
A Pattern Based Predictor for Event Streams

Cheng Zhoua,b,∗, Boris Culea, Bart Goethalsa

aDepartment of Mathematics and Computer Science, University of Antwerp, Belgium
bScience and Technology on Information Systems EngineeringLaboratory, National University of Defense Technology, China

Abstract

Recently, new emerging applications, such as web click-stream mining, failure forecast and traffic analysis, introduced a new
challenging data model referred to as data streams. Mining such data can reveal up-to-date patterns, which are useful for predicting
future events. Consequently, pattern mining in data streams is a popular field in data mining that presents unique challenges. The
data is large and endlessly keeps on coming, making it impossible to store it, or to re-analyse historical data once it hasbeen
discarded. To solve this, we first present a novel method for mining sequential patterns from a data stream, in which we maximise
memory usage in order to achieve higher accuracy in terms of results. In a second step, we use the discovered patterns in order to
try to predict future events. We propose a number of ways to assign a score to each pattern in order to generate predictions. The
prediction performance of these scoring strategies is thenextensively experimentally evaluated. The predictor offers an opportunity
for a faster detection and response to an important, though perhaps unexpected, event, which will occur in the future.

Keywords: pattern mining, event stream, prediction, lossy counting

1. Introduction

Recently, new emerging applications, such as web click-
stream mining, failure forecast and traffic analysis, introduced
a new challenging data model referred to as data streams. In
this setting, datasets are large, and are considered to be infi-
nite, as new data keeps on coming. As a result, historical data
cannot be stored and cannot be reassessed once it has been pro-
cessed. The field of sequential pattern mining in data streams
has mostly been limited to a setting where the stream consists
of incoming sequences. A sequential pattern is then typically
defined as a sequence that often occurs within these incoming
sequences (Ezeife and Monwar, 2007; Mendes, Ding, and Han,
2008; Koper and Nguyen, 2011). Some work has also gone
into mining patterns from multiple streams, where a patternis
considered frequent if it occurs in many streams (Raıssi, Pon-
celet, and Teisseire, 2005; Chen, Wu, and Zhu, 2005; Tanbeer,
Ahmed, Jeong, and Lee, 2008). We propose to mine sequential
patterns in a setting where the stream consists of incoming sets
of events, and a sequential pattern consists of events occurring
in separate transactions that took place sequentially in time.

Since an event stream is continuous and unbounded, with
events often coming at a high rate, we need to process the data
efficiently and keep only the necessary information before dis-
carding data from the past. In our framework, we first split the
stream into batches of fixed size. This allows us to process each
batch at a time, meaning we only need to update the discov-
ered patterns at the end of each batch. Within a batch, we use

∗Corresponding author. Tel.:+32483387164.
Email addresses:cheng.zhou@uantwerpen.be (Cheng Zhou),

boris.cule@uantwerpen.be (Boris Cule),
bart.goethals@uantwerpen.be (Bart Goethals)

the sliding window model (Mannila, Toivonen, and Verkamo,
1997), to transform each batch into a sequence database, in
which we find frequent sequential patterns. Throughout the
process, we maintain a list of sequential patterns that are fre-
quent in the whole stream, and we update this list at the end of
each batch, based on the newly discovered information.

Due to the nature of stream mining, we will never be able
to keep exact information about the discovered patterns. Inour
work, we adopt the main lines of the Lossy Counting method
(Manku and Motwani, 2002) to keep track of the frequent pat-
terns. In Lossy Counting, a user-defined error parameter is used
to limit the effect of approximations when computing the fre-
quency of a pattern, which then allows us to give certain guar-
antees about the quality of the output. More concretely, Lossy
Counting always finds all truly frequent patterns, but the out-
put could also contain a number of patterns that are not truly
frequent, or false positives. An error parameter is used to guar-
antee that the frequency of these false positives will neverbe
far below the chosen frequency threshold. However, if the error
bound is set too high, we will generate too many false positives,
while the algorithm will run out of memory if it is set too low.In
our work, we propose to dynamically determine the optimal er-
ror parameter by maximising the memory usage. We show that
by doing so, we will either end up with a smaller error parame-
ter than the user-chosen one for Lossy Counting, in which case
we will generate fewer false positives, or with a higher error pa-
rameter, in which case we will still be able to produce output,
while the Lossy Counting algorithm will run out of memory.

On top of mining patterns, another important application of
stream mining is to try to predict what events will occur in the
near future. Stated simply, if eventa is often closely followed
by eventb, then we could use this pattern to predict that event

Preprint submitted to Expert Systems with Applications October 26, 2015

b will occur soon if eventa has just occurred. Naturally, rather
than simply looking at how often events follow each other, there
are numerous other ways to evaluate how useful a pattern is for
making a prediction, and how reliable a generated prediction
could be. In this paper, we propose a number of novel predic-
tion strategies, and experimentally evaluate their performance
in comparison to existing standard measures.

The rest of the paper is structured as follows. We describe the
related work in Section 2, before presenting the preliminaries
and the basic concepts in Section 3. In Section 4 we lay out the
framework of our method and describe our algorithms in detail.
The experimental evaluation is provided in Section 5, whileour
conclusions are presented in Section 6.

2. Related Work

Stream mining is an important field in data mining, with a
number of interesting applications (Garofalakis, Gehrke,and
Rastogi, 2002). Data streams pose a number of challenges
which are not present when analysing static databases (Cheng,
Ke, and Ng, 2008). Due to not being able to store all histori-
cal data from the incoming stream, a lot of work has gone into
solving the problem of how to mine patterns in a setting where
approximations must be made, while still being able to give
reasonable guarantees on the quality of the output.

Lossy Counting (Manku and Motwani, 2002) was one of the
first algorithms for finding frequent items and itemsets froma
data stream. Lossy Counting provides an accuracy guarantee
on the set of frequent items or itemsets and their reported fre-
quencies by setting a user-specified support thresholdσ, and an
error boundǫ. The method attempts to approximate the true
frequency of each pattern, and is guaranteed to find all patterns
that have a true frequency higher thanσN, but could also out-
put some patterns that have a true frequency lower thanσN,
but higher than (σ − ǫ)N, whereN is the current length of the
data stream. A number of other studies were based on this idea
(Arasu and Manku, 2004; Metwally, Agrawal, and El Abbadi,
2005; Dimitropoulos, Hurley, and Kind, 2008), all of them re-
quiring a user-chosen error bound. Along similar lines, in a
problem setting most similar to ours, Mendes, Ding, and Han
(2008) proposed to mine sequential patterns in data streams.
The memory usage of the Lossy Counting-like algorithms is, in
theory, unbounded, and they will run out of memory if the error
bound is set too low. However, ifǫ is set too high, the output
will contain too many false positives. In this paper, we propose
a method to mine frequent sequential patterns in a stream with-
out setting a fixed error bound, thus increasing the quality of
the output, and making the algorithm easier to use.

The prediction of future events has great importance in many
applications, like prediction of users’ requests on the web
(Gündüz and̈Ozsu, 2003; Jalali, Mustapha, Sulaiman, and Ma-
mat, 2010), forecast of failures (Gu, Papadimitriou, Yu, and
Chang, 2008; Martin, Méger, Galichet, and Becourt, 2012;
Wang, Ma, Chow, and Tsui, 2014; Bala and Chana, 2015),
traffic analysis (Chrobok, Kaumann, Wahle, and Schreck-
enberg, 2004; Merah, Samarah, Boukerche, and Mammeri,

2013), intensive care (Casanova, Campos, Juarez, Fernandez-
Fernandez-Arroyo, and Lorente, 2015), etc.

Laxman, Tankasali, and White (2008) used Hidden Markov
Models based on frequent episodes mined from historical data
for a prediction task in a stream. However, this method can
only predict whether a predefined target event type will occur,
and is not suitable for predicting arbitrary events. Based on the
definition of the latest minimal occurrence of the antecedent
of an episode rule, Cho, Wu, Yen, Zheng, and Chen (2011)
proposed two algorithms,DeMO and CBS-Tree, to match an
episode rule over event streams for the prediction of the con-
sequent event. Zhu, Wang, Wang, and Shi (2011) introduced
an approach to match multiple episode rules for stream pre-
diction after proposing an algorithm to generate all represen-
tative episode rules based on frequent closed episodes. How-
ever, using episode rules to predict an event in a sequence is
computationally expensive because of the complex structure of
an episode rule. Given the sequential nature of data streams,
we propose a novel method for the prediction task in streams,
using sequential patterns, which seem naturally closer to the
stream structure.

All of these approaches get the patterns from historical data,
while, in a streaming environment, we need to get the latest
information from the current data since up-to-date patterns are
useful for predicting. Therefore, we present a novel algorithm
for finding patterns in data streams by maximising memory us-
age in order to achieve higher accuracy. Then, we make reliable
on-the-fly predictions for future events in the stream basedon
generated patterns. Different from using traditional measures
(support or confidence), we have designed new scoring func-
tions by combining new measures of a pattern to improve the
predictor.

3. Problem Statement

An event stream is a list of events represented asES =
〈(e1, t1), (e2, t2), . . . , (en, tn), . . .〉, whereei is an event (ei ∈ E), ti
is a time stamp (ti ∈ N and t1 ≤ t2 ≤ . . . ≤ tn ≤ . . .) anden is the
latest event that has already occurred.E is the set of all possible
event types andN is the set of natural numbers. For simplicity,
in our examples, we omit the time stamps and implicitly assume
they are consecutive natural numbers. Note that multiple events
can occur at the same time stamp, which we take into account
when we define sequential patterns below.

An eventsequenceis an ordered list of event sets denoted by
s = 〈a1, a2, . . . , am〉, with ai ⊆ E. We denote|s| as the length
of sequences. The prefix of a sequences is defined as ¯s =
〈a1, a2, . . . , am−1〉. A sequences′ = 〈b1, b2, . . . , bk〉 is said to be
a subsequenceof s if there exist integers 1≤ i1 < i2 < . . . <
ik ≤ m such thatb1 ⊆ ai1, b2 ⊆ ai2, . . . , bk ⊆ aik, denoted as
s′ ⊑ s (if s′ , s, written ass′ ⊏ s). Given a set of sequencesS
and a sequencep, we define thefrequencyof p in S as f re(p) =
|{s ∈ S|p ⊑ s}|.Given a minimum support thresholdminSup, if
f re(p) ≥ ⌈minSup× |S|⌉, p is considered a frequent sequential
pattern inS.

Once a frequent patternp = 〈c1, c2, . . . , ck〉 is discovered,
its prefix p̄ must be frequent too. Therefore, each pattern

2

can also be used to generate arule: 〈c1, c2, . . . , ck−1〉 ⇒ ck.
The confidenceof this rule is defined asconf(p̄ ⇒ ck) =
f re(p)/ f re(p̄). Given a sequences = 〈a1, a2, . . . , am〉, if there
exists ani, 0 < i ≤ m, such that ¯p ⊑ s′ while p @ s′

wheres′ = 〈ai , ai+1, . . . , am〉, we say thatp matches s. We de-
fine the minimum match length ofp in s asminMatch(p, s) =
min
0<i≤m
{ts(m) − ts(i) + 1}, wherets(m) and ts(i) denote the time

stamps at which event setsam andai occurred, respectively. For
example, given a frequent patternp = 〈a, b, c〉 and a sequence
s = 〈a, b, c, a, b, d〉, patternp matchess andminMatch(p, s) =
3.

In order to efficiently process the input stream, we will divide
it into batches. Given a batch size ofl time units, we define the
ith batch of event streamES as

Bi = {(e, t)|(e, t) ∈ ES andt ∈ [(i − 1)l + 1, il]}.

We traverse the stream using a sliding window of lengthw. For
each time stampts, with ts ∈ N, we define the corresponding
window as

Wts = {(e, t)|(e, t) ∈ ES andt ∈ [ts− w+ 1, ts]}.

Note that each window is itself a sequence. We denote the set of
windows generated from a batchBi asSi . Note that the firstw−
1 windows ofBi+1 contain some events that actually occurred
in Bi, which enables us to capture patterns whose occurrences
may have spanned over two batches.

Example 1. Given an input stream

〈a, c, b, d, e, a, b, d, a, c, b, f ,d, a, c,b,d, e, f , a, c, b, d. . .〉.

The first two batches of size 10 are

B1 = 〈a, c, b, d, e, a, b, d, a, c〉

and

B2 = 〈b, f , d, a, c, b, d, e, f , a〉.

Assume that w= 4. The windows obtained from B1 and B2 are
shown in Table 1.

Table 1: Example of Sliding Windows

Windows ofB1 (S1) Windows ofB2 (S2)
ID Sequence ID Sequence
1 〈a〉 11 〈d, a, c, b〉
2 〈a, c〉 12 〈a, c, b, f 〉
3 〈a, c, b〉 13 〈c, b, f , d〉
4 〈a, c, b, d〉 14 〈b, f , d, a〉
5 〈c, b, d, e〉 15 〈 f , d, a, c〉
6 〈b, d, e, a〉 16 〈d, a, c, b〉
7 〈d, e, a, b〉 17 〈a, c, b, d〉
8 〈e, a, b, d〉 18 〈c, b, d, e〉
9 〈a, b, d, a〉 19 〈b, d, e, f 〉
10 〈b, d, a, c〉 20 〈d, e, f , a〉

Given an input stream, the goal of our method is two-fold.
First of all, we wish to reliably mine frequent sequential pat-
terns, while taking into account that in a streaming contextwe
cannot keep an exact frequency count for each pattern. We will
show that we are able to guarantee that we find all truly frequent
patterns, while keeping the number of false positives as lowas
possible. Our second goal is to then use the discovered patterns
in order to predict future events. In order to efficiently mine
patterns, we will update the set of discovered patterns onlyaf-
ter processing an entire batch of data. However, based on the
already discovered patterns, we are able to make new predic-
tions at any moment in time.

4. Algorithms

Since the goal of our method is two-fold, our algorithm,
SPEP(Sequential Pattern based Event Prediction), also con-
sists of two main stages, a frequent sequential pattern miner
(SPEPPM) and an event predictor (SPEPEP). Algorithm 1
shows the high level structure of the algorithm. Line 1 ini-
tialises a batch idi, line 2 initialises the content of the current
batchbatchDataand line 3 initialises an error boundǫ. Lines 4-
17 contain the main part ofSPEP. When an event comes in (line
4), we update the content of the current batch (line 5). Lines6-8
generate a prediction based on the already discovered sequen-
tial patterns. Note that this can only be done oncei is larger
than 1, since no patterns are found until the first batch has been
processed. If we have reached the end of a batch (line 9), we
mine sequential patterns in the batch (line 11). After process-
ing the batch, we update the batch idi and reset thebatchData
variable (line 12-13). Line 14 stores the last window of the last
batch since this historical data is needed to make predictions at
the beginning of the next batch (see line 7). Finally, we update
the error boundǫ (line 15).

In the following subsections, we discuss the individual ele-
ments of the main algorithm in detail.

4.1. Sequential Pattern Miner

Algorithm 2 shows the outline of mining frequent sequential
patterns from a batchBi. There are three phases inSPEPPM.
In the first phase, we run a modified SPADE algorithm (Zaki,
2001) to get the set of all frequent sequential patternsP, which
we sort by ascending pattern size (line 2). In the second
phase,updatePatternTableis called to update the pattern ta-
ble T, which contains the sequential patterns mined from the
complete event stream seen so far. After the first two phases,
some of the patterns inT may not be frequent enough any more.
Thus, in the last phase, we prune the patterns that are not fre-
quent (line 4). We discuss these three phases in detail in the
following sections.

4.1.1. Modified SPADE algorithm
Some algorithms have been developed to mine sequential

patterns in data streams. Some important algorithms (Chen,
Wu, and Zhu, 2005; Mendes, Ding, and Han, 2008; Koper
and Nguyen, 2011) are derived from PrefixSpan (Pei, Han,

3

Algorithm 1 SPEP
Input: event streamES, batch size|B|, sliding window length

w, prediction time spanspanand maximum number of pat-
terns kept in memorymaxNum.

1: i = 1;
2: batchData= ∅;
3: ǫi = 0;
4: while ES.nextEvent, null do
5: updatebatchData;
6: if i > 1 then
7: SPEPEP(batchData,Hi, span);
8: end if
9: if end of a batchthen

10: Bi = batchData;
11: SPEPPM(Bi, i, ǫi);
12: i + +;
13: batchData= ∅;
14: Hi =W(i−1)×|B|;
15: ǫi = updateErrorBound(maxNum, i);
16: end if
17: end while

Algorithm 2 SPEPPM(Bi, i, ǫi)

1: Si = the set of sliding windows from batchBi;
2: P = modifiedSPADE(Si, ǫi);
3: updatePatternTable(P, i);
4: pruning(ǫi , i);

Mortazavi-Asl, Wang, Pinto, Chen, Dayal, and Hsu, 2004).
PrefixSpan shows good performance and scales well in mem-
ory, but, when dealing with dense databases, the performance
of PrefixSpan may be worse than that of SPADE (Gomariz,
Campos, Marin, and Goethals, 2013). As a result, we choose
SPADE as our sequential pattern miner. Note that any other
existing sequential pattern miner would have done the job, too.

In order to make good predictions, we not only want to get
the frequency of each pattern, but we also wish to determine
the lengths of its minimal occurrences. In a given windowWi

within the input streamES, a subsequences of Wi is called a
minimal windowof patternp if p ⊑ s and∀s′ ⊏ s, p @ s′.

We therefore made two modifications to the original SPADE
algorithm. First, we added a function to get the minimal win-
dows of a frequent pattern by tracking the occurrences of all
the items composing the pattern. Second, as the densities of
different batches in the data stream can vary, we noted that it
can be difficult to set an appropriate support threshold to get
enough patterns for prediction and, at the same time, ensurethe
algorithm will not run out of memory in one of the batches.
Therefore, we add a memory limit to SPADE (spadeMemory).
We monitor the memory usage of SPADE in the process of enu-
merating frequent sequences (Zaki, 2001). First we run SPADE
with an absolute support threshold⌊ǫi × |B|⌋ + 1 to mine the
patterns in a set of sequencesSi . If this proves infeasible, we
use an optimisation method to try to find the smallest absolute

support thresholdsupi at which the memory usage of SPADE is
smaller than a user defined memory limit. Then, the new error
bound is set toǫi =

supi−1
|B| .

4.1.2. Updating pattern table
We use a hashmapT to store the sequential patterns mined

from the event stream. The key ofT is the corresponding se-
quential patternp and the value of the key contains five at-
tributes of the pattern:

(1) sumF: the sum of the frequencies ofp found by SPADE
in all batches processed so far;

(2) lastF: the frequency ofp found by SPADE in the last
processed batch;

(3) ∆: the maximum possible error for the frequency ofp
(i.e., the maximum possible frequency ofp in batches in which
p was infrequent);

(4)wSum: the sum of the lengths of known minimal windows
which coverp in all batches processed so far;

(5) wCount: the count of the known minimal windows which
coverp in all batches processed so far.

Example 2. Consider Example 1, and suppose that we want
to get the minimal windows of pattern〈d, a〉 after B2. Denote
the lengths of the minimal windows of pattern〈d, a〉 in batches
1 and 2 as minWins1 = {3, 2} and minWins2 = {2, 2, 4}, re-
spectively. After mining the frequent patterns from batch 2, we
could have one of two possible cases. If〈d, a〉 already exists in
the pattern table T, the set of lengths of the known minimal win-
dows of pattern〈d, a〉 after B2 is minWins= {3, 2, 2, 4}, which
is not the bag union of minWins1 and minWins2 since the win-
dow spanning over both batches,〈d, a, c〉, would be duplicated.
If 〈d, a〉 was not frequent in batch 1, the set of lengths of the
known minimal windows of pattern〈d, a〉 after B2 is {2, 2, 4}
since the minimal windows of the pattern in batch 1 are not
available.

In order to solve the problem described in Example 2, we
need to mark the minimal windows spanning over two batches.
In our implementation we do this by adding a minus before
them, i.e.,minWins2 = {−2, 2, 4} in Example 2.

The algorithm for updating the pattern table is given in Algo-
rithm 3. The algorithm consists of two stages. In the first stage,
lines 1-23 update pattern tableT for each sequential pattern
p ∈ P. If patternp is already inT (line 2), we first compute
the sum and count of new minimal windows ofp (lines 3-4).
Then, we update the pattern’ssumF, lastF, wSumandwCount
attributes (lines 5-8). Ifp is not yet inT, we storep and its new
attributes intoT (lines 9-21). Lines 10 and 11 compute the sum
and count ofminWinsof p. Note that there is no error for the
frequency ofp in batch 1 (line 12), while we need to compute
the error afterwards (lines 13-19). The method to get the maxi-
mum possible positive error (∆) for the frequency ofp is based
on three observations:

1. An upper bound for the∆ of a pattern which is not yet inT
is UPB1= ⌊ǫi × (i − 1)× |B|⌋, wherei is theid of current batch.

2. One occurrence of a patternp contributes at mostw−|p|+1
to the frequency of the pattern.

4

3. If pattern X is the prefix of patternY, the frequency
of Y cannot be larger than the frequency ofX. The max-
imum possible frequency ofX in the past batches should
be maxFrePast(X) = X.maxF − X.lastF, where X.maxF =
X.sumF+ X.∆. Assume thatX occursk times in the past
batches, it holds thatY occurs at mostk times in the past
batches and the maximum possible frequency ofY should be
maxFrePast(X) − k based on observation 2. In other words, an-
other upper bound for the∆ of a patternY that is frequent in the
current batch, and is not yet inT, but its prefixX already is inT,
is UPB2= maxFrePast(X) − min{k}, wheremin{k} is the mini-
mum possible value ofk. We know thatmin{k} = ⌈maxFrePast(X)

w−|X|+1 ⌉

based on observation 2.
As a result, we set∆ of a patternp whose prefix ¯p is not

in T to ⌊ǫi × (i − 1)× |B|⌋ (line 14). However,∆ of a pattern
whose prefix is inT is set tomin{UPB1,UPB2} based on the
observations above (lines 15-18). Note that this is why we sort
the found patterns by ascending pattern size, ensuring thata
prefix of a pattern is always inserted intoT before the pattern
itself. Finally, we update the attributes of patternp (line 20)
and store it and its attributes intoT (line 21).

In the second stage, we update the∆ attribute for the patterns
in T that were not found in the current batch. Line 25 finds
patternsP′ that exist inT but not in P. The∆ of each such
pattern is updated by adding the maximal possible frequencyof
an infrequent pattern in the current batch, i.e.,⌊ǫi × |B|⌋ (lines
26-28).

Our algorithm can be asked to output the discovered frequent
patterns at any point. We output a patternX if X.sumF+ X.∆ ≥
⌈i × |B| ×minSup⌉, wherei is the number of batches processed
so far. By doing so, we are guaranteed to output all truly fre-
quent patterns (since∆ is an upper bound for the true frequency
of a pattern in batches where the pattern was infrequent), and,
as discussed already, we output fewer false positives than exist-
ing methods.

4.1.3. Pruning
After updating and adjusting the pattern table, some patterns

in T may have become infrequent. We say a pattern inT is not
frequent enough if the upper bound of its frequency is lower
than the current error threshold (obtained by multiplying the
number of processed windows with the current value of the dy-
namic error parameter). The complete method for removing
the infrequent patterns from the pattern table is given in Algo-
rithm 4.

4.2. Updating Error Bound

Algorithm 5 describes the procedure for updating the error
bound. If the size of the pattern table has become larger than
maxNum, we first sort all the patterns stored inT by descending
maxFand store them in a pattern listlist (line 2). We then get
themaxFvalue of the highest ranked pattern that no longer fits
into the table and find theindexof the last pattern inlist whose
maxF is larger than this value (lines 3-4). Then, we remove
the patterns ranked below theindex (lines 5-7). Finally, we
compute a new error bound (line 8), and return it if it is larger

Algorithm 3 updatePatternTable(P, i)

1: for each patternp ∈ P do
2: if p ∈ T then
3: sum=

∑

m∈p.minWins and m>0 m;
4: count= |{m|m∈ p.minWins and m> 0}|;
5: p.sumF+ = p. f re;
6: p.lastF= p. f re;
7: p.wSum+ = sum;
8: p.wCount+ = count;
9: else

10: sum=
∑

m∈p.minWins|m|;
11: count= |p.minWins|;
12: ∆ = 0;
13: if i > 1 then
14: ∆ = ⌊ǫi × (i − 1)× |B|⌋;
15: if p̄ ∈ T then
16: ∆1 = maxFrePast(p̄) − ⌈maxFrePast(p̄)

w−|p̄|+1 ⌉;
17: ∆ = min{∆,∆1};
18: end if
19: end if
20: value= (p. f re, p. f re,∆, sum, count);
21: T.put(p, value);
22: end if
23: end for
24: if i > 1 then
25: P′ = T − P;
26: for each patternp′ ∈ P′ do
27: p′.∆+ = ⌊ǫi × |B|⌋;
28: end for
29: end if

Algorithm 4 pruning(ǫi, i)

1: for each patternp ∈ T do
2: p.maxF= p.sumF+ p.∆
3: if p.maxF≤ ǫi × i × |B| then
4: removep from T;
5: end if
6: end for

than the previous error bound (line 10), otherwise, the error
bound remains the same (line 12).

Consider Example 1 from Section 3, and suppose the max-
imum number of patterns to be kept in memory is set to 10.
The pattern table after processing batch 1 is shown in Table 2.
Since we can only keep a maximum of 10 patterns in memory,
all patterns with a frequency of 3 or lower had to be removed.
As a result, the error bound for the next batch has been set to
ǫ2 = 0.3. Therefore, we try to use an absolute support threshold
0.3× 10+ 1 = 4 to mine frequent patterns inS2 (as defined in
Table 1).

The pattern table after processing batch 2 is shown in Table 3.
The last two patterns in this table were infrequent in batch 1, so
their∆ attribute has been set to 3 (the highest possible frequency
of a pattern that was infrequent in batch 1). However, note that

5

Algorithm 5 updateErrorBound(maxNum, i)
Output: ǫi

1: if T.size() > maxNumthen
2: list = getS ortedPatterns();
3: b = maxFof the (maxNum+ 1)th pattern inlist;
4: i = index of the lastp ∈ list whosemaxF> b;
5: for jth patternp ∈ list where j > i do
6: removep from T;
7: end for
8: b = b

(i−1)×|B| ;
9: if b > ǫi−1 then

10: return b;
11: else
12: return ǫi−1;
13: end if
14: else
15: return ǫi−1;
16: end if

Table 2: Pattern Table afterB1

Pattern maxF sumF lastF ∆ wSum wCount
〈a〉 9 9 9 0 3 3
〈b〉 8 8 8 0 2 2
〈d〉 7 7 7 0 2 2
〈b, d〉 6 6 6 0 4 2
〈c〉 5 5 5 0 2 2
〈a, b〉 5 5 5 0 5 2
〈e〉 4 4 4 0 1 1
〈a, c〉 4 4 4 0 4 2
〈d, a〉 4 4 4 0 5 2

the wSumandwCountvalues of these two patterns are based
on batch 2 alone. Meanwhile, pattern〈e〉, that was frequent in
batch 1, has now dropped out of the table. ThemaxF of 〈e〉
after batch 2 is 7, which is not high enough to be considered
frequent. Indeed, note that all patterns shown in Table 3 have a
maxFvalue of at least 9.

Table 3: Pattern Table afterB2

Pattern maxF sumF lastF ∆ wSum wCount
〈a〉 16 16 7 0 5 5
〈b〉 16 16 8 0 4 4
〈d〉 16 16 9 0 4 4
〈c〉 12 12 7 0 3 3
〈b, d〉 11 11 5 0 9 4
〈a, b〉 9 9 4 0 11 4
〈a, c〉 9 9 5 0 6 3
〈d, a〉 9 9 5 0 11 4
〈 f 〉 9 6 6 3 2 2
〈c, b〉 9 6 6 3 4 2

4.3. Event Predictor

The algorithm for predicting future events is shown in Algo-
rithm 6. Note that we use a window of lengthw to discover
patterns, whilespandefines the time span we want to predict.
Line 1 gets the training datatd by getting the latest events in a
window of lengthw−span. Then we find the patternspsmatch-
ing the training data from the pattern tableT (line 2). Two op-
tional parameters,minSupandminConf, can be used to limit the
patterns only to those withsumF+∆ ≥ ⌈minSup× (i − 1)× |B|⌉
andconf≥ minConf, whereconf= p.sumF/p̄.sumF. We use a
hashmapZ to store the predicted events obtained fromgetPre-
dictions(line 3). The key is the predicted event and the value
of this key is the score of the predicted event which measures
the likelihood of the event appearing in the future. We present
a discussion of a number of possible scoring policies in Sec-
tion 5.5. Given a user-defined parameterk, we return the top
k predicted events after sorting on their scores in descending
order.

Algorithm 6 SPEPEP(batchData,Hi , span)

1: td = getTrainingData(batchData,Hi , span);
2: ps= findMatchedPatterns(td,T,minSup,minConf);
3: Z = getPredictions(ps, k)

Example 3. Let us go back to Example 1, and assume we want
to predict which events will occur after batch 2. Suppose the
sliding window length is4, and the time span we want to predict
is 2, so we can use the latest events in a window of length 2, i.e.,
〈 f , a〉 after batch 2 is processed, to predict the future events.
Assume that the pattern table after batch 2 contains, among
others, patterns〈a, b〉 and 〈a, c〉, and that these two patterns
are the only patterns matching the training data〈 f , a〉. Events
b and c will, therefore, be predicted if k≥ 2 (assuming both
patterns satisfy the frequency and confidence thresholds).

5. Experimental Evaluation

We implemented our method in java and ran it on a PC with
Intel Xeon CPU at 2.90GHz, setting the maximum heap size
to 2GB. The operating system was Ubuntu 12.04.4. All ex-
periments were performed on four real-life datasets, with very
differing characteristics, allowing us to cover a variety of set-
tings.

5.1. Datasets

FIFA is a long sequence obtained by merging 20 450 se-
quences of click stream data from the website of the 1998 FIFA
World Cup1. KOSARAKis a long sequence obtained by merg-
ing web sessions from a Hungarian news portal2. Here the se-
quences shorter than 30 items have been removed to keep only
46815 sequences.BIBLE contains the full text of the Bible,

1http://www.philippe-fournier-viger.com/spmf/datasets/FIFA.txt
2http://fimi.ua.ac.be/data/kosarak.dat

6

where each word is considered to be an event3. ALARMcon-
tains a sequence of alarms triggered in a factory, stretching over
18 months. An entry in the dataset consists of a time stamp and
an event type. Note that the first three datasets are dense, and
have no time stamps, but, implicitly, the events are assumedto
have “taken place” on consecutive time stamps. The first two
datasets are merged to form two long streams, respectively,by
adding a gap of 50 time stamps between the original sequences,
since we never use a sliding window greater than 50 on these
two datasets. In this way, we wish to avoid erroneously im-
plying that events at the end of one stream have an influence
on the start of the next one. The time stamps inALARM are
expressed in seconds, and most time stamps are not associated
with any event. Furthermore, this dataset also contains events
that occur at the same time, which is never the case in other
datasets.BIBLE, unlike the other three datasets, does not orig-
inate from a stream, but we wanted to test our method on text
data, which, in other contexts, could indeed form an incoming
data stream. Table 4 summarises the characteristics of the four
real-life datasets. The second column contains the number of
events in the stream, the third the support of the most frequent
item, the fourth the average length of a sequence in the first two
datasets and the fifth the number of unique events in the stream.

Table 4: Characteristics of the used datasets
Dataset Size MaxSup AvgLen #Items
FIFA 741 092 0.018 36.24 2 990
KOSARAK 3 510 442 0.013 74.99 25 926
BIBLE 787 066 0.076 N/A 13 905
ALARM 514 502 0.023 N/A 5 001

5.2. False Positive Rate

In our first set of experiments, we demonstrate that our pat-
tern mining method improves the accuracy of existing methods.
We compare our method to theSSBE algorithm proposed by
Mendes, Ding, and Han (2008), which, like the original Lossy
Counting idea, mines patterns from a data stream with a fixed
user-chosen error bound. In order to evaluate the false posi-
tive rate for the two methods, we first needed to obtain an exact
number of truly frequent patterns. For this, we treatedFIFA,
KOSARAK, BIBLE andALARM as static sequence databases,
and used the SPADE method to find all frequent patterns. We
set the minimum support thresholdminSupto be 0.01, 0.01,
0.02 and 0.0003 forFIFA, KOSARAK, BIBLE andALARM, re-
spectively. Using a sliding window length of 10 for all four
datasets, we set the batch size to be 20 000, 20 000, 10 000 and
200 000 forFIFA, KOSARAK, BIBLEandALARM, respectively.
The error bounds ofSPEPPM at the end of the four datasets
were 0.00015, 0.00155, 0.0004 and 0.00009, respectively. We
then needed to set fixed error bounds for theSSBE algorithm.
We know thatSSBE would run out of memory if the error

3http://www.philippe-fournier-viger.com/spmf/datasets/BIBLE.txt

bound was set lower than the final values we obtained for our
dynamic error bound. We therefore chose slightly higher val-
ues for theSSBEerror bounds, namely, 0.0002, 0.0016, 0.0005
and 0.0001 for the four datasets, respectively. This allowed us
to make a fair comparison, but it should be noted that, with
these values,SSBE could still be expected to run out of mem-
ory soon, as the streams continue to grow. Table 5 shows the
number of patterns generated by SPADE (column Baseline) and
the two streaming algorithms, output after every 10 batches.
Note that the N/As in the columns ofFIFA mean that this data
stream is not long enough to run 100 batches. We can see that
SPEPPM always has a lower false positive rate thanSSBE.
There are two reasons for this. Firstly, as a result of maximis-
ing memory usage,SPEPPM uses a lower error bound than
SSBE, especially in the early batches. Secondly, we minimise
the maximum possible positive error for the frequency of a pat-
tern based on the information of its prefix, as shown in Algo-
rithm 3.

5.3. Efficiency Analysis of Pattern Mining

The runtime of our algorithm is composed of the runtime
of the pattern miner (SPEPPM) and the event predictor. The
minSupandminConf only affect the number of patterns used
for making a prediction and we find that the parameters do
not make a difference for the runtime of the event predictor.
Therefore, we now compare the efficiency of our pattern miner
against another state-of-the-art sequential pattern mining algo-
rithm (SSBE) for streaming data at different batch sizes and
sliding window lengths, respectively. That is because other
parameters don’t influence the runtime of pattern mining for
streaming data except the error bound parameter. However, we
do not analyse the impact of error bound since our pattern miner
dynamically determine the optimal error bound by maximising
the memory usage.

Figure 1 shows the runtimes of the algorithms with vari-
ous batch sizes where the length of the processed stream is
720 000, the sliding window length is fixed at 10 andmaxNum
for SPEPPM is set to 50 000 for each dataset. The results show
that, as the batch size increases, the runtimes ofSPEPPM and
SSBE decrease. This is because a larger batch size will reduce
the number of batches that need to be processed. We find that
SSBE is more time consuming with smaller batch sizes since
SSBE needs to maintain the information of a larger number of
patterns.

Figure 2 shows the runtimes of the algorithms for a vary-
ing length of sliding window. In this experiment, the length
of the processed stream is 720 000, the batch size is 6 000
andmaxNumfor SPEPPM is set to 50 000 for each dataset.
Generally, the runtime grows when the length of sliding win-
dow increases since there will be more frequent patterns in a
batch with a larger sliding window. We find that the runtime
of SPEPPM is more stable as on theBIBLE andKOSARAK
datasets, there is actually a jump in runtime forSSBE. This oc-
curs becauseSSBE keeps much more patterns when using the
sliding window length at the jump point.

7

Table 5: Comparison of the False Positive Rates of theSPEPPM andSSBE algorithms

Batches
FIFA KOSARAK BIBLE ALARM

Baseline SPEP SSBE Baseline SPEP SSBE Baseline SPEP SSBE Baseline SPEP SSBE
10 270 270 279 52 55 78 188 188 196 69 78 108
20 285 285 293 56 56 75 198 198 203 39 55 90
30 286 286 289 53 53 72 196 196 206 35 45 88
40 282 282 295 54 54 75 189 189 193 30 40 74
50 285 285 297 52 52 74 170 170 181 25 35 68
60 289 289 301 53 53 74 171 171 180 23 37 70
70 288 288 300 53 53 73 171 171 176 20 28 65
80 288 288 299 52 52 72 N/A N/A N/A 16 25 60
90 N/A N/A N/A 53 53 72 N/A N/A N/A 18 23 54
100 N/A N/A N/A 52 52 74 N/A N/A N/A 19 27 59

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

FIFA

R
un

tim
e

(s
)

|B|

SPEP_PM
SS_BE

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

KOSARAK

R
un

tim
e

(s
)

|B|

SPEP_PM
SS_BE

0 2000 4000 6000 8000 10000
10

2

10
3

10
4

BIBLE

R
un

tim
e

(s
)

|B|

SPEP_PM
SS_BE

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

ALARM

R
un

tim
e

(s
)

|B|

SPEP_PM
SS_BE

Figure 1: Impact of the batch size on the runtime

6 10 14 18 22 26 30 34 38 42
0

200

400

600

800
FIFA

R
un

tim
e

(s
)

w

SPEP_PM
SS_BE

6 10 14 18 22 26 30 34 38 42
100

200

300

400

500
KOSARAK

R
un

tim
e

(s
)

w

SPEP_PM
SS_BE

6 10 14 18 22 26 30 34 38 42
0

200

400

600

800

1000
BIBLE

R
un

tim
e

(s
)

w

SPEP_PM
SS_BE

30 60 90 120 150 180 210 240 270 300
0

100

200

300

400
ALARM

R
un

tim
e

(s
)

w

SPEP_PM
SS_BE

Figure 2: Impact of the sliding window length on the runtime

5.4. Evaluation Framework for the Predictor
The best known ways to measure the performance of a pre-

dictor are precision and recall:

precision=
Number of events predicted correctly

Number of predicted events

recall =
Number of events predicted correctly

Number of events that took place

The main metric we use for evaluation is theF1-measure,
which is defined as:

F1 = 2×
precision× recall
precision+ recall

In our context, these definitions are not as trivial as they
seem. We use a sliding window of lengthw to search for pat-
terns, and yet we are able to make predictions at each possible
time stamp for a user-chosen predictionspan. Therefore, a pre-
diction we make at timet is based on events that occurred in the
time interval [t −w+ span+ 1, t], and the prediction stays valid
for the time interval [t + 1, t + span].

For example, if the prediction span is 10, and the sliding win-
dow length 60, a prediction generated at time stamp 100 will be
based on events occurring in interval [51, 100]. If we predict
that eventx will occur within the next 10 seconds, this predic-
tion will be deemed correct ifx occurs at any time stamp in
interval [101, 110].

In our experiments, we make new predictions at each time
stamp. Obviously, the longer the sliding window, the higherthe
chance that some (or even most) predictions will be repeated
from one time stamp to another. For example, assume we have
identified a strong rulea ⇒ b, and that the window length is
60 and prediction span is 10. If eventa occurred at time stamp
5, we will predict thatb will occur in the time interval [6, 15].
However, at time stamp 6, ifb has not occurred, we will prob-
ably again predict thatb will occur in interval [7, 16] (based on
the samea that occurred at time stamp 5). We could, in theory,
continue to make the same prediction based on the samea until
time stamp 55, by which time we could again start predictingb
based on anothera or another rule altogether. It would be coun-
terintuitive to count each such duplicate prediction as a separate
prediction, as both the number of correct and incorrect predic-
tions could end up being higher than the number of events that
actually took place. We will therefore now formally describe
our evaluation framework, that will be used to compute preci-
sion and recall in this context.

First of all, we define theevent countat time t, ECt, as the
number of events that took place at timet, ECt = |(e, t) ∈ ES|.

8

We say an evente that occurred at timet was predicted correctly
if a prediction was made at any time stamp in the interval [t −
span, t− 1] that eventewould occur within timespanfrom the
prediction being made. At each time point, we will therefore
need to keep track of the currently predicted items. To start
with, we denote the set of predictions made at timet (through
the topk selection) asPMt. At time t, the set of valid predictions
will consist of predictions made in the interval [t− span+1, t−
1] and the newly made predictionsPMt. We define the set of
existing valid predictionsat timet as

PPt = ∪i∈[t−span,t−1](PMi − {(e, t′) ∈ ES|t′ ∈ [i + 1, t]}).

We then define the set ofcurrently valid predictionsat timet as
CPt = PPt∪PMt. Note that the set of valid predictions includes
all items that have been predicted at the lastspantime stamps,
apart from those that have already occurred in the stream af-
ter they have been predicted. Therefore, in order to count how
many predictions have actually been made, we need to com-
pute how many new items have been added to the set of valid
predictions at each time stamp. Note that, at timet, all predic-
tions made at time stampt − spanwill expire. We define the
set ofexpired predictionsat timet asEPt = CPt−1 ∩ NPt−span,
whereNPt−span is the set of new predictions added toCPt−span

at time t − span. Recursively, we define the set ofnew pre-
dictionsat timet asNPt = PMt − (PPt − EPt). Having done
this, we can compute the number of predictions made at time
t as PCt = |NPt|. Finally, we define thecorrect predictions
countat timet, CPCt, to be equal to the number of events that
took place at timet that were predicted correctly. Formally,
CPCt = |{(e, t) ∈ ES|e∈ CPt−1|.

At any given moment, we can evaluate the performance of
our predictor on the stream seen so far. To do this, we need to
compute three values. The first is the total number of events
that have occurred since we started predicting,EC =

∑

t≥ts ECt,
wherets is the time stamp at which we started predicting future
events. The second value we need is the total number of evalu-
ated predictions,PC = (

∑

t≥ts PCt) − CPte, wherete is the cur-
rent time stamp, andCPte the set of currently valid predictions,
for which we still do not know whether they will be proved
correct or incorrect, and we therefore disregard them from the
computations. Finally, we need to compute how many correct
predictions we have made,CPC =

∑

t≥ts CPCt. Once we have
computed these values, we can compute precision and recall
along the lines described above,

precisionte =
CPC
PC

and recallte =
CPC
EC
.

Example 4. Consider an incoming stream ES= aacab..., and
assume we are using a sliding window of length4, and a pre-
diction span of size3. Further assume we have discovered two
prediction rules, namely a⇒ b, and c⇒ d. Table 6 gives an
overview of the evaluation process introduced in Section 5.3 as
the stream progresses. At time1, event a occurs, and we pre-
dict that event b will occur in the coming prediction interval of
size3, i.e., at time stamp2, 3 or 4. We increase the event count
and the prediction count by1. At time2, another a occurs. We

once again predict that b will occur soon (PM2 = b), but, since
b is already in the set of currently valid predictions, we do not
need to add another b, and, therefore, NP2 = ∅. As a result, we
only increase the event count by1, while the prediction count
for time2 remains0. At time3, event c occurs, and we predict
that event d will occur in time interval[4, 6]. We increase both
the event count and the prediction count. At time4, another
a occurs. At this point, we know that the prediction we made
at time1 has been proved wrong. At that point, we predicted
that event b would occur within three time units, and this pre-
diction has now expired (EP4 = b). The set of existing valid
predictions (PP4) now contains only d. However, since another
a occurred, we once again make a prediction that b will hap-
pen, this time within time interval[5, 7]. Therefore, NP4 = b,
and the set of currently valid predictions now contains b andd.
We once again increase both the event count and the prediction
count. Finally, at time5, event b occurs. Since b was in CP4, we
correctly predicted this occurrence. We increase both the event
count and the correct prediction count, and remove b from the
set of currently valid predictions.

Table 6: An illustration of our evaluation framework
t i EPt PPt PMt NPt CPt EC PCt CPC
1 a - - b b b 1 1 0
2 a - b b - b 2 0 0
3 c - b d d bd 3 1 0
4 a b d b b bd 4 1 0
5 b - d - - d 5 0 1

Assume now that we want to evaluate the performance of
our predictor at this point. We can see that five events have
occurred, of which we only predicted one. Therefore, recall
is computed to be equal to1/5 = 0.2. We can also see that
we have made three predictions, one of which has come true.
However, for one of those predictions, namely that d would oc-
cur within interval[4, 6], we do not know whether it will prove
correct or incorrect. We therefore have to leave this prediction
out of our computations. Hence, we compute the precision to
be equal to1/2 = 0.5.

5.5. Prediction Scoring Policies

In this set of experiments, we propose and evaluate five dif-
ferent scoring policies that can be used for making predictions.
Our goal is to be able to, at each moment in time, generate re-
liable predictions as to which events can be expected to occur
in the near future. To do this, we first check which of the dis-
covered patterns apply. At timet, we select only those patterns
whose prefix can be found in the recent past, but whose last el-
ement has not occurred since the last occurrence of the prefix.
Once we have all such patterns, we can predict that the last el-
ement of each of these patterns will occur in the near future.
However, at each time stamp we may only predictk events, so
we need to rank the applicable patterns using a scoring function.
The five proposed scoring policies are defined as follows:

(1) Support policy:sup(p) = p.sumF

9

The Support policy simply says that a prediction is most re-
liable if it is based on the most frequent pattern.

(2) Confidence policy:conf(p) = p.sumF/p̄.sumF
The Confidence policy ranks the patterns according to their

confidence. However, neither the Support nor the Confidence
policy take the prediction context into account.

(3) Match policy:match(p) = p.size
p.minMatch× conf(p)

The Match policy reduces the value of a prediction if the
events that caused the prediction have occurred further in the
past. For example, if we are predicting that eventb will occur
soon based on pattern〈a, b〉, this prediction will score higher if
a had just occurred, than ifa had occurred, say, 10 time stamps
ago, even ifa is still within the relevance span.

(4) Fit policy: fit(p) =

conf(p) if p.minMatch≤ p.avgLen≤ p.maxMatch
p.avgLen

p.minMatch× conf(p) if p.avgLen< p.minMatch
p.maxMatch

p.avgLen × conf(p) if p.avgLen> p.maxMatch
Note that the Match policy can sometimes predict an event

too early. Assume that the average length of a minimal oc-
currence of pattern〈a, b〉 is 5, then it might not be a good
idea to predict an occurrence ofb just after eventa had oc-
curred. The Fit policy assigns a higher value to those pat-
terns whose average occurrence length falls within the inter-
val containing the possible minimal occurrence lengths of the
current occurrence of the pattern, assuming that the predicted
event occurs within the prediction span. Above,p.maxMatch=
p.minMatch+ span− 1 andp.avgLen= p.wSum/p.wCount.

(5) Combination policy:comb(p) =

match(p) if p.minMatch≤ p.avgLen≤ p.maxMatch
p.avgLen

p.minMatch×match(p) if p.avgLen< p.minMatch
p.maxMatch

p.avgLen ×match(p) if p.avgLen> p.maxMatch
Finally, since policies (3) and (4) take different insights from

the prediction context into account, we test whether they can
also reinforce each other by combining them into a unified
Combination policy.

Figure 3 shows the performance of different scoring policies,
for varying values ofk. In our experiments, we use the first
100 batches solely to mine patterns, and we start making pre-
dictions from the 101th batch, and continue all the way to the
200th batch (naturally, we still update the pattern list after each
batch). We setmaxNumto 50 000,minConf to 0.3 andminSup
to 0 (meaning that we just use the current error boundǫi as the
minimum support threshold for the next batch which we want to
predict) for all of the datasets. Additionally, we set batchsize
and the sliding window length to 2 000 and 10, respectively,
for the three dense datasets, and to 86 400 (one day) and 120,
respectively, for theALARM dataset. Finally, in theALARM
dataset, we also set the optionalmaxsizeparameter to 5, in
order to limit the size of the discovered patterns. We do thisbe-
cause in some dense batches, the patterns could grow very large,
resulting in an unnecessary growth of the error bound, and a lot
of useful (short) patterns being pruned. At the same time, long
patterns are rarely matched in the prediction task, and are there-
fore less useful in this context. As can be seen in Figure 3, the
Combination policy consistently showed the best performance,
although Match was always only narrowly second. Therefore,

we used the Combination policy in our remaining analyses in
the coming sections.

1 2 3 4 5 6 7 8 9 10
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

1 2 3 4 5 6 7 8 9 10
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

1 2 3 4 5 6 7 8 9 10
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26

1 2 4 8 16 32 64 128
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

FIFA

F 1

k

KOSARAK

F 1

k

sup conf match fit comb

BIBLE

F 1

k

ALARM

F 1

k

Figure 3: Performance of the different scoring policies

Taking into account the distribution of items in the four
datasets, as shown in Table 4, we see that our predictor does
a lot better than if we simply predicted the most frequentk
items at each time stamp, which demonstrates the usefulness
of the found patterns. Both our pattern miner and the predictor
achieved satisfying runtimes. Table 7 shows the average run-
time of our pattern miner to process a batch and the average
runtime of the predictor to make a prediction, where the pa-
rameters are fixed at values defined in Section 5.5. To mention
just two examples, it took on average 1.45 seconds to process
a full day of incoming data in theALARMdataset, while in the
BIBLE dataset it took on average 29.78msto generate a single
prediction.

Table 7: Runtime of mining a batch and making a prediction

Dataset Mining a batch Making a prediction
FIFA 1.34 s 26.96 ms
KOSARAK 1.27 s 24.41 ms
BIBLE 1.83 s 29.78 ms
ALARM 1.45 s 5.08 ms

5.6. Parameter Analysis for the Predictor

To further explore the performance of the predictor using the
Combination policy, we conducted an analysis of the effect of
varying parameter values on the precision and recall on the four
datasets. Thek parameter is set to 3, 4, 4 and 8 forFIFA,
KOSARAK, BIBLE andALARM, respectively, since these val-
ues ofk produced the best predictor results, as shown in Fig-
ure 1. The remaining parameters are fixed at values defined in
Section 5.5, except the parameter we varied in a given experi-
ment.

5.6.1. Support threshold
We first experiment with different support thresholds (min-

Sup). As shown in Figure 4, the precision typically improves

10

with increasing support thresholds while the recall decreases
since there are fewer matched patterns with a higher support
threshold. However, the quality of the matched patterns is bet-
ter as a result.

0.001 0.005 0.009 0.013 0.017 0.021
0.30

0.35

0.40

0.45

0.50

 precision
 recall

minSup

pr
ec

is
io
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
FIFA

recall

0.0020 0.0024 0.0028 0.0032 0.0036
0.34

0.36

0.38

0.40

0.42

0.44

0.46

 precision
 recall

minSup
pr
ec

is
io
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35
KOSARAK

recall

0.001 0.005 0.009 0.013 0.017 0.021
0.30

0.31

0.32

0.33

0.34

0.35

0.36

 precision
 recall

minSup

pr
ec

is
io
n

0.12

0.14

0.16

0.18

0.20
BIBLE

recall

0.0019 0.0021 0.0023 0.0025 0.0027 0.0029
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

 precision
 recall

minSup

pr
ec

is
io
n

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
ALARM

recall

Figure 4: The impact of different support thresholds on precision and recall

5.6.2. Confidence threshold
Figure 5 shows the performance of our predictor at different

minimum confidence thresholds (minConf). From Figure 5, we
can see that the performance of the predictor is strongly related
to the confidence threshold, as the precision increases and the
recall decreases when the confidence threshold is raised.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 precision
 recall

minConf

pr
ec

is
io
n

0.00

0.10

0.20

0.30

0.40

0.50

0.60
FIFA

recall

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 precision
 recall

minConf

pr
ec

is
io
n

0.00

0.10

0.20

0.30

0.40

0.50

0.60
KOSARAK

recall

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 precision
 recall

minConf

pr
ec

is
io
n

0.00

0.10

0.20

0.30

0.40

0.50

0.60
BIBLE

recall

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.30

0.40

0.50

0.60

0.70

0.80

 precision
 recall

minConf

pr
ec

is
io
n

0.00

0.10

0.20

0.30

0.40

0.50

recall

ALARM

Figure 5: The impact of different confidence thresholds

5.6.3. Number of patterns kept in memory
Figure 6 shows the performance of our predictor with a vary-

ing maximum number of patterns kept in memory (maxNum).
As can be seen, the performance of the predictor is quite sta-
ble with different maximum number of patterns for predic-
tion. However, the precision decreases a little with ascending
maxNumwhile the recall grows since there are more matched
patterns when more patterns are kept in memory.

0 50000 100000 150000 200000
0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

 precision
 recall

maxNum

pr
ec

is
io
n

0.48

0.50

0.52

0.54

0.56
FIFA

recall

0 50000 100000 150000 200000
0.30

0.32

0.34

0.36

0.38

0.40

0.42

 precision
 recall

maxNum

pr
ec

is
io
n

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34
KOSARAK

recall

0 50000 100000 150000 200000
0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

 precision
 recall

maxNum

pr
ec

is
io
n

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32
BIBLE

recall

0 50000 100000 150000 200000
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

 precision
 recall

maxNum

pr
ec

is
io
n

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40
ALARM

recall

Figure 6: The impact of different maximum numbers of kept patterns

2 6 10 14 18 22 26 30 34 38 42 46
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

 precision
 recall

w
pr
ec

is
io
n

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
FIFA

recall

2 6 10 14 18 22 26 30 34 38 42 46
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

 precision
 recall

w

pr
ec

is
io
n

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
KOSARAK

recall

2 6 10 14 18 22 26 30 34 38 42 46
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 precision
 recall

w

pr
ec

is
io
n

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
BIBLE

recall

0 30 60 90 120 150 180 210 240 270 300 330
0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

 precision
 recall

w

pr
ec

is
io
n

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42
ALARM

recall

Figure 7: The impact of different sliding window lengths

5.6.4. Sliding window length
Figure 7 shows the precision and recall of the predictor under

various settings of sliding window lengthw where the predic-
tion span is set to⌊w

2 ⌋. From the figure we can see that the pre-
cision and recall often vary a lot with the changes of the sliding
window length. We conclude that the window size should be
set sensibly depending on the dataset, as neither increasing nor
decreasing it guarantees better results.

5.6.5. Prediction span
Figure 8 shows the performance of our predictor under var-

ious settings of the prediction span where the sliding window
lengths are 30, 30, 30 and 120 forFIFA, KOSARAK, BIBLEand
ALARMrespectively. We can see that increasing the prediction
span, as expected, resulted in higher precision and recall,as the
predictions remained valid for longer.

5.6.6. SPADE Memory Limit
Figure 9 shows the performance of our predictor under dif-

ferent memory limits of SPADE, which is used when mining
sequential patterns from one batch of data. We conclude that
while this parameter can result in a lower false positive rate

11

0 3 6 9 12 15 18 21 24 27 30
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 precision
 recall

span

pr
ec

is
io
n

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56
FIFA

recall

0 3 6 9 12 15 18 21 24 27 30
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

 precision
 recall

span

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40
KOSARAK

recall

0 3 6 9 12 15 18 21 24 27 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 precision
 recall

span

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40
BIBLE

recall

10 20 30 40 50 60 70 80 90 100 110
0.40

0.45

0.50

0.55

0.60

0.65

 precision
 recall

span

pr
ec

is
io
n

0.32

0.33

0.34

0.35

0.36

0.37

0.38
ALARM

recall

Figure 8: The impact of different prediction spans

when mining patterns, it has very little effect on the prediction
performance.

500 1000 1500 2000 2500 3000 3500 4000
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

 precision
 recall

spadeMemory (M)

pr
ec

is
io
n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
FIFA

recall

500 1000 1500 2000 2500 3000 3500 4000
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
KOSARAK

 precision
 recall

spadeMemory (M)

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

recall

500 1000 1500 2000 2500 3000 3500 4000
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
BIBLE

 precision
 recall

spadeMemory (M)

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

recall

500 1000 1500 2000 2500 3000 3500 4000
0.56

0.58

0.60

0.62

0.64

0.66
ALARM

 precision
 recall

spadeMemory (M)

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40

recall

Figure 9: The impact of different memory limits used for SPADE

5.6.7. Batch Size
Figure 10 shows the performance of our predictor under dif-

ferent batch sizes. We find that changing the batch size had
virtually no effect on either precision or recall, as long as the
data is uniformly dense. If not, a very dense batch could result
in a large error bound, and a loss of patterns, which would neg-
atively affect the performance of the predictor, as was the case
in theALARMdataset.

6. Conclusions

Mining continuously massive data streams to discover up-
to-date patterns is valuable for timely strategic decisions. This
calls for the design of new mining methods to replace the tradi-
tional ones, since those would require the data to be first stored
and then processed off-line using complex algorithms that make
several passes over the data.

In this paper, we introduce a sequential pattern based event
prediction framework for streaming data, which consists ofa

500 1000 1500 2000 2500 3000 3500 4000
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

 precision
 recall

|B|

pr
ec

is
io
n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
FIFA

recall

500 1000 1500 2000 2500 3000 3500 4000
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 precision
 recall

|B|

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
KOSARAK

recall

500 1000 1500 2000 2500 3000 3500 4000
0.10

0.15

0.20

0.25

0.30

0.35

0.40
BIBLE

 precision
 recall

|B|

pr
ec

is
io
n

0.10

0.15

0.20

0.25

0.30

0.35

0.40

recall

43200 86400 129600 172800
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 precision
 recall

|B|

pr
ec

is
io
n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
ALARM

recall

Figure 10: The impact of different batch sizes

frequent sequential pattern miner and an event predictor. Due
to the nature of stream mining, we propose an on-line sequen-
tial pattern miner based on Lossy Counting to dynamically de-
termine the optimal error bound by maximising the memory
usage. Through experimental evaluation, we show that our se-
quential pattern miner results in a lower false positive rate than
existing methods. Furthermore, we use the discovered patterns
to predict future events, and the extensive experimental results
show that the predictor works well since we considered new
quality measures for patterns to improve the predictor.

The proposed event prediction framework can be used to
make a system that has the ability to learn patterns from event
streams, to get new probabilistic associations over time, and to
do real-time monitoring continuously on the forthcoming con-
cerning events. We believe that the proposed framework high-
lights the directions in building real-time alerting services that
predict significant events of interest.

There are still some limitations of our work. First, there are
several user-chosen parameters for our predictor. However, tun-
ing those parameters will increase the burden of a user. Second,
we do not assign different importance to patterns based on how
long before the prediction time they occurred in the historical
data. However, it might be the case that a pattern that has not
occurred often recently does not have a large predicting power.

Due to the above limitations, in future work, we will first at-
tempt to reduce the number of user-chosen parameters that are
currently needed by our predictor. Then, we will investigate
how to build a new model that would give more value to pat-
terns that occurred often in the recent past than to those that
mostly occurred long ago when predicting future events based
on them. Besides, we intend to explore ways to optimise mem-
ory usage further, in order to be able to achieve even higher
accuracy. Additionally, we hope to be able to improve the data
structure for storing the generated sequential patterns, by using,
for example, a lexicographical tree.

12

Acknowledgements

Cheng Zhou is financially supported by the China Scholar-
ship Council (CSC).

References

Arasu, A., Manku, G. S., 2004. Approximate counts and quantiles over sliding
windows. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, pp. 286–296.

Bala, A., Chana, I., 2015. Intelligent failure prediction models for scientific
workflows. Expert Systems with Applications 42 (3), 980–989.

Casanova, I. J., Campos, M., Juarez, J. M., Fernandez-Fernandez-Arroyo, A.,
Lorente, J. A., 2015. Using multivariate sequential patterns to improve sur-
vival prediction in intensive care burn unit. In: ArtificialIntelligence in
Medicine. Springer, pp. 277–286.

Chen, G., Wu, X., Zhu, X., 2005. Sequential pattern mining inmultiple streams.
In: Fifth IEEE International Conference on Data Mining. IEEE, pp. 4–7.

Cheng, J., Ke, Y., Ng, W., 2008. A survey on algorithms for mining frequent
itemsets over data streams. Knowledge and Information Systems 16 (1), 1–
27.

Cho, C.-W., Wu, Y.-H., Yen, S.-J., Zheng, Y., Chen, A. L., 2011. On-line rule
matching for event prediction. The VLDB Journal 20 (3), 303–334.

Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M., 2004. Different
methods of traffic forecast based on real data. European Journal of Oper-
ational Research 155 (3), 558–568.

Dimitropoulos, X., Hurley, P., Kind, A., 2008. Probabilistic lossy counting: an
efficient algorithm for finding heavy hitters. ACM SIGCOMM Computer
Communication Review 38 (1), 5–5.

Ezeife, C., Monwar, M., 2007. Ssm: a frequent sequential data stream patterns
miner. In: IEEE Symposium on Computational Intelligence and Data Min-
ing. IEEE, pp. 120–126.

Garofalakis, M., Gehrke, J., Rastogi, R., 2002. Querying and mining data
streams: you only get one look a tutorial. In: Proceedings ofthe 2002 ACM
SIGMOD International Conference on Management of Data. p. 635.

Gomariz, A., Campos, M., Marin, R., Goethals, B., 2013. Clasp: An efficient
algorithm for mining frequent closed sequences. In: Advances in Knowl-
edge Discovery and Data Mining. Springer, pp. 50–61.

Gu, X., Papadimitriou, S., Yu, P. S., Chang, S.-P., 2008. Online failure fore-
cast for fault-tolerant data stream processing. In: IEEE 24th International
Conference on Data Engineering. IEEE, pp. 1388–1390.

Gündüz, Ş.,̈Ozsu, M. T., 2003. A web page prediction model based on click-
stream tree representation of user behavior. In: Proceedings of the 9th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing. ACM, pp. 535–540.

Jalali, M., Mustapha, N., Sulaiman, M. N., Mamat, A., 2010. Webpum: A
web-based recommendation system to predict user future movements. Ex-
pert Systems with Applications 37 (9), 6201–6212.

Koper, A., Nguyen, H. S., 2011. Sequential pattern mining from stream data.
In: Advanced Data Mining and Applications. Springer, pp. 278–291.

Laxman, S., Tankasali, V., White, R. W., 2008. Stream prediction using a gener-
ative model based on frequent episodes in event sequences. In: Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discov-
ery and data mining. ACM, pp. 453–461.

Manku, G. S., Motwani, R., 2002. Approximate frequency counts over data
streams. In: Proceedings of the 28th international conference on Very Large
Data Bases. VLDB Endowment, pp. 346–357.

Mannila, H., Toivonen, H., Verkamo, A. I., 1997. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery 1 (3),
259–289.

Martin, F., Méger, N., Galichet, S., Becourt, N., 2012. Forecasting failures
in a data stream context application to vacuum pumping system prognosis.
Transactions on Machine Learning and Data Mining 5 (2), 87–116.

Mendes, L. F., Ding, B., Han, J., 2008. Stream sequential pattern mining with
precise error bounds. In: Eighth IEEE International Conference on Data
Mining. IEEE, pp. 941–946.

Merah, A. F., Samarah, S., Boukerche, A., Mammeri, A., 2013.A sequential
patterns data mining approach towards vehicular route prediction in vanets.
Mobile Networks and Applications 18 (6), 788–802.

Metwally, A., Agrawal, D., El Abbadi, A., 2005. Efficient computation of
frequent and top-k elements in data streams. In: Database Theory-ICDT.
Springer, pp. 398–412.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U.,
Hsu, M.-C., 2004. Mining sequential patterns by pattern-growth: The pre-
fixspan approach. IEEE Transactions on Knowledge and Data Engineering
16 (11), 1424–1440.

Raıssi, C., Poncelet, P., Teisseire, M., 2005. Need for speed: Mining sequen-
tial patterns in data streams. BDA05: Actes des 21iemes Journees Bases de
Donnees Avancees.

Tanbeer, S. K., Ahmed, C. F., Jeong, B.-S., Lee, Y.-K., 2008.Efficient frequent
pattern mining over data streams. In: Proceedings of the 17th ACM confer-
ence on Information and knowledge management. ACM, pp. 1447–1448.

Wang, Y., Ma, E. W., Chow, T. W., Tsui, K., 2014. A two-step parametric
method for failure prediction in hard disk drives. IEEE Transactions on In-
dustrial Informatics, 419–430.

Zaki, M. J., 2001. Spade: An efficient algorithm for mining frequent sequences.
Machine learning 42 (1-2), 31–60.

Zhu, H., Wang, P., Wang, W., Shi, B., 2011. Stream predictionusing represen-
tative episode rules. In: IEEE 11th International Conference on Data Mining
Workshops. IEEE, pp. 307–314.

13

