that represent
nameless tuples need a relation name. Since these tuples usually represent meaningful
concepts that deserve a name anyway, this may be considered more of a feature than
a bug. Finally, GOAL provides multiple inheritance, even between relations, and a
mechanism to detect inheritance conflicts.

References

[1] Chen, P.P.: “The Entity-Relationship Model: Toward a Unified View of Data”,
ACM Transactions on Database Systems, 1 (1976), 9-36.

[2] Nijssen, G.M. and T.A. Halpin: Conceptual Schema and Relational Database De-

J. Hidders, J. Paredaens: “GOAL”

sign: a fact oriented approach, Prentice Hall, Sydney, Australia, 1989.

[3] Shipman, D.W.: “The Functional Data Model and the Data Language DAPLEX”
ACM Transactions on Database Systems, 1 (1981), 140-173.

[4] Abiteboul, S. and R. Hull: “IFO: A formal semantic database model”, ACM
Transactions on Database Systems, 4 (1987), 525-565.

[5] Abiteboul, S. and P.C. Kanellakis: “Object Identity as a Query Language Primi-
tive”, Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, Portland, pages 193-204, 1985.

[6] Lécluse, C., P. Richard and F. Velez: “O,, an object-oriented data model”, Pro-
ceedings of the Fifteenth International Conference on Very Large Data Bases,
Amsterdam, pages 411422, 1989.

[7] Beeri, C.: “A Formal Approach to Object-Oriented Databases”, Data & Knowledge
Engineering, 4 (1990), 353-382.

[8] Gyssens, M., J. Paredaens and D. Van Gucht: “A Graph-Oriented Object Database
Model”, Proceedings of the 1990 ACM Symposium on Principles of Database
Systems, Nashville, pages 417-424, 1990.

[9] Gemis, M. and J. Paredaens: “An Object-Oriented Pattern Matching Language”,
JSSST, International Symposium on Object Technologies for Advanced Software,
Kanazawa, Japan, pages 339-355, 1993.

[10] Van den Bussche, J., D. Van Gucht, M. Andries and M. Gyssens: “On the Com-
pleteness of Object-Creating Query Languages”, Proceedings 33rd Symposium on
Foundation of Computer Science, pages 372-379, 1992.

J. Hidders, J. Paredaens: “GOAL”

