
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015 1

Pattern Based Sequence Classification*
Cheng Zhou, Boris Cule and Bart Goethals

Abstract—Sequence classification is an important task in data mining. We address the problem of sequence classification using rules
composed of interesting patterns found in a dataset of labelled sequences and accompanying class labels. We measure the
interestingness of a pattern in a given class of sequences by combining the cohesion and the support of the pattern. We use the
discovered patterns to generate confident classification rules, and present two different ways of building a classifier. The first classifier
is based on an improved version of the existing method of classification based on association rules, while the second ranks the rules by
first measuring their value specific to the new data object. Experimental results show that our rule based classifiers outperform existing
comparable classifiers in terms of accuracy and stability. Additionally, we test a number of pattern feature based models that use
different kinds of patterns as features to represent each sequence as a feature vector. We then apply a variety of machine learning
algorithms for sequence classification, experimentally demonstrating that the patterns we discover represent the sequences well, and
prove effective for the classification task.

Index Terms—sequence classification, interesting patterns, classification rules, feature vectors

F

1 INTRODUCTION

S EQUENTIAL data is often encountered in a number of
important settings, such as texts, videos, speech signals,

biological structures and web usage logs, where a sequence
is generally an ordered list of singletons. Because of a wide
range of applications, sequence classification has been an
important problem in statistical machine learning and data
mining. The sequence classification task can be defined as
assigning class labels to new sequences based on the knowl-
edge gained in the training stage. There exist a number
of studies integrating pattern mining techniques and clas-
sification, such as classification based on association rules
(CBA) [2], sequential pattern based sequence classifier [3],
the Classify-By-Sequence (CBS) algorithm [4], and so on.
These combined methods can produce good results as well
as provide users with information useful for understanding
the characteristics of the dataset.

In practice, most datasets used in the sequence classifi-
cation task can be divided into two main cases. In the first
case, the class of a sequence is determined by certain items
that co-occur within it, though not always in the same order.
In this case, a classifier based on sequential patterns will not
work well, as the correct rules will not be discovered, and,
with a low enough threshold, the rules that are discovered
will be far too specific. In the other case, the class of a
sequence is determined by items that occur in the sequence

• C. Zhou is with the Department of Mathematics and Computer Science,
University of Antwerp, Belgium, and the Science and Technology on
Information Systems Engineering Laboratory, National University of
Defense Technology, China.
E-mail: cheng.zhou@uantwerpen.be

• B. Cule is with the Department of Mathematics and Computer Science,
University of Antwerp, Belgium, and the Computer & Decision Engineer-
ing Department, Université Libre de Bruxelles, Belgium.
E-mail: boris.cule@uantwerpen.be

• B. Goethals is with the Department of Mathematics and Computer Science,
University of Antwerp, Belgium.
E-mail: bart.goethals@uantwerpen.be

* A preliminary version appeared as “Itemset Based Sequence Classification”,
in the Proceedings of the 2013 European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases [1].

almost always in exactly the same order. At first glance,
a sequence based classifier should outperform an itemset
based classifier in this situation. However, itemset based
classifiers will do better when the pattern sometimes occurs
in an order different from the norm. This robustness means
that itemset based classifiers can handle cases where small
deviations in the subsequences that determine the class of
the sequences occur. Moreover, due to a simpler candidate
generation process, itemset based methods are much faster
than those based on sequential patterns.

The above observations motivate the proposed research,
Sequence Classification based on Interesting Patterns
(SCIP). First of all, we present algorithms to mine both types
of interesting patterns — itemsets and subsequences. As a
second step, we convert the discovered patterns into classi-
fication rules, and propose two methods to build classifiers
to determine the class to which a new instance belongs. In
the first method, we select the rules to be applied based on
their confidence, while the second uses a novel approach
by taking into account how cohesive the occurrence of the
pattern that defines the rule is in the new instance. Finally,
we step away from pattern based classification and evaluate
the quality of our pattern miner by using our patterns as
features in a variety of feature based classifiers.

When looking for interesting patterns in sequences, a
pattern is typically evaluated based on how often it occurs
(support). However, the proximity of the items that make
up the pattern to each other (cohesion) is important, too [5].
If two classes are determined by exactly the same items,
traditional pattern based classifiers may struggle. For ex-
ample, if class A is determined by the occurrence of 〈a, b〉
with a shortest interval of 2 and class B by the occurrence
of 〈a, b〉 with a shortest interval of 5, pattern 〈a, b〉 will not
be enough to be able to tell the difference, and this will be
solved by considering the cohesion information. Therefore,
we use both cohesion and support to define interesting
patterns in a sequence dataset. Finally, we utilise these
interesting patterns to build classifiers. Experiments show
the effectiveness of our classifiers and test which kind of

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

pattern works better in given circumstances. An additional
advantage of our method is that the classifiers we build
consist of easily understandable rules.

In this paper, we build on our previous work [1] by
both improving and extending it. Firstly, we now present
algorithms to mine two different types of patterns (only
itemsets were handled in the previous work). Secondly, we
replace the CBA based classifier used previously with a new
classifier, based on the HARMONY scoring function [6],
which achieves better performance. In addition, we now
deploy a new top-k strategy for all the presented classifiers,
instead of using only the highest ranked rule, as we did in
our previous work. Moreover, we now propose using the
discovered patterns as features in order to transform each
sequence into a feature vector. We present a new feature
vector representation approach by setting each feature value
as the cohesion of the feature in a sequence. After this, we
apply machine learning algorithms for sequence classifica-
tion and find that this new feature vector representation
approach outperforms the traditional presence-weighted
feature vector representation approach.

The rest of the paper is organised as follows. Section 2
gives a review of the related work. In Section 3, we introduce
the full description of our interestingness constraint for
datasets consisting of multiple sequences. Section 4 presents
our approach for generating classification rules and building
the two types of classifiers. Experimental results are shown
in Section 5 and we summarise our research in Section 6.

2 RELATED WORK

The existing sequence classification techniques deploy a
number of different machine learning methods, such as
Naı̈ve Bayes, k-nearest neighbours, decision trees, hidden
Markov models, support vector machines, etc. [7]. Feature
selection is a key step of classification by learning algo-
rithms. Since different types of patterns can be informative,
recent studies have proposed several effective classification
methods based on pattern features, including itemset based
approaches [8], [9] and subsequence based approaches [10],
[11], [12], [13]. On top of these numerous learning methods,
recent studies have proposed the use of pattern mining, such
as association rules mining and sequential pattern mining,
for building classification models.

2.1 Association Rule Based Classification
The main idea behind association classification is to discover
class association rules (CARs) that always have a class label
as their consequent. The next step is to use these rules
(pattern ⇒ class label) to build a classifier by selecting the
most appropriate rules to classify new data records. Many
association rule based classifiers have been proposed by
adopting efficient association rule mining algorithms, e.g.,
Apriori [14] and FP-growth [15].

A well-known method of association classification, CBA
proposed by Liu et al. [2] uses the Apriori-type association
rule mining to generate CARs. An improved version of
the method, CBA2 [16], solved the problem of unbalanced
datasets by using multiple class minimum support values.

In another work, Li et al. [17] proposed CMAR by
extending the FP-growth algorithm to mine large databases

more efficiently than CBA. In CMAR, multiple rules are em-
ployed instead of just a single rule to avoid the overfitting
inherent in CBA. On top of this, the ranking of the rule
set in CMAR is based on the weighted Chi-square of each
rule replacing the confidence and support of each rule used
in CBA. Yin and Han [18] proposed CPAR which performs
much faster in both rule generation and classification, but
its accuracy is as high as that of CBA and CMAR. Wang and
Karypis [6] proposed a new classifier, HARMONY, which
directly mines the final set of classification rules. HAR-
MONY uses a different scoring function which helps in im-
proving the overall accuracy of the classifier. Chen et al. [19]
proposed GARC, which prunes rules using information gain
and certain strategies to filter out candidate itemsets in the
generation process and shows similar accuracy performance
to CBA. Recently, some more work has been done on devel-
oping alternative measures for finding informative patterns
for association rule based classification [20], [21], [22], [23],
[24], mostly achieving accuracy similar to HARMONY and
CBA.

2.2 Sequential Pattern Based Classification
Since the concept of sequential pattern mining was first
described by Agrawal and Srikant [25], other sequential
pattern mining methods have been developed, such as
Generalized Sequential Patterns (GSP) [26], SPADE [27],
PrefixSpan [28], and SPAM [29]. PrefixSpan typically shows
better performance than GSP and SPADE, but, when dealing
with dense databases, the performance of PrefixSpan may
be worse than that of SPADE. A number of sequence based
classifiers have been based on these methods.

Lesh et al. [3] combined sequential pattern mining and a
traditional Naı̈ve Bayes classification method to classify se-
quences. They introduced the FeatureMine algorithm which
leveraged existing sequence mining techniques to efficiently
select features from a sequence dataset. The experimental
results showed that BayesFM (combination of Naı̈ve Bayes
and FeatureMine) is better than Naı̈ve Bayes only. Although
a pruning method is used in their algorithm, there was still
a large number of sequential patterns used as classification
features. As a result, the algorithm could not effectively
select discriminative features from a large feature space.

Tseng and Lee [4] proposed the Classify-By-Sequence
(CBS) algorithm for classifying large sequence datasets. The
main methodology of the CBS method is mining classifiable
sequential patterns (CSPs) from the sequences and then
assigning a score to the new data object for each class
by using a scoring function. They proposed a number of
alternative scoring functions and tested their performance.
The results showed that the length of a CSP is the best
attribute for classification scoring.

Exarchos et al. [30] proposed a two-stage methodology
for sequence classification based on sequential pattern min-
ing and optimisation. In the first stage, sequential pattern
mining is used, and a sequence classification model is built
based on the extracted sequential patterns. Then, weights
are applied to both sequential patterns and classes. In the
second stage, the weights are tuned with an optimisation
technique to achieve optimal classification accuracy. How-
ever, the optimisation is very time consuming, and the
accuracy of the algorithm is similar to that of FeatureMine.

ZHOU et al.: PATTERN BASED SEQUENCE CLASSIFICATION 3

Fradkin and Mörchen [31] proposed a direct sequen-
tial pattern mining approach, named BIDE-Discriminative,
which uses class information for direct mining of predic-
tive sequential patterns. They showed that their algorithm
provides an efficient solution for sequence classification.

Additionally, several sequence classification methods
have been proposed for application in specific domains.
Exarchos et al. [32] utilized sequential pattern mining for
protein fold recognition since it can contribute to the de-
termination of the function of a protein whose structure
is unknown. Zhao et al. [33] used a sequence classification
method for debt detection in the domain of social security.
They pointed out that the existing sequence classification
methods based on sequential patterns consider only positive
patterns. However, according to their experience in a large
social security application, negative patterns are very useful
in accurate debt detection. They therefore build a sequence
classifier with both positive and negative sequential pat-
terns. Experimental results show classifiers built with both
positive and negative rules outperform traditional classifiers
under most conditions.

All these approaches mine the frequent and confident
(or discriminative) patterns for building a classifier. In this
paper, we consider the cohesion of a pattern to identify
interesting patterns and test whether the cohesion measure
improves the classification performance.

3 PROBLEM STATEMENT

In this paper, we define an event e as a pair (i, t), consisting
of an item i ∈ I and a time stamp t ∈ N, where I is the set
of all possible items and N is the set of natural numbers. We
assume that two events can never occur at the same time.
For easier readability, and without any loss of generality, we
assume that the time stamps in a sequence are consecutive
natural numbers. We denote a sequence of such events by s =
〈e1, e2, . . . , el〉where l is the length of the sequence and thus
s is an l-sequence. An event sequence s′ = 〈b1, b2, . . . , bm〉 is
said to be a subsequence of s if there exist integers 1 ≤ i1 <
i2 < . . . < im ≤ l such that b1 = ei1 , b2 = ei2 , · · · , bm =
eim , denoted as s′ v s (if s′ 6= s, written as s′ @ s). A
subsequence of s that starts at time stamp ts and ends at
time stamp te is denoted as s(ts,te), e.g., s(1,3) = 〈e1, e2, e3〉.
A set X = {i1, i2, . . . , in} ⊆ I is called an itemset, or an
n-itemset if it contains n items.

Let L be a finite set of class labels and |L| the number of
classes. A sequence database SDB is a set of data objects and
a data object d is denoted by (s, Lk), where s is a sequence
and Lk ∈ L is a class label (k = 1, 2, . . . , |L|). The set of
all sequences in SDB is denoted by S. We denote the set of
sequences carrying class label Lk by Sk, such that Sk ⊆ S.

Example 1. Given a training dataset of two classes as shown in
Table 1. Then, S = {s1, s2, . . . , s8} and S1 = {s1, s2, s3, s4}.

The patterns considered in this paper could be both
itemsets or subsequences (sequential patterns), which is
why we provide formal definitions applying to both pattern
types below. The support count of a pattern is defined as
the number of different sequences in which the pattern
occurs; regardless of how many times the pattern occurs
in any single sequence. In other words, when looking for

TABLE 1
An Example of a Training Dataset

ID Sequence Class Label
1 c c x y a b d L1

2 a b e e x x e c f d L1

3 c g h a b d d L1

4 d d e c f b a L1

5 a d z z c d b L2

6 b x y d d c d d d x a L2

7 b d c c c c a y L2

8 a x x c d b L2

the support count of a pattern alone, we can stop looking
at a sequence as soon as we have encountered the first
occurrence of the pattern.

To determine the interestingness of a pattern, however,
it is not enough to know how many times the items making
up the pattern occur. We would also like to know how
close they appear to each other. To do this, we will define
interesting patterns in terms of both support and cohesion.

Our goal is to first mine interesting patterns in each
class of sequences, and then use them to build a sequence
classifier, i.e., a function from the set of sequences S to the
set of class labels L.

3.1 Definition of an Interesting Pattern

The interestingness of a pattern depends on two factors: its
support and its cohesion. Support measures in how many
sequences the pattern appears, while cohesion measures
how close the items making up the pattern are to each other
on average, using the lengths of the shortest intervals con-
taining the pattern in different sequences. As the patterns
considered in this paper could be itemsets or subsequences,
we give the definition of an interesting pattern based on
itemsets and subsequences respectively.

3.1.1 Support.

For a given itemset X , we denote the set of sequences that
contain all items of X as N(X) = {s ∈ S|∀i ∈ X,∃(i, t) ∈
s}. We denote the set of sequences that contain all items
of X labelled by class label Lk as Nk(X) = {s ∈ Sk|∀i ∈
X,∃(i, t) ∈ s}.

For a given subsequence s′, we denote the set of se-
quences that contain s′ as N(s′) = {s ∈ S|s′ v s}. We
denote the set of sequences that contain s′ labelled by class
label Lk as Nk(s

′) = {s ∈ Sk|s′ v s}.
The support of a pattern P in a given class of sequences

Sk can now be defined as Fk(P) =
|Nk(P)|
|Sk| , where P could

be X or s′.

Example 2. Consider the dataset shown in Table 1. Given X =
{a, b}, we see that F1(X) = 4

4 = 1. If s′ = 〈a, b〉, then F1(s
′) =

3
4 = 0.75.

3.1.2 Cohesion.

We begin with defining the length of the shortest interval
containing an itemset X in a sequence s ∈ N(X) as
W (X, s) = min{t2 − t1 + 1|t1 ≤ t2 and ∀i ∈ X,∃(i, t) ∈
s, where t1 ≤ t ≤ t2}.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

We define the length of the shortest interval of a subse-
quence s′ in a sequence s ∈ N(s′) as W (s′, s) = min{te −
ts + 1|ts ≤ te and s′ v s(ts,te)}.

In order to compute the cohesion of a pattern P within
class k, we now compute the average length of such shortest

intervals in Nk(P): Wk(P) =
∑

s∈Nk(P) W (P,s)

|Nk(P)| , where P

could be X or s′.
It is clear that Wk(P) is greater than or equal to the

number of items in P , denoted as |P |. Furthermore, for a
fully cohesive pattern, Wk(P) = |P |. Therefore, we define
cohesion of P in Nk(P) as Ck(P) =

|P |
Wk(P)

.
Note that all patterns containing just one item are fully

cohesive, that is, Ck(P) = 1 if |P | = 1.
The cohesion of P in a single sequence s is defined as

C(P, s) = |P |
W (P,s) .

Example 3. Consider again the dataset given in Table 1, as-
sume X = {b, d}, then C2(X) = 2

(2+4+2+2)/4 = 0.8 and
C(X, s3) =

2
2 = 1.

3.1.3 Interestingness.
In a given class of sequences Sk, we can now define the
interestingness of a pattern P as Ik(P) = Fk(P) × Ck(P),
where P could be X or s′.

Given a minimum support threshold min sup and a
minimum interestingness threshold min int, a pattern P is
considered interesting in a set of sequences labelled by class
label Lk, if Fk(P) ≥ min sup and Ik(P) ≥ min int.

3.2 Classification Rules
Once we have discovered all interesting patterns in each
class of sequences, the next step is to identify the classifica-
tion rules we will use to build a classifier.

We define r : P ⇒ Lk as a classification rule where P
is an interesting pattern in Sk and Lk is a class label. P is
the antecedent of the rule and Lk is the consequent of the rule.
We further define the interestingness, support, cohesion and
size of r to be equal to the interestingness, support, cohesion
and size of P , respectively.

The confidence of a rule can now be defined as conf (P ⇒
Lk) = |Nk(P)|

|N(P)| , where P could be an itemset X (r is an
itemset rule) or a subsequence s′ (r is a sequence rule). A rule
P ⇒ Lk is considered confident if its confidence exceeds a
given threshold min conf.

An itemset X is said to match a sequence s if s contains
all items in X , while a subsequence s′ is said to match s if
s′ v s. Therefore, if the antecedent of the rule matches the
sequence of a given data object, we say that the rule matches
the data object. We say that a rule correctly classifies or covers
a data object in SDB if the rule matches the sequence part
of the data object and the rule’s consequent equals the class
label part of the data object.

4 RULE BASED CLASSIFIERS

Our algorithm, SCIP (sequence classification based on in-
teresting patterns), consists of two stages, rule generation
(called SCIP-RG, with one variant using interesting item-
sets (SCII-RG) and another using interesting subsequences
(SCIS-RG)), and classifier building (called SCIP-CB).

4.1 Generating Interesting Itemsets

The rule generator for interesting itemsets (SCII-RG) gen-
erates all interesting itemsets in two steps. Due to the fact
that the cohesion and interestingness measures introduced
in Section 3 are not anti-monotonic, we prune the search
space based on support alone. In the first step, we use an
Apriori-like algorithm to find the frequent itemsets. In the
second step, we determine which of the frequent itemsets
are actually interesting. An optional parameter, max size,
can be used to limit the output only to interesting itemsets
with a size smaller than or equal to max size. The algorithm
for generating the complete set of interesting itemsets in
a given class of sequences is shown in Algorithm 1, with
An denoting the set of frequent n-itemsets, Cn the set of
candidate n-itemsets and Tn the set of interesting n-itemsets.

Algorithm 1: Generating interesting itemsets
Input : Sk, min sup, min int, max size
Output: all interesting itemsets Xk

1 A1 ← {frequent items in Sk};
2 T1 ← {X|X ∈ A1, Fk(X) ≥ min int};
3 n← 2;
4 while An−1 6= ∅ and n ≤ max size do
5 Cn ← candidateGen(An−1);
6 An ← {X|X ∈ Cn, Fk(X) ≥ min sup};
7 Tn ← {X|X ∈ An, Ik(X) ≥ min int};
8 n++;

9 Xk ←
⋃
Ti;

10 return Xk;

Line 1 counts the supports of all the items to determine
the frequent items. Line 2 stores the interesting items in
T1 (note that the interestingness of a single item is equal
to its support). Lines 3-10 discover all interesting itemsets
of different sizes n (max size ≥ n ≥ 2). First, the already
discovered frequent itemsets of size n−1 (An−1) are used to
generate the candidate itemsets Cn using the candidateGen
function (line 5). The candidateGen function is similar to the
function Apriori-gen in the Apriori algorithm [14]. In line
6, we store the frequent itemsets from Cn into An. Line 7
stores the interesting itemsets (as defined in Section 3) from
An into Tn. The final set of all interesting itemsets in Sk is
stored in Xk and produced as output.

The time cost of generating candidates is equal to that
of Apriori. We will now analyse the time needed to eval-
uate each candidate. To get Ik(X), we first need to find a
shortest interval W (X, s) of an itemset X in each sequence
s ∈ Nk(X), as shown in Algorithm 2. The crucial step is
the computation of the candidate intervals W (X, tj) for the
time stamps tj at which an item of X occurs. Clearly, to
find the shortest interval in the entire sequence, it is enough
to select a single item in X and to identify the shortest
intervals for each time stamp at which this item occurs. To
make the loop process faster, we pick the item in X that
has the lowest frequency in s. We keep the set of candidate
intervals associated with X in a list CW (line 1). To find the
candidate interval around position tj containing all items of
X , we start by looking for the nearest occurrences of items of
X both left and right of position tj (lines 4-8). Note that if an

ZHOU et al.: PATTERN BASED SEQUENCE CLASSIFICATION 5

item ak does not occur at all before the current time stamp,
we set its left time stamp ljk to −∞, and if it does not occur
after tj , we set its right time stamp rjk to ∞. In lines 9-
10, we get an ordered list Lj of ascending left time stamps
and a list Rj of right time stamps following the same order
of items as Lj . In line 11, function getInterval computes
the shortest interval for time stamp tj . If we get a shortest
interval which equals to |X|, we return W (X, s) = |X|, and
we need to look no further, since no later interval can be
shorter (line 12). Otherwise, W (X, s) equals to the smallest
value in CW (line 14).

Algorithm 2: Finding the shortest interval of an itemset

Input : sequence s, itemset X = {a1, a2, . . . , a|X|}
(where a1 has the lowest frequency in s)

Output: the length of the shortest interval W (X, s)
1 CW ← ∅;
2 Gi ← time stamps of ai, i = {1, . . . , |X|};
3 foreach time stamp tj in G1 do
4 for k = 2 to |X| do
5 if ∀ t ∈ Gk, t > tj then ljk ← −∞;
6 else ljk ← max{t ∈ Gk|t < tj};
7 if ∀ t ∈ Gk, t < tj then rjk ←∞;
8 else rjk ← min{t ∈ Gk|t > tj};
9 Lj ← [ljk| k = {2, . . . , |X|}];

10 Rj ← [rjk| k = {2, . . . , |X|}];
11 w ← getInterval(Lj , Rj , tj);
12 if w == |X| then return w;
13 CW ← CW

⋃
{w}

14 return min{w ∈ CW};

Algorithm 3 shows the pseudocode of the getInterval
function, which computes the size of the shortest occurrence
of X around time stamp tj . Throughout the procedure,
[lj , rj] represents the current candidate interval, and we
evaluate all possible intervals with lj ∈ Lj and rj ∈ Rj .
We start off with lj set to the smallest time stamp in Lj and
rj set to tj , which represents the smallest occurrence of X
such that all items in X occur at time stamps smaller than
or equal to tj . The process continues by moving to the next
starting point lj (lines 5-6) and gets a new ending point rj
corresponding to the item of the last starting point (lines 7-
8). If the new interval is shorter than the shortest interval
found so far, we update the shortest interval length (line 10).
Once again, if we have found an interval of length |X| or the
interval on the other side has grown sufficiently to make it
impossible to get a smaller shortest interval, we stop the
procedure and return w (line 11). Otherwise, the procedure
stops when we have processed all the time stamps in Lj .

Example 4. Assume s = 〈a, b, c, d, a, c〉 and we want to find the
shortest interval of X = {a, b, c, d}. First, we pick the the least
frequent item b and thus tj = 2. We obtain Lj = [−∞,−∞, 1]
and Rj = [3, 4, 5] for items c, d and a. We then get the first
candidate interval of length∞ based on lines 1-3 of Algorithm 3.
Executing the for loop of Algorithm 3, we then get a new candidate
interval of length ∞ with lj = −∞, rj = 3 when k = 2
and finally get another candidate interval of length 4 with lj =
1, rj = 4 when k = 3. Therefore, we stop the procedure and
return W (X, s) = 4.

Algorithm 3: getInterval(Lj , Rj , tj)
Input : Lj , Rj , tj
Output: a candidate interval w

1 lj ← Lj [1];
2 rj ← tj ;
3 w ← rj − lj + 1;
4 for k = 2 to |X| do
5 if k < |X| then lj ← Lj [k];
6 else lj ← tj ;
7 r′j ← Rj [k − 1];
8 if r′j > rj then rj ← r′j ;
9 cw ← rj − lj + 1;

10 if cw < w then w ← cw;
11 if w == |X| or w ≤ rj − tj + 1 then return w;

12 return w;

Assume that s contains ki occurrences of the ith item
of X . Since the sequence is ordered, we obtain the sorted
list of occurrences for each item when loading the dataset.
Therefore, in order to find all the shortest intervals around
each occurrence of a particular item in X , in the worst case
we might need to read the complete occurrence lists of all
items in X . Therefore, the time complexity of this process
is O(

∑|X|
i=1 ki). Theoretically, in the worst case, the time

complexity to get W (X, s) is O(|s|). However, this worst
case can only materialise if X is composed of all items
that appear in s. When evaluating an itemset of a limited
size, we essentially need to do no more than go through
the occurrence lists of the items that make up the itemset.
Finally, in order to compute Ik(X), we need to repeat
this process in each sequence that contains X . Experiments
confirm that this method indeed works efficiently.

4.2 Generating Interesting Subsequences

We base our method for generating interesting subse-
quences on the well-known SPADE algorithm [27], which
is capable of efficiently finding all frequent subsequences.
To determine the support of any l-sequence, SPADE looks
at intersections of the id-lists of any two of its subsequences
of length (l − 1) since such an id-list keeps a list of the
sequences in which a pattern occurs, as well as where in
those sequences the items making up the pattern occur.
Algorithms 4 and 5 show the process of generating all
interesting subsequences. In Algorithm 4, lines 1-2 store the
interesting 1-sequences in T1. Line 4 calls Algorithm 5 to get
interesting n-sequences (2 ≤ n ≤ max size). Finally, we get
the complete set of interesting subsequences Yk (line 5).

Algorithm 4: Generating interesting subsequences
Input : Sk, min sup, min int, max size
Output: all interesting subsequences Yk

1 A1 ← {frequent items or 1-sequences in Sk};
2 T1 ← {s′|s′ ∈ A1, Fk(s

′) ≥ min int};
3 Yk ← T1;
4 Enumerate-Sequence(A1);
5 return Yk;

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

In Algorithm 5, given any two l-sequences αi and αj that
share the same (l−1) length prefix, we generate a candidate
sequence s′ of length (l + 1) by adding the last item in
αj to αi (line 4). In order to determine the cohesion of a
subsequence s′, needed to compute Ik(s′) in line 7, we had
to make a modification to the original SPADE algorithm.
We added a function that finds the shortest intervals of a
frequent subsequence s′ in an input sequence s by tracking
the occurrences in s of all the items contained in s′.

Algorithm 5: Enumerate-Sequence(Q)
Input : a set Q of sequences of size l sharing the first

l − 1 elements
1 foreach αi in Q do
2 Ai ← ∅, Ti ← ∅;
3 foreach αj in Q do
4 s′ ← αi + αj [l];
5 if Fk(s

′) ≥ min sup then
6 Ai ← Ai ∪ {s′};
7 if Ik(s′) ≥ min int then
8 Ti ← Ti ∪ {s′};

9 Yk ← Yk
⋃
Ti;

10 if l < max size then Enumerate-Sequence(Ai);

Similar to the case of itemsets, the time complexity for
getting the shortest interval of s′ in s is O(

∑|s′|
i=1 ki). Again,

in the theoretical worst case, this could be equal to O(|s|),
but is in reality much smaller. This computation, naturally,
has to be done in each sequence s ∈ Sk that contains s′.

4.3 Pruning the Rules
Once we have found all interesting patterns in a given class,
all confident classification rules can be found in a trivial
step — for each pattern P that is interesting in class Lk, we
generate rule P ⇒ Lk. However, the number of patterns
is typically very large, which leads to a large number of
rules. Reducing the number of rules is crucial to eliminate
noise which could affect the accuracy of the classifier, and
to improve the runtime of the algorithm.

We therefore try to find a subset of rules of high quality
to build an efficient and effective classifier. To do so, we use
the idea introduced in CMAR [17], and prune unnecessary
rules using the database coverage method.

Before using the database coverage method, we must
first define a total order on the set of all generated rules R.
This is used in selecting the rules for our classifier.

Definition 1. Given two rules in R, ri and rj , ri � rj (also
called ri precedes rj or ri has a higher precedence than rj) if:

1. the confidence of ri is greater than that of rj , or
2. the confidence of ri and rj is the same, but the interesting-

ness of ri is greater than that of rj , or
3. both the confidence and the interestingness of ri and rj are

the same, but the size of ri is greater than that of rj
4. all of the three parameters are the same, but ri is generated

earlier than rj .

We apply the database coverage method to get the most
important subset of rules. The main idea of the method is

that if a rule matches a data object that has already been
matched by a high enough number of higher ranked rules
(this number is defined by a user chosen parameter δ, or the
coverage threshold), this rule would contribute nothing to
the classifier (with respect to this data object). The algorithm
for getting this subset is described in Algorithm 6.

Algorithm 6: Finding the most important rules
Input : training dataset D, a set of confident rules R,

coverage threshold δ
Output: a new set of rules PR

1 sort R according to Definition 1;
2 foreach data object d in D do
3 d.cover count← 0;

4 foreach rule r in sorted R do
5 foreach data object d in D do
6 if rule r correctly classifies data object d then
7 store r into PR;
8 d.cover count++;
9 if d.cover count ≥ δ then

10 delete d from D;

11 return PR;

The algorithm has two main steps. First, we sort the set
of confident rules R according to definition 1 (line 1). This
makes it faster to get good rules for classifying. Then, in
lines 2-10, we prune the rules using the database coverage
method. For each rule r in sorted R, we go through the
dataset D to find all the data objects correctly classified by
r and increase the cover counts of those data objects (lines
4-8). We store the rule r into PR if it correctly classifies a
data object (line 7). If the cover count of a data object passes
the coverage threshold, we remove the data object (line 10).
Line 11 returns the new set of rules PR. In the worst case, to
check whether a data object is correctly classified by r, we
might need to read the whole sequence part s of the data
object, resulting in a time complexity of O(|s|).

Example 5. To illustrate how the algorithms work, consider the
training dataset given in Table 1 again. Assume min sup =
min int = 0.6, max size = 3 and min conf = 0.5. After
finding frequent patterns in S1 and S2 as described in Sections 4.1
and 4.2, we get the confident rules sorted using Definition 1 for
itemset rules and sequence rules respectively, as shown in Table 2.
Assuming we use a database coverage threshold δ = 1, only the
rules shown in bold would survive the pruning stage.

4.4 Building the Classifiers
This subsection presents the SCIP-CB algorithm for building
a classifier using the interesting patterns discovered by
SCIP-RG. CBA [2] has successfully shown the competitive
accuracy performance of an associative classifier. However,
HARMONY [6] uses a different scoring function to improve
the overall accuracy of the classifier. When classifying a new
data object, HARMONY computes the score of a class label
Lk as the sum of the top λ highest confidences of the rules
carrying class label Lk and matching the data object. Since
HARMONY outperforms CBA (as shown later in Table 4

ZHOU et al.: PATTERN BASED SEQUENCE CLASSIFICATION 7

TABLE 2
Sorted Itemset and Sequence Rules

Itemset Rule Ck(r) conf (r) Sequence Rule Ck(r) conf (r)

ab ⇒ L1 1.0 0.5 〈a, b〉 ⇒ L1 1.0 0.6
cd ⇒ L2 1.0 0.5 〈c, d〉 ⇒ L2 1.0 0.5
c⇒ L1 1.0 0.5 〈c〉 ⇒ L1 1.0 0.5
a⇒ L1 1.0 0.5 〈a〉 ⇒ L1 1.0 0.5
b⇒ L1 1.0 0.5 〈b〉 ⇒ L1 1.0 0.5
d⇒ L1 1.0 0.5 〈d〉 ⇒ L1 1.0 0.5
c⇒ L2 1.0 0.5 〈c〉 ⇒ L2 1.0 0.5
a⇒ L2 1.0 0.5 〈a〉 ⇒ L2 1.0 0.5
b⇒ L2 1.0 0.5 〈b〉 ⇒ L2 1.0 0.5
d⇒ L2 1.0 0.5 〈d〉 ⇒ L2 1.0 0.5
cbd⇒ L2 0.8 0.5
bd⇒ L2 0.8 0.5

in Section 5), we first propose a method named SCIP HAR
(HARMONY based classifier), whereby we also, like CBA2,
allow different support thresholds for different classes.

Rather than ranking the rules using their confidence,
we further propose incorporating the cohesion of the an-
tecedent of a rule in the new data object into the measure
of the appropriateness of a rule for classifying the object.
Therefore, we will first find all rules that match the new ob-
ject, and then compute the product of the rule’s confidence
and the antecedent’s cohesion in the new data object. We
then use this new measure to rank the rules, and classify
the object using the top λ ranked rules. We call this method
SCIP MA (Matching cohesive rules based classifier).

HARMONY does not account for the possibility that
there may not exist a rule matching the given data object
which decreases its accuracy performance. We fix this by
adding a default rule, null⇒ Ld, to the classifier. If there is
no rule that matches the given data object, the default rule
will be used to classify the data object.

The algorithm for choosing the default rule for both
SCIP HAR and SCIP MA is given in Algorithm 7. Lines 1-
3 delete the data objects matched by rules in PR. Lines 4-
6 count how many times each class label appears in the
remainder of the dataset. Line 7 sets the label that appears
the most time as the default class label Ld. If multiple class
labels appear the most times, we choose the first one as
the default class label. Finally, line 8 generates the default
rule. Since we need to do this for all data objects and all
rules, the time complexity of finding the default rule is
O(|PR|

∑
s∈D |s|).

Algorithm 7: Getting the default rule
Input : pruned rules PR, training dataset D
Output: the default rule default r

1 foreach rule r in PR do
2 foreach data object d in D do
3 if r matches d then delete d from D;

4 counter ← a new array of size |L|;
5 foreach data object (s, Lk) in D do
6 counter[k]++;

7 Ld ← the class label Lk with largest counter[k];
8 return default r : null⇒ Ld;

The classifiers are thus composed of PR and the default
rule default r. We now show how we select the top λ rules
and classify the sequence in a new data object. The algo-
rithm for finding the rules and classifying a new sequence
is shown in Algorithm 8.

Algorithm 8: Classifying a new sequence
Input : PR, default r, λ, a new unclassified data object

d = (s, L?)
Output: a class label

1 MR← ∅;
2 foreach rule r in PR do
3 if r matches d then store r into MR;

4 if MR.size > 0 then
5 foreach rule r : P ⇒ Lk in MR do
6 if use SCIP HAR then
7 r.value← r.confidence;

8 if use SCIP MA then
9 r.value← r.confidence× C(P, d.s);

10 sort rules in MR by descending r.value;
11 CR← {the top λ rules in sorted MR};
12 score← a new array of size |L|;
13 foreach rule r′ : P ⇒ Lk in CR do
14 score[k]← score[k] + r′.value;

15 return the class label Lk with largest score[k];

16 else return the class label of default r;

First, we find all the rules that match the given data
object d and store them into MR (lines 1-3). Then, we handle
two different cases:

1. (lines 4-15): If the size of MR is greater than 0, we
compute the r.value of every rule in MR and sort the
rules according to r.value (the higher the value, the higher
the precedence). Lines 6-9 compute the score of a rule for
SCIP HAR and SCIP MA, respectively. We finally utilise the
top λ rules in the sorted MR, denoted by CR, to classify the
given data object. If the number of rules in MR is smaller
than λ, we simply use all the rules in MR as CR. Lines 12-14
compute the sum of r.values of each rule in CR according
to their class labels and line 15 returns the class label which
has the largest sum.

2. (line 16): If MR is empty, we return the class label of
the default rule.

The only time-consuming part of Algorithm 8 is the
computation of C(P, d.s). The time complexity of this com-
putation has already been analysed at the end of Sections 4.1
and 4.2.

Since we investigate building classifiers by both itemset
rules and sequence rules, the complete set of SCIP classifiers
contains four classifiers — two itemset based classifiers
(SCII HAR and SCII MA) and two sequence based classi-
fiers (SCIS HAR and SCIS MA).

Example 6. Returning to our running example, assume we are
given a new data object (s9, L2), with s9 = 〈a, x, b, y, c, d, z〉. If
we try using the rules discovered in Example 5, we can see that
it is not easy to choose the correct classification rule, as all the
remaining rules match s9. We now illustrate how our classifiers
classify the new data object. For simplicity, we set λ = 1.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

1. Classify by SCII HAR and SCII MA. As can be seen in
Table 2, the CBA, CMAR and SCII HAR methods would have
no means to distinguish between the top two itemset rules, and
would classify s9 into class 1, simply because rule ab ⇒ L1 was
generated before rule cd ⇒ L2. Using SCII MA, however, we
would re-rank the rules taking the cohesion of the antecedent in s9
into account. In the end, rule cd⇒ L2 is chosen, as C(cd, s9) =
1, while C(ab, s9) = 2

3 . We see that SCII MA classifies the new
sequence correctly, while other methods fail to do so.

2. Classify by SCIS HAR and SCIS MA. It is obvious
that s9 would be classified into class 1 by SCIS HAR since
r1 : 〈a, b〉 ⇒ L1 is the rule with the highest confidence.
Meanwhile, using SCIS MA, rule r2 : 〈c, d〉 ⇒ L2 is chosen.
That is because C(〈c, d〉, s9) = 1, while C(〈a, b〉, s9) = 2

3 , and
thus r2.value = 1 × 0.5 = 0.5 > r1.value = 2

3 × 0.6 = 0.4.
We see that SCIS MA classifies the new sequence correctly.

5 EXPERIMENTS

In this section, we present the results of our experiments.
The performed experiments can be divided into two types.
In the first set of experiments, we compared our SCIP
classifiers with other comparable rule based classifiers in
terms of accuracy and scalability. In the second set of exper-
iments, we evaluated the usefulness of our pattern mining
method by utilising the discovered patterns to represent
the input sequences as feature vectors and then applying
learning algorithms for sequence classification. All exper-
iments were performed on a PC with Intel Xeon CPU at
2.90GHz, Ubuntu 12.04.4 and the maximum heap size was
set to 4G (using -Xmx4G). All the reported accuracies in all
experiments were obtained using 10-fold cross-validation.

5.1 Datasets
In order to evaluate the proposed methods, we used six
real-life datasets, as summarised in Table 3. The first dataset
was formed by making a selection from the Reuters-21578
dataset1, consisting of news stories, assembled and indexed
with categories by Reuters Ltd personnel. We formed the
Reuters dataset using the four biggest classes in the Reuters-
21578 dataset, ”acq” (1596 documents), ”earn” (2840 doc-
uments), ”crude” (253 documents) and ”trade” (251 docu-
ments). Then we balanced the dataset by keeping only the
first 253 paragraphs in the top two classes.

TABLE 3
Summary of the Datasets

Dataset # Classes |D| # Items Average Length

Reuters 4 1010 6380 93.84
News 5 4976 27884 139.96
WebKB 3 3695 7737 128.40
Protein 2 538 20 14.86
Unix 4 5472 1711 32.34
Robot 2 4302 95 24.00

The second dataset News was formed by selecting the
five biggest groups of documents from the 20Newsgroups1

dataset. The five groups are rec.sport.hockey
(999 documents), rec.motorcycles (996 documents),

1. http://web.ist.utl.pt/acardoso/datasets/

soc.religion.christian (996 documents), rec.sport.baseball
(994 documents) and sci.crypt (991 documents).

The third dataset WebKB consists of the content of web-
pages from the WebKB collection2 collected from computer
science departments of various universities in January 1997
by the World Wide Knowledge Base project of the CMU
text learning group. In our experiments, we used the three
largest classes (student with 1641 documents, faculty with
1124 documents and course with 930 documents).

In the three datasets described above, we kept only let-
ters, while other symbols and punctuation were converted
into spaces. We then applied stemming and stop word
removal, after which we considered the stemmed words
appearing in the texts as items and treated each separate
document as a sequence.

The fourth dataset is a protein dataset obtained from
PhosphoELM3. The data consists of different combinations
of amino acids for each kind of protein. We chose two of the
biggest Kinase groups (PKA group with 381 combinations
and SRC with 157 combinations) to form the Protein dataset.
Each combination of amino acids is a segment from the
position of the S/T/Y phosphorylation site. We treat each
combination of amino acids as a sequence and consider
each amino acid as an item. Each sequence is labelled by
the protein group it belongs to.

The fifth dataset deals with the problem of differenti-
ating the users by their UNIX shell command data. The
Unix dataset consists of the UNIX command sessions of four
UNIX users (user 6, 8, 4 and 5) from a UNIX user dataset4.
The dataset is collected from the Purdue MILLENNIUM
machine learning lab [34] over varying periods of time. We
treat each command session as a sequence and consider each
command token as an item. Each sequence is labelled by the
user it belongs to.

Our last dataset Robot was formed by selecting the
largest two classes (Move-Forward with 2205 samples and
Sharp-Right-Turn with 2097 samples) of the data5 collected
as the robot navigates through the room following the wall
in a clockwise direction. Each sequence consists of ultra-
sound readings collected by the sensors carried by the robot.
Since these readings are real numbers, we discretised them
into items with a step of 0.05 to meet the needs of frequent
pattern mining, e.g., values 0.02 and 5.00 are discretised to
1 and 100, respectively.

5.2 Comparison of Rule Based Classifiers and HMM
We compared our four classifiers, SCII HAR, SCII MA,
SCIS HAR and SCIS MA, with six benchmark classifiers:
CBA, CMAR, HARMONY, BayesFM, CBS and HMM. The
CBS paper proposed a number of different scoring functions
used for selecting the classification rules, and we chose
the length policy as it gave the best results. For fairer
comparison, we also added a max size constraint into the
pattern mining stage of CBS. We implemented our clas-
sifiers, BayesFM and CBS in Java6, while we downloaded

2. http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
3. http://phospho.elm.eu.org/
4. https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
5. https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+

Navigation+Data
6. http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/SCIP.zip

ZHOU et al.: PATTERN BASED SEQUENCE CLASSIFICATION 9

TABLE 4
Comparison of Predictive Accuracy (%)

Dataset max size SCII HAR SCII MA SCIS HAR SCIS MA CBA CMAR HARMONY BayesFM CBS HMM

2 94.75 95.14 96.24 96.04 92.48 91.29 94.55 84.46 89.90
3 95.05 95.25 95.74 95.64 92.87 92.28 92.87 82.77 90.50

Reuters 4 94.85 94.85 95.64 95.24 93.07 92.28 93.07 81.78 89.90
(top 11 rules) 5 94.85 94.85 95.64 95.24 93.07 92.38 92.97 81.78 90.89

∞ 94.85 94.85 95.84 95.74 93.07 92.38 92.97 81.68 N/A 95.05
2 93.93 94.05 93.72 93.69 81.31 75.24 93.76 76.43 72.14
3 93.85 94.01 93.65 93.73 81.21 74.22 93.67 67.79 61.70

News 4 93.85 94.01 93.65 93.73 81.19 73.98 93.30 61.13 52.55
(top 1 rule) 5 93.87 94.01 93.71 93.73 81.17 73.90 93.24 56.17 66.71

∞ 93.89 94.01 93.71 93.71 81.17 73.90 93.20 N/A N/A 84.00
2 90.12 90.31 89.77 89.06 86.00 73.69 89.84 65.88 67.55
3 89.22 90.68 89.11 90.00 86.30 76.18 88.41 61.98 64.12

WebKB 4 89.12 90.52 89.15 89.98 86.22 77.00 87.92 60.14 61.98
(top 11 rules) 5 89.20 90.60 89.06 90.09 86.11 77.37 87.51 59.68 60.79

∞ 89.20 90.66 89.06 90.09 86.11 77.54 87.46 59.33 70.51 86.31
2 90.17 90.90 89.95 91.61 85.86 86.25 89.79 84.78 73.32
3 91.60 92.34 93.66 94.98 83.78 88.31 90.68 93.31 88.61

Protein 4 90.12 91.23 94.24 94.82 83.92 89.22 89.01 91.28 94.60
(top 11 rules) 5 89.94 91.07 94.06 94.82 83.45 89.22 87.90 91.28 94.60

∞ 89.96 90.34 94.06 94.82 83.64 89.22 88.31 91.28 94.60 91.82
2 88.15 88.05 88.12 87.88 78.75 76.42 88.72 83.75 85.60
3 88.23 88.08 88.19 87.94 78.75 76.13 87.82 82.58 83.75

Unix 4 88.21 88.16 88.12 87.81 78.75 76.13 87.80 81.93 81.58
(top 1 rule) 5 88.21 88.16 88.12 87.81 78.75 76.13 87.79 81.03 79.62

∞ 88.21 88.16 88.12 87.99 78.75 76.13 87.79 81.10 N/A 89.09
2 79.43 79.82 80.21 79.17 76.24 71.22 82.31 76.85 79.10
3 80.43 81.52 82.12 82.31 75.69 71.71 82.33 76.48 78.22

Robot 4 80.82 81.73 82.72 83.26 75.64 71.69 82.98 76.57 78.71
(top 11 rules) 5 80.94 81.89 83.61 83.73 75.64 71.69 83.05 76.89 78.29

∞ 80.94 81.87 83.52 83.89 75.64 71.69 83.05 77.31 78.92 83.24
avg rank (∞) 4.08 3.42 2.92 2.42 7.83 8.50 6.00 8.08 7.92 3.83

implementations of CBA and CMAR from the LUCS-KDD
Software Library7. The implementation of HMM was down-
loaded from a package8 for the machine learning environ-
ment WEKA [35]. The database coverage threshold was set
to 1 for our classifiers as a default value.

5.2.1 Comparison of Predictive Accuracy

Table 4 reports the accuracy results of all ten classifiers using
various max size thresholds. In the experiments, we set
min conf to 0.5 and min sup to 0.05 for all of the classifiers
except HMM (since HMM cannot limit the pattern size, we
only report its accuracy at max size = ∞). Additionally,
we set min int to 0.02 for the SCIP classifiers. The best
results are highlighted in bold and the N/As mean that
the algorithms ran out of memory. As shown in Table 4,
the SCIP classifiers generally outperform other classifiers.
Sicne there are only 20 different items (amino acids) in
the Protein dataset, most of the combinations of items are
frequent in different classes. Therefore, SCIS classifiers dif-
ferentiate different classes better than SCII classifiers as they
keep the most information about the order of items in a
sequence. Furthermore, we applied the Friedman test and
the average ranks of the various classifiers at max size =∞
are reported at the bottom of Table 4, confirming the above
observations. Overall, SCIS MA produced the best results.
Finally, we performed the pair-wise sign test on all possi-
ble pairs of classifiers, to test if the differences mentioned

7. http://cgi.csc.liv.ac.uk/∼frans/KDD/Software/
8. http://doc.gold.ac.uk/∼mas02mg/software/hmmweka/#about

above were statistically significant. The results confirmed
that SCIS MA statistically significantly outperformed CBA,
CMAR, HARMONY, BayesFM and CBS (at the level of
0.05). SCIS HAR significantly outperformed CBA, CMAR,
HARMONY and BayesFM, while the two SCII classifiers
significantly outperformed CBA and CMAR. While none
of our methods proved statistically significantly better than
HMM, we can still see in Table 4 that our SCIS methods
regularly outperformed HMM in most cases.

Additionally, we experimented with various values of
the max size parameter to check its impact on accuracy and
runtime. We found that a larger max size requires much
more runtime but typically achieves similar accuracy. For
example, the runtime of the SCIS classifiers on the Reuters
dataset is 78.54s with max size = 3 and 827.58s with
max size = 5 while the accuracy is almost the same. There-
fore, in all remaining experiments, we kept max size = 3
since this setting proved sufficient for the classifiers to
achieve satisfactory results.

The default value of λ (the number of rules used for
classifying) in HARMONY is∞. However, we ran our SCIP
classifiers with various values of λ, and found that the clas-
sifiers do not always achieve the best accuracy with λ =∞,
as was also reported in the work of HARMONY. Moreover,
once λ is large enough, the accuracy does not change much
with further increases. Therefore, we only report the results
for the value of λ that, on average, produced the highest
accuracy (the used λ is reported under the name of each
dataset in Table 4). In all remaining experiments, we kept λ
fixed at the reported value for each dataset.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

For HMM, all items that appear in the dataset become
primary candidates for input features. The computation
complexity is sensitive to the size and the quality of the
features and is somewhat related to the performance of
classification [36]. Therefore, we removed items occurring
in less than K% (K = {1, 2, 3, . . . , 20}) of the dataset and
only the peak value of the accuracy was reported.

5.2.2 Impact of Different Thresholds
To further explore the performance of the classifiers pre-
sented above, we conducted an analysis of the predictive
accuracy under different support, confidence, and interest-
ingness thresholds, respectively (HMM is omitted , since it
uses no such thresholds). We first experimented on different
support thresholds, where min conf is fixed at 0.5 and
min int for SCIP classifiers is set to 0.05, as shown in Fig. 1.
Overall, the SCIP classifiers generally outperform other clas-
sifiers and the performance of all classifiers decreases with
increasing support thresholds. Table 5 shows the average
number of generated rules for each cross-validation with
respect to different support thresholds on Reuters (CBA and
CMAR have the same generated rules). We can see that
the performance of SCIP classifiers and CBS are not that
sensitive to the minimum support thresholds since, unlike
the other classifiers, they mine frequent patterns from each
class separately, resulting in more generated rules even with
a large support threshold. For example, on Reuters, the ac-
curacies of CBA and CMAR drop fast since they fail to find
enough rules to build the classifier when min sup > 0.12.

0.05 0.1 0.15 0.2 0.25 0.3
20

40

60

80

100
Results on Reuters

Support threshold

A
cc

ur
ac

y
%

0.05 0.1 0.15 0.2 0.25 0.3
20

40

60

80

100
Results on News

Support threshold

A
cc

ur
ac

y
%

0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100
Results on WebKB

Support threshold

A
cc

ur
ac

y
%

0.05 0.1 0.15 0.2 0.25 0.3
60

70

80

90

100
Results on Protein

Support threshold

A
cc

ur
ac

y
%

SCII_HAR SCII_MA SCIS_HAR SCIS_MA
CBA CMAR BayesFM CBS

Fig. 1. The impact of the support threshold on accuracy.

Fig. 2 compares the predictive accuracy of the classifiers
at various confidence thresholds (CMAR and BayesFM are
omitted since they do not use a confidence threshold). Here,
min sup is fixed at 0.1 and min int for the SCIP classifiers is
set to 0.06. From Fig. 2, we can see that the SCIP classifiers
are not sensitive to the minimum confidence thresholds
at all until min conf > 80%. On top of that, they always
outperform CBA and CMAR. The number of generated

TABLE 5
Average Number of Rules at Varying Support Thresholds in Reuters

min sup SCII SCIS CBA/CMAR BayesFM CBS

0.06 826.2 951.6 1087.0 5324.4 92846.9
0.12 563.9 666.4 43.5 731.4 14983.9
0.18 406.3 470.4 9.2 216.3 4726.6
0.24 304.9 337.7 0.1 85.3 2007.3
0.30 211.4 212.5 0.0 39.8 941.9

rules on the Reuters dataset is reported in Table 6. The results
for CBA and CMAR show that their performance is strongly
related to the number of produced rules, as they fail to build
a successful classifier if the number of rules is limited (as is
the case at high confidence thresholds). Fig. 2 shows that
this is particularly the case with CMAR although it gets the
same rules as CBA before building the classifier.

0 0.2 0.4 0.6 0.8
40

50

60

70

80

90

100
Results on Reuters

Confidence threshold

A
cc

ur
ac

y
%

SCII_HAR

SCII_MA

SCIS_HAR

SCIS_MA

CBA

CMAR

0 0.2 0.4 0.6 0.8
20

40

60

80

100
Results on News

Confidence threshold

A
cc

ur
ac

y
%

0 0.2 0.4 0.6 0.8
30

40

50

60

70

80

90
Results on WebKB

Confidence threshold

A
cc

ur
ac

y
%

0 0.2 0.4 0.6 0.8
50

60

70

80

90

100
Results on Protein

Confidence threshold

A
cc

ur
ac

y
%

Fig. 2. The impact of the confidence threshold on accuracy.

TABLE 6
Average Number of Rules at Varying Confidence Thresholds in Reuters

min conf SCII SCIS CBA/CMAR

0.1 806.3 894.6 245.4
0.3 701.6 787.6 213.8
0.5 521.9 605.3 138.2
0.7 388.6 474.8 107.1
0.9 268.1 362.2 45.6

Fig. 3 shows the accuracy of the SCIP classifiers with
different minimum interestingness thresholds, varying from
0.01 to 0.19 with a step size of 0.02. Here, min sup is fixed at
0.1 and min conf at 0.5. We can see that the accuracies of the
SCIP classifiers first increase with an increasing min int, and
then start to decrease again with min int > 0.1, as shown
in Table 7. We conclude that setting the interestingness
threshold too low can lead to useless rules finding their way
into the classifier, while setting it too high will result in not
having enough rules to correctly classify new data objects.

ZHOU et al.: PATTERN BASED SEQUENCE CLASSIFICATION 11

0.05 0.1 0.15
90

92

94

96

98
Results on Reuters

Interestingness threshold

A
cc

ur
ac

y
%

0.05 0.1 0.15
84

86

88

90

92
Results on News

Interestingness threshold

A
cc

ur
ac

y
%

SCII_HAR

SCII_MA

SCIS_HAR

SCIS_MA

0.05 0.1 0.15
80

82

84

86

88

90

92
Results on WebKB

Interestingness threshold

A
cc

ur
ac

y
%

0.05 0.1 0.15
80

85

90

95

100
Results on Protein

Interestingness threshold

A
cc

ur
ac

y
%

Fig. 3. The impact of the interestingness threshold on accuracy.

TABLE 7
Average Number of Rules at Varying Interestingness Thresholds

min int Dataset SCII SCIS Dataset SCII SCIS

0.03 1247.3 1519.0 417.3 370.2
0.07 442.5 496.2 212.5 203.3
0.11 Reuters 259.8 281.2 News 163.5 161.7
0.15 142.0 148.4 86.5 86.3
0.19 95.7 100.9 58.7 58.7

As expected, for most datasets, the number of rules tends
to decrease as the minimum support, minimum confidence
or minimum interestingness threshold increases. When the
thresholds increase, the number of rules that can be used
decreases, and, thus, the classifiers become more concise.
If a threshold increases too much, some useful rules will
be eliminated and the performance of classifiers decreases.
As shown in Figs. 1, 2 and 3, the SCIP classifiers are
relatively stable at different thresholds. Therefore, the user
just needs to set the thresholds to generate enough rules for
classification, e.g., about 300 generated rules in the datasets
we used. Note that the minimum interestingness threshold
is normally set smaller than the minimum support threshold
since the interestingness of a pattern is always smaller than
or equal to the support of a pattern as defined in Section 3.1.

5.2.3 Scalability of Different Methods

Fig. 4 shows the runtimes of the algorithms with vari-
ous support thresholds where min conf is fixed at 0.5 and
min int for SCIP classifiers is set to 0.05. The results show
that, as the min sup value increases, the runtimes of all
methods decrease. This is because a larger min sup value
will reduce the number of candidate patterns that need to
be processed, as shown in Table 8. We find that sequence
based classifiers are more time consuming though BayesFM
is faster since it mines patterns from the whole dataset while
others mine patterns from each class. As expected, CMAR
and CBA, which take no sequential information about the

0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150
Results on Reuters

Support threshold

T
im

e
(s

)

SCII_HAR

SCII_MA

SCIS_HAR

SCIS_MA

CBA

CMAR

BayesFM

CBS

0.05 0.1 0.15 0.2 0.25 0.3
0

100

200

300

400

500
Results on News

Support threshold

T
im

e
(s

)

0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200
Results on WebKB

Support threshold

T
im

e
(s

)

0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5
Results on Protein

Support threshold

T
im

e
(s

)

0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40
Results on Unix

Support threshold

T
im

e
(s

)

0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15
Results on Robot

Support threshold

T
im

e
(s

)

Fig. 4. The impact of the support threshold on runtime.

TABLE 8
Average Number of Patterns at Varying Support Thresholds in Reuters

min sup SCII SCIS/CBS CBA/CMAR BayesFM

0.06 12385.0 93774.9 9596.1 5324.4
0.12 3081.9 15254.3 884.4 731.4
0.18 1242.4 4843.4 219.4 216.3
0.24 622.9 2050.1 84.3 85.3
0.30 361.1 969.9 39.1 39.8

itemsets into account, are the fastest, but as was already
seen in Table 4, their accuracy was unsatisfactory.

Fig. 5 shows the runtimes of classifiers for a varying
number of data objects. We start off by using just 10%
of the dataset, adding another 10% in each subsequent
experiment. In this experiment we set min int = 0.06 for
the SCIP classifiers, min sup = 0.1 and min conf = 0.5 for
all classifiers. For the eight classifiers, the runtime grows
similarly, with sequence based classifiers (i.e., SCIS, CBS,
and BayesFM) the slowest and the least stable, and the
classifiers that take no sequential information into account
the fastest. On the Reuters and Protein datasets, there is
actually a drop in runtime from 10% of the dataset to 20%
of the dataset. This occurs because the algorithm generates
many more patterns when using only 10% of the dataset,
as can be seen in Table 9. We find that the runtimes increase
with larger dataset size, but the number of frequent patterns
do not increase at the same time. That is because the shortest
interval computation of a pattern has to be done in each

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

20 40 60 80 100
0

50

100

150

200

250
Results on Reuters

Percentage of dataset %

T
im

e
(s

)

SCII_HAR

SCII_MA

SCIS_HAR

SCIS_MA

CBA

CMAR

BayesFM

CBS

20 40 60 80 100
0

50

100

150

200
Results on News

Percentage of dataset %

T
im

e
(s

)

20 40 60 80 100
0

20

40

60

80
Results on WebKB

Percentage of dataset %

T
im

e
(s

)

20 40 60 80 100
0

0.5

1

1.5
Results on Protein

Percentage of dataset %

T
im

e
(s

)

20 40 60 80 100
0

5

10

15

20

25
Results on Unix

Percentage of dataset %

T
im

e
(s

)

20 40 60 80 100
0

2

4

6

8

10
Results on Robot

Percentage of dataset %

T
im

e
(s

)

Fig. 5. The impact of the dataset size on runtime.

TABLE 9
Average Number of Patterns at Varying Dataset Sizes (Reuters)

Size SCII SCIS/CBS CBA/CMAR BayesFM

10% 13369.4 182889.4 2450.1 1888.8
30% 6530.1 45753.7 2454.6 1746.2
50% 5080.7 31598.0 1912.9 1347.7
70% 5234.6 31439.6 2071.5 1431.5
90% 4726.6 26641.9 1766.9 1261.7

sequence containing the pattern, and there will be more such
sequences when the number of data objects increases.

5.3 Comparison of Learning Based Classifiers

To demonstrate that our method is effective in finding infor-
mative patterns to represent sequences, four representative
classifiers, Naı̈ve Bayes (NB), k nearest neighbours (KNN),
decision trees (C4.5), and support vector machines (SVM)
are used in our experiments.

Firstly, the mined patterns from a dataset are collected
to construct a feature set. Secondly, each sequence s in the
dataset is represented using the constructed feature set by a
feature vector (n1(s), . . . , nm(s)). We evaluate two policies
to set the value of ni(s).

1. Method P: presence-weighted feature vector. ni(s) =
1 if and only if feature fi occurs in s, otherwise ni(s) = 0.

2. Method C: cohesion-weighted feature vector. In order
to investigate whether cohesion information could result in
a higher performance of learning algorithms, we set ni(s) to

the cohesion of feature fi in s (C(fi, s)) if and only if feature
fi occurs in s, otherwise ni(s) = 0.

Note that some existing methods have already used
frequent patterns (itemsets and subsequences) to represent
a data object for classification [8], [9], [37]. Here, we in-
vestigate how the interesting patterns we discover com-
pare to the traditional patterns such as frequent itemsets
or sequential patterns, and, in addition, we evaluate the
novel approach of using the cohesion of a pattern as a
feature value to boost classifier performance. We implement
the following feature vector representation approaches to
convert each sequence to a feature vector based on different
kinds of patterns mined from the dataset.

• Interesting pattern based methods. SCIP-RG pro-
vides a scalable approach for finding interesting pat-
terns. Note that the pattern mentioned here could be
an itemset or a sequence, so we get four SCIP feature
vector representation approaches here (SCII P and
SCIS P using Method P, SCII C and SCIS C using
Method C).

• Frequent itemset based methods. SET P: mine all
frequent itemsets and construct a feature set. Then
represent each sequence as a feature vector as de-
scribed in Method P. SET C: set ni(s) to the cohesion
of a feature fi in s as described in Method C.

• Frequent subsequence based methods. SEQ P: mine
all frequent subsequences and get a feature set of
frequent subsequences. Then convert each sequence
to a feature vector as described in Method P. SEQ C:
set ni(s) to the cohesion of a feature as described in
Method C.

• TFIDF: short for term frequency-inverse document
frequency. The TFIDF value increases proportionally
to the number of times a word appears in the doc-
ument, but is offset by the frequency of the word
in the corpus. Then, each sequence (document) is
represented as a TFIDF-weighted word vector [38].
Due to the large number of items (words), we use
only those items which occur in at least 5% of the
whole sequences.

In all experiments, the default parameter settings are as
follows. Minimum support threshold min sup is set to 0.05
for all approaches. For the SCIP based approaches min int is
set to 0.02. Some of the learning classifiers also use a number
of additional parameters, which we set to the default values
used in WEKA [35] (implementations of KNN, C4.5 and
SVM in WEKA are IBk, J48 and SMO, respectively), for
example, k = 1 for KNN.

Table 10 reports the performance of the proposed meth-
ods by using a variety of learning algorithms. Column AVG
reports the average accuracy of the SCIP rule based classi-
fiers from Table 4 for the highest-scoring max size for a given
dataset. The results show that the proposed approaches
based on pattern features achieve a higher level of accuracy
than the TFIDF approach, while SVM generally outperforms
other classifiers. We used the SVM results to obtain the
average ranks reported at the bottom of the table, which
show that the classifiers usually perform better when using
the cohesion of a feature as the feature value. Furthermore,
we performed the pair-wise sign test to compare SCII P

ZHOU et al.: PATTERN BASED SEQUENCE CLASSIFICATION 13

TABLE 10
Predictive Accuracy of Learning Algorithms(%)

Dataset Classifier SCII P SCII C SCIS P SCIS C SET P SET C SEQ P (random) SEQ C (random) TFIDF AVG

NB 88.12 87.43 87.52 87.43 78.42 82.67 80.00 (76.34) 76.63 (76.42) 84.75
KNN 90.99 92.67 90.99 93.47 90.00 88.51 89.60 (75.84) 89.60 (67.43) 86.63

Reuters C4.5 89.21 89.90 90.40 89.90 90.79 90.50 89.21 (82.18) 90.20 (80.99) 90.30 95.54
SVM 96.34 96.63 96.14 96.24 95.54 96.63 95.74 (81.49) 96.34 (80.69) 94.55

NB 72.75 65.17 65.13 58.12 56.95 73.27 48.77 (46.02) 62.68 (54.80) 62.12
KNN 53.68 72.97 56.75 73.63 61.98 70.42 59.71 (52.23) 69.51 (46.50) 59.26

News C4.5 86.39 86.43 86.11 86.56 85.63 85.43 85.03 (63.26) 85.83 (62.58) 86.33 93.85
SVM 85.85 88.08 85.45 87.78 84.18 88.06 83.72 (64.27) 87.74 (63.50) 80.89

NB 77.86 76.13 77.65 75.40 73.21 73.91 67.69 (65.66) 62.87 (68.90) 67.14
KNN 80.41 82.71 81.27 82.54 78.89 77.00 80.24 (75.40) 77.92 (65.82) 78.38

WebKB C4.5 87.01 87.60 87.85 86.85 85.87 87.33 87.42 (79.65) 87.47 (79.57) 86.96 89.82
SVM 90.85 91.39 90.99 91.64 90.91 92.50 91.75 (84.11) 92.69 (82.11) 87.90

NB 87.17 87.55 93.87 93.49 84.94 91.26 94.05 (94.05) 93.31 (93.12) 84.75
KNN 87.92 89.96 91.82 92.38 85.69 89.22 92.01 (92.01) 92.57 (92.01) 86.63

Protein C4.5 89.96 93.12 93.49 92.19 90.33 93.87 93.31 (93.12) 92.19 (92.19) 90.30 93.15
SVM 89.03 92.19 95.91 95.91 89.96 92.75 96.10 (95.72) 96.84 (95.91) 94.55

NB 77.92 79.82 65.44 73.74 74.10 63.78 61.88 (60.38) 73.45 (64.49) 74.71
KNN 91.75 93.79 83.52 84.45 84.76 85.36 83.33 (78.82) 83.94 (79.42) 83.99

Unix C4.5 86.84 88.66 86.60 86.68 86.35 86.33 86.13 (80.68) 86.79 (81.41) 86.60 88.12
SVM 86.33 88.96 87.74 87.96 87.12 87.12 87.23 (81.78) 87.65 (82.40) 79.95

NB 78.43 81.80 81.54 83.59 77.55 79.85 81.33 (81.26) 85.26 (84.26) 78.27
KNN 92.03 94.03 94.98 94.79 92.49 93.79 94.61 (93.93) 94.86 (94.68) 92.68

Robot C4.5 87.59 89.01 88.96 91.45 87.63 89.35 89.12 (89.12) 91.35 (90.49) 87.98 82.56
SVM 87.42 90.73 90.96 91.70 86.96 89.63 91.72 (90.42) 94.12 (91.42) 83.66

avg rank (SVM) 6.75 3.42 4.75 3.42 7.42 4.00 4.50 2.42 8.33

with SCII C, SCIS P with SCIS C, SET P with SET C, and
SEQ P with SEQ C, and we found that Method C per-
formed statistically significantly better than Method P in all
four cases (at the level of 0.05).

Finally, we note that the SCIP feature vector representa-
tion approaches achieve comparable or better performance
than other approaches with much fewer features, e.g., there
are more than 8000 features for the SEQ methods while only
483 features for the SCIS methods on the Reuters dataset. In
a further experiment with the SEQ methods, we randomly
picked a number of features equal to that used by the
SCIS variant, which showed that the accuracy of the SEQ
methods (reported in brackets) always either dropped or
stayed the same when using fewer features.

Compared with the accuracies reported in Table 4, we
find that the best accuracy achieved by learning based clas-
sifiers for each dataset is generally higher than that of the
rule based classifiers, except on the News dataset. However,
our SCIP rule based classifiers mostly produce better results
than NB, KNN and C4.5, and have comparable accuracy to
SVM, except on the Robot dataset.

6 CONCLUSIONS

In this paper, we introduce a sequence classification method
based on interesting patterns named SCIP. We present four
concrete classifiers, using various pattern types and clas-
sification strategies. Through experimental evaluation, we
show that the SCIP rule based classifiers in most cases
provide higher classification accuracy compared to exist-
ing methods. The experimental results show that SCIP is
not overly sensitive to the setting of a minimum support
threshold or a minimum confidence threshold. In addition,
the SCIP method proved to be scalable, with runtimes
dependent on the minimum support threshold and the

number of data objects. What is more, by using the dis-
covered patterns as input for a number of learning based
classification algorithms, we demonstrate that our pattern
mining method is effective in finding informative patterns
to represent the sequences, leading to classification accuracy
that is in most cases higher than the baselines. Therefore, we
can conclude that SCIP is not only an effective and stable
method for classifying sequence data, but also that its first,
pattern mining, step provides a valuable tool for discovering
representative patterns.

In future work, we intend to explore a more general
setting where several events may sometimes occur at the
same time stamp. Additionally, we will attempt to reduce
the number of user-chosen parameters that are currently
needed by the classifiers.

ACKNOWLEDGMENTS

Cheng Zhou is financially supported by the China Scholar-
ship Council (CSC). Boris Cule is partially supported by the
SPICES project funded by Innoviris.

REFERENCES

[1] C. Zhou, B. Cule, and B. Goethals, “Itemset based sequence classi-
fication,” in Machine Learning and Knowledge Discovery in Databases.
Springer, 2013, pp. 353–368.

[2] B. Liu, W. Hsu, and Y. Ma, “Integrating classification and associa-
tion rule mining,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1998, pp. 80–86.

[3] N. Lesh, M. J. Zaki, and M. Ogihara, “Scalable feature mining for
sequential data,” IEEE Intell. Syst., vol. 15, no. 2, pp. 48–56, 2000.

[4] V. S. Tseng and C.-H. Lee, “Effective temporal data classification
by integrating sequential pattern mining and probabilistic induc-
tion,” Expert Systems with Applications, vol. 36, no. 5, pp. 9524–9532,
2009.

[5] B. Cule, B. Goethals, and C. Robardet, “A new constraint for
mining sets in sequences,” in Proceedings of the SIAM International
Conference on Data Mining, 2009, pp. 317–328.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2015

[6] J. Wang and G. Karypis, “Harmony: Efficiently mining the best
rules for classification,” in Proceedings of the SIAM International
Conference on Data Mining. SIAM, 2005, pp. 205–216.

[7] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence
classification,” ACM SIGKDD Explorations Newsletter, vol. 12, no. 1,
pp. 40–48, 2010.

[8] T. Quack, V. Ferrari, B. Leibe, and L. Van Gool, “Efficient mining
of frequent and distinctive feature configurations,” in Proceedings
of the 11th International Conference on Computer Vision. IEEE, 2007,
pp. 1–8.

[9] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative frequent
pattern analysis for effective classification,” in Proceedings of the
23rd International Conference on Data Engineering. IEEE, 2007, pp.
716–725.

[10] S. Nowozin, G. Bakir, and K. Tsuda, “Discriminative subsequence
mining for action classification,” in Proceedings of the 11th Interna-
tional Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[11] M. J. Zaki, C. D. Carothers, and B. K. Szymanski, “Vogue: A vari-
able order hidden markov model with duration based on frequent
sequence mining,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 4, no. 1, p. 5, 2010.

[12] H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders, “Mining com-
pressing sequential patterns,” Statistical Analysis and Data Mining,
vol. 7, no. 1, pp. 34–52, 2014.

[13] G. Dafé, A. Veloso, M. Zaki, and W. Meira Jr, “Learning se-
quential classifiers from long and noisy discrete-event sequences
efficiently,” Data Mining and Knowledge Discovery, pp. 1–24, 2014.

[14] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proceedings of the 20th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers, 1994, pp. 487–
499.

[15] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” in ACM SIGMOD Record, vol. 29, no. 2.
ACM, 2000, pp. 1–12.

[16] B. Liu, Y. Ma, and C.-K. Wong, “Classification using association
rules: weaknesses and enhancements,” in Data mining for scientific
and engineering applications. Springer, 2001, pp. 591–605.

[17] W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient classifica-
tion based on multiple class-association rules,” in Proceedings of the
2001 IEEE International Conference on Data Mining. IEEE Computer
Society, 2001, pp. 369–376.

[18] X. Yin and J. Han, “Cpar: Classification based on predictive asso-
ciation rules,” in Proceedings of the SIAM International Conference on
Data Mining, 2003, pp. 331–335.

[19] G. Chen, H. Liu, L. Yu, Q. Wei, and X. Zhang, “A new approach to
classification based on association rule mining,” Decision Support
Systems, vol. 42, no. 2, pp. 674–689, 2006.

[20] Y.-L. Chen and L. T.-H. Hung, “Using decision trees to summarize
associative classification rules,” Expert Systems with Applications,
vol. 36, no. 2, pp. 2338–2351, 2009.

[21] S. Zhao, E. C. Tsang, D. Chen, and X. Wang, “Building a rule-
based classifierła fuzzy-rough set approach,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 22, no. 5, pp. 624–638, 2010.

[22] X. Zhang, G. Chen, and Q. Wei, “Building a highly-compact and
accurate associative classifier,” Applied Intelligence, vol. 34, no. 1,
pp. 74–86, 2011.

[23] L. T. Nguyen, B. Vo, T.-P. Hong, and H. C. Thanh, “Classification
based on association rules: A lattice-based approach,” Expert Sys-
tems with Applications, vol. 39, no. 13, pp. 11 357–11 366, 2012.

[24] H. Deng, G. Runger, E. Tuv, and W. Bannister, “Cbc: An associative
classifier with a small number of rules,” Decision Support Systems,
vol. 59, pp. 163–170, 2014.

[25] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Pro-
ceedings of the 11th International Conference on Data Engineering,
1995, pp. 3–14.

[26] R. Srikant and R. Agrawal, “Mining sequential patterns: Gen-
eralizations and performance improvements,” in Proceedings of
the 5th International Conference on Extending Database Technology.
Springer-Verlag, 1996, pp. 3–17.

[27] M. J. Zaki, “Spade: An efficient algorithm for mining frequent
sequences,” Machine Learning, vol. 42, no. 1-2, pp. 31–60, 2001.

[28] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu, “Mining sequential patterns by pattern-
growth: The prefixspan approach,” IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 11, pp. 1424–1440, 2004.

[29] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern
mining using a bitmap representation,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2002, pp. 429–435.

[30] T. P. Exarchos, M. G. Tsipouras, C. Papaloukas, and D. I. Fotiadis,
“A two-stage methodology for sequence classification based on
sequential pattern mining and optimization,” Data & Knowledge
Engineering, vol. 66, no. 3, pp. 467–487, 2008.

[31] D. Fradkin and F. Mörchen, “Mining sequential patterns for clas-
sification,” Knowledge and Information Systems, pp. 1–19, 2015.

[32] T. P. Exarchos, C. Papaloukas, C. Lampros, and D. I. Fotiadis,
“Mining sequential patterns for protein fold recognition,” Journal
of Biomedical Informatics, vol. 41, no. 1, pp. 165–179, 2008.

[33] Y. Zhao, H. Zhang, S. Wu, J. Pei, L. Cao, C. Zhang, and
H. Bohlscheid, “Debt detection in social security by sequence clas-
sification using both positive and negative patterns,” in Proceed-
ings of the European Conference on Machine Learning and Knowledge
Discovery in Databases: Part II. Springer-Verlag, 2009, pp. 648–663.

[34] T. Lane and C. E. Brodley, “Temporal sequence learning and data
reduction for anomaly detection,” ACM Transactions on Information
and System Security, vol. 2, no. 3, pp. 295–331, 1999.

[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[36] Y. Yang, “An evaluation of statistical approaches to text catego-
rization,” Information retrieval, vol. 1, no. 1-2, pp. 69–90, 1999.

[37] S. Matsumoto, H. Takamura, and M. Okumura, “Sentiment classi-
fication using word sub-sequences and dependency sub-trees,” in
Advances in Knowledge Discovery and Data Mining. Springer, 2005,
pp. 301–311.

[38] S. Tong and D. Koller, “Support vector machine active learning
with applications to text classification,” The Journal of Machine
Learning Research, vol. 2, pp. 45–66, 2002.

Cheng Zhou is a post-doctoral researcher at
the University of Antwerp in Belgium, where
he received his Ph.D. in Computer Science in
2015. Prior to that, he received a Master degree
in Management of Information Systems from
the National University of Defense Technology,
China, in 2011. His research interests include
data mining and its applications.

Boris Cule is a post-doctoral researcher cur-
rently affiliated with the University of Antwerp
and Université Libre de Bruxelles in Belgium.
He obtained his Ph.D. in Computer Science in
2012, following a Master in Mathematics degree
obtained in 2007. His very first paper introduced
the cohesion measure for evaluating the quality
of itemsets, which has since been successfully
applied to various problem settings in a wide
range of domains.

Bart Goethals is a professor at the Department
of Mathematics and Computer Science of the
University of Antwerp in Belgium. His primary
research interests are the study of data mining
techniques to efficiently find interesting patterns
and properties in large databases. He received
the IEEE ICDM 2001 Best Paper Award and the
PKDD 2002 Best Paper Award for his theoretical
studies on frequent itemset mining. He is asso-
ciate editor of the Data Mining and Knowledge
Discovery journal and the IEEE TKDE journal,

and served as program chair of ECML PKDD 2008 and SIAM DM 2010,
as well as general chair of the IEEE ICDM 2012 conference.

