Bounded Query Rewriting Using Views

YANG CAO, University of Edinburgh
WENFEI FAN, University of Edinburgh and Beihang University
FLORIS GEERTS, University of Antwerp
PING LU, Beihang University

A query Q in a language \mathcal{L} has a bounded rewriting using a set of \mathcal{L}-definable views if there exists a query Q' in \mathcal{L} such that given any dataset \mathcal{D}, $Q(\mathcal{D})$ can be computed by Q' that accesses only cached views and a small fraction D_Q of \mathcal{D}. We consider datasets \mathcal{D} that satisfy a set of access constraints, which are a combination of simple cardinality constraints and associated indices, such that the size $|D_Q|$ of D_Q and the time to identify D_Q are independent of $|\mathcal{D}|$, no matter how big \mathcal{D} is.

In this article, we study the problem for deciding whether a query has a bounded rewriting given a set \mathcal{V} of views and a set \mathcal{A} of access constraints. We establish the complexity of the problem for various query languages \mathcal{L}, from Σ^p_3-complete for conjunctive queries (CQ) to undecidable for relational algebra (FO). We show that the intractability for CQ is rather robust even for acyclic CQ with fixed \mathcal{V} and \mathcal{A}, and characterize when the problem is in PTIME. To make practical use of bounded rewriting, we provide an effective syntax for FO queries that have a bounded rewriting. The syntax characterizes a key subclass of such queries without sacrificing the expressive power, and can be checked in PTIME. Finally, we investigate \mathcal{L}_1-to-\mathcal{L}_2 bounded rewriting, when Q in \mathcal{L}_1 is allowed to be rewritten into a query Q' in another language \mathcal{L}_2. We show that this relaxation does not simplify the analysis of bounded query rewriting using views.

CCS Concepts: • Information systems → Database query processing;

Additional Key Words and Phrases: Bounded rewriting, big data, complexity

ACM Reference format:
https://doi.org/10.1145/3183673

Cao is supported in part by NSFC 61602023. Cao, Fan and Lu are supported in part by ERC 652976, 973 Program 2014CB340302, NSFC 61421003, EPSRC EP/M025268/1, Shenzhen Peacock Program 1105100030834361, Beijing Advanced Innovation Center for Big Data and Brain Computing, the Foundation for Innovative Research Groups of NSFC, and two Innovative Research Grants from Huawei Technologies.

Authors’ addresses: Y. Cao, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK; email: yang.cao@ed.ac.uk; W. Fan, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK, Beihang University, 37 Xue Yuan Road, Haidian District, Beijing, 100191, China; email: wenfei@inf.ed.ac.uk; F. Geerts, University of Antwerp, Middelheimlaan 1, Antwerp, 2020, Belgium; email: floris.geerts@uantwerpen.be; P. Lu (corresponding author), Beihang University, 37 Xue Yuan Road, Haidian District, Beijing, 100191, China; email: luping@buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0362-5952/2018/03-ART6 $15.00
https://doi.org/10.1145/3183673
INTRODUCTION

To make query answering feasible in big datasets, practitioners have been studying scale independence [5–7]. The idea is to compute the answers \(Q(D) \) to a query \(Q \) in a dataset \(D \) by accessing a bounded amount of data in \(D \), no matter how big the underlying \(D \) is.

This idea was formalized in [25, 26]. As suggested in [26], nontrivial queries can be scale independent under a set \(\mathcal{A} \) of access constraints, a form of cardinality constraints with associated indices. A query \(Q \) is boundedly evaluable [25] if for all datasets \(D \) that satisfy \(\mathcal{A} \), \(Q(D) \) can be computed from a fraction \(D_Q \) of \(D \), and the time for identifying and fetching \(D_Q \) and hence the size \(|D_Q| \) of \(D_Q \) are independent of \(|D| \). We identify \(D_Q \) by reasoning about the cardinality constraints in \(\mathcal{A} \) and fetch \(D_Q \) by using the indices of \(\mathcal{A} \).

Bounded evaluation has proven useful [11, 14, 16]. Experimenting with several real-life datasets, it was shown that under a couple of hundreds of access constraints, 77% of randomly generated conjunctive queries (a.k.a. SPC queries) [16], 67% of relational algebra queries [11], and 60% of graph pattern queries [14] are boundedly evaluable on average. Query plans for boundedly evaluable queries outperform commercial query engines by three orders of magnitude, and the gap gets larger on bigger data.

As an example of bounded evaulability, consider a Graph Search query of Facebook [23]: find me all restaurants in NYC which I have not been to, but in which my friends have dined in May 2015. A cardinality constraint imposed by Facebook is that a person can have at most 5,000 friends [24]. Another one is that one dines at most once per day. Given these and another two similar constraints, the query can be answered by accessing 470,000 tuples [11], as opposed to billions of user tuples and trillions of friend tuples in the Facebook dataset [31].

Still, many queries are not boundedly evaluable. Can we do better for such queries? An approach that has proven effective by practitioners is by making use of views [7]. The idea is to select and materialize a set \(\mathcal{V} \) of small views and answer \(Q \) on a dataset \(D \) by using views \(\mathcal{V}(D) \) and an additional small fraction of \(D \). That is, we cache \(\mathcal{V}(D) \) with fast access and compute \(Q(D) \) by using \(\mathcal{V}(D) \) and by restricting costly I/O operations to (possibly big) \(D \). Many real-life queries that are not boundedly evaluable can be efficiently answered by using small views and by accessing a bounded amount of additional data in \(D \) [7].

Example 1.1. Consider a Graph Search query \(Q_0 \): find movies that were released by Universal Studios in 2014, liked by people at NASA, and rated 5. The query is defined over a relational schema \(\mathcal{R}_0 \) consisting of four relations: (a) person(pid, name, affiliation), (b) movie(mid, mname, studio, release), (c) rating(mid, rank), and (d) like(pid, id, type), indicating that person pid likes item id of type, including but not limited to movies. Over \(\mathcal{R}_0 \), \(Q_0 \) is written as a conjunctive query:

\[
Q_0(mid) = \exists x_p, x'_p, y_m \left(\text{person}(x_p, x'_p, \text{"NASA"}) \land \text{movie}(mid, y_m, \text{"Universal", "2014"}) \land \text{like}(x_p, mid, \text{"movie"}) \land \text{rating}(mid, \text{"5"}) \right).
\]

Consider a set \(\mathcal{A}_0 \) of two access constraints: (a) \(\varphi_1 = \text{movie}((\text{studio}, \text{release}) \rightarrow \text{mid}, \text{N}_0) \), stating that each studio releases at most \(\text{N}_0 \) movies each year, where \(\text{N}_0 \) is obtained by aggregating \(\mathcal{R}_0 \) instances; an index is built on movie relation such that given any (studio, release) value, it returns (at most \(\text{N}_0 \)) corresponding mids; we find that typically \(\text{N}_0 \leq 100 \) in practice. (b) \(\varphi_2 = \text{rating}(\text{mid} \rightarrow \text{rank}, 1) \), stating that each movie has a unique rating; an index is built on rating to fetch rank as above.
Under \mathcal{A}_0, query Q_0 is not boundedly evaluable. Indeed, an instance D_0 of \mathcal{R}_0 may have billions of person and like tuples [31], and no constraints in \mathcal{A}_0 can help us identify a bounded fraction of these tuples to answer Q_0.

Nonetheless, suppose that we are given a view that collects movies liked by NASA folks, defined as the following conjunctive query:

$$V_1(mid) = \exists x_p, x_p', y_m', z_1, z_2 \left(\text{person}(x_p, x_p', "NASA") \land \text{movie}(mid, y'_m, z_1, z_2) \land \text{like}(x_p, mid, "movie") \right).$$

As will be seen later, Q_0 can be rewritten into a conjunctive query Q_ξ using V_1, such that for all instances D_0 of \mathcal{R} that satisfy \mathcal{A}_0, $Q_0(D_0)$ can be computed by Q_ξ that accesses only $V_1(D_0)$ and an additional $2N_0$ tuples from D_0, no matter how big D_0 grows. Here $V_1(D_0)$ is a small set, much smaller than D_0.

To support scale independence using views, practitioners have developed techniques for selecting views, indexing the views for fast access and for incrementally maintaining the views [7]. However, there are still fundamental issues that call for a full treatment. How should we characterize scale independence using views? What is the complexity for deciding whether a query is scale independent given a set of views and access constraints? If the complexity of the problem is high, is there any systematic way that helps us make practical use of cached views for querying big data?

Contributions. This article tackles these questions.

(1) *Bounded rewriting.* We formalize scale independence using views, referred to as bounded rewriting (Section 2). Consider a query language L, a set V of L-definable views, and a database schema \mathcal{R}. Informally, under a set \mathcal{A} of access constraints, we say that a query $Q \in L$ has a bounded rewriting Q' in the same L using V if for each instance D of \mathcal{R} that satisfies \mathcal{A}, there exists a fraction D_Q of D such that

- $Q(D) = Q'(D_Q, V(D))$, and
- the time for identifying D_Q and hence the size $|D_Q|$ of D_Q are independent of $|D|$.

That is, we compute the exact answers $Q(D)$ via Q' by accessing cached $V(D)$ and a bounded fraction D_Q of D. While $V(D)$ may not be bounded, we can select small views following the methods of [7], which are cached with fast access. We formalize the notion in terms of query plans in a form of query trees commonly used in database systems [42], which have a bounded size M determined by our resources such as available processors and time.

(2) *Complexity.* We study the bounded rewriting problem (Section 3), referred to as $\text{VBRP}(L)$ for a query language L. Given a set \mathcal{A} of access constraints, a query $Q \in L$, and a set V of L-definable views, all defined on the same database schema \mathcal{R}, and a bound M, $\text{VBRP}(L)$ is to decide whether under \mathcal{A}, Q has a bounded rewriting in L using V with a query plan of size no larger than M, referred to as an M-bounded query plan.

The need for studying $\text{VBRP}(L)$ is evident: if Q has a bounded rewriting, then we can find efficient query plans to answer Q on possibly big datasets D. We investigate $\text{VBRP}(L)$ when L ranges over conjunctive queries (CQ, i.e., SPC), unions of conjunctive queries (UCQ, i.e., SPCU), positive FO queries ($\exists FO^*$, select-project-join-union queries), and first-order logic queries (FO, the full relational algebra). We show that VBRP is Σ^p_3-complete for CQ, UCQ, and $\exists FO^*$, but it becomes undecidable for FO. In addition, we explore the impact of various parameters (\mathcal{R}, M, \mathcal{A}, and V) of VBRP on its complexity.
(3) **Acyclic conjunctive queries.** Worse still, we show that the intractability of VBRP is quite robust (Section 4). It remains intractable for acyclic conjunctive queries (denoted by ACQ), when all parameters $M, \mathcal{R}, \mathcal{A},$ and \mathcal{V} are fixed, and even when access constraints in the fixed \mathcal{A} have quite restricted forms. In light of this, we give a characterization for VBRP(ACQ) to be in PTIME and identify subclasses of ACQ and CQ for which VBRP is tractable under fixed $M, \mathcal{R}, \mathcal{A},$ and \mathcal{V}.

(4) **Effective syntax.** To cope with the undecidability of VBRP(FO) and the robust intractability of VBRP(CQ), we develop an effective syntax for FO queries that have a bounded rewriting (Section 5). For any $\mathcal{R}, \mathcal{V}, \mathcal{A},$ and M, we show that there exists a class of FO queries, referred to as **queries topped** by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$, such that under \mathcal{A},

- every FO query that has an M-bounded rewriting using \mathcal{V} is equivalent to a query topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$;
- every query topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$ has an M-bounded rewriting in FO using \mathcal{V} that can be identified in PTIME; and
- it takes PTIME in $M, |Q|, |\mathcal{V}|, |\mathcal{R}|, |\mathcal{A}|$ to check whether Q is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$, using an oracle to check whether views in \mathcal{V} have bounded output (see below).

That is, topped queries make a key subclass of FO queries with a bounded rewriting using \mathcal{V}, without sacrificing their expressive power, along the same lines as safe-range queries for safe relational calculus (see, e.g., [1]). This allows us to reduce VBRP to syntactic checking of topped queries. Given a query Q, we can check syntactically whether Q is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$ in PTIME, by condition (c) above; if so, we can find a bounded rewriting in PTIME as warranted by condition (b); moreover, if Q has a bounded rewriting, then it can be transformed to a topped query by condition (a).

To check topped queries, we need to determine whether some views of \mathcal{V} have **bounded output** $\mathcal{V}(\mathcal{D})$ over all datasets \mathcal{D} that satisfy \mathcal{A}; i.e., the size $|\mathcal{V}(\mathcal{D})|$ is bounded by a constant. This is to ensure bounded accesses to \mathcal{D}, since a query plan may filter and fetch data from \mathcal{D} by using values from some views in $\mathcal{V}(\mathcal{D})$. This problem is, not surprisingly, undecidable for FO (Section 3). In light of this, we develop an effective syntax for FO queries with bounded output. That is, given \mathcal{A} and \mathcal{R}, we identify a class of FO queries, referred to as **size-bounded queries**, such that under \mathcal{A}, an FO view (query) over \mathcal{R} has bounded output if and only if it is equivalent to a size-bounded FO query, and it is in PTIME to check whether a query is size bounded. We use this as a PTIME oracle when checking topped queries (condition (c)) above.

Experimenting with CDR (call detail record) data and queries from one of our industry collaborators, we find that bounded query rewriting using views improves more than 90% of their queries from 25 times to five orders of magnitude [15].

(4) **Rewriting in another language.** Finally, we study \mathcal{L}_1-to-\mathcal{L}_2 bounded rewriting, when we are allowed to rewrite a query $Q \in \mathcal{L}_1$ into a query Q' in another query language \mathcal{L}_2 (Section 6). We reinvestigate the bounded rewriting problem in this setting, denoted by $\text{VBRP}^*(\mathcal{L}_1, \mathcal{L}_2)$. It is the problem for deciding, given a set \mathcal{A} of access constraints, a query $Q \in \mathcal{L}_1$, a set \mathcal{V} of \mathcal{L}_1-definable views, and a bound M, whether under \mathcal{A}, Q has a rewriting $Q' \in \mathcal{L}_2$ using \mathcal{V} that has an M-bounded query plan.

One might be tempted to think that this relaxation would make our lives easier. However, we show that VBRP^* remains Σ_2^P-hard for CQ to-\mathcal{L}_2 when \mathcal{L}_2 ranges over UCQ, $\exists \text{FO}^*$, and FO, and similarly when \mathcal{L}_1 is UCQ or $\exists \text{FO}^*$.

This work is an effort to give a formal treatment of scale independence with views, an approach that has been put in action by practitioners. The complexity bounds reveal the inherent difficulty
of the problem. The effective syntax, however, suggests a promising direction for making use of bounded rewriting. Various techniques are used in the proofs, including characterizations, algorithms, and a wide range of reductions.

2 BOUNDED QUERY REWRITING

In this section, we formalize bounded query plans and bounded query rewriting using views under access constraints. We start with a review of basic notions.

Database schema. A relational (database) schema \(R \) consists of a collection of relation schemas \((R_1, \ldots, R_n) \), where each \(R_i \) has a fixed set of attributes. We assume a countably infinite domain \(U \) of data values, on which instances \(D \) of \(R \) are defined. We use \(|D| \) to denote the size of \(D \), measured as the total number of tuples in \(D \). Instances of a single relation schema \(R \) are denoted by \(D \).

Access schema. Following [25], we define an access schema \(\mathcal{A} \) over a database schema \(R \) as a set of access constraints \(\varphi = R(X \rightarrow Y, N) \), where \(R \) is a relation schema in \(R \), \(X \) and \(Y \) are sets of attributes of \(R \), and \(N \) is a natural number.

For an instance \(D \) of \(R \) and an \(X \)-value \(\bar{a} \) in \(D \), we denote by \(D_{R,Y}(X = \bar{a}) \) the set \(\{ t[Y] \mid t \in D, t[X] = \bar{a} \} \), and write it as \(D_Y(X = \bar{a}) \) when \(R \) is clear in the context. An instance \(D \) of \(R \) satisfies access constraint \(\varphi \) if

- for any \(X \)-value \(\bar{a} \) in \(D \), \(|D_{R,Y}(X = \bar{a})| \leq N \), and
- there exists a function (referred to as an index) that, given an \(X \)-value \(\bar{a} \), returns \(D_{R,XY}(X = \bar{a}) \) (i.e., \(\{ t[XY] \mid t \in D, t[X] = \bar{a} \} \)) from \(D \) in \(O(N) \) time.

Intuitively, an access constraint is a combination of a cardinality constraint and an index on \(X \) for \(Y \) (i.e., the function). It tells us that given any \(X \)-value, there exist at most \(N \) distinct corresponding \(Y \)-values, and these \(Y \)-values can be efficiently fetched by using the index. For instance, \(\mathcal{A}_0 \) described in Example 1.1 is an access schema.

Note that functional dependencies (FDs) are a special case \(R(X \rightarrow Y, 1) \) of access constraints, i.e., when bound \(N = 1 \), provided that an index is built from \(X \) to \(Y \).

An instance \(D \) of \(R = \{ R_1, \ldots, R_n \} \) satisfies access schema \(\mathcal{A} \), denoted by \(D \models \mathcal{A} \), if the instance of \(R_i \) in \(D \) satisfies all the access constraints \(\varphi = R_i(X \rightarrow Y, N) \) in \(\mathcal{A} \).

Query classes. We express queries and views in the same language \(\mathcal{L} \).

Following [1], we consider atomic formulas that are either relation atoms \(R(\bar{x}) \) for \(R \in R \) or equality atoms \(x = y \) or \(x = c \), where \(\bar{x}, x, \) and \(y \) are variables and \(c \) is a constant. We consider the following classes \(\mathcal{L} \) of queries built up from atomic formulas.

- Queries in first-order logic (FO) are inductively defined as follows: (a) atomic formulas are FO queries, and (b) if \(Q, Q_1, \) and \(Q_2 \) are FO queries, then so are \(Q_1 \land Q_2, Q_1 \lor Q_2, \neg Q, \exists \bar{x} Q, \) and \(\forall \bar{x} Q \) (see Chapter 5 of [1] for details).
- Positive existential FO queries (\(\exists \bar{F}O^+ \)) are FO queries in which negation (\(\neg \)) and universal quantification (\(\forall \)) are disallowed.
- Conjunctive queries (CQ) are \(\exists \bar{F}O^+ \)queries in which disjunction (\(\lor \)) is disallowed. A CQ query can be written as \(Q(\bar{x}) = \exists \bar{x}' \phi(\bar{x}, \bar{x}') \), where \(\phi(\bar{x}, \bar{x}') \) is a conjunction of atomic formulas (see Chapter 4 of [1]).
- Unions of conjunctive queries (UCQ) are of the form \(Q(\bar{x}) = Q_1(\bar{x}) \lor \cdots \lor Q_k(\bar{x}) \), where \(Q_i(\bar{x}) \) is a CQ for \(i \in [1, k] \). It is known that each \(\exists \bar{F}O^+ \)query \(Q \) can be written as a UCQ, which may possibly result in an exponential increase in size \(|Q| \) [43].
Bounded query rewriting. To simplify the definition, we present bounded query rewriting in terms of the relational algebra with projection \(\pi \), selection \(\sigma \), Cartesian product \(\times \), union \(\cup \), set difference \(\setminus \), and renaming \(\rho \). Consider an access schema \(\mathcal{A} \) and a set \(\mathcal{V} \) of views, both defined over the same database schema \(\mathcal{R} \). We first extend the relational algebra under \(\mathcal{A} \) with \(\mathcal{V} \), denoted by \(\mathcal{RA}_\mathcal{A},\mathcal{V} \), as follows:

\[
Q ::= c \mid \text{fetch}(X \in Q, R, Y) \mid V \mid \pi_Y(Q) \mid \sigma_C(Q) \mid Q \times Q \mid Q \cup Q \mid Q \setminus Q \mid \rho_{x \rightarrow y}Q,
\]

where \(c \) is a constant; \(x \) and \(y \) are variables; \(V \) is a view in \(\mathcal{V} \); \(\pi_Y(Q) \), \(\sigma_C(Q) \), \(Q \times Q \), \(Q \cup Q \), \(Q \setminus Q \), and \(\rho_{x \rightarrow y}Q \) denote projection, selection, Cartesian product, union, set difference, and renaming as in the relational algebra, respectively; \(\text{fetch}(X \in Q, R, Y) \) requires that \(\varphi = R(X \rightarrow Y, N) \) is an access constraint in \(\mathcal{A} \) and that \(Q(D) \) returns a set of \(X \)-attributes of \(R \) given an instance \(D \) of \(\mathcal{R} \); for each \(\bar{a} \) in \(Q(D) \), it retrieves \(D_{R,XY}(X = \bar{a}) \) in the instance \(D \) of \(R \) in \(\mathcal{D} \) by using the index associated with \(\varphi \). Similarly, we also define \(\mathcal{L}_{\mathcal{A},\mathcal{V}} \) for fragment \(\mathcal{L} \) of \(\mathcal{RA}_\mathcal{A},\mathcal{V} \) that corresponds to CQ, UCQ, or \(\exists \mathcal{FO}^+ \).

Intuitively, \(\mathcal{RA}_\mathcal{A},\mathcal{V} \) revises the relational algebra by replacing direct access to relation \(R \) with \(\text{fetch}(X \in Q, R, Y) \); i.e., it accesses instances of \(\mathcal{R} \) via the indices of access constraints in \(\mathcal{A} \) only. It also allows accesses to cached views of \(\mathcal{V} \).

Consider a query \(Q \) in a language \(\mathcal{L} \). For a natural number \(M \), we say that \(Q \) has an \(M \)-bounded rewriting in \(\mathcal{L} \) using \(\mathcal{V} \) under \(\mathcal{A} \), or simply a bounded rewriting using \(\mathcal{V} \) when \(M \) and \(\mathcal{A} \) are clear from the context, if there exists a query \(Q' \in \mathcal{L}_{\mathcal{A},\mathcal{V}} \) such that (a) all constants in \(Q' \) are taken from \(Q \); (b) for all instances \(D \) of \(\mathcal{R} \) satisfying \(Q(D) = Q'(D) \); and (c) there are at most \(M \) constants and operations (fetch, \(V \), \(\pi \), \(\sigma \), \(\times \), \(\cup \), \(\setminus \), \(\rho \) in \(Q' \)).

Intuitively, under \(\mathcal{A} \), query \(Q \) is equivalent to \(Q' \); i.e., \(Q' \) is a rewriting of \(Q \) using \(\mathcal{V} \). Moreover, while \(Q' \) can retrieve entire cached views, its access to the underlying \(\mathcal{D} \) must be via fetch operations only by using the indices in the access constraints of \(\mathcal{A} \). Hence, only a bounded amount of data is fetched from \(\mathcal{D} \). Here \(M \) is a threshold picked by users and is determined by available resources. The less resources we have, the smaller \(M \) we can afford. Without the bound \(M \), we find that the query \(Q' \) is often of exponential length when experimenting with real-life data, which are not very practical; indeed, it would be \(\text{EXPSPACE} \)-hard to decide whether there exists a bounded rewriting even for CQ, by reduction from the problem of deciding bounded evaluability for CQ [25]. Hence, we opt to let users specify \(M \) based on their resources.

We next give an “operational semantics” of rewritings, by means of query plans.

Query plans. Following [42], we define a query plan using \(\mathcal{V} \), denoted by \(\xi(\mathcal{V}, \mathcal{R}) \), as a tree \(T_\xi \) that satisfies the following two conditions:

1. Each node \(u \) of \(T_\xi \) is labeled \(S_l = \delta_l \), where \(S_l \) denotes a relation for partial results, and \(\delta_l \) is as follows:
 - (a) \(\{ c \} \) for a constant \(c \) if \(u \) is a leaf of \(T_\xi \);
 - (b) a view \(V \) for \(V \in \mathcal{V} \) if \(u \) is a leaf of \(T_\xi \);
 - (c) \(\text{fetch}(X \in S_j, R, Y) \) if \(u \) has a single child \(v \) labeled with \(S_j = \delta_j \), and \(S_j \) has attributes \(X \); here \(X \) and \(Y \) are attributes in \(R \) and \(X \) can possibly be empty;
 - (d) \(\pi_Y(S_j), \sigma_C(S_j) \) or \(\rho(S_j) \) if \(u \) has a single child \(v \) labeled with \(S_j = \delta_j \); here \(Y \) is a set of attributes in \(S_j \), and \(C \) is a condition defined on \(S_j \) or \(S_j \times S_j, S_j \cup S_l \) or \(S_j \setminus S_l \) if \(u \) has two children \(v \) and \(v' \) labeled with \(S_j = \delta_j \) and \(S_l = \delta_l \), respectively.

Intuitively, given an instance \(D \) of \(\mathcal{R} \), relations \(S_i \) are computed by \(\delta_i \), bottom up in \(T_\xi \) [42]. More specifically, \(\delta_i \) may (a) extract constant values, (b) access cached views \(V(D) \), and (c) access \(D \) via
We write equivalent to if (a) via the index for Bounded Rewriting Using Views.

A query plan ξ_0 using view V_1 is depicted in Figure 1. Given an instance D of R_0, it (a) fetches the set S_4 of mids of all movies released by Universal Studios in 2014; (b) filters S_4 with mids in $V_1(D)$ via join, to get a subset S_8 of S_4 of movies liked by NASA folks; (c) fetches rating tuples using the mids of S_8; and (d) finds the set S_{11} of mids. One can verify that $\xi_0(D) = Q_0(D)$ for Q_0 given in Example 1.1.

Example 2.1. A plan $\xi_0(V_1, R_0)$ using view V_1 is depicted in Figure 1. Given an instance D of R_0, it (a) fetches the set S_4 of mids of all movies released by Universal Studios in 2014; (b) filters S_4 with mids in $V_1(D)$ via join, to get a subset S_8 of S_4 of movies liked by NASA folks; (c) fetches rating tuples using the mids of S_8; and (d) finds the set S_{11} of mids. One can verify that $\xi_0(D) = Q_0(D)$ for Q_0 given in Example 1.1.

Bounded plans. Consider an access schema \mathcal{A} over \mathcal{R}. A query plan $\xi(V, \mathcal{R})$ is said to conform to \mathcal{A} if (a) for each fetch ($X \in S_j, R, Y$) operation in ξ, there exists an access constraint $R(X \rightarrow Y', N)$ in \mathcal{A} such that $Y \subseteq X \cup Y'$, and (b) there exists a constant N_ξ such that for all instances $D \models \mathcal{A}$ of \mathcal{R}, $|D_\xi| \leq N_\xi$.

That is, ξ can access cached views and fetch D_ξ from D controlled by access schema \mathcal{A}. Plan ξ tells us how to retrieve D_ξ such that $\xi(D)$ is computed by using the data in D_ξ and $\mathcal{V}(D)$ only. Better still, D_ξ is bounded: $|D_\xi|$ is decided by Q and constants N in \mathcal{A} only, and is independent of possibly big $|D|$. The time for identifying and fetching D_ξ is also independent of $|D|$ (assuming that given an X-value a, it takes $O(N)$ time to fetch $D_{R, XY}(X = a)$ from the instance D of R in D, via the index for $R(X \rightarrow Y, N)$).

Given a natural number M, we say that $\xi(V, \mathcal{R})$ is M-bounded for query Q using \mathcal{V} under \mathcal{A} if (a) ξ conforms to \mathcal{A}; (b) the size of ξ is at most M; (c) for all $D \models \mathcal{A}$, $Q(D) = \xi(D)$—i.e., Q is equivalent to ξ on all instances $D \models \mathcal{A}$; and (d) ξ only uses constants from Q. If these hold, then we write $\xi(Q, V, \mathcal{R})$ to indicate that ξ answers Q.

If $\xi(Q, V, \mathcal{R})$ is M-bounded under \mathcal{A}, then for all datasets D that satisfy \mathcal{A}, we can efficiently answer Q in D by carrying out ξ and accessing a bounded amount of data from D in addition to cached views $\mathcal{V}(D)$, as opposed to $Q(D)$ that accesses D only.
Example 2.2. Plan ξ_0 shown in Figure 1 is 11-bounded for Q_0 using V_1 under A_0. Indeed, (a) both fetch operations (S_4 and S_9) are controlled by the access constraints of A_0, and (b) for any instance $D \models A_0$ of R_0, ξ_0 accesses at most $2N_0$ tuples from D, where N_0 is the constant in φ_1 of A_0, since $|S_1| \leq N_0$ by φ_1, and $|S_9| \leq N_0$ by $S_8 \subseteq S_4$ and constraint φ_2 on rating in A_0; and (c) 11 operations are conducted in total.

Observe that rating tuples in D are fetched by using S_8, which is obtained by relational operations on $V_1(D)$ and S_1. While V_1 is not boundedly evaluable under A_0, the amount of data fetched from D is independent of $|D|$.

Bounded query rewriting (revisited). We conclude this section by rephrasing bounded query rewriting in terms of query plans. Consider a query Q in a language L, a set V of L-definable views, and an access schema A, all defined over the same database schema R. For a bound M, it is readily verified that Q has an M-bounded rewriting in L using V under A if it has an M-bounded query plan $\xi(Q, V, R)$ under A such that ξ is a query plan in L; i.e., in each label $S_i = \delta_i$ of ξ,

- if L is CQ, then δ_i is a fetch, π, σ, \times, or ρ operation;
- if L is UCQ, δ_i can be fetch, π, σ, \times, ρ, or \cup, and for any node labeled \cup, all its ancestors in the tree T_ξ of ξ are also labeled \cup; that is, \cup is at “the top level” only;
- if L is $\exists\text{FO}^*$, then δ_i is fetch, π, σ, \times, \cup, or ρ; and
- if L is FO, δ_i can be fetch, π, σ, \times, \cup, or ρ.

One can verify that if ξ is a plan in L, then there exists a query Q_ξ in L such that for all instances D of \mathcal{R}, $\xi(D) = Q_\xi(D)$, and the size $|Q_\xi|$ of Q_ξ is linear in the size of ξ. Such query Q_ξ is unique up to equivalence. We refer to Q_ξ as the query expressed by ξ. Both ξ and Q_ξ may access $V(D)$, and $\xi(D) = Q_\xi(D)$ for all D, either $D \models A$ or not.

Example 2.3. The CQ Q_0 of Example 1.1 has an 11-bounded rewriting in CQ using V_1 under A_0. Indeed, ξ_0 of Figure 1 is such a bounded plan, which expresses

$$Q_\xi(\text{mid}) = \exists y_m \left(\text{movie(mid, y_m, “Universal”, “2014”) \land V_1(\text{mid}) \land \text{rating(mid, “5”)} \right).$$

It is a rewriting of Q_0 using V_1 in CQ.

For the converse, if Q is a query in L using L-definable views V, then syntactic safety conditions on Q are required to ensure that there is a query plan ξ_Q in L such that $\xi_Q(D, V(D)) = Q(D, V(D))$. We refer to Chapter 5 of [1] for details on safety. We will come back to this issue in Section 5 when we present a syntactic fragment for bounded rewriting of FO queries using views under access constraints.

Notations used in this article are summarized in Table 2 in the Online Appendix.

3 DECIDING BOUNDED REWRITING

To make effective use of bounded rewriting, we need to settle the bounded rewriting problem, denoted by $\text{VBRP}(L)$ for a query language L and stated as follows:

- **INPUT:** A database schema \mathcal{R}, a natural number M (in unary), an access schema A, a query $Q \in L$, and a set V of L-definable views all defined on \mathcal{R}.
- **QUESTION:** Under A, does Q have an M-bounded rewriting in L using V?

The problem $\text{VBRP}(L)$ has, however, high complexity and can be even undecidable.

Theorem 3.1. Problem $\text{VBRP}(L)$ is

1. Σ_3^p-complete when L is CQ, UCQ, or $\exists\text{FO}^*$; and
2. undecidable when L is FO.
Below we first reveal the inherent complexity of VBRP(\mathcal{L}) by studying problems embedded in it, and prove Theorem 3.1 for various \mathcal{L} (Section 3.1). We then investigate the impact of parameters \mathcal{R}, \mathcal{A}, \mathcal{V}, and M on the complexity of VBRP(\mathcal{L}) (Section 3.2).

3.1 The Bounded Rewriting Problem

To understand where the complexity of VBRP(\mathcal{L}) arises, consider a problem embedded in it. Given an access schema \mathcal{A}, a query Q, a set \mathcal{V} of views, and a query plan ξ of length M, it is to decide whether ξ is a bounded plan for Q using \mathcal{V} under \mathcal{A}. This requires that we check the following: (a) Is the query Q_ξ expressed by ξ equivalent to Q under \mathcal{A}? (b) Does ξ conform to \mathcal{A}? None of these questions is trivial. To simplify the discussion, we focus on CQ for our examples.

\mathcal{A}-equivalence

Consider a database schema \mathcal{R} and two queries Q_1 and Q_2 defined over \mathcal{R}. Under an access schema \mathcal{A} over \mathcal{R}, we say that Q_1 is \mathcal{A}-contained in Q_2, denoted by $Q_1 \sqsubseteq_\mathcal{A} Q_2$, if for all instances D of \mathcal{R} that satisfy \mathcal{A}, $Q_1(D) \subseteq Q_2(D)$. We say that Q_1 and Q_2 are \mathcal{A}-equivalent, denoted by $Q_1 \equiv_\mathcal{A} Q_2$, if $Q_1 \subseteq_\mathcal{A} Q_2$ and $Q_2 \subseteq_\mathcal{A} Q_1$.

This is a notion weaker than the conventional notion of query equivalence $Q_1 \equiv Q_2$. The latter is to decide whether for all instances D of \mathcal{R}, $Q_1(D) = Q_2(D)$, regardless of whether $D \models \mathcal{A}$. Indeed, if $Q_1 \equiv Q_2$, then $Q_1 \equiv_\mathcal{A} Q_2$, but the converse does not hold. It is known that query equivalence for CQ is NP-complete [17]. In contrast, it has been shown that \mathcal{A}-equivalence is Π^p_2-complete for CQ. [25]. We show below that the upper bound remains valid for FO^\ast.

Lemma 3.2 [25]: Given access schema \mathcal{A}, it is Π^p_2-complete to decide whether $Q_1 \equiv_\mathcal{A} Q_2$ and $Q_1 \subseteq_\mathcal{A} Q_2$, for queries Q_1 and Q_2 in CQ, UCQ, or FO^\ast.

Proof. Since it has been proven that it is Π^p_2-hard to decide whether $Q_1 \equiv_\mathcal{A} Q_2$ and $Q_1 \subseteq_\mathcal{A} Q_2$ for CQ in [25], we only need to give a Σ^p_2 algorithm to check whether $Q_1 \not\equiv_\mathcal{A} Q_2$ for CQ (similarly for $Q_1 \not\subseteq_\mathcal{A} Q_2$). The algorithm works as follows:

1. Guess a disjunction Q_1^1 of Q_1, a disjunction Q_2^1 of Q_2, a valuation v_1 of the table representation $(T_{Q_1^1}, \bar{u})$ of Q_1^1, and a valuation v_2 of the table representation $(T_{Q_2^1}, \bar{u})$ of Q_2^1.
2. Check whether $v_1(T_{Q_1^1}) \not\models \mathcal{A}$ or $v_2(T_{Q_2^1}) \not\models \mathcal{A}$; if so, reject the current guess; otherwise, continue.
3. Check for all disjunctions Q_2^2 of Q_2, whether $v_1(\bar{u}) \not\in Q_2^2(v_1(T_{Q_1^1}))$; if so, return true.
4. Check for all disjunctions Q_1^2 of Q_1, whether $v_2(\bar{u}) \not\in Q_1^2(v_2(T_{Q_2^1}))$; if so, return true.

The table representation of a CQ $Q(\bar{x})$ is of the form (T_Q, \bar{u}), where T_Q is an “instance” of \mathcal{R} obtained by taking all relation atoms in Q and (transitively) equating variables and constants as specified in the equality atoms in Q; the summary \bar{u} of the tableau is obtained from \bar{x} by equating variables and constants as described.

The correctness of the algorithm follows from the semantics of $Q_1 \equiv_\mathcal{A} Q_2$. For the complexity of the algorithm, step (2) is in PTIME, which follows from the definition of the access schema. Step (3) is in coNP, since we can check whether there exists a disjunction Q_2^2 of Q_2 such that $v_1(\bar{u}) \in Q_2^2(v_1(T_{Q_1^1}))$ as follows: guess a disjunction Q_2^2 of Q_2 and a homomorphism h from Q_2^2 to $v_1(T_{Q_1^1})$, and check whether $v_1(\bar{u}) \in Q_2^2(v_1(T_{Q_1^1}))$; if so, return true; otherwise, reject the guess. Similarly, step (4) is also in coNP. Hence, the algorithm is in NP^{coNP}. That is, check whether $Q_1 \equiv_\mathcal{A} Q_2$ is in Π^p_2 for FO^\ast. \(\Box\)

Coming back to VBRP, for a query plan ξ and a query Q, we need to check whether ξ is a query plan for Q, i.e., whether $Q_\xi \equiv_\mathcal{A} Q$, where Q_ξ is the query expressed by ξ. This step is Π^p_2-hard for CQ and is undecidable when it comes to FO.
Bounded output. Another complication is introduced by views. To decide whether a query plan ξ is bounded for a query Q using \mathcal{V} under \mathcal{A}, we need to verify that ξ conforms to \mathcal{A}. This may require one to check whether a view $V \in \mathcal{V}$ has “bounded output.”

Example 3.3. Recall schema \mathcal{R}_0, query Q_0, and access schema \mathcal{A}_0 of Example 1.1.

(a) Suppose that instead of V_1, a CQ view V_2 is given:

$$V_2(\text{pid}) = \exists x_p \text{ person}(\text{pid}, x_p, \text{"NASA"}).$$

Given an instance \mathcal{D} of \mathcal{R}_0, $V_2(\mathcal{D})$ consists of people who work at NASA. Extend \mathcal{A}_0 to \mathcal{A}_1 by including $\varphi_3 = \text{like}(\text{pid}, \text{id}) \rightarrow (\text{pid}, \text{id}, \text{type}, 1)$; i.e., (pid, id) is a key of relation like. Then Q_0 has a rewriting Q_2 using V_2:

$$Q_2(\text{mid}) = \exists x_p, y_m \left(V_2(x_p) \land \text{like}(x_p, \text{mid}, \text{"movie"}) \land \text{movie}(\text{mid}, y_m, \text{"Universal", "2014"}) \land \text{rating}(\text{mid}, \text{"5"}) \right).$$

One can verify that Q_2 is a bounded rewriting of Q_0 using V_2 under \mathcal{A}_1 if and only if there exists a constant N_1 such that for all instances \mathcal{D} of \mathcal{R}, if $\mathcal{D} \models \mathcal{A}_1$, then $|V_2(\mathcal{D})| \leq N_1$; that is, NASA has at most N_1 employees. If it holds, then we can extract a set S of at most N_0 mids by using constraint φ_1 of \mathcal{A}_1 on movie, and select pairs (pid, mid) from $V_2(\mathcal{D}) \times S$ that are in a tuple (pid, mid, “movie”) in the like relation, by making use of access constraint φ_3 given above. For each mid that passes the test, we check its rating via the index in φ_2, by accessing at most 1 tuple in rating. Putting these together, we access at most $N_1 \cdot N_0 + 2 \cdot N_0$ tuples from \mathcal{D}. Conversely, if the output of $V_2(\mathcal{D})$ is not bounded, then Q has no bounded rewriting using V_2 under \mathcal{A}_1.

(b) In contrast, when rewriting some queries, we do not always have to check whether a view has bounded output. As an example, consider a rewriting $Q(x) = Q_3(x) \land V_3(x)$ of query Q over a database schema \mathcal{R}, where V_3 is a view, and Q_3 has a bounded query plan under an access schema \mathcal{A} and does not use any view. Then Q has a bounded rewriting under \mathcal{A} no matter whether $|V_3(\mathcal{D})|$ is bounded or not for instances \mathcal{D} of \mathcal{R}. Indeed, all fetching operations are conducted by Q_3; for each x-value a computed by $Q_3(x)$, we only need to validate whether $a \in V_3(\mathcal{D})$. This involves only cached $V_3(\mathcal{D})$, without accessing \mathcal{D}, and hence, $|V_3(\mathcal{D})|$ does not need to be bounded.

To check whether views have a bounded output when it is necessary, we study the bounded output problem, denoted by $\text{BOP}(\mathcal{L})$ and stated as follows:

- **INPUT**: A database schema \mathcal{R}, an access schema \mathcal{A}, and a query $V \in \mathcal{L}$, both over \mathcal{R}.
- **QUESTION**: Is there a constant N such that for all instances $\mathcal{D} \models \mathcal{A}$ of \mathcal{R}, $|V(\mathcal{D})| \leq N$?

The analysis of the bounded output problem is also nontrivial.

Theorem 3.4. Problem $\text{BOP}(\mathcal{L})$ is:

1. coNP-complete when \mathcal{L} is CQ, UCQ, or $\exists \text{FO}^*$, and
2. undecidable when \mathcal{L} is FO.

When database schema \mathcal{R} and access schema \mathcal{A} are both fixed, BOP remains coNP-hard for CQ, UCQ, and $\exists \text{FO}^*$, and is still undecidable for FO.

Proof. We first show that BOP is coNP-complete for CQ, UCQ, and $\exists \text{FO}^*$, and then prove that it is undecidable for FO.

1. **CQ, UCQ, and $\exists \text{FO}^*$**. We show that BOP is coNP-hard for CQ and is in coNP for $\exists \text{FO}^*$. The proof is based on a characterization of bounded-output $\exists \text{FO}^*$ queries, i.e., a query Q in $\exists \text{FO}^*$ for
which there exists a constant \(N \) such that \(|Q(D)| \leq N\) for any \(D \models A\). To introduce the characterization, we first present two notations.

Notations. When considering a CQ \(Q \) posed on instances that satisfy a set \(A \) of access constraints, it will often be convenient to regard \(Q \) as a UCQ consisting of special CQs \(Q_e \), referred to as the *element queries of \(Q \) under \(A \).* The idea of element queries was mentioned in [25] but was not explored there. To define element queries, we use the tableau formalism of CQ (cf. [1], Chapter 4). As remarked earlier, the tableau representation of a CQ \(Q(x) \) is of the form \((T_Q, \bar{u})\).

Consider an instance \(D \) of \(R \) such that \(D \models A \). Let \(\bar{a} \in Q(D) \). This implies that there exists a homomorphism \(h : T_Q \rightarrow D \) such that \(h(\bar{a}) = \bar{a} \) and \(h(T_Q) \models A \). It is easy to verify that there is a conjunction \(\psi \) of equality conditions among variables and constants in \(Q \) such that when considering \(Q_e = Q \land \psi \), we have that for the tableau \((T_{Q_e}, \bar{u}')\) of \(Q_e \), (i) \(h : T_{Q_e} \rightarrow D \) is a homomorphism such that \(h(\bar{u}') = \bar{a} \), and (ii) \(T_{Q_e} \models A \), where we view \(T_{Q_e} \) as an instance of \(R \), by treating variables as constants.

We call such \(Q_e \)'s element queries and say that \(Q_e \) satisfies \(A \) because \(T_{Q_e} \models A \). In general, we say that a CQ \(Q \) satisfies \(A \) if its tableau satisfies \(A \). Observe that any element query \(Q_e \) of \(Q \) is contained in \(Q \). Indeed, any \(Q_e \) is obtained from \(Q \) by adding equality conditions and \(Q_e \) is therefore more specific than \(Q \). Conversely, \(Q \) is \(A \)-contained in the union of all of its element queries. That is, \(Q \subseteq A \cup Q_{e_1} \cup \cdots \cup Q_{e_n} \). Indeed, given an instance \(D \) of \(R \), for any \(\bar{a} \in Q(D) \), there exists an element query \(Q_e \) such that \(\bar{a} \in Q_e(D) \). Hence, \(Q \equiv A \cup Q_{e_1} \cup \cdots \cup Q_{e_n} \).

Note that \(Q \) has at most exponentially many element queries under \(A \), since there are \(O(2^{|Q|}) \) possible \(\psi \). Furthermore, an element query may not be satisfiable. Indeed, this happens when the conditions in \(\psi \) equate two different constants in \(Q_e = Q \land \psi \). The satisfiability of element queries can be checked in PTIME. Therefore, in the sequel, we consider w.l.o.g. only satisfiable element queries.

For instance, consider \(R \) with a single relation \(R(X, Y) \), query \(Q(x) = R(y, x_1) \land R(y, x_2) \land R(y, x_3) \land R(x, x) \land (x_1 = 1) \land (x_2 = 2) \land (y = k) \), for a constant \(k \) and access schema \(A = \{R(X \rightarrow Y, 2)\} \). Example element queries of \(Q \) include \(Q_1(x) = Q(x) \land (x_1 = x_2), Q_2(x) = Q(x) \land (x_2 = x_3), Q_3(x) = Q(x) \land (x_1 = x_3), \) and \(Q_4(x) = Q(x) \land ((x_1 = x_3) \land (x_1 = x_2) \land (x_2 = x_3) \land (x_3 = x)) \).

Note that \(Q_1 \) and \(Q_3 \) are not satisfiable.

As we will show below, element queries also make the bounded output analysis easier. When the tableau of \(Q \) does not satisfy \(A \), it is unclear what variables in \(Q \) have a bound on their valuations. Taking \(Q(x) \) above as an example, we do not know whether there exists a bound on the valuation of \(x_3 \). Indeed, the access constraints only bound variables in atoms that occur in the \(Y \) attributes of \(R \). In contrast, when considering element queries \(Q_2(x) \) and \(Q_3(x) \), we can easily see the bounds on valuations of \(x_3 \). Indeed, \(x_3 \) is bound to constant “2” in \(Q_2 \) and to constant “1” in \(Q_3 \).

Let \(Q \) be a CQ that satisfies \(A \). For example, \(Q \) could be an element query. To simplify the discussion, we assume w.l.o.g. that relation atoms in \(Q \) do not contain constants. Instead, all constants appear in equality conditions of the form \(x = a \) for some variable \(x \) and constant \(a \). We denote by \(\text{cvars}(Q) \) the set of constant variables in \(Q \) that are (transitively) equal to some constant due to the equality conditions in \(Q \), and by \(\text{vars}(Q) \) the set of remaining variables in \(Q \), i.e., those that are not equal to some constant.

We also need a notion of covered variables [25]. We define the set of covered variables of \(Q \) under \(A \), denoted by \(\text{cov}(Q, A) \), and computed as follows:

1. \(\text{cov}_0(Q, A) := \emptyset \).
2. For \(i > 0 \), do the following steps until no further variables in \(\text{vars}(Q) \) can be added:
 - \(\text{cov}_i(Q, A) := \text{cov}_{i-1}(Q, A) \);
 - if there exist an atom \(R(\bar{x}, \bar{y}) \) in \(Q \) and an access constraint \(R(X \rightarrow Y, N) \) in \(A \), where \(\bar{x} \) corresponds to \(X \) and \(\bar{y} \) corresponds to \(Y \), and if all nonconstant variables in \(\bar{x} \) are in
\(\text{cov}_{i-1}(Q, \mathcal{A}) \), then \(\text{cov}_{i}(Q, \mathcal{A}) \) is expanded by including all the nonconstant variables in \(\bar{y} \) that are not already in \(\text{cov}_{i-1}(Q, \mathcal{A}) \).

We denote by \(\text{cov}(Q, \mathcal{A}) \) the result set of the process. Note that \(\text{cov}(Q, \mathcal{A}) \) consists of nonconstant variables only. Indeed, constant variables have bounded output (as they equal some constant) and hence do not affect the boundedness of a query.

Example 3.5. Consider the above element query \(Q_2(x) = Q(x) \land (x_2 = x_3) \). The constant variables in \(\text{vars}(Q_2) \) are \(y, x_1, x_2, x_3 \). The only nonconstant variable is \(x \), i.e., \(\text{vars}(Q_2) = \{ x \} \). Let us compute \(\text{cov}(Q_2, \mathcal{A}) \). Initially, \(\text{cov}_0(Q_2, \mathcal{A}) := \emptyset \). The only atom in \(Q_2 \) that contains the nonconstant variable \(x \) is \(R(x_3, x) \). If we consider access constraint \(R(X \rightarrow Y, 2) \in \mathcal{A} \), all nonconstant variables in \(R(x_3, x) \) corresponding to the \(X \)-attribute belong to \(\text{cov}_0(Q_2, \mathcal{A}) \). Indeed, no nonconstant variables are present in the \(X \)-attribute of atom \(R(x_3, x) \). Hence, \(\text{cov}_1(Q_2, \mathcal{A}) = \{ x \} \), i.e., the nonconstant variable \(x \) is added. Since \(x \) is the only variable in \(\text{vars}(Q_2) \), \(\text{cov}(Q_2, \mathcal{A}) = \text{cov}_1(Q_2, \mathcal{A}) = \{ x \} \).

Characterizations. Given these, we start with bounded-output queries that satisfy \(\mathcal{A} \).

Lemma 3.6. A CQ query \(Q(\bar{v}) \) that satisfies \(\mathcal{A} \) has bounded output if and only if all nonconstant variables in \(\bar{v} \) belong to \(\text{cov}(Q, \mathcal{A}) \).

Proof. (=) First, assume that all nonconstant variables in \(\bar{v} \) belong to \(\text{cov}(Q, \mathcal{A}) \). Let \(Q'(\bar{u}) \) be the CQ obtained from \(Q(\bar{v}) \) by removing all existential quantifiers, i.e., \(Q(\bar{v}) = \exists \bar{z} Q'(\bar{u}) \), where \(\bar{z} \) consists of all variables (constant or nonconstant) in \(\bar{u} \setminus \bar{v} \). It is easy to see that \(\text{cov}(Q, \mathcal{A}) = \text{cov}(Q', \mathcal{A}) \). Indeed, no distinction is made between free and quantified variables in the definition of covered variables of a query under access constraints. We show that for all variables \(x \in \text{cov}(Q', \mathcal{A}) \), \(Q'(x) = \exists \bar{u} \setminus \{ x \} Q'(\bar{u}) \) has bounded output, by induction on the computation of \(\text{cov}(Q', \mathcal{A}) \). This suffices, for if the statement holds, then \(Q(\bar{v}) \) has bounded output, since \(Q(\bar{v}) = \exists \bar{z} Q'(\bar{u}) \) and \(Q'(\bar{u}) \) is contained in \(Q'(u_1) \land \cdots \land Q'(u_k) \land u_{k+1} = c_{k+1} \land \cdots \land u_n = c_n \), where \((u_1, \ldots, u_k) \) are nonconstant variables in \(\bar{u} \), “specialized query” \(Q''(u_j) \) takes parameter \(u_j \), and for each \(i \in [k + 1, n] \), \(u_i \) is a constant variable in \(\bar{u} \) that is equal to constant \(c_i \).

For the base case, \(i = 0 \) and \(\text{cov}_0(Q', \mathcal{A}) = \emptyset \). Clearly, \(\exists \bar{u} Q'(\bar{u}) \) is a Boolean query and hence has bounded output.

Assume that the induction hypothesis holds for any \(j \in [0, i-1] \). That is, for any variable \(y \in \text{cov}_{i-1}(Q', \mathcal{A}) \), \(Q''(y) = \exists \bar{u} \setminus \{ y \} Q'(\bar{u}) \) has bounded output.

We next show that the statement holds for each variable in \(\text{cov}_i(Q', \mathcal{A}) \). Let \(y \) be a variable in \(\text{cov}_i(Q', \mathcal{A}) \setminus \text{cov}_{i-1}(Q', \mathcal{A}) \). Suppose that \(y \) is added to \(\text{cov}_i(Q', \mathcal{A}) \) via access constraint \(R(X \rightarrow Y, N) \in \mathcal{A} \) and atom \(R(\bar{x}, \bar{y}, 2) \) in \(Q' \). Then \(y \in \bar{y} \), and any (nonconstant) variable \(x \in \bar{x} \) must be in \(\text{cov}_{i-1}(Q', \mathcal{A}) \). From the induction hypothesis, we know that \(Q''(x) = \exists \bar{u} \setminus \{ x \} Q'(\bar{u}) \) has bounded output. That is, there exists a natural number \(N_x \) such that for any instance \(D \) satisfying \(\mathcal{A} \), \(|Q''(D)| \leq N_x \). Moreover, since \(\exists \bar{u} \setminus \bar{x} Q'(\bar{u}) \) is contained in \(Q'''(\bar{x}) = \wedge_{x_i \in \bar{x}} Q''(x_i) \), and for any \(D \models \mathcal{A} \), \(|Q'''(D)| \leq M = \prod_{x_i \in \bar{x}} N_{x_i} \), we can see that \(\exists \bar{u} \setminus \bar{x} Q'(\bar{u}) \) also has bounded output. From the definition of access constraints, we can further deduce that \(\exists \bar{u} \setminus \bar{y} Q'(\bar{u}) \) generates at most \(M \times N \) tuples when evaluated on \(D \). In particular, this holds for \(Q'(\bar{y}) = \exists \bar{u} \setminus \{ y \} Q'(\bar{u}) \); thus, the statement also holds for \(y \). The argument works for any \(y \in \text{cov}_i(Q', \mathcal{A}) \setminus \text{cov}_{i-1}(Q', \mathcal{A}) \). Hence, for any \(y \in \text{cov}_i(Q', \mathcal{A}) \), \(Q''(y) = \exists \bar{u} \setminus \{ y \} Q'(\bar{u}) \) has bounded output.

(⇒) Conversely, there exists a (nonconstant) variable \(\bar{v} \in \bar{v} \) such that \(\bar{v} \notin \text{cov}(Q, \mathcal{A}) \). Note that \(v \) is a free variable in \(Q'(\bar{v}) \). Let \(Q'(\bar{v}) = \exists \bar{v} \setminus \{ v \} Q(\bar{v}) \). It suffices to show that \(Q' \) does not have bounded output. We have that \(\bar{v} \in Q'(\bar{T}_Q) \), where \(\bar{T}_Q, \bar{u}_Q \) is the tableau representation of \(Q \). We next construct instances \(D_K \) of \(\mathcal{R} \) for all natural numbers \(K > 0 \) such that \(|Q'(\bar{T}_Q \cup D_K)| > K \times |Q'(\bar{T}_Q)| \) and \(\bar{T}_Q \cup D_K \models \mathcal{A} \). Hence, \(Q' \) (and thus also \(Q \)) does not have bounded output.
We illustrate the construction of D_K for $K = 1$. Let D_1 consist of a copy of T_Q. That is, D_1 is T_Q except that every variable z that is not in $\text{cov}(Q, \mathcal{A})$ is replaced by a primed copy z'. Note that when considering tableaux, we do not need to differentiate between constant and nonconstant variables, since constant variables correspond to constants in the tableau representation. We can show that \{(\upsilon), (\upsilon')\} \subseteq $Q'(T_Q \cup D_1)$, since (\upsilon) \in $Q'(T_Q)$ and υ $\not\in$ $\text{cov}(Q, \mathcal{A})$. Indeed, because ($\upsilon$) \in $Q'(T_Q)$, there exists a homomorphism h from Q' to T_Q. Then we can obtain a homomorphism h_1 from Q' to D_1 as follows: for each variable x in Q', if $h(x) \in \text{cov}(Q, \mathcal{A})$ or $h(x)$ is a constant, then $h_1(x) = h(x)$; otherwise, $h(x)$ is a variable z such that $z \not\in \text{cov}(Q, \mathcal{A})$, and we define $h_1(x) = z'$, the primed copy of z. We can verify that h_1 is a homomorphism of Q' to D_1. Since (υ) \in $Q'(T_Q)$ and υ $\not\in$ $\text{cov}(Q, \mathcal{A})$, we know that (\upsilon') \in $Q'(D_1)$. By the monotonicity of CQ, we have that (\{(\upsilon), (\upsilon')\} \subseteq $Q'(T_Q \cup D_1)$.

Thus, $|Q'(T_Q \cup D_1)| > |Q'(T_Q)|$.

It remains to show that $T_Q \cup D_1$ satisfies \mathcal{A}. We show this by contradiction. Suppose that ($T_Q \cup D_1$) $\not\models$ $R(X \rightarrow Y, N)$ for some access constraint $R(X \rightarrow Y, N)$ in \mathcal{A}. This means that there exist $N + 1$ tuples t_1, \ldots, t_{N+1} in $T_Q \cup D_1$ such that $t_i [X] = \ldots = t_{N+1} [X]$, but $t_i [Y] \not= t_j [Y]$ for all $i \not= j, i, j \in [1, N + 1]$. We distinguish the following three cases:

(a) When $t_i [X]$ consists of constants and variables in $\text{cov}(Q, \mathcal{A})$. In this case, each $t_i [Y]$ also consists of constants and variables in $\text{cov}(Q, \mathcal{A})$ by the access constraint $R(X \rightarrow Y, N)$ and the computation of $\text{cov}(Q, \mathcal{A})$. Since all variables in $t_i [X \cup Y]$ ($i \in [1, N + 1]$) are contained in $\text{cov}(Q, \mathcal{A})$, these variables are also in T_Q. By the construction of $T_Q \cup D_1$, there must exist $N + 1$ tuples s_1, \ldots, s_{N+1} in T_Q such that $s_i [X \cup Y] = t_i [X \cup Y]$ for $i \in [1, N + 1]$. This, however, contradicts the assumption that $T_Q \models \mathcal{A}$. Note that by the construction of D_1, there also exist $N + 1$ tuples s'_1, \ldots, s'_{N+1} in D_1 such that $s'_i [X \cup Y] = t_i [X \cup Y]$ for $i \in [1, N + 1]$. For example, consider database schema $\mathcal{R} = \{R(X, Y, Z)\}$, access schema $\mathcal{A} = \{R(X, Y) \rightarrow Z, 1\}$, and $Q = R(1, 1, z_1) \land R(1, z_1, z_2) \land R(1, z_3, z_4)$. Then $\text{cov}(Q, \mathcal{A}) = \{z_1, z_2\}$, $D_1 = \{R(1, 1, z_1), R(1, z_1, z_2), R(1, z_3, z_4)\}$, and $T_Q \cup D_1 = \{R(1, 1, z_1), R(1, z_1, z_2), R(1, z_3, z_4), R(1, z'_1, z'_2)\}$. Since all variables in $R(1, z_1, z_2)$ are in $\text{cov}(Q, \mathcal{A})$, T_Q contains the tuple $R(1, z_1, z_2)$, and D_1 also contains $R(1, z_1, z_2)$.

(b) When $t_i [X]$ consists of constants and variables in T_Q, but at least one of these variables is not in $\text{cov}(Q, \mathcal{A})$.

By the construction of $T_Q \cup D_1$, only tuples in T_Q can contain variables, which are in T_Q but are not in $\text{cov}(Q, \mathcal{A})$, and then t_1, \ldots, t_{N+1} are tuples in T_Q. This contradicts again the assumption that $T_Q \models \mathcal{A}$. For the example in case (a), since $z_3, z_4 \not\in \text{cov}(Q, \mathcal{A})$, only T_Q contains the tuple $R(1, z_3, z_4)$.

(c) When $t_i [X]$ contains a primed copy x' of a variable x in T_Q. In this case, t_1, \ldots, t_{N+1} are tuples in D_1. Similar to case (a), we can prove that $D_1 \not\models \mathcal{A}$. But since D_1 is a copy of T_Q, where every variable z that is not in $\text{cov}(Q, \mathcal{A})$ is replaced by a primed copy z', we have that $D_1 \models \mathcal{A}$, a contradiction. For the example in case (a), since the primed variables z'_1 and z'_2 can only appear in D_1, $R(1, z'_1, z'_2)$ only exists in D_1.

Putting these together, we can conclude that $T_Q \cup D_1 \models A$.

For $K > 1$, D_K is defined to consist of K distinct copies of T_Q. Along the same lines, one can verify that $Q'(T_Q \cup D_K)$ contains at least K distinct copies of υ, and thus $|Q'(T_Q \cup D_K)| > K \times |Q'(T_Q)|$. Moreover, $T_Q \cup D_K \models \mathcal{A}$.

Hence, if $Q(\bar{a})$ has bounded output, then each variable $\upsilon \in \bar{a}$ must be in $\text{cov}(Q, \mathcal{A})$. This concludes the proof of Lemma 3.6. □

From Lemma 3.6, it follows that we can characterize bounded-output queries in $\exists \forall \Omega$ even when they do not necessarily satisfy \mathcal{A}. Indeed, recall from Section 2 that every $\exists \forall \Omega$ query Q is equivalent to a UCQ query $Q_1 \cup \cdots \cup Q_n$. Furthermore, each $\text{CQ} Q_i$ is \mathcal{A}-equivalent to a UCQ consisting
of Q_i’s element queries. That is, $Q = \overline{\mathcal{R}} \cup_{i \in [1, n]} (Q_{i,1}^e \cup \cdots \cup Q_{i,n_i}^e)$, where $Q_i = \overline{\mathcal{R}} Q_{i,1}^e \cup \cdots \cup Q_{i,n_i}^e$ and each $Q_{i,j}^e (j \in [1, n_i])$ is an element query of Q_i under \mathcal{R}. Obviously, Q has bounded output if and only if each element query $Q_{i,j}^e$ has bounded output. Furthermore, by definition, each element query $Q_{i,j}^e$ is a CQ that satisfies \mathcal{R}. Thus, the characterization below is immediate.

Lemma 3.7. For a query $Q(\bar{x})$ in CQ (UCQ, $\exists \overline{\mathcal{R}}^+$) and an access schema \mathcal{R}, $Q(\bar{x})$ has bounded output if and only if for every element query $Q_e(\bar{x}')$ of $Q(\bar{x})$, all (nonconstant) variables in \bar{x}' belong to $\text{cov}(Q_e, \mathcal{R})$.

We are now ready to show the first item in Theorem 3.4, i.e., that BOP is coNP-hard for CQ and is in coNP for $\exists \overline{\mathcal{R}}^+$.

Lower bound. We show that BOP is coNP-hard for CQ by reduction from the complement of the 3SAT problem. The 3SAT problem is to decide, given a propositional formula $\psi = C_1 \land \cdots \land C_r$ defined over variables $X = \{ x_1, \ldots, x_m \}$, whether there exists a truth assignment for X that satisfies ψ. Here for each $i \in [1, r]$, clause C_i is of the form $\ell_1^i \lor \ell_2^i \lor \ell_3^i$, and for each $j \in [1, 3]$, literal ℓ_j^i is either a variable x_i in X or the negation $\neg x_i$ of x_i. It is known that 3SAT is NP-complete (cf. [27]).

Given an instance ψ of 3SAT, we define a relational schema \mathcal{R}, an access schema \mathcal{A}, and a CQ query $Q(w)$ such that $Q(w)$ has bounded output if and only if ψ is false.

(a) The database schema \mathcal{R} contains the following two kinds of relation schemas: (i) $R_{01}(A, R_\psi(B, A_1, A_2), R_\Lambda(B, A_1, A_2)$, and $R_\sigma(A, \bar{A})$, to store constant relations encoding truth values, disjunction, conjunction, and negation of variables, respectively, as shown in Figure 2, and (ii) $R_o(I, X)$ to constrain the output.

(b) The access schema \mathcal{A} contains (i) four constraints to ensure valid instances of Figure 2: $R_{01}(\emptyset \rightarrow A, 2)$, $R_\psi(\emptyset \rightarrow (B, A_1, A_2), 4)$, $R_\Lambda(\emptyset \rightarrow (B, A_1, A_2), 4)$, $R_\sigma(\emptyset \rightarrow (A, \bar{A}), 2)$; intuitively, they constrain the number of tuples in the corresponding instances; and (ii) one access constraint $R_o(I \rightarrow X, 2)$ to bound the output.

(c) The query Q in CQ is defined as follows:

$$Q(w) = \exists \bar{x}, w_1, k \left(Q_c(\bar{x}) \land Q_X(\bar{x}) \land Q_\psi(\bar{x}, w_1) \land R_{01}(w_1) \land R_o(k, 1) \land R_o(k, w_1) \land R_o(k, w) \right),$$

where $Q_c, Q_X, \text{and } Q_\psi$ are in CQ. Query Q_c is to ensure that the instances of $R_{01}, R_o, R_\Lambda, \text{and } R_\sigma$ contain all the tuples shown in Figure 2. For example, to include the two tuples in I_{01}, Q_c contains $R_{01}(0) \land R_{01}(1)$. Together with the constraints of \mathcal{A}, this implies that whenever $Q(\mathcal{D}) \neq \emptyset$ for an instance $\mathcal{D} \models \mathcal{A}, Q_c(\mathcal{D}) = \{ () \}$ and hence \mathcal{D} consists of the instances $I_{01}, I_\psi, I_\Lambda, I_\sigma$ of Figure 2, and a nonempty instance I_o of R_o.

Query $Q_X(\bar{x})$ is to ensure that \bar{x} is a truth assignment of X. From the definition of Q_c and the constraint $R_{01}(\emptyset \rightarrow A, 2)$, $Q_X(\bar{x})$ can be defined as $\land_{1 \leq i \leq m} R_{01}(x_i)$.

Query $Q_\psi(\bar{x}, w_1)$ is defined such that when given a truth assignment μ_X encoded by \bar{x}, it sets $w_1 = 1$ if $\psi(\mu_X)$ is true and sets $w_1 = 0$ otherwise. It is easily verified that Q_ψ can be expressed in CQ by leveraging $R_{01}, R_\psi, R_\Lambda, \text{and } R_\sigma$.

![Fig. 2. Relation instances used in the proof of Theorem 3.4.](image-url)
Finally, consider the subquery $R_o(k, 1) \land R_o(k, w_1) \land R_o(k, w)$. If Q_{ψ} sets $w_1 = 1$, then we know from $R_o(I \rightarrow X, 2) \in \mathcal{A}$ that w can be any value. In contrast, if Q_{ψ} sets $w_1 = 0$, then w can only be 0 or 1. In other words, w is bounded if and only if $w_1 = 0$.

The correctness of the reduction follows from Lemmas 3.6 and 3.7. More specifically, we show that the variable w is constant in every element query $Q_e(w)$ of $Q(w)$ if and only if ψ is not satisfiable. To see this, we need to inspect element queries of $Q(w)$. First, observe that for the subquery $R_0(0) \land R_0(1) \land \bigwedge_{1 \leq i \leq m} R_0(x_i)$ to satisfy $R_0(\theta \rightarrow A, 2)$, every element query Q_e of Q must set each x_i either to 0 or 1. That is, every element query Q_e encodes a truth assignment μ_X of X. Similarly, by the access constraints on R_o, R_1, and R_2 and the presence of Q_e in every element query Q_e, Q_{ψ} correctly evaluates ψ for the truth assignment μ_X encoded in Q_e. Moreover, $R_o(I \rightarrow X, 2)$ cannot be used to put w in $\text{cov}(Q_e, \mathcal{A})$, since the variable k cannot be in $\text{cov}(Q_e, \mathcal{A})$ given the access constraints. However, in Q_e, either $R_o(k, 1)$ and $R_o(k, w)$ co-occur (when $w_1 = 1$) or $R_o(k, 1)$ and $R_o(k, 0)$ co-occur (when $w_1 = 0$). In the latter case, w has become a constant variable; thus, Lemma 3.6 applies and $Q_e(w)$ has bounded output. In the former case, w remains a nonconstant variable that is not in $\text{cov}(Q_e, \mathcal{A})$. Hence, when $w_1 = 1$ is in Q_e, Q_e is not bounded. Thus, $Q_e(w)$ has bounded output if and only if the truth assignment μ_X encoded in Q_e makes ψ false. As a consequence, Q has bounded output if and only if ψ is not satisfiable.

Note that in the reduction above, \mathcal{R} and \mathcal{A} are fixed; i.e., they do not depend on ψ.

Upper bound. We give an NP algorithm to check the complement of BOP for $\exists \mathcal{FO}^*$. From Lemma 3.7, we know that given a query $Q(\bar{x})$ in $\exists \mathcal{FO}^*$, to check whether $Q(\bar{x})$ does not have bounded output, we only need to guess an element query $Q_e(\bar{x'})$ of Q in which there is a variable x in $\bar{x'}$ that does not belong to $\text{cov}(Q_e, \mathcal{A})$. Note that Q is equivalent to a UCQ Q_{ψ}, and an element query $Q_e(\bar{x'})$ of Q is an element query of a disjunct of Q_{ψ}. The NP algorithm thus (i) guesses disjunctions in $Q(\bar{x})$ to obtain a CQ query $Q'(\bar{x})$ and (ii) guesses a valuation ν of Q' to get a candidate element query $\nu(Q')$. It then checks whether $\nu(Q') \models \mathcal{A}$ and whether there exists a variable x such that $x \in \nu(\bar{x})$ but $x \notin \text{cov}(\nu(Q'), \mathcal{A})$. It is easy to show that all element queries can be obtained in this way and that computing $\text{cov}(\nu(Q'), \mathcal{A})$ is in PTIME. If the guesses pass this test, then we have found a counterexample for Q to be of bounded output. Otherwise, we reject the guess. Hence, this algorithm decides whether Q has no bounded output and it is in NP. We can thus conclude that deciding BOP is in coNP for $\exists \mathcal{FO}^*$.

(2) \mathcal{FO}. We next show the second item in Theorem 3.4; i.e., we show that BOP is undecidable for FO queries. We do this by reduction from the complement of the satisfiability problem for FO queries, which is undecidable (cf. [22]). The satisfiability problem for FO is to decide, given an FO query Q, whether there exists a database \mathcal{D} such that $Q(\mathcal{D}) \neq \emptyset$.

Given an FO query Q_1, we construct a relational schema \mathcal{R}, an access schema \mathcal{A}, and an FO query Q such that Q_1 is not satisfiable if and only if Q has bounded output. More specifically, (1) the relational schema \mathcal{R} contains all relation names used by Q_1, and one new unary relation schema $R(X)$; (2) $\mathcal{A} = \emptyset$; and (3) query Q is defined as $Q(x) = R(x) \land Q_1()$. Then Q_1 is not satisfiable if and only if there exists a constant N such that over instances \mathcal{D} of \mathcal{R}, $|Q(\mathcal{D})| \leq N \text{.}$ Indeed, since $R(x)$ is not bounded, $Q(x)$ is bounded only when $Q_1()$ returns empty, i.e., when Q_1 is not satisfiable.

The undecidability remains intact when \mathcal{R} and \mathcal{A} are fixed. Indeed, the satisfiability problem for FO queries over a fixed relational schema is still undecidable. It is verified by reduction from the Post Correspondence Problem, and the reduction uses a database schema consisting of two fixed relation schemas (proof of Theorem 6.3.1 in [1]). Hence, the proof for BOP(FO) remains valid under fixed \mathcal{R} and $\mathcal{A} = \emptyset$.

This concludes the proof of Theorem 3.4. □
Using Lemma 3.2 and Theorem 3.4, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first study VBRP for CQ, UCQ, and $\exists\forall^*\exists\forall^*$, and then for FO.

1. **When \mathcal{L} is CQ, UCQ, or $\exists\forall^*$**: It suffices to show that VBRP is Σ_3^P-hard for CQ, and that VBRP is in Σ_3^P for $\exists\forall^*$.

 Lower bound. We show that VBRP(CQ) is Σ_3^P-hard by reduction from the $\exists\forall^*\exists\forall^*3$CNF problem, which is Σ_3^P-complete [44]. The latter problem is to decide, given a sentence $\phi = \exists X Y Z \psi(X, Y, Z)$, whether ϕ is true, where $X = \{x_1, \ldots, x_m\}$, $Y = \{y_1, \ldots, y_n\}$, $Z = \{z_1, \ldots, z_\rho\}$, and ψ is a 3SAT instance. Assume w.l.o.g. that $m \geq 2$.

 Given an instance $\phi = \exists X Y Z \psi(X, Y, Z)$, we define a relational schema \mathcal{R}, an access schema \mathcal{A}, a CQ query Q, a set \mathcal{V} of CQ views, and a natural number M, such that Q has an M-bounded rewriting in CQ using \mathcal{V} under \mathcal{A} if and only if ϕ is true.

 (1) The relational schema \mathcal{R} consists of the following relation schemas: (a) $R_{01}(A)$, $R_Y(B, A_1, A_2)$, $R_\lambda(B, A_1, A_2)$, and $R_\neg(A, \bar{A})$ are to encode the Boolean domain and operations, which we have seen in the proof of Theorem 3.4, with intended instances shown in Figure 2; (b) $R_Y(I_1, I_2, Y)$ is to store one truth assignment of Y; (c) $R_o(I, Y)$ is to store a particular tuple, which the query plans can check only via fetch operations; and (d) $R_I(I, K)$ is to store the keys for the relation R_o.

 (2) The access schema \mathcal{A} consists of (a) four access constraints, similar to those used in the proof of Theorem 3.4, to ensure that R_{01}, R_Y, R_λ, and R_\neg encode the Boolean domain and relations: $R_{01}(0 \rightarrow A, 2), R_Y(A_1 \rightarrow (A_2, B), 2), R_\lambda((A_1, A_2) \rightarrow B, 1)$, and $R_\neg(A \rightarrow \bar{A}, 1)$; (b) an access constraint $R_Y(I_1, I_2) \rightarrow Y, 1$ to ensure that we only handle one truth assignment of Y at a time; and (c) two access constraints $R_o(I \rightarrow Y, 1)$ and $R_I(I \rightarrow K, 1)$ for R_o and R_I, respectively, stating that I is a key for R_o and R_I.

 It should be noted that the access constraints for R_Y and R_λ are different. In R_Y, we require that when the values corresponding to A_1 are bounded, the values corresponding to A_2 and B are bounded. In R_λ, we require that only when both of the values corresponding to A_1 and A_2 are bounded are the values corresponding to B bounded. As will be elaborated shortly, this subtle difference is important for our construction.

 (3) The query Q in CQ is defined as follows:

 $$Q() = \exists \bar{y}, k \left[Q_c() \land Q_Y(\bar{y}) \land \left(\bigwedge_{1 \leq j \leq n} R_Y(j, 1, y_j) \right) \land R_I(y_1, k) \land R_o(k, 1) \right].$$

 Here Q_c is the same CQ as its counterpart given in the proof of Theorem 3.4, to ensure that the instances of R_{01}, R_Y, R_λ, and R_\neg contain all the tuples shown in Figure 2. Query $Q_Y(\bar{y})$ is defined as $\bigwedge_{1 \leq i \leq n} R_{01}(y_i)$. It is easy to see that for all $\mathcal{D} \models \mathcal{A}$, if $Q(\mathcal{D}) \neq \emptyset$, then the tuples in \mathcal{D} corresponding to R_Y encode a valid truth assignment of Y.

 (4) The set \mathcal{V} of CQ views consists of a single view V:

 $$V(x, k) = \exists w, x', \bar{y}, \bar{z} \left[Q_c() \land Q_2(w, x, x') \land Q_3(w, y, \bar{z}) \land Q_4(y, w, k) \land Q_5(x, w) \land Q_\psi(x', \bar{y}, \bar{z}, 1) \right].$$

 Intuitively, the view is defined in such a way that if a query plan $\bar{\xi}$ that uses V does not "fix" the values of x, then $\bar{\xi}$ will not conform to \mathcal{A}, since the values that k can take will not be bounded. Here, by fixing values, we mean that V appears in the query plan in the form of $\sigma_{X = \bar{\xi}}(V)$, where X are the attributes corresponding to x and $\bar{\xi}$ is a constant tuple. Furthermore, we will see that $\bar{\xi}$ must consist of Boolean values for $\sigma_{X = \bar{\xi}}(V)$ to be of use for answering Q. In other words, $\bar{\xi}$ encodes a truth assignment of X.

ACM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.
To construct \(V \) in this way, we separate the values of \(\bar{x} \) from \(k \) by using a new copy \(\bar{x}' \) of \(\bar{x} \), which are used in the component queries of \(V \). Moreover, we link the possible values for \(k \) to those of a variable \(y_1 \), and connect the possible values of \(y_1 \) to the values that variable \(w \) can take. The latter is shown to be unbounded when \(\bar{x} \) is not fixed. Hence, when \(\bar{x} \) is not fixed, \(k \) will be unbounded.

We next show how this is achieved by detailing each of the subqueries in \(V \).

(a) Query \(Q_c() \) is the same as the one in \(Q \) (see the proof of Theorem 3.4 for details).

(b) We define \(Q_2(w, \bar{x}, \bar{x}') = \bigwedge_{1 \leq i \leq m} R_\land(x'_i, w, x_i) \). It is to ensure that if the values of \(\bar{x} \) are Boolean, then \(\bar{x}' \) and \(\bar{x} \) take the same values. By inspecting instance \(I_\land \) of \(R_\land \) (shown in Figure 2), this only holds when \(w = 1 \). Indeed, if \(w = 1 \), by the access constraint on \(R_\land \) and the presence of \(Q_c() \) in \(V \), we have that for any \(\mathcal{D} \models \mathcal{A} \), if \(Q_c(\mathcal{D}) \neq \emptyset \), then \(\sigma_{A=1}(Q_c(\mathcal{D})) \) consists of tuples of the form \((1, \bar{x}, \bar{x})\), provided that \(\bar{x} \) takes Boolean values. Here \(A \) denotes the first attribute in the result schema of \(Q_2 \). When either \(w = 0 \) or \(w \) and \(\bar{x} \) do not take Boolean values, the access constraint on \(R_\land \) only imposes a cardinality restriction, and the values in \(\bar{x}' \) and \(\bar{x} \) are not necessarily the same.

(c) We define \(Q_3(w, \bar{y}, \bar{z}) = \exists \bar{x}' \bar{x}' (\bigwedge_{1 \leq k \leq n} R_\lor(y'_k, w, y_k) \land \bigwedge_{1 \leq k \leq n} R_\lor(z'_k, w, z_k)) \).

This query is to ensure that if \(w = 0 \) or \(w = 1 \), then the values of \(\bar{y} \) and \(\bar{z} \) must be Boolean values as well. As before, this is due to the presence of \(R_\lor(A_1 \rightarrow (A_2, B), 2) \) and \(Q_c() \). In other words, for any \(\mathcal{D} \models \mathcal{A} \) such that \(Q_c(\mathcal{D}) \neq \emptyset \), \(\sigma_{A=1}(Q_3(\mathcal{D})) \) consists of tuples of the form \((0,1, \bar{y}, \bar{z})\). \(\bar{y} \) and \(\bar{z} \) are tuples of Boolean values, and \(A \) denotes the first attribute in the result schema of \(Q_3 \). If \(w \) can take arbitrary values, however, then the values for \(\bar{y} \) and \(\bar{z} \) are not constrained.

(d) We define \(Q_4(\bar{y}, w, k) = \bigwedge_{1 \leq j \leq n} R_\land(y_j, w, y_j) \land R_\land(k_1, k) \).

This is to fetch the truth assignment of \(Y \) and the value of \(k \). Since the \(\bar{y} \) values have to agree with their counterparts in \(Q_3 \), as argued before for \(Q_3 \), these values will be Boolean only when \(w = 0 \) or \(w = 1 \). Thus, only in these cases, \(Q_4(\mathcal{D}) \neq \emptyset \) implies that a truth assignment of \(Y \) is embedded in \(\mathcal{D} \).

(e) Query \(Q_\psi(x', \bar{y}, \bar{z}, 1) \) is to check whether \(\psi \) is true given the values \(x', \bar{y}, \) and \(\bar{z} \). It makes use of \(R_{01}, R_\lor, R_\land, \) and \(R_\land \), and is expressed in CQ (see the proof of Theorem 3.4). It is only when \(x', \bar{y}, \) and \(\bar{z} \) take Boolean values that this query correctly encodes \(\psi \).

(f) The last query \(Q_5(x, w) \) is to ensure that if \(V(x, k) \) is used in a query plan for \(Q \) and conforms to \(\mathcal{A} \), then it can only be used when all variables in \(\bar{x} \) are assigned a constant Boolean value. Furthermore, when this is the case, \(w \) must be 1. As described above, this implies that \(\bar{x}' = \bar{x} \), \(\bar{y} \), and \(\bar{z} \) take Boolean values, and \(Q_\psi \) correctly evaluates \(\psi \). It is to encode this that we make use of the difference of the access constraints on \(R_\lor \) and \(R_\land \). Intuitively, the constraint on \(R_\land \) is used to check whether each variable in \(\bar{x} \) takes a constant value, since it only takes the attribute \(A_1 \) as input. In contrast, since the access constraint on \(R_\land \) takes both \(A_1 \) and \(A_2 \) as input, we use it to encode the conjunction of the results of checking each variable in \(\bar{x} \). Query \(Q_5 \) encodes the tautology \(\bigwedge_{1 \leq k \leq m} (x_k \lor x_k''') \lor \neg x_k''') \). That is,

\[
Q_5(\bar{x}, w) = \exists \bar{v}'', \bar{v}', \bar{v}'', \bar{v}'''' \left(\bigwedge_{1 \leq k \leq m} (R_\lor(v_k, x_k, x_k'') \land R_\lor(v_k'', v_k, v_k') \land \neg (x_k''', v_k')) \right)
\]

\[
\land R_\land(v_k'', v_k', v_k''') \land \left(\bigwedge_{2 \leq k \leq m} R_\land(v_k'''', v_k'''', v_k'''') \right) \land R_\land(w, v_m'''', v_m''')
\].

In particular, it encodes the truth value of the tautology in \(w \). Hence, when all variables involved are Boolean, we necessarily have that \(w = 1 \). We argue next that when considering query plans for \(Q \) that involve \(V(x, k) \), we must call \(Q_3(\bar{x}, w) \) with Boolean values for the variables in \(\bar{x} \).
Indeed, first consider $\mathcal{D} \models \mathcal{A}$ such that $Q_c(\mathcal{D}) \neq \emptyset$ and consider $\sigma_{\chi = \mu_X}(Q_5(\mathcal{D}))$, where X consists of attributes corresponding to χ, and μ_X is a truth assignment of X. In this case, the access constraint $R_v(A_1 \rightarrow (A_2, B), 2)$ ensures that all the values of $\bar{x''}$, \bar{v}, \bar{v}'', and \bar{v}''' are Boolean. Similarly, $R_v((A_1, A_2) \rightarrow B, 1$) ensures that all values of \bar{v}'''' are Boolean. Moreover, by $Q_c(\mathcal{D}) \neq \emptyset$, the Boolean operations are correctly encoded in \mathcal{D}. Hence, Q_5 correctly evaluates the tautology $\bigwedge_{1 \leq k \leq m}(x_k \lor x_k'' \lor \neg x_k''')$ and assigns $w = 1$. In other words, when all \bar{x} values are fixed Boolean values in Q_5, all previous queries in V work as desired as these required Boolean values for \bar{x} and $w = 1$.

Suppose next that we still fix all \bar{x} values, but not all of them take Boolean values. In this case, Q_5 requires the existence of certain tuples in the instances of $R_v, R_h,$ or R_s that are not required by Q. That is, there exists $\mathcal{D} \models \mathcal{A}$ for which $Q(\mathcal{D}) \neq \emptyset$ but $Q_5(\mathcal{D}) = \emptyset$ (and thus $V(\mathcal{D}) = \emptyset$). Clearly, using V in this way does not help us answer Q. Hence, when all variables in \bar{x} are fixed, we may assume that these values are Boolean.

It remains to rule out the case when some variables in \bar{x} are not fixed. Suppose that we set all variables in \bar{x} to a Boolean value, except for x_1. Let $X' = X \setminus \{x_1\}$ and consider an instance $\mathcal{D} \models \mathcal{A}$ and $\sigma_{X' = \mu_{X'}}(Q_5(\mathcal{D}))$ for some truth assignment $\mu_{X'}$ of X'. Clearly, the query result contains tuples of the form $(a, \mu_{X'}, w)$ for constants a and w. Since a can be arbitrary, access constraint $R_v(A_1 \rightarrow (A_2, B), 2)$ only implies that at most two tuples s and t in \mathcal{D} exist and are associated to R_v such that $s[A_1] = \mu[A_1] = a$. However, it does not impose any restrictions on the other values in these two tuples. These values can thus be non-Boolean. Similarly, $R_v(A \rightarrow A, 1)$ does not impose value restrictions (except for a cardinality constraint) when $R_v(x''', v'')$ can bind x''' and v'' with arbitrary values. The same holds for $R_v((A_1, A_2) \rightarrow B, 1)$ and $R_h(v''', v', v''')$. Although v'' takes only Boolean values (recall that we fixed x_2 to a Boolean value), v''' can be arbitrary and so can be v'''. A similar argument shows that all v'''' can be arbitrary and so can be w. It should be noted that w can take an arbitrary value for any possible binding of x_1 to the underlying database. Hence, $\sigma_{X' = \mu_{X'}}(Q_5)$ does not have bounded output.

For example, for $\bar{x} = (x_1, x_2)$, $Q_5(\bar{x}, w) = \exists x''', x'', v_1, v_2, v', v''', v'''' \in R_v(v_1, x_1) \land R_v(v_2, x_2) \land R_h(w, v''')$. When $x_1 = 1$ and x_2 is not fixed, we can verify that w is unbounded as follows. We insert the following tuples into the instance \mathcal{D} of \mathcal{R}: we add tuples $(a_1, a_1, a_1), \ldots, (a_n, a_n, a_n)$ to I_v, $(a_1, a_1), \ldots, (a_n, a_n)$ to I_h, and $(a_1, 1, a_1), \ldots, (a_n, 1, a_n)$ to I_h. Note that we still have that $\mathcal{D} \models \mathcal{A}$ and, moreover, $\{(a_1, a_1), \ldots, (a_n, a_n)\} \subseteq Q_5(\mathcal{D})$. Hence, the possible values of w are unbounded. Along the same lines, one can see that $\sigma_{X' = \mu_{X'}}(V)$ does not have bounded output either and hence cannot be used in a query plan that conforms to \mathcal{A}. Indeed, this readily follows from Q_4, which now can bind y_1 with arbitrary values since $R_y(1, w, y_1)$ can be mapped to various tuples with distinct w-values; similarly, $R_y(y_1, k)$ can be mapped to various tuples, resulting in an unbounded number of k values.

In summary, Q_5 ensures that whenever V appears in a query plan that conforms to \mathcal{A}, it must have all of its \bar{x} values fixed to some Boolean values.

(5) We set $M = 6$; i.e., we only allow query plan trees with at most six nodes.

To show the correctness of the reduction, we first argue that if Q has an M-bounded rewriting using V under \mathcal{A}, then this rewriting can only be of a very specific form. Indeed, since $Q(\mathcal{D})$ depends on the instance \mathcal{D} (i.e., for some $\mathcal{D}, Q(\mathcal{D}) = \emptyset$, while for others $Q(\mathcal{D}) \neq \emptyset$), the query plan ξ cannot be one of the two trivial plans that always return \emptyset or \emptyset. Suppose that the query plan does not use V; then the query plan can only access the database via fetch operations. However, since Q uses all seven relation atoms in \mathcal{R}, the query plan must contain at least seven fetch operations, which exceed the bound M. Therefore, the query plan has to use V. Furthermore, since V does not
contain \(R_0 \), whereas \(Q(\mathcal{D}) \) depends on the tuples in \(\mathcal{D} \) corresponding to \(R_0 \), the plan \(\xi \) needs to fetch data from \(R_0 \). Consider such a fetch operation \(\text{fetch}(I \in S_j, R_0, Y) \). We distinguish between the following two cases: (i) \(S_j \) is equal to a constant \(c \) or (ii) \(S_j \) is the result of some more complex query plan. Note that case (i) is not helpful for answering \(Q \) as the value \(k \) used in the atom \(R_0(k, 1) \) in \(Q \) is arbitrary and may thus be distinct from the constant \(c \). We can thus assume that we are in case (ii). Moreover, the atom \(R_0(k, 1) \) in \(Q \) asks for a tuple with its second attribute to be set to 1. This requirement needs to be encoded in plan \(\xi \) as well, e.g., by means of a constant selection condition \(\sigma_{Y=1} \). This selection must occur after the fetch operation. Observe also that since \(Q \) is Boolean, whereas the fetch operation, the constant selection, and \(V \) are not, \(\xi \) must contain a projection of the form \(\pi_{\emptyset} \). This projection clearly must come after the selection operation in \(\xi \). From this we know that \(\text{fetch}(I \in S_j, R_0, Y) \) has at least one selection and projection as an ancestor in the query plan tree.

We next analyze the query plan \(\xi_j \) for \(S_j \). Consider two options: (a) \(S_j \) takes \(V \) as a descendant in the query plan tree, and (b) \(S_j \) does not have \(V \) as a descendant.

In case (a), the plan \(\xi_j \) for \(S_j \) must contain a projection \(\pi_A \) so that \(S_j \) is unary. Indeed, recall that \(R_0 \) is binary and the access constraint takes the first attribute of \(R_0 \) as input, while \(V \) is not unary. Moreover, as argued above, the only way that \(V \) can be used in \(\xi_j \) that conforms to \(\mathcal{A} \) is when it occurs as \(\sigma_{X=\mu_X^0}(V) \); i.e., all its \(\bar{x} \)-values are fixed Boolean values by means of a truth assignment \(\mu_X^0 \) of \(X \). This selection condition needs to be accounted for in \(\xi_j \). Note also that this constant selection should not be expanded to include the last attribute in \(V \). Indeed, this would make \(S_i \) equal to a constant (case (i) above), which is not helpful in answering \(Q \). From this we know that \(\text{fetch}(I \in S_j, R_0, Y) \) has at least \(V \), a selection, and a projection as descendants. Put together with our earlier observation, these account for the six possible nodes in \(\xi_j \). In fact, this completely fixes possible query plans. Indeed, the plan \(\xi_j \) must be of the form \(S_1 = \pi_{\emptyset}(S_2), S_2 = \sigma_{Y=1}(S_3), S_3 = \text{fetch}(I \in S_4, R_0, Y), S_4 = \pi_A(S_5), S_5 = \sigma_{X=\mu_X^0}(S_6), \) and \(S_6 = V \), for some truth assignment \(\mu_X^0 \) of \(X \). Furthermore, as argued above, \(S_4 \) should not just be a constant value, and the projection \(\pi_A \) should be imposed on the last attribute of \(V \) (the other ones are fixed by means of the selection condition in \(S_3 \)).

In case (b), observe that the overall query plan must use \(V \). Here this implies that \(V \) must occur in a subtree of the query plan different from the subtree rooted at \(\text{fetch}(I \in S_j, R_0, Y) \). At least one node is required to glue these subtrees together. For the query plan \(\xi_j \) for \(S_j \), since \(S_j \) is not equal to a constant, we still need to distinguish the following two cases: (b1) \(S_j \) is \(\text{fetch}(\emptyset, R_0, A) \), i.e., the only possible query plan of size 1 that does not use \(V \), and (b2) the size of the query plan \(\xi_j \) for \(S_j \) is at least 2. For case (b1), similar to case (i) above, we can show that it is not helpful for answering \(Q \). Then we only need to consider case (b2). However, we have at least two nodes in the query plan tree for \(S_j \), one for \(V \), and at least one to glue the subtrees together (as argued above), accounting for four nodes. Combined with the (minimal) three nodes needed for \(\text{fetch}(I \in S_j, R_0, Y) \) and its ancestors, this results in a query plan of at least seven nodes, exceeding the bound \(M = 6 \). Hence, case (b2) cannot occur.

As a consequence, the only possible query plans are of the form as given in case (a).

We can thus conclude that if \(Q \) has a 6-bounded query plan \(\xi \) in CQ using \(V \) under \(\mathcal{A} \), then \(\xi \) is \(\mathcal{A} \)-equivalent to \(Q'_{\mu_X^0} = \pi_{\emptyset}(\sigma_{X=\mu_X^0}(V(\bar{x}, k)) \bowtie R_0(k, 1)) \) for some truth assignment \(\mu_X^0 \) of \(X \). We next show that \(Q \equiv \mathcal{A} Q'_{\mu_X^0} \) for some \(\mu_X^0 \) if and only if \(\phi \) is true. For convenience, we express \(Q'_{\mu_X^0} \) as CQ \(Q'_{\mu_X^0} = \exists k (V(\mu_X^0, k) \land R_0(k, 1)) \).

(\(\Leftarrow\)) Suppose that \(\phi \) is true and let \(\mu_X^0 \) be a truth assignment of \(X \) such that \(\forall Y \exists Z \psi(\mu_X^0, Y, Z) = \text{true} \). Consider \(Q'_{\mu_X^0} = \exists k (V(\mu_X^0, k) \land R_0(k, 1)) \) and its unfolding:
\[\exists k \left(\exists w, x', \bar{g}, \bar{z} \left(Q_c() \land \bigwedge_{1 \leq k \leq m} R_A(x_i', w, \mu_X^0(x_i)) \land \exists y', \bar{z}' \left(\bigwedge_{1 \leq k \leq n} R_V(y_i', w, y_k) \land \bigwedge_{1 \leq k \leq p} R_V(z_i', w, z_k) \right) \right) \right. \]
\[\left. \land \bigwedge_{1 \leq j \leq n} R_Y(j, w, y_j) \right) \land R_I(y_1, k) \land Q_\psi(x', \bar{g}, \bar{z}, 1) \right) \land R_o(k, 1) \right). \]

Since \(\mu_X^0 \) is a truth assignment of \(X \), \(Q_\psi(\mu_X^0, w) \) will assign \(w = 1 \). As a consequence, \(x' = \mu_X^0, \bar{g}, \) and \(\bar{z} \) take Boolean values, and the unfolding of \(Q'_{\psi} \) is \(\mathcal{A} \)-equivalent to

\[\exists k \left(\bar{y}, \bar{z} \left(Q_c() \land Q_Y(\bar{y}) \land Q_Z(\bar{z}) \land \left(\bigwedge_{1 \leq j \leq n} R_Y(j, 1, y_j) \right) \land R_I(y_1, k) \land Q_\psi(\mu_X^0, \bar{y}, \bar{z}, 1) \right) \land R_o(k, 1) \right), \]

where \(Q_Y(\bar{y}) \) and \(Q_Z(\bar{z}) \) encode that \(\bar{y} \) and \(\bar{z} \) take Boolean values, just as in \(Q \).

Consider an instance \(\mathcal{D} \models \mathcal{A} \) such that \(Q(\mathcal{D}) \neq \emptyset \). As remarked earlier, this implies that the tuples in \(\mathcal{D} \) corresponding to \(R_Y \) encode a truth assignment \(\mu_Y \) of \(Y \). Moreover, tuples \((\mu_Y(y_1), k) \) and \((k, 1) \) are present in \(\mathcal{D} \) (for relations \(R_I \) and \(R_o \), respectively). Hence, if \(Q(\mathcal{D}) \neq \emptyset \), then \(Q'_{\psi}(\mathcal{D}) \neq \emptyset \) if and only if \(\exists \bar{y} Q_\psi(\mu_X^0, \mu_Y, \bar{z}, 1) \) evaluates to true. Since \(\forall Y \exists Z Q_\psi(\mu_X^0, Y, Z) \) is true, we know that \(\exists Z Q_\psi(\mu_X^0, \mu_Y, Z) \) is true. Hence, \(Q(\mathcal{D}) \neq \emptyset \) implies that \(Q'_{\psi}(\mathcal{D}) \neq \emptyset \). In other words, \(Q \equiv_{\mathcal{A}} Q'_{\psi} \). For the converse, \(Q'_{\psi} \equiv_{\mathcal{A}} Q \), note that if \(Q(\mathcal{D}) = \emptyset \), then so is \(Q'_{\psi}(\mathcal{D}) \). Indeed, the query shown in (\(\Rightarrow \)) is just like \(Q \) but with some additional restrictions (\(Q_Z(\bar{z}) \) and \(Q_\psi(\mu_X^0, \bar{y}, \bar{z}, 1) \)). Hence, we can conclude that \(Q \equiv_{\mathcal{A}} Q'_{\psi} \), and thus \(Q \) has a 6-bounded query rewriting using \(V \) under \(\mathcal{A} \).

(\(\Rightarrow \)) Suppose that \(\phi \) is false, but by contradiction \(Q \) has a 6-bounded rewriting \(\xi \) using \(V \) under \(\mathcal{A} \). As argued above, \(\xi \equiv_{\mathcal{A}} Q'_{\psi} \), for some truth assignment \(\mu_X^0 \) of \(X \). Since \(\phi \) is false, there must exist a truth assignment \(\mu_Y^0 \) of \(Y \) such that \(\exists Z Q_\psi(\mu_X^0, \mu_Y^0, Z) \) is false. Let \(\mathcal{D} \) be an instance of \(\mathcal{R} \) such that \(\mathcal{D} \models \mathcal{A}, Q(\mathcal{D}) \neq \emptyset \), and the tuples in \(\mathcal{D} \) corresponding to \(R_Y \) encode \(\mu_Y^0 \). By \(\exists Z Q_\psi(\mu_X^0, \mu_Y^0, Z) = \emptyset, Q_\psi(\mu_X^0, \mu_Y^0, \bar{z}, 1)(\mathcal{D}) = \emptyset \). Then \(Q'_{\psi}(\mathcal{D}) = \emptyset \), and hence, \(Q \equiv_{\mathcal{A}} Q'_{\psi} \). Since this argument works for any truth assignment \(\mu_X \) of \(X \), \(Q \) is not \(\mathcal{A} \)-equivalent to any \(Q'_{\psi} \) for \(\mu_X \) of \(X \). As these are the only possible 6-bounded rewritings, \(Q \) does not have a 6-bounded rewriting using \(V \) under \(\mathcal{A} \).

Upper bound. We next provide an \(\Sigma_3^P \) algorithm for VBRP(\(\exists FO' \)), as follows:

1. Guess a query plan \(\xi \) such that \(|\xi| \leq M \).
2. Check whether \(\xi \) conforms to \(\mathcal{A} \); if not, then reject the guess; otherwise, continue.
3. Rewrite \(\xi \) into a query \(Q' \) in \(\exists FO' \) by substituting the view definition for each view used in \(\xi \).
4. Check whether \(Q' \equiv_{\mathcal{A}} Q \). If so, then return true; otherwise, reject the guess.

It is easy to see the correctness of the algorithm. For its complexity, we will show that step (2) can be done in \(p^{NP} \). Moreover, step (3) can be done in PTIME since \(\xi \) is a tree, and \(|Q'| \) is bounded by \(O(|\xi| \cdot |V|) \). Step (4) requires checking whether \(Q' \equiv_{\mathcal{A}} Q \). This was shown to be in \(\Pi_2^P \) (Lemma 3.2). Putting these together, the algorithm is in \(\Sigma_3^P \). This concludes the proof of the first item in Theorem 3.1, modulo the proof that step (2) can be done in \(p^{NP} \). This is shown below.

It should be remarked that the nondeterministic algorithm given above just aims to prove the upper bound of VBRP(\(\exists FO' \)). More practical algorithms for bounded rewriting using views can
be developed along the same lines as the bounded plan generation algorithm of [11], possibly collaborating with a DBMS optimizer.

To finish the proof of the first item in Theorem 3.1, we show that step (2) can be done in p^{NP}.

Lemma 3.8. Given a query plan ξ, it is in p^{NP} to decide whether ξ conforms to \mathcal{A}.

Proof. To check whether ξ conforms to \mathcal{A}, it suffices to verify that for each fetch($X \in S_j, R, Y$) operation in ξ, the following conditions hold: (a) there exists an access constraint $R(X \rightarrow Y', N)$ in \mathcal{A} such that $Y \subseteq X \cup Y'$, and (b) there exists a constant N_1 such that for all instances D of \mathcal{R} that satisfy \mathcal{A}, $|S_j| \leq N_1$ in the computation of $\xi(D)$.

For each fetch($X \in S_j, R, Y$) operation, it is in PTIME to check condition (a). We use the following algorithm to check condition (b). Let ξ' be the subtree of ξ rooted at S_j:

1. Express ξ' as an equivalent query Q_j in $\exists FO^\ast$.
2. Unfold Q_j by replacing each view with its definition, yielding Q_j' in $\exists FO^\ast$.
3. Check whether Q_j' has bounded output; if so, return true; otherwise, return false.

The correctness of the algorithm is immediate. For its complexity, observe that steps (1) and (2) are in PTIME, and step (3) is in coNP by Theorem 3.4. Since there are at most $O(|\xi|)$ fetch operations in ξ, the algorithm is in b^{NP}. This concludes the proof of Lemma 3.8. □

2 When \mathcal{L} is FO. We next show the second item in Theorem 3.1, i.e., that VBRP is undecidable for FO queries. We do this by reduction from the complement of the satisfiability problem for FO queries, just like BOP for FO (see the proof of Theorem 3.4 for the satisfiability problem).

Given an FO query Q_1, we construct a relational schema \mathcal{R}, an access schema \mathcal{A}, an FO query Q, a set V of FO views, and a natural number M, such that Q has an M-bounded rewriting in FO using V under \mathcal{A} if and only if there exists no database D such that $Q_1(D) \neq \emptyset$. More specifically, (1) \mathcal{R} contains all relation names used by Q_1 and one new unary relation schema $R(X)$; (2) $\mathcal{A} = \emptyset$; (3) $Q(x) = R(x) \land Q_1()$—these are the same as their counterparts in the proof of Theorem 3.4; (4) $V = \emptyset$; and (5) $M = 1$.

Since $V = \emptyset$, $\mathcal{A} = \emptyset$, and $M = 1$, the only possible 1-bounded rewritings of Q are the constant query Q_0, which returns \emptyset on all databases, or Q_c for some constant c, which returns $\{(c)\}$ on all databases. If the query plan is Q_0, then for all instances D of \mathcal{R}, we have that $Q_c(D) = \{(c)\}$. Then we can construct a database D_1 such that the instance of relation schema R does not contain the constant c. However, by the definition of Q, we know that $(c) \notin Q(D_1)$, which is a contradiction. Hence, the only possible 1-bounded rewriting of Q is Q_0. It is easy to verify that $Q(x) \equiv_\mathcal{A} Q_0$ if and only if $Q(x) \equiv Q_0$ if and only if for any instance D of \mathcal{R}, $Q_1(D) = \emptyset$, i.e., when Q_1 is not satisfiable.

This concludes the proof of Theorem 3.1. □

3.2 The Impact of Various Parameters

One might think that fixing some parameters of VBRP would simplify the analysis. As will be seen in Section 4, in practice, we often have predefined database schema \mathcal{R}, access schema \mathcal{A}, bound M, and views V, while queries and instances of \mathcal{R} vary.

Unfortunately, fixing $\mathcal{R}, \mathcal{A}, M$, and V does not simplify the analysis of VBRP for FO.

Corollary 3.9. There exist fixed $\mathcal{R}, \mathcal{A}, M$, and V such that it is undecidable to decide whether an FO query Q has an M-bounded rewriting in FO using V under \mathcal{A}.

Proof. Recall that VBRP(FO) is shown undecidable by reduction from the complement of the satisfiability problem for FO (see the proof of Theorem 3.1), using fixed $V = \emptyset$, $\mathcal{A} = \emptyset$, and $M = 1$. As argued in the proof of Theorem 3.4, the reduction remains valid when \mathcal{R} is also fixed. From this, Corollary 3.9 follows. □
We now study the impact of parameters on VBRP for CQ, UCQ, and \(\exists FO \). Our main conclusion is that fixing \(\mathcal{R}, \mathcal{A}, \) and \(M \) does not simplify the analysis of VBRP. When the set \(\mathcal{V} \) of views is also fixed, VBRP is simpler for these positive queries, to an extent.

Fixing \(\mathcal{R}, \mathcal{A}, \) and \(M \). Fixing database schema, access schema, and plan size does not help us. Indeed, the \(\Sigma_3^p \) lower bound for CQ is verified by using fixed \(\mathcal{R}, \mathcal{A}, \) and \(M \) (Theorem 3.1). From this, the corollary below follows.

Corollary 3.10. There exist fixed \(\mathcal{R}, \mathcal{A}, \) and \(M \) such that it is \(\Sigma_3^p \) complete to decide, given a query \(Q \) in \(L \) and a set \(\mathcal{V} \) of \(L \)-definable views over \(\mathcal{R} \), whether \(Q \) has an \(M \)-bounded rewriting in \(L \) using \(\mathcal{V} \) under \(\mathcal{A} \) when \(L \) is one of CQ, UCQ, and \(\exists FO \).

Fixing \(\mathcal{R}, \mathcal{A}, M, \) and \(\mathcal{V} \). Suppose that besides \(\mathcal{R}, \mathcal{A}, \) and \(M \), the set \(\mathcal{V} \) of views is also fixed. This puts VBRP in \(C_{2k+1}^p \) for CQ, UCQ, and \(\exists FO \), where \(C_{2k+1}^p \) is the complexity class defined as \(\text{coNP} \cup \bigvee_{i=1}^{k} (\text{NP} \land \text{coNP}) \) \cite{47}. Here \(\text{NP} \land \text{coNP} \) is also known as \(D^p \), where a language \(L' \) is in \(D^p \) if and only if there exist two languages \(L'_1, L'_2 \) in \(\text{NP} \) and \(\text{coNP} \) such that \(L' = L'_1 \cap L'_2 \). A language \(L' \) is in \(C_1 \vee C_2 \) for complexity classes \(C_1 \) and \(C_2 \) if there exist two languages \(L'_1, L'_2 \) in \(C_1 \) and \(C_2 \) such that \(L' = L'_1 \cup L'_2 \). Hence, \(C_{2k+1}^p \) consists of languages that can be written as the union of \(k \) \(D^p \) languages and a \(\text{coNP} \) language. It resides in the Boolean \(\text{NP} \)-hierarchy and is contained in \(\Delta_2^p = \text{P}^{\text{NP}} \).

Note that the membership of VBRP in \(C_{2k+1}^p \), when \(\mathcal{R}, \mathcal{A}, M, \) and \(\mathcal{V} \) are fixed, provides an interesting insight. It reveals how \(\text{NP} \) and \(\text{coNP} \) oracles can be combined to decide VBRP. By contrast, if only an \(\Delta_2^p \) upper bound had been provided, one could only get that polynomially many calls to \(\text{NP} \) oracles suffice to decide VBRP.

Theorem 3.11. For each natural number \(k \), there exist fixed \(\mathcal{R}, \mathcal{A}, M, \mathcal{V} \) such that it is \(C_{2k+1}^p \) complete to decide, given a query \(Q \) in \(L \) over \(\mathcal{R} \), whether \(Q \) has an \(M \)-bounded rewriting in \(L \) using \(\mathcal{V} \) under \(\mathcal{A} \), when \(L \) is CQ, UCQ, or \(\exists FO \).

To show Theorem 3.11, we need some notations, which will also be used in Section 4.

(a) For a query \(Q \), denote by \(\text{QP}_Q \) the set of all candidate query plans using \(\mathcal{V} \) that are no larger than \(M \) (see Section 2).

(b) For \(\xi \in \text{QP}_Q \), we write \(\xi \in \mathcal{A} Q \) if \(Q_\xi \in \mathcal{A} Q \), where \(Q_\xi \) denotes the query expressed by \(\xi \) (see Section 2); similarly, we write \(Q \in \mathcal{A} \xi \) if \(\xi \in \mathcal{A} Q \), and \(\xi \in \mathcal{A} \xi' \) for \(\xi' \in \text{QP}_Q \) if \(Q_\xi \in \mathcal{A} Q_{\xi'} \). We write \(\xi \in \mathcal{A} \xi' \) if \(\xi \in \mathcal{A} \xi' \) and \(\xi' \in \mathcal{A} \xi \), and \(\xi \in \mathcal{A} \xi' \) if \(\xi \in \mathcal{A} \xi' \) but \(\xi \not\in \mathcal{A} \xi' \).

Proof. We show that VBRP is \(C_{2k+1}^p \) hard for CQ and in \(C_{2k+1}^p \) for \(\exists FO \) in this setting.

Lower bound. The lower-bound proof is based on a characterization of \(C_{2k+1}^p \) given in \cite{47} stated as follows: a language \(L \) is in \(C_{2k+1}^p \) if and only if there exist \(2k+1 \) languages \(L_0, L_1, \ldots, L_{2k} \), each of which is in \(\text{NP} \), such that \(L_0 \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_{2k} \) and \(L = L_0 \cup \bigcup_{i=1}^{k} (L_{2i-1} \cap L_{2i}) \). We show that every such language can be reduced to an instance of VBRP(CQ), establishing hereby its \(C_{2k+1}^p \)-hardness.

To start the reduction, take any \(L \) in \(C_{2k+1}^p \) and write it as \(L_0 \cup \bigcup_{i=1}^{k} (L_{2i-1} \cap L_{2i}) \). Since for each \(i \in [0, 2k] \), \(L_i \) is in \(\text{NP} \), we have reductions \(f_i \) from \(L_i \) to 3SAT. In other words, for each string \(\tilde{\sigma} \in \Sigma^*, \tilde{\sigma} \in L_i \) if and only if \(f_i(\tilde{\sigma}) \) is a satisfiable 3SAT instance. Note that \(L_i \supseteq L_{i+1} \) implies that whenever \(f_{i+1}(\tilde{\sigma}) \) is satisfiable, then so is \(f_i(\tilde{\sigma}) \). We use this in the proof below to ensure that only \(k+1 \) possible query plans need to be considered. Following \cite{47}, it can be verified that \(\tilde{\sigma} \in L \) if and only if

\[|\{i \mid f_i(\tilde{\sigma}) \text{ is satisfiable}, i \in [0, 2k] \}| \text{ is even.} \]
By $L_0 \supseteq L_1 \supseteq \cdots \supseteq L_{2k}$, \(|\{i \mid f_i(\bar{\sigma}) \text{ is satisfiable}, i \in [0, 2k]\}|\) is an even number only either when $f_0(\bar{\sigma})$ is unsatisfiable or when the largest index that corresponds to a satisfiable 3SAT instance is of the form $f_{2\ell-1}(\bar{\sigma})$ for some ℓ. In the latter case, all 3SAT instances corresponding to $f_i(\bar{\sigma})$, for $0 \leq i \leq 2\ell - 1$, are satisfiable, yielding an even number (2ℓ) of satisfiable instances. Conversely, if $f_{2\ell}(\bar{\sigma})$ is satisfiable, then so are all $f_i(\bar{\sigma})$ for $0 \leq i < 2\ell$, yielding an odd number ($2\ell + 1$) of satisfiable instances. One can see that $\bar{\sigma} \not\in L_0$ if and only if $|\{i \mid f_i(\bar{\sigma}) \text{ is satisfiable}, i \in [0, 2k]\}|$ is zero, and $\bar{\sigma} \in L_{2\ell-1} \cap L_{2\ell}$ if and only if $|\{i \mid f_i(\bar{\sigma}) \text{ is satisfiable}, i \in [0, 2k]\}|$ is equal to 2ℓ. Thus, deciding whether $\bar{\sigma} \in L$ reduces to checking whether $|\{i \mid f_i(\bar{\sigma}) \text{ is satisfiable}, i \in [0, 2k]\}|$ is even, and vice versa.

We next show that deciding whether "$|\{i \mid f_i(\bar{\sigma}) \text{ is satisfiable}, i \in [0, 2k]\}|$ is even" can be reduced to checking whether a CQ query Q has an 1-bounded rewriting using \mathcal{V} under \mathcal{A}. Given $2k + 1$ 3SAT instances $\Theta = \{f_i(\bar{\sigma}) \mid i \in [0, 2k]\}$, we define a CQ query Q_Θ that depends on the 3SAT instances; a fixed database schema \mathcal{R}; $M = 1$; k views $\mathcal{V} = \{V_1, \ldots, V_k\}$, each of which is fixed; and a fixed access schema \mathcal{A} such that Q_Θ has a 1-bounded rewriting using \mathcal{V} under \mathcal{A} if and only if $|\{i \mid f_i(\bar{\sigma}) \text{ is satisfiable}, i \in [0, 2k]\}|$ is even. We assume w.l.o.g. that the 3SAT instances have the same number of variables, n, and that each instance has a disjoint set of variables. Let $X_1 = \{x_1^0, \ldots, x_n^0\}$ be the set of variables used by the 3SAT instance $f_i(\bar{\sigma})$, for $i \in [0, 2k]$.

(1) The database schema \mathcal{R} consists of $R_{01}(B)$, $R_{v}(B, A_1, A_2)R_{s}(B, A_1, A_2)$, $R_{s}(A, \bar{A})$, and $R_4(V_0, \ldots, V_{2k}, U)$. The first four relations are to encode Boolean operations and domain with intended instances shown in Figure 2. The last relation is to hold instances indicating which 3SAT instances are satisfiable, as will become clear shortly.

(2) We next define the CQ query Q_Θ. We first encode all 3SAT instances in Θ:

$$Q_{3\text{SAT}}^\Theta(\bar{v}) = \exists \bar{x}_0, \bar{x}_1, \ldots, \bar{x}_{2k} \left(\bigwedge_{i=0}^{2k} Q_{f_i(\bar{\sigma})}(\bar{x}_i, v_i) \right),$$

where $\bar{x}_i = (x_1^i, \ldots, x_n^i)$, $\bar{v} = (v_0, v_1, \ldots, v_{2k})$, and $Q_{f_i(\bar{\sigma})}$ encodes $f_i(\bar{\sigma})$ by leveraging conjunction, disjunction, negation, and Boolean domain encoded by instances of $R_{\land}, R_{\lor}, R_{\neg}$, and R_{01}, respectively. Given a truth assignment μ_{X_1} of X_1, $Q_{f_i(\mu_{X_1}, v_i)}$ sets $v_i = 0$ if μ_{X_1} is not a witness of the satisfiability of $f_i(\bar{\sigma})$, and sets $v_i = 1$ otherwise.

To ensure that the Boolean operations and domain are properly encoded by instances of $R_{\land}, R_{\lor}, R_{\neg}$, and R_{01}, we consider Q_c, the same CQ as its counterpart given in the proof of Theorem 3.4. In addition, we define a Boolean query Q_s, which demands the existence of the following $\frac{(2k+1)(2k+2)}{2}$ atoms:

$$\begin{align*}
R_s(1, 0, 0, \ldots, 0, i) & \text{ for } i = 0 & (f_0(\bar{\sigma}) \text{ is satisfiable}) \\
R_s(1, 1, 0, \ldots, 0, i) & \text{ for } i = 0, 1 & (f_1(\bar{\sigma}) \text{ and } f_0(\bar{\sigma}) \text{ are satisfiable}) \\
R_s(1, 1, 1, \ldots, 0, i) & \text{ for } i = 0, 1, 2 & (f_2(\bar{\sigma}), f_1(\bar{\sigma}), \text{ and } f_0(\bar{\sigma}) \text{ are satisfiable}) \\
\vdots & \vdots & \vdots \\
R_s(1, 1, 1, \ldots, 1, i) & \text{ for } i = 0, 1, \ldots, 2k. & (\text{all instances in } \Theta \text{ are satisfiable})
\end{align*}$$

The semantics of these atoms is as follows. A constant 1 (0, respectively) in attribute V_i of R_s, for $i \in [0, 2k)$, indicates that $f_i(\bar{\sigma})$ is satisfiable (unsatisfiable, respectively), and the last attribute indicates the corresponding indices of instances in Θ that are satisfiable. Finally, we define

$$Q_\Theta(u) = \exists \bar{v} \left(Q_{3\text{SAT}}^\Theta(\bar{v}) \land R_s(\bar{v}, u) \land Q_c \land Q_s \right).$$

(3) The access schema \mathcal{A} consists of one constraint on each relation such that the instances of $R_{\land}, R_{\lor}, R_{\neg}$, and R_s contain the number of tuples required by Q_c and Q_s, respectively (see, e.g., the counterpart for R_{01} in the proof of Theorem 3.4).
As a consequence, for any instance $D \models A$, we can distinguish the following three cases: (i) $Q_\Theta(D) = \emptyset$ because $D \not\models Q_c \land Q_s$; (ii) $Q_\Theta(D) = \emptyset$ but $D \models Q_c \land Q_s$; or (iii) $Q_\Theta(D) \neq \emptyset$ and $D \models Q_c \land Q_s$. Note that in cases (ii) and (iii), $D = (I_1, I_v, I_\ell, I_01, I_k)$, where I_1, I_v, I_ℓ, I_01 are as shown in Figure 2, and I_k consists of the $(2k+1)(2k+2) \over 2$ tuples enumerated in Q_c. Moreover, in case (ii), we have that $Q_\Theta(D) = \emptyset$ if and only if none of the 3SAT instances in Θ is satisfiable. In case (iii), $Q_\Theta(D) = \{0, 1, \ldots, \ell\}$, where ℓ denotes the largest index taken from $[0, 2k]$ corresponding to a satisfiable instance $f_\ell(\bar{\sigma})$ in Θ.

(4) Finally, \mathcal{V} consists of the following k views. For $i \in [1, k]$, we define

$$V_i(u) = R_s(1, \ldots, 1, 0, \ldots, 0, u) \land Q_c \land Q_s.$$

In other words, for $D \models A$, either $V_i(D)$ is empty or $V_i(D) = \{0, 1, \ldots, 2i-1\}$. As a consequence, whenever $V_i(D)$ is nonempty, $Q_\Theta(D) \equiv_A V_i(D)$ if and only if $\ell = 2i - 1$ is the largest index for which $f_\ell(\bar{\sigma})$ is satisfiable. Note that apart from Q_\emptyset, no other 1-bounded rewriting for Q_Θ exists that does not use views. Indeed, the only other possible such 1-bounded rewriting is of the form Q_c for some constant c, which returns $\{(c)\}$ on all databases. However, when $D \not\models Q_c \land Q_s$, $Q_\Theta(D)$ is empty and hence $Q_\Theta(D) \neq Q_c(D)$. Therefore, the only possible 1-bounded rewriting for Q_Θ is $Q_\emptyset, V_1, V_2, \ldots,$ or V_k.

For the correctness of the reduction, observe that $\bar{\sigma} \in L$ if and only if Q_Θ has a 1-bounded rewriting using \mathcal{V} under A, where $\Theta = \{f_i(\bar{\sigma}) \mid i \in [0, 2k]\}$. Indeed, $\bar{\sigma} \in L$ if and only if $[i \mid f_i(\bar{\sigma})$ is satisfiable, $i \in [0, 2k)]$ is even if and only if for any instance D of \mathcal{R}, if $D \models A$, then either (a) $Q_\Theta(D) = \emptyset$ or (b) $Q_\Theta(D) = \{0, 1, \ldots, 2i - 1\}$ for some $i \in [1, k]$ if and only if either (a) $Q_\Theta \equiv_A Q_\emptyset$ (empty query) or (b) $Q_\Theta \equiv_A V_i$.

Upper bound. Let Q be an $\exists FO$ query and consider fixed $\mathcal{R}, \mathcal{V}, A$, and M. Observe that there are only a constant number of possible query plans for Q with size bounded by M. Furthermore, for each constant-size plan ξ, it is in PTIME to check whether ξ conforms to A. Indeed, from the proof of Lemma 3.8, we know that this is in PTIME as long as ξ has bounded output. By Lemma 3.7, when ξ has a constant size, checking bounded output of ξ is in PTIME since there are a constant number of element queries of ξ and checking the condition on covered variables (as stated in Lemma 3.7) is in PTIME.

Denote by QP_Q the set of candidate query plans of length at most M. Remove from QP_Q all plans that do not conform to A, and denote the set of remaining plans also as QP_Q; as argued above, this can be done in PTIME. Note that the empty query plan ξ_0 is in QP_Q. Hence, Q has an M-bounded rewriting using \mathcal{V} under A if and only if both (a) Q is not satisfiable, in which case $Q \equiv_A \xi_0$, or (b) Q is satisfiable and $Q \equiv_A \xi$ for some nonempty $\xi \in QP_Q$. We next show that case (a) can be decided in coNP and (b) deciding $Q \equiv_A \xi$ is in $\mathcal{D}^P = \mathcal{NP} \land \text{coNP}$ for a given ξ. Hence, we can decide whether Q has an M-bounded rewriting using \mathcal{V} under A in coNP $\lor \bigvee_{k=1}^\ell (\mathcal{NP} \land \text{coNP}) = C_{2k+1}^P$, where k denotes the number of nonempty query plans in QP_Q that conform to A.

We first verify that deciding whether Q is not satisfiable is in coNP. Indeed, the complement problem that decides whether Q is satisfiable is in NP: simply guess disjunctions in Q, resulting in a CQ query Q', and guess a valuation v of the tableau representation $(T_{Q'}, \bar{u})$ of Q'. If $v(T_{Q'}) \models A$, then Q is satisfiable. Otherwise, reject the guess.

To show that $\xi \subseteq A$ is in NP, for each element query Q_{ξ_e} of Q_{ξ}, guess disjunctions in Q, resulting in a CQ query Q_{ξ_e}, and guess a candidate homomorphism from Q_{ξ_e} to Q_{ξ_e}. There are only a constant number of such element queries, so we can guess candidate homomorphism from Q to all Q_{ξ_e} in one guess. It remains to verify whether the candidate mappings are homomorphism from Q_{ξ} to
each element query \(Q_{\xi_e} \). If so, \(Q_{\xi_e} \subseteq Q_e \) and hence \(\xi \subseteq A \) \(Q \). If not, we reject the guess. This is clearly an NP process.

Furthermore, \(Q \subseteq A \) \(\xi \) can be decided in coNP, since its complement problem to decide \(Q \nsubseteq A \) \(\xi \) is in NP. Indeed, guess disjuncts in \(Q \), resulting in a CQ query \(Q' \), and a valuation \(v \) of the tableau representation \((T_{Q'}, U) \) of \(Q' \). Next, verify whether \(v(T_{Q'}) \models A \) but \(v(U) \notin \xi(v(T_{Q'})) \). The latter step can be done in PTIME because \(\xi \) is of constant size. If successful, we have guessed a counterexample for \(Q \subseteq A \) \(\xi \). Hence, \(Q \subseteq A \) \(\xi \) can be decided in coNP and deciding whether \(Q \equiv A \) \(\xi \) is in NP \& coNP, as desired.

A simple characterization. We next give a sufficient and necessary condition for query \(Q \) to have a bounded rewriting. This condition is generic: \(Q \) is not necessarily a CQ, and \(R, M, A, \) and \(V \) do not have to be fixed. We use the following notations. For candidate plan \(\xi \in Q_P \), we say that \(\xi \) is a maximum plan with \((A, V)\) if (a) \(\xi \subseteq A \) \(Q \) and (b) there exists no \(\xi' \in Q_P \) such that \(\xi' \subseteq A \) \(Q \) and \(\xi \subseteq A \) \(\xi' \). We say that \(\xi \) is unique in \(Q_P \) if there exists no another maximum plan \(\xi' \in Q_P \) such that \(\xi \neq A \) \(\xi' \).

Lemma 3.12. A query \(Q \) has an \(M \)-bounded rewriting under \(A \) using \(V \) if and only if there exists a unique maximum plan \(\xi \in Q_P \) up to \(A \)-equivalence such that \(Q \subseteq A \) \(\xi \).

Proof. First assume that there exists a maximum candidate plan \(\xi \in Q_P \) with \((A, V)\), and \(Q \subseteq A \) \(\xi \). Then \(\xi \equiv A \) \(Q \). Hence, \(Q \) has an \(M \)-bounded rewriting under \(A \) using \(V \) by the definition of maximum plans. Conversely, assume that \(Q \) has an \(M \)-bounded rewriting under \(A \) using \(V \). Then there exists a query plan \(\xi \in Q_P \) such that \(\xi \equiv A \) \(Q \). We show that \(\xi \) is maximum and unique. Suppose by contradiction that \(\xi \) is not maximum. Then there exists another plan \(\xi' \in Q_P \) such that \(\xi' \subseteq A \) \(Q \) and \(\xi \subseteq A \) \(\xi' \). Then \(\xi \subseteq A \) \(\xi' \subseteq A \) \(Q \), contradicting the assumption that \(\xi \equiv A \) \(Q \). Similarly, if \(\xi \) is not unique, then there exists another maximum plan \(\xi_1 \) such that \(\xi \neq A \) \(\xi_1 \). Then, by the definition of maximum plans, \(\xi_1 \subseteq A \) \(Q \). Since \(\xi \equiv A \) \(Q \), \(\xi_1 \subseteq A \) \(\xi \); hence, \(\xi_1 \subseteq A \) \(\xi \) since \(\xi \neq A \) \(\xi_1 \); this contradicts the assumption that \(\xi_1 \) is maximum.

4 BOUNDED REWRITING FOR ACQ

To further understand the inherent complexity of VBRP, in this section, we study VBRP under the following two practical conditions:

1. **Acyclic conjunctive queries** , denoted by ACQ. A CQ \(Q \) is acyclic if its hypergraph has hypertree-width 1 \([30]\). The hypergraph of \(Q \) is a hypergraph \((V_h, E_h)\) in which \(V_h \) consists of variables in \(Q \) and \(E_h \) has an edge for each set of variables that occur together in a relation atom in \(Q \). Acyclic conjunctive queries are commonly used in practice since query evaluation and containment for ACQ are in PTIME (see \([1]\) about ACQ). As an example, query \(Q_0 \) of Example \(1.1 \) is an ACQ.

2. **Fixed \(R, A, M, \) and \(V \).** We consider predefined database schema \(R \), access schema \(A, \) bound \(M, \) and views \(V \). After all, for an application, \(R \) is designed first, \(M \) is determined by our resources (e.g., available processors and time constraints), access constraints are discovered from sample instances of \(R, \) and views are selected based on the application \([7]\). These are determined before we start answering queries. Thus, it is practical to assume fixed \(R, A, M, \) and \(V \).

In this setting, we study bounded rewriting of ACQ. Given an ACQ \(Q \), we want to find an \(M \)-bounded query plan \(\xi(Q, V, R) \) under \(A \) in CQ (see Section 2) such that the query \(Q_{\xi} \) expressed by \(\xi \) is an ACQ. Our main conclusion is that the intractability of VBRP is rather robust, even for ACQ under fixed \(R, A, M, \) and \(V \). Nonetheless, we characterize when VBRP(ACQ) is tractable and identify tractable special cases.

Intractability. One might think that VBRP would become simpler for ACQ, since query evaluation and containment for ACQ are in PTIME, not to mention fixed \(R, A, M, \) and \(V \). Unfortunately,
VBRP remains intractable for ACQ under fixed $\mathcal{R}, \mathcal{A}, M$, and \mathcal{V}, even under quite restrictive access constraints in a fixed \mathcal{A}.

Theorem 4.1. Given fixed $\mathcal{R}, \mathcal{A}, M$, and \mathcal{V}, VBRP(ACQ) is coNP-hard when \mathcal{A} has one of the following forms:

1. \mathcal{A} consists of a single access constraint of the form $R(A \rightarrow B, N)$ and $N \geq 2$; or
2. \mathcal{A} consists of two constraints $R(A \rightarrow B, 1)$ and $R'(\emptyset \rightarrow (E, F), N)$, and $N \geq 6$; or
3. \mathcal{A} consists of two constraints $R((A, B) \rightarrow C, 1)$ and $R'(\emptyset \rightarrow E, N)$, and $N \geq 2$.

Proof. We defer the proofs for the three cases to the Online Appendix due to the lack of space. The idea is to show that $Q \equiv_{\mathcal{A}} \emptyset$ if and only if Q has an M-bounded rewriting under \mathcal{A} using \mathcal{V}. That is, the only M-bounded query plan for Q using \mathcal{V} under \mathcal{A} is the empty query plan. As a consequence, the query plan does not use \mathcal{V}, and hence the proofs work for any fixed set \mathcal{V} of views. The only information needed in the reduction is the size $|\mathcal{V}|$. Therefore, we do not specify which views are used in the reduction as any set of views will do. In addition, the proofs use fixed \mathcal{R}, \mathcal{A}, and M, and we construct an ACQ query Q by only using relations involved in \mathcal{A}.

1. **When \mathcal{A} consists of a single $R(A \rightarrow B, N)$ and $N \geq 2$.** We show that VBRP(ACQ) is coNP-hard in this setting by reduction from the complement of the precoloring extension problem, which is NP-complete [34]. Given an undirected graph $G = (V_G, E)$, a precoloring μ_0 is a coloring of a subset W of the nodes of V_G with colors in $\{r, g, b\}$. The precoloring extension problem is to decide whether μ_0 can be extended to a coloring μ of the entire set of nodes in V_G with colors in $\{r, g, b\}$—that is, whether there exists a coloring μ of all nodes in V_G such that $\mu(v) = \mu_0(v)$ for each $v \in W$ and $\mu(v) \neq \mu(w)$ whenever $(v, w) \in E$. The reduction is given in the Online Appendix.

2. **When \mathcal{A} consists of two access constraints $R(A \rightarrow B, 1)$ and $R'(\emptyset \rightarrow (E, F), N)$, and $N \geq 6$.** We show the lower bound in this setting by reduction from the complement of the 3-Colorability problem, which is NP-complete (cf. [27]).

3. **When \mathcal{A} consists of $R((A, B) \rightarrow C, 1)$ and $R'(\emptyset \rightarrow E, N)$, and $N \geq 2$.** We show the lower bound by reduction from the complement of the 3SAT problem (see the proof of Theorem 3.4 for the definition of 3SAT).

Characterization. In light of Theorem 4.1, we next characterize when VBRP(C) is tractable for subclasses C of ACQ, and give an upper bound for VBRP(ACQ).

Theorem 4.2. When $\mathcal{R}, \mathcal{A}, M$, and \mathcal{V} are fixed, (1) for any subclass C of ACQ, VBRP(C) is in PTIME if and only if for each query $Q \in C$, it is in PTIME to check whether $Q \equiv_{\mathcal{A}} \xi$, where ξ is a query plan of size at most M, and (2) VBRP(ACQ) is in coNP.

The result tells us that ACQ and fixed parameters together simplify the analysis of VBRP (unless P = NP), to an extent, as opposed to the Σ^P_k-completeness of Theorem 3.1 and $\mathcal{C}^{\mathit{2k+1}}_\mathit{ACQ}$-completeness of Theorem 3.11. Putting Theorems 4.1 and 4.2 together, we can see that the cases of VBRP(ACQ) stated in Theorem 4.1 are coNP-complete.

The proof of Theorem 4.2 is based on Lemma 3.12 and the lemma below, which gives the complexity of basic operations for computing maximum query plans.

Lemma 4.3. For fixed $\mathcal{R}, \mathcal{A}, M, \mathcal{V}$, given a CQ Q and query plans $\xi, \xi' \in \mathcal{Q}_{\mathcal{P}}$, it is in

1. PTIME to check whether ξ conforms to \mathcal{A},
2. PTIME to check whether $\xi \subseteq_{\mathcal{A}} Q$ if Q is an ACQ,
3. NP to check whether $Q \not\subseteq_{\mathcal{A}} \xi$, and
4. PTIME to check whether $\xi' \subseteq_{\mathcal{A}} \xi$ for $\xi' \in \mathcal{Q}_{\mathcal{P}}$.

ACM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.
PROOF. When \(M \) is a constant, the set \(\text{QP}_Q \) of all candidate query plans for \(Q \) using \(\mathcal{V} \) that are no larger than \(M \) consists of a constant number of query plans \(\xi \). Moreover, observe the following. For each plan \(\xi \in \text{QP}_Q \), let \(Q_\xi \) be the CQ expressing \(\xi \), after unfolding the views in \(\xi \), i.e., substituting the view definition for each view used in \(\xi \). Then \(|Q_\xi| \) is bounded by \(O(M \cdot |\mathcal{V}|) \), and the number of variables in \(Q_\xi \) is at most \(O(M \cdot |\mathcal{V}| \cdot |\mathcal{R}|) \). Recall that each element query of \(Q_\xi \) can be represented as \(Q_\xi \wedge \phi \), where \(\phi \) is a conjunction of equality atoms between variables used in \(Q_\xi \) (see the proof of Theorem 3.4). Hence, \(Q_\xi \) has \(2^{O((M \cdot |\mathcal{V}| \cdot |\mathcal{R}|)^2)} \) many element queries. When \(\mathcal{R}, \mathcal{A}, \mathcal{M} \), and \(\mathcal{V} \) are fixed, \(O(M \cdot |\mathcal{V}| \cdot |\mathcal{R}|) \) and \(2^{O((M \cdot |\mathcal{V}| \cdot |\mathcal{R}|)^2)} \) are bounded by constants. Hence, the size of \(Q_\xi \) is a constant, and \(Q_\xi \) has a constant number of element queries. Similarly, we can show that \(Q \) has \(2^{O(|Q|^2)} \) many element queries, i.e., exponentially many.

We next verify the claims of Lemma 4.3 one by one.

(a) We use the algorithm given in the proof of Lemma 3.8 to check whether \(\xi \) conforms to \(\mathcal{A} \). We show that the algorithm is in \(\text{PTIME} \) for \(\text{CQ} \) in this setting. It suffices to show that its step (3) is in \(\text{PTIME} \) here instead of \(\text{coNP} \). For each fetch \((X \in S_j, R, Y)\) operation in \(\xi \), let \(\xi_1 \) be the subtree of \(\xi \) rooted at \(S_j \), and rewrite \(\xi_1 \) into a CQ \(Q_1 \) by unfolding views in \(\xi_1 \). As shown above, \(Q_1 \) has a constant number of element queries, and the size of each element query is bounded by a constant. Then by Lemma 3.7, step (3) of the algorithm can be done in \(\text{PTIME} \). Thus, checking whether \(\xi \) conforms to \(\mathcal{A} \) is in \(\text{PTIME} \).

(b) It is easy to show that \(\xi \subseteq_\mathcal{A} Q \) if and only if for each element query \(Q_e \) of \(Q_\xi \), \(Q_e \subseteq Q \) (see the proof of Theorem 3.4). Since \(Q \) is an ACQ, one can check whether \(Q_e \subseteq Q \) in \(O(|Q| \cdot |Q_e|^2) \) time, by using the Acyclic Containment algorithm from [18]. As \(Q_\xi \) has a constant number of element queries, checking whether \(\xi \subseteq_\mathcal{A} Q \) is in \(\text{PTIME} \). Note that if \(Q \) is a CQ instead of an ACQ, this is not in \(\text{PTIME} \).

(c) In contrast, \(Q \) has \(2^{O(|Q|^2)} \) element queries, and checking whether \(Q \not\subseteq_\mathcal{A} \xi \) is in \(\text{NP} \), rather than in \(\text{PTIME} \) as in (b). This can be done as follows: guess an element query \(Q_e \) of \(Q \), and check whether \(Q_e \not\subseteq \xi \). As remarked earlier, \(\xi \) can be expressed by a CQ \(Q_\xi \) of size bounded by a constant. Thus, the number of candidate homomorphic mappings from \(Q_\xi \) to \(Q_e \) is at most \(O(|Q_e| \cdot |Q_\xi|) \), which is a polynomial. Thus, we can check \(Q_e \not\subseteq Q_\xi \) in \(\text{PTIME} \) by enumerating all candidate mappings and verifying whether one of them is indeed a homomorphism from \(Q_\xi \) to \(Q_e \). Hence, it is in \(\text{NP} \) to check whether \(Q \not\subseteq_\mathcal{A} \xi \).

(d) For any \(\xi' \in \text{QP}_Q \), we first rewrite \(\xi' \) into a query \(Q_{\xi'} \) in \(\text{CQ} \) by unfolding views in \(\xi' \). Then \(\xi' \subseteq_\mathcal{A} \xi \) if and only if \(Q_{\xi'} \subseteq_\mathcal{A} Q_\xi \). As argued above, \(Q_{\xi'} \) has a constant number of element queries, and \(Q_\xi \) and all element queries of \(Q_{\xi'} \) have a constant size. Hence, checking \(Q_{\xi'} \subseteq_\mathcal{A} Q_\xi \) is in \(\text{PTIME} \), and so is checking \(\xi' \subseteq \mathcal{A} \xi \). \(\square \)

PROOF OF THEOREM 4.2. Based on the lemmas, we prove Theorem 4.2. We first present an algorithm, denoted by \(\text{Alg}_{\text{ACQ}} \), to check whether an ACQ \(Q \) has an \(M \)-bounded rewriting. For fixed \(\mathcal{R}, \mathcal{A}, \mathcal{M} \), and \(\mathcal{V} \), we show that the algorithm is in \(\text{coNP} \) for general ACQ queries. However, when we focus on specific subclasses \(C \) of ACQ, the algorithm runs in \(\text{PTIME} \). More specifically, classes \(C \) have the following property: for each query \(Q \in C \), it is in \(\text{PTIME} \) to check whether \(Q \equiv_\mathcal{A} \xi \). Here, \(\xi \) is a query plan of size at most \(M \).

From Lemma 3.12, we know that a query \(Q \) has an \(M \)-bounded rewriting under \(\mathcal{A} \) using \(\mathcal{V} \) if and only if there exists a unique maximum query plan \(\xi \in \text{QP}_Q \) (up to \(\mathcal{A} \)-equivalence) such that \(Q \equiv_\mathcal{A} \xi \). To develop \(\text{Alg}_{\text{ACQ}} \), we first show that given any ACQ \(Q \), its unique maximum plan \(\xi \) (up to \(\mathcal{A} \)-equivalence) can be computed in \(\text{PTIME} \), if it exists. It is computed by the algorithm given below, denoted by \(\text{Alg}_{\text{MP}} \):

ACM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.
(1) Generate the set QP_Q of all candidate query plans for Q of length at most M, using relation atoms in \mathcal{R} and views in \mathcal{V}.

(2) Remove from QP_Q all plans $\xi \in QP_Q$ such that its CQ query Q_ξ is not acyclic.

(3) Remove from QP_Q all $\xi \in QP_Q$ such that $\xi \not\subseteq_\mathcal{A} Q$ or ξ does not conform to \mathcal{A}.

(4) Remove from QP_Q all query plans $\xi \in QP_Q$ such that there exists another query plan χ_1 satisfying $\chi_1 \subseteq_\mathcal{A} Q$ and $\chi \not\subseteq_\mathcal{A} \xi_1$.

(5) If QP_Q is nonempty and all remaining plans in QP_Q are \mathcal{A}-equivalent to each other, return a plan ξ in QP_Q; otherwise, return "no".

The correctness of the algorithm is obvious. For its complexity, step (1) is in PTIME since there exist a constant number of plans in QP_Q, and each of them has size bounded by a constant. Step (2) is in PTIME since checking whether a CQ query is acyclic can be done in PTIME by using, e.g., the GYO algorithm [48]. Step (3) consists of (i) checking whether ξ conforms to \mathcal{A} and (ii) checking whether $\xi \not\subseteq_\mathcal{A} Q$. These are in PTIME by Lemma 4.3(a) and (b). Step (4) checks \mathcal{A}-containment between query plans and \mathcal{A}-containment of queries plans in Q. These are in PTIME by Lemma 4.3(b) and (d). In contrast, when Q is CQ, steps (3) and (4) have to call an NP oracle for a constant number of times. This explains why VBRP(ACQ) differs from VBRP(CQ) (Theorem 3.11) unless $P = NP$. Step (5) checks \mathcal{A}-containment of query plans in PTIME by Lemma 4.3(d). Putting these together, algorithm Alg$_{\text{MP}}$ is in PTIME.

Capitalizing on Alg$_{\text{MP}}$, algorithm Alg$_{\text{ACQ}}$ works as follows. Given an ACQ Q, it first checks whether Q has a unique maximum plan ξ in QP_Q, by invoking Alg$_{\text{MP}}$. If such a query plan does not exist, then Q does not have an M-bounded query rewriting by Lemma 3.12, and hence Alg$_{\text{ACQ}}$ returns false. Otherwise, it checks whether $Q \equiv_\mathcal{A} \xi$; it returns true if so, and false otherwise.

We now prove the two statements of Theorem 4.2 by analyzing Alg$_{\text{ACQ}}$.

(1) **Subclasses** C. Consider a subclass C of ACQ such that for each $Q \in C$, checking whether $Q \equiv_\mathcal{A} \xi$ is in PTIME. As argued above, Alg$_{\text{MP}}$ is in PTIME. Then Alg$_{\text{ACQ}}$ is in PTIME, and hence so is VBRP(C). Conversely, given $Q \in C$ and ξ, we can check whether $Q \equiv_\mathcal{A} \xi$ as follows: (a) compute a unique maximum plan $\xi_Q \in QP_Q$ and (b) check whether $\xi_Q \equiv_\mathcal{A} \xi$ and Q has an M-bounded rewriting; return true if so, and false otherwise. The correctness and time complexity follow from Lemmas 3.12, 4.3(c), and 4.3(d) and the assumption that VBRP(C) is in PTIME. In fact, to ensure that VBRP(C) is in PTIME, we only need to show that deciding $Q \subseteq_\mathcal{A} \xi$ is in PTIME. Indeed, by Lemma 4.3, checking $\xi \subseteq_\mathcal{A} Q$ is in PTIME, and hence we also have that deciding $Q \equiv_\mathcal{A} \xi$ is in PTIME. However, the converse does not hold. That is, when VBRP(C) is in PTIME, it is not necessary that deciding $Q \subseteq_\mathcal{A} \xi$ is in PTIME. In particular, if $\xi \not\subseteq_\mathcal{A} Q$ and if Q has no M-bounded rewriting, then we cannot further infer that $Q \subseteq_\mathcal{A} \xi$.

(2) **ACQ**. For a general query Q in ACQ, checking whether $Q \subseteq_\mathcal{A} \xi$ is in coNP by Lemma 4.3(c). Since Alg$_{\text{MP}}$ is in PTIME, Alg$_{\text{ACQ}}$ is in coNP, and so is VBRP(ACQ).

This concludes the proof of Theorem 4.2. \qed

Theorem 4.2 helps us identify subclasses of ACQ for which VBRP is tractable, such as ACQ under "FDs", i.e., when all the access constraints in \mathcal{A} are of the form $R(X \rightarrow Y, 1)$. As remarked earlier, FDs with associated indices are common access constraints and can be discovered by using existing tools for mining FDs (e.g., [33]).

Corollary 4.4. When \mathcal{R}, \mathcal{A}, \mathcal{M}, and \mathcal{V} are fixed, VBRP is in PTIME for ACQ if \mathcal{A} consists of FDs only.

Proof. By Theorem 4.2, it suffices to show that checking whether $Q \subseteq_\mathcal{A} \xi$ is in PTIME, where ξ denotes the unique maximum query plan, if it exists.
Given a set \mathcal{A} of access constraints of the FD form and an ACQ Q, we chase the tableau T of Q by \mathcal{A} as follows [4]: for each $R(X \rightarrow Y, 1) \in \mathcal{A}$, if there exist tuples $R(\bar{x}, \bar{y}_1, \bar{z}_1)$ and $R(\bar{x}, \bar{y}_2, \bar{z}_2)$ in T such that (a) \bar{x} corresponds to X and (b) \bar{y}_1 and \bar{y}_2 correspond to Y and $\bar{y}_1 \neq \bar{y}_2$, then we unify $\bar{y}_1 = \bar{y}_2$ in T. These yield a tableau $T_\mathcal{A}$ satisfying \mathcal{A}. Let $Q^\mathcal{A}$ be the query expressed by $T_\mathcal{A}$. One can see that $Q^\mathcal{A}$ is unique up to homomorphism [38], $Q^\mathcal{A} \equiv_\mathcal{A} Q$, and $Q^\mathcal{A}$ satisfies \mathcal{A}.

Observe the following: (a) $Q \subseteq_\mathcal{A} \bar{x}$ is equivalent to $Q^\mathcal{A} \subseteq \bar{y}$—the latter is in terms of conventional query containment \subseteq, and (b) $Q^\mathcal{A} \subseteq \bar{x}$ can be checked in PTIME since \bar{x} is of constant size. Indeed, at most $O(|Q^\mathcal{A}| \cdot |\bar{x}|)$ homomorphic mappings need to be checked. From these, it follows that whether $Q \subseteq_\mathcal{A} \bar{x}$ can be checked in PTIME. □

In contrast to Corollary 4.4, VBRP remains intractable for CQ under FDs, although the analysis is simpler compared with Theorem 3.11 (unless $P = \text{NP}$).

Proposition 4.5. For fixed $\mathcal{R}, \mathcal{A}, M$, and \mathcal{V}, VBRP(\mathcal{CQ}) is NP-complete even when \mathcal{A} consists of FDs only. It remains NP-complete when none of $\mathcal{R}, \mathcal{A}, M$, and \mathcal{V} is fixed.

Proof. We first show the lower bound, followed by the upper bound.

Lower bound. We show that in this setting, VBRP(\mathcal{CQ}) is NP-hard by reduction from the 3SAT problem (see the proof of Theorem 3.4 for 3SAT). Given an instance ψ of 3SAT, we define a CQ Q, an access schema \mathcal{A} of the FD form, a bound M, and a set \mathcal{V} of CQ views, such that Q has an M-bounded rewriting in CQ using \mathcal{V} under \mathcal{A} if and only if ψ is satisfiable. We ensure that $M, \mathcal{A}, \mathcal{R},$ and \mathcal{V} do not depend on ψ; i.e., they are fixed.

1. The database schema \mathcal{R} consists of $R_v(B, A_1, A_2)$, $R_\lambda(B, A_1, A_2)$, and $R_\neg(A, \bar{A})$ to encode the Boolean operations, as in the proof of Theorem 3.4 (see Figure 2). Observe that we do not include R_{01} in \mathcal{R}. The reason is that we cannot enforce instances of R_{01} to coincide with I_{01} (see Figure 2) using access constraints of the FD form.
2. The access schema \mathcal{A} contains the following three constraints to ensure that R_v, R_λ, R_\neg can be used to encode the Boolean operations: $R_v((A_1, A_2) \rightarrow B, 1)$, $R_\lambda((A_1, A_2) \rightarrow B, 1)$, $R_\neg(A \rightarrow \bar{A}, 1)$. All these constraints have the form of $R(X \rightarrow Y, 1)$.
3. The query Q is defined as $Q() = Q_c() \land Q_\psi(\bar{x}, 1)$, where (a) $Q_c()$ is the same as its counterpart given in the proof of Theorem 3.4, except for the subquery in Q_c related to R_{01}—this is to ensure that the instances of $R_v, R_\lambda,$ and R_\neg contain all the tuples shown in Figure 2—and (b) $Q_\psi(\bar{x}, 1)$ is similar to its counterpart given in the proof of Theorem 3.4, to encode all truth assignments μ of \bar{x} such that $\psi(\mu(\bar{x})) = \text{true}$, expressed in terms of $R_v, R_\lambda,$ and R_\neg. In contrast to the query used in the proof of Theorem 3.4, Q_ψ extracts the Boolean domain from R_\neg rather than R_{01}. Note that if an instance \mathcal{D} of \mathcal{R} is equal to the instances shown in Figure 2 (excluding I_{01}), then $Q(\mathcal{D})$ is nonempty if and only if ψ is satisfiable. Of course, when \mathcal{D} is an instance of \mathcal{R} that satisfies \mathcal{A} but it contains more tuples than those shown in Figure 2, $Q_c(\mathcal{D}) \neq \emptyset$ and $Q(\mathcal{D}) \neq \emptyset$ still ensure that ψ is unsatisfiable, but $Q_c(\mathcal{D}) \neq \emptyset$ and $Q(\mathcal{D}) \neq \emptyset$ do not imply that ψ is satisfiable. Indeed, \bar{x} may be non-Boolean, and Q_ψ does not correctly evaluate ψ in this case.
4. The set \mathcal{V} consists of a single CQ view: $V() = Q_c()$, which is the same as the one given in Q. Finally, we let $M = 1$.

Since all access constraints in \mathcal{A} are FDs and $M = 1$, the only possible query plans are \emptyset and V. One can verify that Q has a 1-bounded rewriting in CQ using \mathcal{V} under \mathcal{A} if and only if $V \equiv_\mathcal{A} Q$ if and only if ψ is true. Note that $M, \mathcal{A}, \mathcal{R},$ and \mathcal{V} are fixed.

Upper bound. We give the following NP algorithm to check VBRP(\mathcal{CQ}) when none of $\mathcal{R}, \mathcal{A}, \mathcal{V},$ and M is fixed, and when \mathcal{A} consists of FD-like access constraints only:
(1) Chase the tableau \(T_Q \) of \(Q \) by \(A \) as described in the proof of Corollary 4.4; this yields tableau \(T_{Q_1} \) that satisfies \(A \); let \(Q_1 \) be the CQ represented by \(T_{Q_1} \).

(2) Guess a query plan \(\xi \) such that \(|\xi| \leq M \), a CQ query \(Q_2 \) such that the tableau of \(Q_2 \) satisfies \(A \) and \(|Q_2| \leq M \cdot |V| \cdot |R| \), a homomorphism \(h_1 \) from \(Q_1 \) to \(Q_2 \), and a homomorphism \(h_2 \) from \(Q_2 \) to \(Q_1 \).

(3) Check whether \(\xi \) conforms to \(A \); if not, then reject the guess; otherwise, continue.

(4) Rewrite \(\xi \) into a CQ query \(Q' \) by unfolding views in \(\xi \).

(5) Chase the tableau \(T_{Q'} \) of \(Q' \) by \(A \), which yields \(T_{Q'_1} \) that satisfies \(A \).

(6) Syntactically check whether the tableau \(T_{Q_2} \) of \(Q_2 \) is the same as \(T_{Q'_1} \); i.e., a tuple template \(t \) is in \(T_{Q_3} \) if and only if \(t \) is in \(T_{Q'_1} \); if not, then reject the guess; otherwise, continue.

(7) Check whether \(h_1 \) and \(h_2 \) are homomorphic mappings, and whether \(h_1 \) witnesses \(Q_2 \subseteq Q_1 \) and \(h_2 \) witnesses \(Q_1 \subseteq Q_2 \); if so, return true; otherwise, reject the guess.

The algorithm is obviously correct. For its complexity, we need the following lemma.

Lemma 4.6. If \(A \) consists of FDs only, it is in PTIME to decide whether a plan \(\xi \in QP_Q \) conforms to \(A \).

Using the lemma, we show that the algorithm for VBRP(CQ) is in NP. Since the chase can be done in PTIME, steps (1) and (5) are in PTIME. By Lemma 4.6, step (3) can be done in PTIME. Step (4) is in PTIME. Step (6) does syntactic checking and is in PTIME. Because homomorphic mappings can be verified in PTIME, step (7) is also in PTIME.

This concludes the proof of Proposition 4.5, modulo the proof of Lemma 4.6. □

We next verify Lemma 4.6.

Proof of Lemma 4.6. To check whether \(\xi \) conforms to \(A \), we check whether for each fetch (\(X \in S_j, R, Y \)) operation in \(\xi \), the following conditions hold: (a) there is an access constraint \(R(X \rightarrow Y', 1) \) in \(A \) such that \(Y \subseteq X \cup Y' \), and (b) there exists a constant \(N \) such that for all instances \(D \) of \(R \) that satisfy \(A \), \(|S_j| \leq N \) in the computation of \(\xi(D) \).

For each fetch (\(X \in S_j, R, Y \)) operation, it is in PTIME to check condition (a). We use the following algorithm to check condition (b). Let \(\xi_j \) be the subtree of \(\xi \) rooted at \(S_j \), and \(Q_j \) be the query expressed by \(\xi_j \). The algorithm works as follows:

1. Unfold \(Q_j \) by replacing each view with its definition, yielding \(Q'_j \) in CQ.
2. Chase the tableau \(T_{Q'_j} \) of \(Q'_j \) by \(A \) as described in the proof of Corollary 4.4; this yields tableau \(T_{Q''_j} \) that satisfies \(A \); let \(Q''_j \) be the CQ represented by \(T_{Q''_j} \).
3. Check whether \(Q''_j \) has bounded output; if so, return true; otherwise, return false.

From the proof of Corollary 4.4, we can see that \(Q''_j \equiv_A Q_j \). Then the correctness of the algorithm follows. For its complexity, observe that step (1) is in PTIME. Since the chase can be done in PTIME, step (2) is in PTIME. Because the tableau \(T_{Q''_j} \) satisfies \(A \), and computing cov\((Q''_j, A)\) is in PTIME, step (3) is in PTIME by Lemma 3.6. Since there are at most \(O(|\xi|) \) fetch operations in \(\xi \), the algorithm is in PTIME. □

Along the same lines as Corollary 4.4, one can verify that for fixed \(R, A, M, \) and \(V' \), VBRP is in PTIME for the subclass of ACQ queries such that their tableau representations satisfy the cardinality constraints in \(A \). A special case of this is when \(A = \emptyset \), e.g., the setting of [7], when access constraints are not employed at all.

Theorem 4.2 remains intact on any class \(C \) of queries as long as it is in PTIME to compute a maximum plan in \(QP_Q \) for all queries in \(C \). Examples include...
(1) self-join-free CQ, i.e., the class of CQ queries that contain no repeated relation names, and
(2) CQ with a fixed number of variables, i.e., for each constant k, the class of CQ queries that have at most k free variables.

By Theorem 4.2 and Lemma 4.3, VBRP is also in PTIME in these two cases.

The results of the section tell us that the intractability of VBRP(ACQ) is robust. The proof of Theorem 4.1 shows that \mathcal{A} is the crucial parameter here, while \mathcal{V} and M could be empty and 0, respectively. Not all is lost. There are practical cases when VBRP(ACQ) and even VBRP(CQ) are tractable. Moreover, we can cope with the hardness by means of effective syntax (Section 5) and approximate query answering (Section 8).

5 AN EFFECTIVE SYNTAX

We have seen that the undecidability of VBRP for FO and the intractability for CQ are rather robust. Can we still make practical use of bounded rewriting analysis when querying big data? We next show that the answer is affirmative.

We develop effective syntax for FO queries that have a bounded rewriting, to syntactically check the existence of bounded rewriting in PTIME without sacrificing the expressive power. More specifically, for any database schema \mathcal{R}, views \mathcal{V}, access schema \mathcal{A}, and bound M, we identify two classes of FO queries: (a) a class of queries topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$, which “covers” all FO queries over \mathcal{R} that have an M-bounded rewriting using \mathcal{V} under \mathcal{A}, up to \mathcal{A}-equivalence, and (b) a class of size-bounded queries, which “covers” all the views of \mathcal{V} in FO that have bounded output for all instances $\mathcal{D} \models \mathcal{A}$ of \mathcal{R}. The second class is to effectively check bounded output (see Section 3.1). We show that it is in PTIME to syntactically check whether a query is topped or size bounded.

Below we first present the main results of the section in Section 5.1. We then define topped queries and size-bounded queries in Sections 5.2 and 5.3, respectively.

5.1 Practical Use of Bounded Rewriting

The main results of the section are as follows.

Theorem 5.1. For any \mathcal{R}, \mathcal{V}, and M, and under any \mathcal{A},

(a) each FO query Q with an M-bounded rewriting using \mathcal{V} is \mathcal{A}-equivalent to a query topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$;

(b) every FO query topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$ has an M-bounded rewriting in FO using \mathcal{V} under \mathcal{A}, which can be identified in PTIME in $M, |Q|, |\mathcal{V}|$, and $|\mathcal{A}|$; and

(c) it takes PTIME in $M, |\mathcal{R}|, |Q|, |\mathcal{V}|$, and $|\mathcal{A}|$ to check whether an FO query Q is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$, which uses an oracle that checks whether FO views in \mathcal{V} have bounded output in PTIME in $|Q|$.

Here \mathcal{A}, Q, and \mathcal{V} are all defined over the same \mathcal{R}.

That is, topped queries are a key subclass of FO queries with a bounded rewriting and can be efficiently checked. Moreover, the bounded rewriting can also be efficiently generated. For the existence of the oracle, we show the following.

Theorem 5.2. For any \mathcal{R} and under any \mathcal{A},

(a) each FO query Q over \mathcal{R} that has bounded output is \mathcal{A}-equivalent to a size-bounded query under \mathcal{A};

(b) each size-bounded query has bounded output under \mathcal{A}; and

(c) it takes PTIME in $|Q|$ to check whether an FO query Q is a size-bounded query.

Here \mathcal{A} and Q are defined over the same \mathcal{R}. □
Before we define topped and size-bounded queries, we remark the following: (1) Theorems 5.1 and 5.2 just aim to demonstrate the existence of effective syntax for FO queries with bounded rewriting. There are other forms of effective syntax for such FO queries. (2) Theorem 5.1 does not contradict Corollary 3.9 due to the requirement of \mathcal{A}-equivalence in its condition (a), which is undecidable for FO.

Practical use of bounded query rewriting. Capitalizing on the effective syntax, we can develop algorithms (a) to check whether a given FO query Q is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$ in PTIME, and if so, (b) to generate a bounded query plan ξ for Q using \mathcal{V}. The existence of these algorithms is warranted by Theorems 5.1 and 5.2.

We can then support bounded rewriting on top of commercial DBMS as follows. Given an application, a database schema \mathcal{R} and a resource bound M are first determined, based on the application and available resources, respectively. Then, a set \mathcal{V} of views can be selected following [7], and a set \mathcal{A} of access constraints can be discovered. After these are in place, given an FO query Q posed on an instance D of \mathcal{R} that satisfies \mathcal{A}, we check whether Q is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$. If so, we generate a bounded query plan ξ for Q using \mathcal{V}, by using the algorithms described above. Then we can compute $Q(D)$ by executing ξ with the existing DBMS. Since a commercial DBMS may not execute ξ directly, this can be carried out by translating ξ into an equivalent SQL query Q_ξ, which is passed to the underlying DBMS, as suggested in [11]. By “implementing” fetch operations in terms of index joins and using join hints or virtual views to enforce the join orders, we can enforce DBMS to evaluate Q_ξ by exactly following ξ. Moreover, incremental methods for maintaining the views [7] and the indices of \mathcal{A} [11] have already been developed, in response to updates to D. Putting these together, we can expect to efficiently answer a number of FO queries in (possibly big) D by leveraging bounded rewriting.

5.2 Topped Queries for Bounded Rewriting

We next define topped queries and outline a proof of Theorem 5.1.

It is nontrivial to define an effective syntax, as shown below.

Example 5.3. Consider a database schema \mathcal{R}_1 with two relations $R(A, B)$ and $T(C, E)$, an access schema \mathcal{A}_2 consisting of $R(A \rightarrow B, N)$ and $T(C \rightarrow E, N)$, and \mathcal{V}_2 with a single view $V_3(x, y) = R(y, y) \land T(x, y)$. Given a value for x, V_3 returns a bounded number of y values due to the access constraint on T. Consider FO query: $q_3(z) = q_4(z) \land \neg \exists w R(z, w)$, where $q_4(z) = \exists x \exists y ((R(y, y) \land T(x, y)) \land (x = 1)) \land R(y, z)$. Then q_3 has a 13-bounded rewriting as in Figure 3, which is for an \mathcal{A}-equivalent query: $q'_3(z) = q_4(z) \land \neg(q_4(z) \land \exists w R(z, w))$.

Observe the following: (1) Query q'_3 becomes bounded because it propagates z-values from q_4 to “$\neg \exists w R(z, w)$”. (2) Such propagated values allow us to fetch bounded data for relation atoms, i.e., $R(z, w)$. (3) The part of the plan for a subquery of q_3 may have to embed the part of the plan for another subquery. For instance, (i) q_4 has a 5-bounded rewriting in q_3 (the left part of Figure 3); (ii) $\exists w R(z, w)$ has a 7-bounded rewriting in q_3 (the right part of Figure 3), which embeds the 5-bounded plan for q_4; and (iii) the size of the plan for q_3 is the sum of the sizes of plans for q_4 and $\exists w R(z, w)$, i.e., $5 + 7 + 1 = 13$.

This shows that to cover queries such as q_3, topped queries have to support value propagation among subqueries and keep track of the sizes of plans for subqueries.

Topped queries. This observation motivates us to define topped queries by characterizing value propagation among their subqueries. To do this, we define topped queries with two binary functions $\text{covq}(Q_4(x), Q(z))$ and $\text{size}((Q_4(x), Q(z))$ that take two queries $Q_4(x)$ and $Q(z)$ as input parameters. Below we first provide the intuition behind $\text{covq}(Q_4(x), Q(z))$ and $\text{size}((Q_4(x), Q(z))$.

ACM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.
Using the functions, we then define topped queries and complete the definition by giving the syntactic form of the two functions.

(1) Boolean function \(\text{covq}(Q_s(\bar{x}), Q(\bar{z})) \) returns true if the following condition holds: if \(\text{covq}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \), and \(Q_s(\bar{x}) \) has a bounded rewriting, then \(Q_s(\bar{x}) \land Q(\bar{z}) \) also has a bounded rewriting. Intuitively, \(Q(\bar{z}) \) is a (sub)query we are inspecting, and \(Q_s(\bar{x}) \) keeps track of subqueries from which values are propagated to \(Q(\bar{z}) \).

We use \(\text{covq}(Q_s(\bar{x}), Q(\bar{z})) \) to check whether we can propagate values from \(Q_s \) to \(Q \), and get a bounded rewriting of \(Q \) in \(Q_s \land Q \). For instance, by \(\text{covq}(q_4(z), \exists w R(z, w)) = \text{true} \) for \(q_3(z) \) in Example 5.3, in which \(q_4(z) \) is \(Q_s \), and \(\exists w R(z, w) \) is \(Q \), it indicates that if \(q_4 \) has a bounded rewriting, then by propagating values to free variable \(z \) of \(q_4 \), we can have a bounded rewriting for subquery \(\exists w R(z, w) \) in \(q_4(z) \land \exists w R(z, w) \).

Note that only values of the free variables of \(Q_s(\bar{x}) \) can be propagated to \(Q(\bar{z}) \), and \(Q(\bar{z}) \) can only take values for its free variables as input from \(Q_s(\bar{x}) \). In other words, \(Q(\bar{z}) \) only takes values of the variables in \(\bar{x} \cap \bar{z} \) from \(Q_s(\bar{x}) \).

In particular, \(Q_s \) may include views from \(\mathcal{V} \). As will be shown shortly, function \(\text{covq}(Q_s, Q) \) distinguishes views that need to have bounded output from those that do not have to, to ensure that a bounded number of values are propagated from \(Q_s \) to \(Q \) over any instance \(\mathcal{D} \models \mathcal{A} \); i.e., \(Q \) does have a bounded rewriting subplan in \(Q_s \land Q \).

(2) Function \(\text{size}((Q_s(\bar{x}), Q(\bar{z})) \) is a natural number that maintains an upper bound of the size of minimum subplans for subquery \(Q(\bar{z}) \) in \(Q_s(\bar{x}) \land Q(\bar{z}) \). We will use \(\text{size}(Q_s, Q) \) to ensure that our query plans do not exceed a given bound \(M \).

For instance, in Example 5.3, \(\text{size}(q_4, \exists w R(z, w)) = 7 \), which is the size of the subplan for evaluating \(\exists w R(z, w) \) in \(q_4(z) \land \exists w R(z, w) \) by using values propagated from \(q_4 \).

We now define \(\text{topped queries} \) using the two functions. An FO query \(Q \) over \(\mathcal{R} \) is \(\text{topped} \) by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \) if (1) \(\text{covq}(Q_e, Q) = \text{true} \) and (2) \(\text{size}(Q_e, Q) \leq M \). Here \(Q_e \) is a "tautology query" such that for any \(Q \), \(Q_e \land Q = Q \) and \(Q_e \) has a 0-bounded plan. It is an extension of functions \(\text{covq}(Q_s, Q) \) and \(\text{size}(Q_s, Q) \) for function parameter \(Q_s \).

Intuitively, we compute \(\text{covq}(Q_s, Q) \) and \(\text{size}(Q_s, Q) \) starting with \(Q_s = Q_e \), and conclude that \(Q \) is \(\text{topped} \) by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \) if the two conditions above are satisfied.

Functions \(\text{covq}(\cdot, \cdot) \) and \(\text{size}(\cdot, \cdot) \). We next define the functions inductively based on the structure of FO query \(Q \). In the process, we also give a bounded query plan. We will ensure that if \(\text{covq}(Q_s(\bar{x}), Q(\bar{z})) = \text{covq}(Q_e, Q_s(\bar{x})) = \text{true} \), and \(Q_s(\bar{x}) \) has a size \(Q_s, Q_s(\bar{x}) \)-bounded rewriting, then \(Q_s(\bar{x}) \land Q(\bar{z}) \) has a size \(Q_s, Q_s(\bar{x}) \land Q(\bar{z}) \)-bounded rewriting.

A CM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.
The definition of \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) \) is separated into seven cases below. In particular, we define \(\text{cov}(Q_s(\bar{x}), Q(z)) = \text{true} \), \(\text{size}(Q_s(\bar{x}), Q(z)) = 0 \).

1. \(Q(\bar{z}) \) is \(z = c \). We define \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = 1 \).

2. \(Q(\bar{z}) \) is \(V(\bar{z}) \). We can access cached views; thus, we define \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = 1 \). That is, constant queries and views have 1-bounded rewriting and therefore are taken as topped queries.

3. \(Q(\bar{z}) = Q'(\bar{z}) \land C \), where \(C \) is one of \((x = y), (x \neq y), (x = c), \) and \((x \neq c) \). We define \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{cov}(Q_s(\bar{x}), Q'(\bar{z})) \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = \text{size}(Q_s(\bar{x}), Q'(\bar{z})) + 1 \) when \(\text{cov}(Q_s(\bar{x}), Q'(\bar{z})) = \text{true} \), and as \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = +\infty \) otherwise. Given a bounded plan \(\xi' \) for \(Q' \), a bounded plan for \(Q \) is \((T = \xi', \sigma_C(\xi')) \), increasing the size of \(\xi' \) by 1.

4. \(Q(\bar{z}) = Q_1(\bar{z}_1) \land Q_2(\bar{z}_2) \), where \(Q_2 \) is not an (in)equality. Here, let \(\mu_1 = \text{cov}(Q_s(\bar{x}), Q_1(\bar{z}_1)), s_1 = \text{size}(Q_s(\bar{x}), Q_1(\bar{z}_1)), s = \text{size}(Q_s(\bar{x}), Q(\bar{z})), \mu' = \text{cov}(Q_s(\bar{x}) \land Q_1(\bar{z}_1), Q_2(\bar{z}_2)), \) \(s' = \text{size}(Q_s(\bar{x}) \land Q_1(\bar{z}_1), Q_2(\bar{z}_2)) \) \((i \in \{1, 2\}) \). We distinguish the following cases:

 a) if \(\mu_1 = \text{true} \), \(Q_2(\bar{z}_2) \) is of the form \(\exists w R(\bar{z}_1, z'_2, w) \), there exists access constraint \(R(\bar{z}_1 \rightarrow Z'_2, N) \) in \(\mathcal{A} \) with \(Z_1 \cup Z'_2 = Z_2 \), and \(Q_s(\bar{x}) \land Q_1(\bar{z}_1) \) has bounded output under \(\mathcal{A} \), then we define \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = s_1 + 1 \); otherwise,

 b) if \(\mu_1 = \mu_2 = \text{true} \), then \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \), \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = 2s + s_1 + s_2 + \lambda(\bar{z}_1, \bar{z}_2) \), where \(\lambda(\bar{z}_1, \bar{z}_2) \) is 1 (4, respectively) if \(\bar{z}_1 \cap \bar{z}_2 \) is empty (resp. not empty); otherwise,

 c) if \(\mu_1 = \mu' = \text{true} \) and \(|Q_2| \leq K \) for some predefined constant \(K \) (here \(|Q_2| \) is the size of \(Q_2 \), then \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = s_1 + s' \); otherwise,

 d) we define \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{false} \) and \(\text{size}(Q_s(\bar{x}), Q(\bar{z})) = +\infty \).

In case (4), we characterize value propagation via conjunction in the queries. More specifically, when \(\text{cov}(Q_s(\bar{x}), Q(\bar{z})) = \text{true} \), we have three cases below.

(a) If \(Q_1 \) has a bounded plan \(\xi_1 \) with \(Q_s \), and if \(Q_2 \) is (a projection of) a relation atom covered by an access constraint \(R(\bar{z}_1 \rightarrow Z'_2, N) \) in \(\mathcal{A} \), then \(Q(\bar{z}) \) also has a bounded plan with \(Q_s(\bar{x}) \) and \(Q_1(\bar{z}_1) \), as long as \(Q_s(\bar{x}) \land Q_1(\bar{z}_1) \) has bounded output. Indeed, a plan for \(Q_2 \) is \((T = \xi_1, \text{fetch}(X \in T, R, Z'_2)) \) of size \(|\xi_1| + 1 \). We instantiate the \(Z_1 \) attributes of \(R \) with the output of \(Q_1(\bar{z}_1) \) and ensure that the input \(T \) of fetch, i.e., the output of \(Q_s(\bar{x}) \land Q_1(\bar{z}_1) \), has bounded size. This case requires bounded output analysis.

For instance, consider \(q_2 = \exists y ((R(y, y) \land T(x, y)) \land (x = 1)) \) and \(R(y, z) \) in subquery \(q_4 \) of \(q_2 \) of Example 5.3. The \(y \)-values from \(q_2 \) are propagated to \(R(y, z) \) in this case.

By cases (2), (3), and (7c) (will be seen shortly), one can verify that \(\text{cov}(Q_e, q_2) = \text{true} \) and \(\text{size}(Q_e, q_2) = 2 \) under \(\mathcal{A}_2 \) and \(\mathcal{V}_3 \) of Example 5.3. Now consider query \(q'_2 = q_2 \land R(y, z) \). By case (4a), we have that \(\text{cov}(Q_e, q'_2) = \text{cov}(Q_e, q_2) = \text{true} \) and \(\text{size}(Q_e, q'_2) = \text{size}(Q_e, q_2) + 1 = 3 \). Thus, \(q'_2 \) is topped by \((\mathcal{R}_1, \mathcal{V}_3, \mathcal{A}_2, 3) \) (recall \(\mathcal{R}_1, \mathcal{V}_3, \) and \(\mathcal{A}_2 \) from Example 5.3).

(b) If both \(Q_1 \) and \(Q_2 \) have bounded subplans with \(Q_s \), e.g., \(\xi_1 \) and \(\xi_2 \), respectively, then \(Q \) also has a bounded plan with \(Q_s \), whose size depends on the forms of \(Q_1(\bar{z}_1) \) and \(Q_2(\bar{z}_2) \), as reflected in different values of \(\lambda(\bar{z}_1, \bar{z}_2) \). More specifically, if \(\bar{z}_1 \) and \(\bar{z}_2 \) are disjoint, then \(Q \) is a production of \(Q_1 \) and \(Q_2 \) and thus has a query plan \((T_1 = \xi_1, T_2 = \xi_2, T_3 = T_1 \times T_2) \), of size \(|\xi_1| + |\xi_2| + 1 \). Otherwise, i.e., if \(\bar{z}_1 \cap \bar{z}_2 \neq \emptyset \), then \(Q \) is a join of \(Q_1 \) and \(Q_2 \) and thus has a plan \((T_1 = \xi_1, T_2 = \xi_2, T_3 = \rho(T_2), T_4 = T_1 \times T_2, T_5 = \sigma_{Z_1 \cap Z_2 = \rho}(Z_1 \cap Z_2)(T_4)) \), of size \(|\xi_1| + |\xi_2| + 4 \). Here \(\rho \) renames attributes in \(Z_1 \cap Z_2 \). Note that \(\xi_1 \) and \(\xi_2 \) are subplans of \(Q_1 \) and \(Q_2 \) with \(Q_s \), respectively, which use the output of \(Q_s \) to compute \(Q_1 \) and \(Q_2 \). Hence, \(|\xi_1| \) and \(|\xi_2| \) are characterized by \(s + s_1 \) and \(s + s_2 \), respectively, including the size of the plan for \(Q_s \).
For example, consider $Q_s = S(x)$, $Q_1 = R(x, y)$, and $Q_2 = R(x, z)$ over relation schemas C and $R(A, B)$ with access constraints $S(\emptyset \rightarrow C, N)$ and $R(A \rightarrow B, N)$. Then $\text{covq}(Q_s, Q_1 \land Q_2) = \text{true}$ since $\text{covq}(Q_s, Q_1) = \text{true}$ (by cases (7a) and (7b), which will be discussed shortly); $\text{size}(Q_s, Q_1 \land Q_2) = B_1 + B_2 + 4$, where $B_1 = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_1)$ (for $i = 1, 2$) is an upper bound of the size of the subplan for Q_s that will be used by the plan for Q with Q_2; and 4 is the number of steps to join subplans for Q_1 and Q_2 with Q_s together. Note that $\text{size}(Q_s, Q_s)$ is counted twice as it will be used by the subplans for both Q_1 and Q_2 with Q_s.

(c) If Q_1 has a bounded plan with Q_s while Q_2 has a bounded plan with $Q_s \land Q_1$, instead of Q_s, alone, e.g., plans ξ_1 and ξ_2, respectively, then Q has a bounded query plan of size $|\xi_1| + |\xi_2|$, where $|\xi_1| = \text{size}(Q_s(x), Q_1(z_1))$ and $|\xi_2| = \text{size}(Q_s \land Q_2(x), Q_2(z_2))$. Note that we extend $Q_s(x)$ with $Q_1(z_1)$ only if $Q_1(z_1)$ has a bounded plan using \forall with Q_s (i.e., $\text{covq}(Q_s, Q_1) = \text{true}$). One can verify that this expansion policy ensures that Q_s always has a bounded plan since we start with a tautology query $Q_s = Q_s$.

Observe the following: (1) Q_s is expanded in case (c) above to propagate z_1 from $Q_1 \land Q_s$ to Q_2 there. More specifically, if subquery $Q_3(z_2)$ of Q does not have a bounded rewriting with $Q_1(x)$ (i.e., when $\mu_2 = \text{false}$), we may extend $Q_2(x)$ with $Q_1(z_1)$ to make $Q_2(z_2)$ bounded when $\mu' = \text{true}$.

(2) We also restrict the size $|Q_2|$ for case (c) to ensure both functions $\text{covq}(-, -)$ and $\text{size}(-, -)$ are in PTIME. Indeed, to compute $\text{covq}(Q_s, Q)$, we need to expand Q_2 with various conjuncts of Q_2, if Q_2 is also a conjunction, by applying case (4b) or (4c) alternatively. For example, when Q_2 is $Q_21 \land Q_22$, to compute $\text{covq}(Q_s, Q)$ via cases (4b) and (4c), we may need to compute $\text{covq}(Q_s, Q_{22}), \text{covq}(Q_s \land Q_1, Q_{22}), \text{covq}(Q_s \land Q_{21}, Q_{22})$, and $\text{covq}(Q_s \land Q_1 \land Q_{21}, Q_{22})$. In the worst case, we may test $2^{|Q_2|}$ many difference cases. Hence, we restrict the size of Q_2 by a predefined constant K to bound the number of expansions of Q_s when computing $\text{covq}(Q_s, Q)$ and ensure that it is in PTIME. We remark that this restriction has no impact on the expressive power of topped queries up to equivalence, even when $K = 1$ (see the proof of Theorem 5.1 in the Online Appendix for more details).

(5) $Q(z)$ is $Q_1(z_1) \lor Q_2(z_2)$. If $z_1 \neq z$ or $z_2 \neq z$, we let $\text{covq}(Q_1(x), Q(z)) = \text{false}$ and $\text{size}(Q_1(x), Q(z)) = +\infty$. Otherwise, let $\mu_1 = \text{covq}(Q_1(x), Q(z))$ and $s_1 = \text{size}(Q_1(x), Q(z))$ for $i \in \{1, 2\}$. Define $\text{covq}(Q_s(x), Q(z)) = \mu_1 \land \mu_2$, and size$(Q_s(x), Q(z)) = s_1 + s_2 + 1$ if $\text{covq}(Q_s(x), Q(z)) = \text{true}$ and $\text{size}(Q_s(x), Q(z)) = +\infty$ otherwise.

Intuitively, if Q_1 and Q_2 have bounded plans ξ_1 and ξ_2, respectively, then $Q(z)$ has a bounded plan $(T_1 = \xi_1, T_2 = \xi_2, T_1 \cup T_2)$, of size $|\xi_1| + |\xi_2| + 1$.

Note that when Q_1 and Q_2 do not share the same free variables z, $Q_1 \lor Q_2$ can never be topped queries since $\text{covq}(Q_s, Q_1 \lor Q_2) = \text{false}$. This is to ensure that topped queries are safe-range and hence are “safe”, i.e., domain independent (only domain-independent calculus queries are well-defined queries, i.e., queries have determined query answers on every database instance, and have equivalent algebra forms and query plans [28]). For example, this will exclude “unsafe” queries like $Q(x, y) = \exists w_1, w_2 R(w_1, x) \lor R(w_2, y)$ from the class of topped queries.

(6) $Q(z)$ is $Q_1(z_1) \land Q_2(z_2)$. If $z_1 \neq z$ or $z_2 \neq z$, we define $\text{covq}(Q_s(x), Q(z)) = \text{false}$ and $\text{size}(Q_s(x), Q(z)) = +\infty$. Otherwise, let $\mu_1 = \text{covq}(Q_s(x), Q(z)), s_1 = \text{size}(Q_s(x), Q(z)), \mu_{12} = \text{covq}(Q_s(x), Q_1(z) \land Q_2(z))$, and $s_{12} = \text{size}(Q_s(x), Q_1(z) \land Q_2(z))$. Then we define

(a) $\mu_1 \land \mu_2 = \text{true}$, $\text{covq}(Q_s(x), Q(z)) = \text{true}$ and $\text{size}(Q_s(x), Q(z)) = s_1 + s_2 + 1$; otherwise,

(b) $\mu_1 \land \mu_{12} = \text{true}$ and $|Q_s| \leq K$ for some predefined constant K, $\text{covq}(Q_s(x), Q(z)) = \text{true}$ and $\text{size}(Q_s(x), Q(z)) = s_1 + s_2 + 1$; otherwise,

(c) we define $\text{covq}(Q_s(x), Q(z)) = \text{false}$ and $\text{size}(Q_s(x), Q(z)) = +\infty$.

It is case (6) that captures how subquery Q_4 of Q_3 is propagated to $\exists w R(z, w)$ in Example 5.3. When $\text{covq}(Q_s(x), Q(z)) = \text{true}$, we have one of the following three cases:
(a) When $\mu_1 = \mu_2 = \text{true}$, it is similar to case (5) above.

(b) If $\mu_1 = \mu_12 = \text{true}$, let ξ_1 and ξ_12 be the plans for $Q_1(\bar{x})$ and $Q_1(\bar{x}) \land Q_2(\bar{x})$, respectively, with $Q_s(\bar{x})$. Since $Q_1(\bar{x}) \land \neg Q_2(\bar{x}) = Q_1(\bar{x}) \land \neg (Q_1(\bar{x}) \land Q_2(\bar{x}))$, $Q(\bar{x})$ has bounded plan ($T_1 = \xi_1, T_2 = \xi_12, T_3 = T_1 - T_2$), of size $|\xi_1| + |\xi_12| + 1$. For the same reason as the one given in case 4(c) above, we also require $|Q_2| \leq K$ here.

(c) Otherwise, $\text{covq}(Q_s(\bar{x}), Q(\bar{x})) = \text{false}$, and thus $\text{size}(Q_s(\bar{x}), Q(\bar{x})) = \infty$; i.e., Q has no bounded rewriting.

For the same reason as (5), we only allow cases when Q_1 and Q_2 have the same free variables to be topped queries, to ensure that every topped query is safe-range.

(7) $Q(\bar{x})$ is $\exists w Q'(\bar{w}, \bar{z})$ (\bar{w} is possibly empty). Let $\mu’ = \text{covq}(Q_s(\bar{x}), Q'(\bar{w}, \bar{z}))$ and $s’ = \text{size}(Q_s(\bar{x}), Q'(\bar{w}, \bar{z}))$. Then we consider the following three cases:

(a) If $Q’$ is $R(\bar{w}, \bar{z})$ and there exists access constraint $R(\emptyset \rightarrow Z, N) \in \mathcal{A}$, then we define $\text{covq}(Q_s(\bar{x}), Q(\bar{x})) = \text{true}$ and $\text{size}(Q_s(\bar{x}), Q(\bar{x})) = 1$.

(b) If $Q’$ is $R(\bar{w}, \bar{z}), R(X \rightarrow Z’, N) \in \mathcal{A}$, $X \cup Z’ = Z$ and if $Q_s(\bar{x})$ has bounded output under \mathcal{A}, then $\text{covq}(Q_s(\bar{x}), Q(\bar{x})) = \text{true}$, $\text{size}(Q_s(\bar{x}), Q(\bar{x})) = s’ + 1$.

(c) Otherwise, $\text{covq}(Q_s(\bar{x}), Q(\bar{x})) = \text{covq}(Q_s(\bar{x}), Q’(\bar{w}, \bar{z}))$ and $\text{size}(Q_s(\bar{x}), Q(\bar{x})) = \text{size}(Q_s(\bar{x}), Q’(\bar{w}, \bar{z})) + 1$ if $\text{covq}(Q_s(\bar{x}), Q(\bar{x})) = \text{true}$, and $\text{size}(Q_s(\bar{x}), Q(\bar{x})) = \infty$ otherwise.

Observe that $Q_s(\bar{x})$ may not have bounded output even when it has a bounded rewriting. Therefore, in case (b) above, we have to ensure that $Q_s(\bar{x})$ has bounded output in order to propagate the \bar{x}-value from $Q_s(\bar{x})$ to $R(\bar{z})$ for a fetch operation to use the \bar{x}-value.

Moreover, observe the following about case (7).

(a) When $Q(\bar{x})$ is a projection of a relation atom $\exists w \overline{R}(\bar{w}, \bar{z})$, if it is covered by $R(\emptyset \rightarrow Z, N)$ in \mathcal{A}, then fetch(\emptyset, R, Z) is a 1-bounded plan for $Q(\bar{x})$.

(b) If $Q(\bar{x})$ is $\exists w \overline{R}(\bar{w}, \bar{z})$ and is covered by $R(X \rightarrow Z’, N)$, and $Q_s(\bar{x})$ has bounded output, then $Q_s \land Q$ has a plan ($T_1 = \xi_s, T_2 = \text{fetch}(X \in T_1, R, Z’)$), where ξ_s is the plan for Q_s. And this is also a plan for Q with Q_s.

(c) Otherwise, $Q(\bar{x})$ has a bounded plan if $Q’(\bar{w}, \bar{z})$ has one. Let $\xi’$ be the plan for $Q’$ with Q_s. Then ($T_1 = \xi’, T_2 = \pi_Z(T_1)$) of size $|\xi’| + 1$ is a plan for $Q(\bar{x})$ with $Q_s(\bar{x})$.

Example 5.4. We next show that q_3 of Example 5.3 is topped by $(R_1, A_2, V_3, 13)$. Denote the subqueries of q_3 as follows:

$q_1 = V_3(x, y) \land (x = 1), \quad q_2 = \exists y q_1, \quad q_2’ = q_2 \land R(y, z) \quad (\text{thus } q_4 = \exists y q_2’), \quad q_3’ = \exists w R(z, w)$

Then one can easily verify the following:

(a) $\text{covq}(Q_e, q_3) = (\text{covq}(Q_e, q_4) \land \text{covq}(Q_e, q_4’)) \lor (\text{covq}(Q_e, q_4) \land \text{covq}(Q_e, q_4’))$,

(b) $\text{covq}(Q_e, q_4) = \text{covq}(Q_e, q_4’) = (\text{covq}(Q_e, q_2) \land \text{covq}(Q_e, R(y, z))$ \lor (\text{covq}(Q_e, q_2) \land \text{covq}(Q_e, R(y, z))$).

(c) $\text{covq}(Q_e, q_3) = \text{covq}(Q_e, q_1) = \text{true}$,

(d) $\text{covq}(q_2, R(y, z)) = \text{true}$ (since q_2 has bounded output: $|q_2(D)| \leq N$ for any $D \models A$),

(e) from these it follows that $\text{covq}(Q_e, q_1) = \text{true}$.

(f) $\text{covq}(q_4, q_4’) = \text{true}$ (since q_4 has bounded output: $|q_4(D)| \leq N^2$ for any $D \models A$),

(g) $\text{covq}(Q_e, q_4 \land q_4’) = (\text{covq}(Q_e, q_4) \land \text{covq}(Q_e, q_4’)) \lor (\text{covq}(Q_e, q_4) \land \text{covq}(q_4, q_4’)) = \text{true}$.

Thus, $\text{covq}(Q_e, q_3) = \text{true}$. Along the same lines, one can verify that $\text{size}(Q_e, q_3) = 13$. Thus, q_3 is topped by $(R_1, A_2, V_3, 13)$.
Proof sketch of Theorem 5.1. Having defined topped queries, we now outline a proof of Theorem 5.1 (we defer the details to the Online Appendix for the lack of space).

(a) Suppose that Q is an FO query with an M-bounded rewriting; i.e., Q has an M-bounded query plan $\xi(Q, V, R)$ under \mathcal{A}. We show that there exists a query Q_{ξ} topped by (R, V, \mathcal{A}, M) such that $\xi \equiv \mathcal{A} Q_{\xi}$, by induction on M, verifying each step (case) of ξ.

(b) We show that every query Q topped by (R, V, \mathcal{A}, M) has a size(Q_e, Q)-bounded rewriting using V under \mathcal{A}. The proof needs the following lemma: if $\text{cov}(Q_e, Q) = \text{cov}(Q_e, Q_s)$ and if Q_s has a size(Q_e, Q_s)-bounded plan, then $Q_s \land Q$ has a size($Q_e, Q_s \land Q$)-bounded plan. This is verified by induction on the structure of Q.

For instance, when $Q(z)$ is $Q_1(z_1) \land Q_2(z_2)$, $\text{cov}(Q_s, Q(z))$ and $\text{cov}(Q_e, Q_s)$ are true, and Q_s has a size(Q_e, Q_s)-bounded plan, we know that $\text{cov}(Q_s, Q_1(z_1))$ is also true. By the induction hypothesis, we have that $Q_s \land Q_1(z_1)$ has a size($Q_e, Q_s \land Q_1(z_1)$)-bounded plan. Moreover, either $\text{cov}(Q_s, Q_2(z_2))$ or $\text{cov}(Q_s \land Q_1(z_1), Q_2(z_2))$ is true. In both cases, by the induction hypothesis, $Q_s \land Q_1 \land Q_2$ has a size($Q_e, Q_s \land Q_1 \land Q_2$)-bounded plan.

(c) It takes PTIME in $|R|$, $|Q|$, $|V|$, $|\mathcal{A}|$, and M to check whether an FO query is topped by (R, V, \mathcal{A}, M). Indeed, we show that both $\text{cov}(Q_e, Q)$ and size(Q_e, Q) are PTIME functions, which invoke a PTIME oracle to check bounded output for cases (4a) and (7b) of topped queries given above. Moreover, we show that it takes PTIME to generate an M-bounded rewriting using V for each query topped by (R, V, \mathcal{A}, M).

\[\square \]

Remark. (a) To prove Theorem 5.1(1), it suffices to use $Q_s = Q_e$, which yields a simpler form of effective syntax for bounded rewriting. We allow value propagation in cases (4c) and (6b) in order to cover queries that are commonly used in practice, which, nonetheless, leads to an effective syntax that is a little complicated. (b) The class of topped queries is quite different from the rules for \bar{x}-controllability ([26]; see Section 7) and the syntactic rules for bounded evaluability of CQ ([25]) and for FO [11], particularly in the use of Q_s to check bounded output of views and the function size($Q_s(x), Q(z)$) to ensure the bounded size of query plans.

5.3 Size-Bounded Queries

We next define size-bounded queries and prove Theorem 5.2. We remark that there are other forms of effective syntax for FO queries with bounded output. To simplify the discussion, below we present a straightforward one.

Size-bounded queries. An FO query $Q(x)$ is size bounded under an access schema \mathcal{A} if it is of the following form:

\[Q(x) = Q'(x) \land \forall \bar{x}_1, \ldots, \bar{x}_{K+1} \left(Q'(\bar{x}_1) \land \cdots \land Q'(\bar{x}_{K+1}) \rightarrow \bigvee_{i,j \in [1, K+1], i \neq j} \bar{x}_i = \bar{x}_j \right), \]

where K is a natural number, and Q' is an FO query.

Intuitively, for any FO query Q', if Q' has output size bounded by K, then the Boolean conjunct $\forall \bar{x}_1, \ldots, \bar{x}_{K+1} \left(Q'(\bar{x}_1) \land \cdots \land Q'(\bar{x}_{K+1}) \rightarrow \bigvee_{i,j \in [1, K+1], i \neq j} \bar{x}_i = \bar{x}_j \right)$ of Q is true. Hence, $Q = Q'$ and Q also has output bounded by K. When Q' does not have output size bounded by K, the Boolean conjunct is false. Hence, $Q =$ false, and Q also has output size bounded by K in this case. The class of size-bounded queries includes all queries of such form, which obviously have bounded output size. Indeed, this is an effective syntax of queries with bounded output, verifying Theorem 5.2, as proved below. Note that we do not fix the number K; i.e., queries with arbitrary natural number K are included in the class of size-bounded queries, as long as K is a natural number.

Proof of Theorem 5.2. This class of size-bounded queries suffices for Theorem 5.2.
(a) Consider an FO query \(Q(\bar{x}) \) having bounded output under \(\mathcal{A} \). By the definition of queries with bounded output (Section 3.1), there exists a natural number \(K \) such that for any instance \(D \) of \(\mathcal{R} \), if \(D \models \mathcal{A} \), then \(|Q(D)| \leq K \). Construct \(Q'(\bar{x}) \) from \(Q(\bar{x}) \) as

\[
Q'(\bar{x}) = Q(\bar{x}) \land \forall \bar{x}_1, \ldots, \bar{x}_{K+1} \left(Q(\bar{x}_1) \land \cdots \land Q(\bar{x}_{K+1}) \rightarrow \bigvee_{i,j \in [1, K+1], i \neq j} (\bar{x}_i = \bar{x}_j) \right).
\]

Obviously, \(Q'(\bar{x}) \) is a size-bounded query. Moreover, \(Q'(\bar{x}) \equiv_{\mathcal{A}} Q(\bar{x}) \), since \(Q(\bar{x}) \) has output bounded by \(K \), and hence, for any \(D \models \mathcal{A} \), it is easy to see that \(Q(D) = Q'(D) \).

(b) Consider a size-bounded query \(Q(\bar{x}) \) of the form above. For any \(D \), if \(Q'(D) \) contains more than \(K \) answer tuples, then \(Q(D) = \emptyset \). Otherwise, \(Q(D) = Q'(D) \) and \(Q(D) \) includes at most \(K \) tuples. Hence, \(|Q(D)| \leq K \). That is, \(Q \) has bounded output.

(c) By the definition of size-bounded queries, it is immediate to syntactically check whether an FO query \(Q \) is size bounded. It takes \(\text{PTIME} \) in the size \(|Q| \) of \(Q \). \(\square \)

6 BOUNDED \(\mathcal{L}_1 \)-to-\(\mathcal{L}_2 \) QUERY REWRITING USING VIEWS

One might be tempted to think that it would be simpler to find a bounded rewriting of a query \(Q \) of \(\mathcal{L}_1 \) in another language \(\mathcal{L}_2 \) that is more expressive than \(\mathcal{L}_1 \). In this section, we formalize and study \(\mathcal{L}_1 \)-to-\(\mathcal{L}_2 \) bounded rewriting using views.

More specifically, consider query languages \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \), where \(\mathcal{L}_1 \subseteq \mathcal{L}_2 \), i.e., for all queries \(Q \in \mathcal{L}_1 \), \(Q \in \mathcal{L}_2 \). We study the problem of \(\mathcal{L}_1 \)-to-\(\mathcal{L}_2 \) bounded rewriting using views, denoted by \(\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_2) \) and stated as follows:

- **INPUT**: A database schema \(\mathcal{R} \), a natural number \(M \) (in unary), an access schema \(\mathcal{A} \), a query \(Q \in \mathcal{L}_1 \), and a set \(\mathcal{V} \) of \(\mathcal{L}_1 \)-definable views, all defined on \(\mathcal{R} \).

- **QUESTION**: Under \(\mathcal{A} \), does \(Q \) have an \(M \)-bounded rewriting in \(\mathcal{L}_2 \) using \(\mathcal{V} \)?

That is, \(\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_2) \) is to decide whether \(Q \) has a query plan \(\xi \) such that (a) \(\xi \) is in \(\mathcal{L}_2 \), i.e., \(Q_\xi \in \mathcal{L}_2 \) for the query \(Q_\xi \) expressed by \(\xi \); (b) \(\xi \) conforms to \(\mathcal{A} \); and (c) the size of \(\xi \) is at most \(M \) (see Section 2). Observe that \(\text{VBRP}(\mathcal{L}_1) \) is a special case of \(\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_2) \), i.e., \(\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_1) \), when \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are required to be the same query language. We thus only need to consider cases when \(\mathcal{L}_1 \subseteq \mathcal{L}_2 \), since we have already covered the cases when \(\mathcal{L}_1 = \mathcal{L}_2 \) in the previous sections.

We show that \(\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_2) \) makes our lives no easier than \(\text{VBRP}(\mathcal{L}_1) \). Indeed, its lower bound gets no better than its counterpart given in Theorem 3.1.

Theorem 6.1. \(\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_2) \) is \(\Sigma_3^p \)-hard

- when \(\mathcal{L}_1 \) is CQ and \(\mathcal{L}_2 \) is one of UCQ, \(\exists \text{FO}^+ \) or FO;
- when \(\mathcal{L}_1 \) is UCQ and \(\mathcal{L}_2 \) is \(\exists \text{FO}^+ \) or FO; and
- when \(\mathcal{L}_1 \) is \(\exists \text{FO}^+ \) and \(\mathcal{L}_2 \) is FO.

Proof. (1) Observe that \(\text{VBRP}^+(\text{CQ}, \mathcal{L}_2) \) is a special case of \(\text{VBRP}^+(\text{UCQ}, \mathcal{L}_2) \) and \(\text{VBRP}^+(\exists \text{FO}^+, \mathcal{L}_2) \) since \(\text{CQ} \subseteq \text{UCQ} \) and \(\text{CQ} \subseteq \exists \text{FO}^+ \). Thus, it suffices to show that \(\text{VBRP}^+(\text{CQ}, \mathcal{L}_2) \) is \(\Sigma_3^p \)-hard when \(\mathcal{L}_2 \) is UCQ, \(\exists \text{FO}^+ \), or FO, from which it follows that \(\text{VBRP}^+(\text{UCQ}, \exists \text{FO}^+) \), \(\text{VBRP}^+(\text{UCQ}, \text{FO}) \), and \(\text{VBRP}^+(\exists \text{FO}^+, \text{FO}) \) are also \(\Sigma_3^p \)-hard.

We show that \(\text{VBRP}^+(\text{CQ}, \mathcal{L}_2) \) is \(\Sigma_3^p \)-hard by reduction from the \(\exists \forall \forall^* \exists \forall^* \exists \text{CNF} \) problem, which is \(\Sigma_3^p \)-complete [44] (see the proof of Theorem 3.1 for \(\exists \forall \forall^* \exists \forall^* \exists \text{CNF} \)). We adopt the reduction given for \(\text{VBRP}^+(\text{CQ}) \) in the proof of Theorem 3.1. That is, given a sentence \(\phi = \exists X \forall Y \exists Z \psi(X, Y, Z) \), we
define the same database schema \mathcal{R}, access schema \mathcal{A}, CQ Q, and views \mathcal{V} for VBRP$^+$(\mathcal{CQ}, \mathcal{L}_2). We also set $M = 6$.

To verify that this makes a reduction for CQ-to-\mathcal{L}_2 rewriting, we show the following.

Lemma 6.2. For \mathcal{R}, \mathcal{A}, \mathcal{V}, Q, and M given in the proof of Theorem 3.1, Q has an M-bounded rewriting in \mathcal{L}_2 using \mathcal{V} under \mathcal{A} if and only if Q has an M-bounded rewriting in CQ using \mathcal{V} under \mathcal{A}, where \mathcal{L}_2 ranges over UCQ, $\exists \mathcal{F}O^*$, and FO.

This suffices. If it holds, the problem for deciding whether the query Q has an M-bounded rewriting in \mathcal{L}_2 is equivalent to deciding whether Q has an M-bounded rewriting in CQ. Then the construction given in the proof of Theorem 3.1 is a reduction from the $\exists \forall \exists 3$CNF problem to the latter problem. Hence, VBRP$^+$(CQ, \mathcal{L}_2) is Σ^P_3-hard.

Proof of Lemma 6.2. Obviously, if Q has an M-bounded rewriting in CQ, then Q has an M-bounded rewriting in \mathcal{L}_2. Conversely, assume by contradiction that Q has an M-bounded rewriting ξ (i.e., query plan) in \mathcal{L}_2 but does not have an M-bounded rewriting in CQ, when \mathcal{L}_2 is UCQ, $\exists \mathcal{F}O^*$, or FO. We show that it is impossible that ξ includes either union \cup or set difference \setminus operations, contradicting the assumption.

We start with the following observation. Since ξ is a query plan for Q, we have that $\xi \equiv_{\mathcal{A}} Q$ (see Section 2). Then ξ must contain the following operations:

- Either a set union operation \cup or a set difference \setminus operation as assumed.
- The view V; by the definition of Q and V, for ξ to cover all relations needed to answer Q, ξ has to use V given the constraint imposed by bound $M = 6$.
- A fetch operation for R_o, because V does not contain relation R_o needed by Q.
- A constant selection $\sigma_{Y=1}$ on the relation atom $R_o(k,1)$ in Q.
- A projection of the form $\pi_0(S)$ for a relation S; this is because Q is a Boolean query, while the view V, the constant selection, and the fetch operation are not.

These five operations must appear in ξ. Given $M = 6$, an M-bounded plan ξ can contain at most one additional operation. We next show that this is impossible for ξ.

Consider the fetch operation in ξ: fetch($I \in S_j, R_o, Y$), where S_j is the result of a previous operation in ξ, computed by a “query plan” ξ_{S_j} (see Section 2). To retrieve data from R_o, S_j cannot be empty. We show that ξ_{S_j} needs at least two more operations that are not among the five operations described above. That is, ξ needs at least seven operations, exceeding the bound $M = 6$ and hence leading to a contradiction.

More specifically, consider the following cases of ξ_{S_j} (see Section 2 for query plans):

(a) If ξ_{S_j} is a constant c, it does not help us answer Q because the value k used in the atom $R_o(k,1)$ in Q is arbitrary, and may not match the constant c.

(b) Now suppose that ξ_{S_j} is defined in terms of the other five operations allowed in a query plan (see Section 2). We distinguish the following two cases:

- Assume that ξ_{S_j} does not have V as a descendant. Then as only one additional operation is allowed, fetch(0, R_{01}, A) is the only possible plan of size 1 that does not use V. Similar to case (a), one can verify that it does not help us answer Q.

- If ξ_{S_j} takes V as a descendant, then ξ_{S_j} also needs a projection π_A so that S_j is unary. Recall that the access constraint on R_o takes the first attribute of R_o as input, while V is not unary. Meanwhile, as argued in the proof of Theorem 3.1, the only way that V can be used in a query plan that conforms to \mathcal{A} is when it occurs as $\sigma_{X=\bar{X}}(V)$, i.e., when all its \bar{X}-values are fixed Boolean values by means of a truth assignment $\mu^0_{\bar{X}}$. Hence, ξ_{S_j} also
needs an additional selection operation on \(V \). Therefore, when \(\xi_{S_j} \) has \(V \) as a descendant, \(\xi_{S_j} \) needs at least two more operations: one projection \(\pi_A \) and one selection on \(V \).

Putting these together, we can conclude that if \(\xi \) is a 6-bounded query plan for \(Q \), then \(\xi_{S_j} \) includes at least two operations, a contradiction to the size of \(\xi \). Hence, if \(\xi \) is a 6-bounded query plan for \(Q \) using \(\mathcal{V} \) under \(\mathcal{A} \), then \(\xi \) must be in \(\mathcal{C} \). This concludes the proof of Lemma 6.2. \(\Box \)

One may wonder whether UCQ is “complete” for CQ-to-FO bounded rewriting using views. That is, for any natural number \(M \), any set \(\mathcal{V} \) of CQ views, and any CQ \(Q \), if \(Q \) has an \(M \)-bounded rewriting in FO using \(\mathcal{V} \), then \(Q \) has an \(M \)-bounded rewriting in UCQ using \(\mathcal{V} \). Below we show that this is not the case, by giving a counterexample.

Example 6.3. Consider a database schema \(\mathcal{R} \) consisting of six relations: \(R(X, Y, Z) \), \(T(X, Y) \), \(K_1(X, Y) \), \(K_2(X, Y) \), \(K_3(X, Y) \), \(K_4(X, Y) \); an access schema \(\mathcal{A} \) consisting of five constraints: \(T(X \rightarrow Y, 3) \), \(K_1(X \rightarrow Y, 1) \), \(K_2(X \rightarrow Y, 1) \), \(K_3(X \rightarrow Y, 1) \), \(K_4(X \rightarrow Y, 1) \); and a Boolean CQ \(Q \) defined as follows:

\[
Q() = \exists x, y, z_1, z_2 \left(R(x, y, z_1) \land R(x, y, z_2) \land Q'(y, z_1, y, z_2) \right),
\]

where

\[
Q'(x_1, x_2, x_3, x_4) = \exists y' \left(T(y', x_1) \land T(y', x_2) \land T(y', x_3) \land T(y', x_4) \land K_1(x_1, 1) \land K_1(x_2, 2) \land K_2(x_3, 1) \land K_2(x_4, 2) \land K_3(x_1, 1) \land K_3(x_4, 2) \land K_4(x_1, 2) \land K_4(x_3, 2) \right).
\]

We use a set \(\mathcal{V} \) of three Boolean CQ views defined as follows:

\[
V_1() = \exists x, y, z_1, z_2 \left(R(x, z_1, y) \land R(x, z_2, y) \land Q'(z_1, y, z_2, y) \right);
\]

\[
V_2() = \exists x, y_1, z_1, z_2, x_1, y_2, z_3, z_4 \left(R(x, y_1, z_1) \land R(x, y_1, z_2) \land Q'(y_1, z_1, y_1, z_2) \right)
\]

\[
\land \left(R(x_1, z_3, y_2) \land R(x_1, z_4, y_2) \land Q'(z_3, y_2, z_4, y_2) \right);
\]

\[
V_3() = \exists x, y_1, z_1, z_2 \left(R(x, y_1, z_1) \land R(x, y_2, z_2) \land Q'(y_1, z_1, y_2, z_2) \right).
\]

One can verify that \(Q \not\equiv_{\mathcal{A}} V_1, V_1 \not\equiv_{\mathcal{A}} Q, V_2 \equiv_{\mathcal{A}} (V_1 \land Q) \), and \(V_3 \equiv_{\mathcal{A}} (V_1 \cup Q) \). These can be verified by observing the following properties: \(\mathcal{A} \) and \(Q \) ensure that for any instance \(D \) of \(\mathcal{R} \), if \(D \models \mathcal{A}, Q'(D) \neq \emptyset \), and supposing that \(v \) is a valuation of the variables of \(Q' \) to values in \(D \), then we have that either \(v(x_1) = v(x_3) \) or \(v(x_2) = v(x_4) \). Indeed, by \(T(X \rightarrow Y, 3) \in \mathcal{A} \), one can verify that one of the following holds: \(v(x_1) = v(x_2), v(x_1) = v(x_3), v(x_1) = v(x_4), v(x_2) = v(x_3), v(x_2) = v(x_4) \), or \(v(x_3) = v(x_4) \). However, by \(K_1(X \rightarrow Y, 1) \in \mathcal{A} \), we have that \(v(x_1) \neq v(x_2) \). Similarly, from \(K_2(X \rightarrow Y, 1) \), \(K_3(X \rightarrow Y, 1) \), and \(K_4(X \rightarrow Y, 1) \), one can conclude that \(v(x_3) \neq v(x_4), v(x_1) \neq v(x_4), \) and \(v(x_2) \neq v(x_3) \). From these, it follows that either \(v(x_1) = v(x_3) \) or \(v(x_2) = v(x_4) \). By this property, we can verify \(V_3 \equiv_{\mathcal{A}} (V_1 \cup Q) \) as follows. From the definition of \(V_1, Q, \) and \(V_3 \), it is easy to see that \((V_1 \cup Q) \subseteq_{\mathcal{A}} V_3 \). It remains to show \(V_3 \subseteq_{\mathcal{A}} (V_1 \cup Q) \). For any instance \(D \) of \(\mathcal{R} \), if \(D \models \mathcal{A}, V_3(D) \neq \emptyset \), supposing that \(v \) is a valuation of the variables of \(V_3 \) to values in \(D \), then by the property above we have that either \(v(y_1) = v(y_2) \) or \(v(z_1) = v(z_2) \). If \(v(y_1) = v(y_2) \), we can construct the following valuation \(v_1 \) of the variables of \(Q \) to values in \(D \): \(v_1(x) = v(x), v_1(y) = v(y_1), v_1(z_1) = v(z_1), v_1(z_2) = v(z_2), v_1(y') = v(y') \), and \(v_1(x_1) = v(x_i) \) (\(i \in [1, 4] \)). Thus, \(Q(D) \neq \emptyset \). If \(v(z_1) = v(z_2) \), we can similarly show that \(V_1(D) \neq \emptyset \). Putting all these together, we have that \(V_3 \subseteq_{\mathcal{A}} (V_1 \cup Q) \), and then \(V_3 \equiv_{\mathcal{A}} (V_1 \cup Q) \). The other relations can be verified in a similar manner.

We show the following: using \(\mathcal{V} \) under \(\mathcal{A} \), (a) query \(Q \) has a 5-bounded rewriting in FO, but (b) it does not have a 5-bounded rewriting in UCQ. Here we set \(M = 5 \).

Rewriting in FO. We show that \(Q \) has a rewriting \(Q_{\text{FO}}() = (V_3 \setminus V_1) \cup V_2 \) in FO. Obviously, \(Q_{\text{FO}}() \) has a 5-bounded query plan. It thus suffices to show that \(Q_{\text{FO}} \equiv_{\mathcal{A}} Q \).
We first show that \(Q \subseteq_{\mathcal{A}} Q_{\text{FO}} \). Let \(T_Q \) be the tableau representation of \(Q \). It is easy to verify that \(T_Q \models \mathcal{A} \) and \(Q(T_Q) = \text{true} \). Moreover, by \(Q \not\subseteq_{\mathcal{A}} V_1 \), we have that \(V_1(T_Q) = \text{false} \). By \(Q(T_Q) = \text{true} \), \(V_2 \equiv_{\mathcal{A}} (V_1 \land Q) \), and \(V_3 \equiv_{\mathcal{A}} (V_1 \cup Q) \), we have that \(V_2(T_Q) = \text{false} \) and \(V_3(T_Q) = \text{true} \). Thus, \(Q_{\text{FO}}(T_Q) = \text{true} \). This actually shows that for any instance \(D \) of \(R \), if \(D \models \mathcal{A} \) and \(Q(D) = \text{true} \neq \emptyset \), then \(Q_{\text{FO}}(D) = \text{true} \). Thus, \(Q \subseteq_{\mathcal{A}} Q_{\text{FO}} \).

We next show that \(Q_{\text{FO}} \subseteq_{\mathcal{A}} Q \). For any instance \(D \models \mathcal{A} \) of \(R \) such that \(Q_{\text{FO}}(D) = \text{true} \), we need to show that \(Q(D) = \text{true} \), by considering the following two cases:

- If \(V_2(D) = \text{true} \), then \(Q(D) = \text{true} \) since \(V_2 \equiv_{\mathcal{A}} (V_1 \land Q) \).
- If \(V_2(D) = \text{false} \), then \((V_3 \setminus V_1)(D) = \text{true} \) since \(Q_{\text{FO}}(D) = \text{true} \), i.e., \(V_3(D) = \text{true} \) and \(V_1(D) = \text{false} \). Moreover, from \(V_3 \equiv_{\mathcal{A}} (V_1 \cup Q) \), \(V_3(D) = \text{true} \), and \(V_1(D) = \text{false} \), we can deduce that \(Q(D) = \text{true} \).

Rewriting in UCQ. In contrast, \(Q \) has no 5-bounded rewriting in UCQ using \(\forall \) under \(\mathcal{A} \). We show that all possible 5-bounded rewritings of \(Q \) in UCQ cannot use fetch operations.

Indeed, since \(V_1, V_2, \) and \(V_3 \) are Boolean queries, we cannot use the output of these views or constants to fetch data of \(T, K_1, K_2, K_3, \) and \(K_4 \). In addition, observe that any rewriting of \(Q \) cannot impose selection and projection operations on the Boolean views. Moreover, for atoms in \(Q \), values in the first attributes are not fixed. If any rewriting \(Q_\xi \) uses a constant \(c_1 \) to fetch values, by the definition of \(\mathcal{A} \), we know that there exists an atom in \(Q_\xi \) such that \(c_1 \) appears in its first attribute. Then we can construct an instance \(D \) such that \(Q(D) \neq \emptyset \), and the first attributes of all instances do not contain the constant \(c_1 \). However, we have that \(Q_\xi(D) = \emptyset \), which is a contradiction. These leave us a small number of possible 5-bounded rewritings of \(Q \) in UCQ. Examining these possible rewritings will reveal that none of them makes a 5-bounded rewriting of \(Q \) using \(\forall \) under \(\mathcal{A} \). As an example, consider a possible rewriting \(Q_1 = (V_1 \cup V_2) \times V_1 \). One can easily verify that \(Q \not\equiv_{\mathcal{A}} Q_1 \). To see this, it suffices to consider the tableau representation of \(V_1 \), denoted by \(T_1 \). It is easy to verify that \(T_1 \models \mathcal{A} \) and \(V_1(T_1) = \text{true} \). Then, by \(Q_1 = (V_1 \cup V_2) \times V_1 \) and \(V_1(T_1) = \text{true} \), we have that \(Q_1(T_1) = \text{true} \). However, from \(V_1 \not\subseteq_{\mathcal{A}} Q \), it follows that \(Q(T_1) = \text{false} \). Hence, \(Q_1 \not\equiv_{\mathcal{A}} Q \).

7 RELATED WORK

This article extends its conference version [13] by including the detailed proofs of all results, which were not given in [13]. Some of the proofs are nontrivial and are interesting in their own right. In addition, we study \(\mathcal{L}_1 \)-to-\(\mathcal{L}_2 \)-bounded rewriting (Section 6), a topic not considered in [13].

We classify the other related work as follows.

Scale independence. The idea of scale independence originated from [6], which is to execute the workload in an application by doing a bounded amount of work, regardless of the size of datasets used. The idea was incorporated into PIQL [5], an extension of SQL, by allowing users to specify bounds on the amount of data accessed. As pointed out by [7], to make complex PIQL queries scale independent, precomputed views and query rewriting using views should be employed. Techniques for view selection, indexing, and incremental maintenance were also developed there.

The idea of scale independence was formalized in [26]. A query \(Q \) is defined to be scale independent in a dataset \(D \) w.r.t a bound \(\Theta \) if there exists a fraction \(D_Q \subseteq D \) such that \(Q(D) = Q(D_Q) \) and \(|D_Q| \leq \Theta \). Access constraints, a notion of \(\langle x \rangle \)-controllability (the bounded evaluability of a query \(Q(\langle x \rangle, y) \) when provided with a value of \(x \)), and a set of rules were also introduced in [26], to deduce dependencies on attributes needed for computing \(Q(D) \); these yield a sufficient condition to determine the scale independence of FO queries when variables \(x \) are instantiated. In addition, [26] considered the problem of deciding whether for all instances \(D \) of a relational schema, we can compute \(Q(D) \) by accessing cached views and at most \(\Theta \) tuples, in the absence of access...
constraints. It was shown there that the problem is NP-complete for CQ, and undecidable for FO. The notion of \bar{x}-controllability was extended to views, giving two simple sufficient conditions to decide the scale independence of query rewriting under access constraints.

This work differs from the prior work in the following ways: (a) We formalize bounded rewriting using views in terms of query plans subject to a bound M determined by available resources. This formulation is quite different from the notion of \bar{x}-controllability [26]. (b) We incorporate access constraints to make the notion more practical; without such constraints, few queries have a bounded rewriting. Under the constraints, however, the analysis of bounded rewriting is more intriguing. For instance, VBRP(CQ) is Σ^p_2-complete, in contrast to NP-complete [26]. (c) We provide an effective syntax for FO queries with a bounded rewriting using views under access constraints, a sufficient and necessary condition. In contrast, the conditions of [26] via \bar{x}-controllability are sufficient but not necessary. Moreover, the rules of [26] do not distinguish whether views are used to just validate data or to fetch data from underlying datasets; this is critical for VBRP and demands the bounded output analysis of views. Effective syntax, VBRP, and VBRP+ were not studied in [5–7].

Bounded evaluability. The notion of bounded evaluability was proposed in [25], based on a form of query plans that conform to access constraints. The problem for deciding whether a query is boundedly evaluable under access constraints is decidable but EXPSPACE-hard for CQ, and is undecidable for FO [25]. A notion of effective boundedness was studied for CQ [16], based on a restricted form of query plans that conduct all data fetching before any relational operations start. It was shown [16] that effective boundedness is in PTIME for CQ. It was also studied for graph pattern queries via simulation and subgraph isomorphism [14], which are quite different from relational queries.

Bounded rewriting is more challenging than bounded evaluability. (a) With views comes the need for reasoning about their output size $|V(\mathcal{D})|$ (Section 3). (b) We adopt query plans in a form of query trees as commonly used in database systems and allow users to specify a bound on the size of the plans based on their available resources (Section 2). In contrast, [25] considers query plans that are a sequence of relational and data fetching operations, of length possibly exponential in the sizes of queries and constraints. After experimenting with real-life data, we find that the plans of [25] are not very realistic, and worse yet, their CQ plans may actually encode nonrecursive datalog queries without union, which yield exponential-size queries when expressed in CQ. It is because of the different notions of query plans adopted in this work and [25] that VBRP is Σ^p_3-complete for CQ, while bounded evaluability is EXPSPACE-hard [25].

Effective syntax. There has been a host of work on effective syntax (e.g., [28, 45, 46]), which started decades ago to characterize safe relational queries up to equivalence. For bounded query evaluation, an effective syntax was proposed for CQ [25], and another one for FO [11]. In contrast, this work develops an effective syntax for bounded rewriting of FO queries using views under access constraints (Section 5). Such a syntax has not been studied before, and is quite different from their counterparts for bounded evaluability. (a) It is in PTIME to check whether an FO query is topped for rewriting, while for bounded evaluability, the syntactic condition of [25] is in PTIME to check for CQ, but Π^p_2-complete for UCQ, and is not defined for FO. (b) Effective syntax for query rewriting is more intriguing than its counterpart for bounded evaluability [11]. As remarked earlier, we have to reason about the size $|V(\mathcal{D})|$ of cached views. It is further complicated by a user-imposed bound on the size of query plans, which was not considered in [11]. (c) The class of effectively bounded queries of [16] does not make an effective syntax: not every boundedly evaluable CQ is necessarily equivalent to an effectively bounded CQ.
Query rewriting using views. Query rewriting using views has been extensively studied (e.g., [2, 3, 19, 36, 40, 41]; see [32, 35] for surveys). In contrast to conventional query rewriting using views, bounded rewriting requires controlled access to the underlying dataset \(D \) under access schema, in addition to cached \(\mathcal{V}(D) \) (Section 2). This makes the analysis more challenging. For instance, it is \(\Sigma_3^p \)-complete to decide whether there exists a bounded rewriting for CQ with CQ views, as opposed to NP-complete in the conventional setting [36].

Related to \(L_1 \)-to-\(L_2 \) bounded rewriting (Section 6) is the study of view determinacy (e.g., [29, 40]), which studies complete rewriting languages. A language \(L \) is complete for \(L_1 \)-to-\(L_2 \) rewritings if \(L \) can be used to rewrite a query \(Q \in L_1 \) using views \(\mathcal{V} \) in \(L_2 \) whenever \(\mathcal{V} \) determines \(Q \) [40]. As remarked above, we adopt a different semantics of query rewriting using views, by allowing controlled access to the underlying data under access schema. Moreover, we focus on \(VBRP^+ \) instead of complete languages. The results of view determinacy do not carry over to \(L_1 \)-to-\(L_2 \) bounded rewriting and vice versa.

Access patterns. Related to the work is also query answering under access patterns, which require a relation to be only accessed by providing certain combinations of attributes [9, 10, 21, 37, 39, 41] (see [8] for a survey). Query rewriting using views under access patterns has been studied for CQ [41], and for UCQ and UCQ\(^-\) (with negated relation atoms) under fixed views and integrity constraints [21]. This work differs from the prior work in the following ways: (a) Unlike access patterns, access constraints impose cardinality constraints and controlled data accesses via indices. (b) Moreover, in an access constraint \(R(X \rightarrow Y, N) \), \(X \cup Y \) may account for a small set of the attributes of \(R \), while an access pattern has to cover all the attributes of \(R \). As a result, we can fetch partial tuples from the underlying dataset via an access constraint, as opposed to access patterns that are to fetch entire tuples. This complicates the proofs of bounded rewriting. (c) Bounded rewriting allows access to the underlying data with controlled I/O, which is prohibited in [21, 41]. As evidence of the difference, bounded CQ rewriting using fixed views is \(C_{2k+1}^p \)-complete under fixed access constraints (Section 3), as opposed to NP-complete for rewriting using fixed views under access patterns [21, 37]. (d) To the best of our knowledge, no prior work has studied effective syntax for bounded FO rewriting.

8 CONCLUSION

We have formalized bounded query rewriting using views under access constraints; studied the bounded rewriting problem \(VBRP(L) \) when \(L \) is ACQ, CQ, UCQ, \(\text{FO}^+ \), or FO; and established their upper and lower bounds, all matching, when \(M, R, A, \) and \(\mathcal{V} \) are fixed or not. The main complexity results are summarized in Table 1, annotated with their corresponding theorems. We have also provided an effective syntax for FO queries with a bounded rewriting, along with an effective syntax for FO queries with bounded output. Moreover, we have shown that bounded query rewriting does not get simpler when we allow a query in \(L \) to be rewritten into a query in another language \(L' \).

One topic for future work is to study bounded rewriting when we allow the amount of data accessed from the underlying dataset \(D \) to be an \(\alpha \)-fraction of \(D \), for a small “resource ratio” \(\alpha \) in the range of \([0, 1]\), rather than to be bounded by a constant. Intuitively, \(\alpha \) indicates the amount of data we can afford to access under our resource budget. Similarly, we may allow \(M \) to be a function of resources and workload, instead of a constant. Another topic is to study bounded view maintenance, to incrementally maintain \(\mathcal{V}(D) \) by accessing a bounded amount of data in \(D \), in response to changes to \(D \). The third topic is to study top-\(k \) (diversified) query rewriting using views, which is to find the top-\(k \) answers that differ sufficiently from each other [20], by accessing cached views and a bounded amount of underlying data.
A fourth topic is to study approximate query answering. Given a possibly big dataset D, a query Q, and a resource ratio $\alpha \in [0, 1]$, it is to compute approximate answers $Q(D_Q)$ to Q in D by (a) accessing a bounded D_Q such that $|D_Q| \leq \alpha |D|$, and (b) with accuracy above a deterministic bound η, i.e., for any approximate answer $s \in Q(D_Q)$, there exists an exact answer $t \in Q(D)$ such that the distance between s and t is at most η, and conversely, for any $t \in Q(D)$, there exists $s \in Q(D_Q)$ such that s “covers” t with distance at most η. Preliminary work in this direction has been reported in [12]. We aim to extend the approximation framework by incorporating bounded query rewriting.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

ACM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.

Received November 2016; revised August 2017; accepted December 2017
Supplementary Material for: Bounded Query Rewriting Using Views

YANG CAO, University of Edinburgh
WENFEI FAN, University of Edinburgh and Beihang University
FLORIS GEERTS, University of Antwerp
PING LU, Beihang University

9 SUPPLEMENTARY MATERIALS

9.1 Overview of Used Notations

Table 2. Notations

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{R}, \mathcal{R}</td>
<td>database schema \mathcal{R} and relation schema $R \in \mathcal{R}$</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>access schema</td>
</tr>
<tr>
<td>$D \models \mathcal{A}$</td>
<td>an instance D of \mathcal{R} satisfies access schema \mathcal{A}</td>
</tr>
<tr>
<td>$Q \in \mathcal{L}$</td>
<td>query Q in a query language \mathcal{L}</td>
</tr>
<tr>
<td>\mathcal{V}, \mathcal{V}</td>
<td>a set \mathcal{V} of views and a view $V \in \mathcal{V}$</td>
</tr>
<tr>
<td>$\xi(Q, \mathcal{V}, \mathcal{R})$</td>
<td>a query plan ξ for Q using \mathcal{V} over instances of \mathcal{R}</td>
</tr>
<tr>
<td>$\xi(D)$</td>
<td>query plan ξ represented as a query tree</td>
</tr>
<tr>
<td>$\xi \models \mathcal{D}$</td>
<td>the result of applying ξ to \mathcal{D}</td>
</tr>
<tr>
<td>$\text{VBRP}(\mathcal{L})$</td>
<td>the bounded rewriting problem for queries in \mathcal{L}</td>
</tr>
<tr>
<td>$\text{VBRP}^+(\mathcal{L}_1, \mathcal{L}_2)$</td>
<td>the problem of \mathcal{L}_1-to-\mathcal{L}_2 bounded rewriting using views</td>
</tr>
<tr>
<td>$Q \equiv_{\mathcal{A}} Q'$</td>
<td>\mathcal{A}-equivalence</td>
</tr>
<tr>
<td>$Q \subseteq_{\mathcal{A}} Q'$</td>
<td>\mathcal{A}-containment</td>
</tr>
<tr>
<td>QPQ</td>
<td>the set of all possible query plans of a bounded size</td>
</tr>
<tr>
<td>$Q \xi \subseteq_{\mathcal{A}} Q$, query $Q \xi$ expressed by ξ</td>
<td></td>
</tr>
</tbody>
</table>

9.2 Proof of Theorem 4.1

We prove that VBRP(ACQ) is coNP-hard under fixed \mathcal{R}, \mathcal{A}, M, and \mathcal{V}, and when \mathcal{A} has the forms of specified cases (1), (2), and (3).

(1) When \mathcal{A} consists of a single $R(A \rightarrow B, N)$ and $N \geq 2$. Consider a database schema \mathcal{R} with a single binary relation $R(A, B)$. We assume M to be any predefined constant and \mathcal{V} to be any fixed set of ACQ queries. We start with $N = 2$ and will show that VBRP remains coNP-hard when $N > 2$. We show that VBRP(ACQ) is coNP-hard in this setting by reduction from the complement of the precoloring extension problem, which is NP-complete [34]. Given an undirected graph $G = (V_G, E)$, a precoloring μ_0 is a coloring of a subset W of the nodes of V_G with colors in $\{r, g, b\}$. The precoloring extension problem is to decide whether μ_0 can be extended to a coloring μ of the entire set of nodes in V_G with colors in $\{r, g, b\}$—that is, whether there exists a coloring μ of all nodes in V_G such that $\mu(v) = \mu_0(v)$ for each $v \in W$ and $\mu(v) \neq \mu(w)$ whenever $(v, w) \in E$. From the proof...
in [34], we know that the problem remains NP-complete when each connected component in G has at least one leaf (degree-1 node) and the precoloring μ_0 only assigns colors to the leaves of G.

Given a graph $G = (V_G, E)$ and a 3-coloring μ_0 of the leaves V_1 of G, where $V_G = \{v_1, \ldots, v_n\}$, $V_1 \subseteq V_G$, and $E = \{e_1, \ldots, e_m\}$, we define an ACQ Q such that Q has an M-bounded rewriting in ACQ using \mathcal{V} under \mathcal{A} if and only if the precoloring μ_0 cannot be extended to a valid coloring of G. The query Q is constructed as follows:

$$Q() = \exists \bar{x}_1, \bar{x}_2, \bar{v} \left(Q_E(\bar{x}_1, \bar{x}_2) \land \bigwedge_{v_i \in V_G} Q^E_{v_i}(v_i, \bar{x}_1) \land \bigwedge_{v_i \in V_G} Q^E_{v_i}(v_i, \bar{x}_2) \land \bigwedge_{v_i \in V_1} Q_L(v_i) \land Q_1() \land Q_f() \right).$$

Here \bar{x}_1 and \bar{x}_2 consist of variables $x_{(v_i, v_j)}^1$ and $x_{(v_i, v_j)}^2$, respectively, for $v_i, v_j \in V_G$.

Intuitively, Q_E, Q^1_v, and Q^2_v encode graph G, $Q_L(v_i)$ enforces the precoloring; Q_1 checks whether G is 3-colored; and Q_f controls M, as will be elaborated shortly. The challenge arises from encoding a cyclic graph G in ACQ. We approach this as follows. We first replace two vertices of any edge in G with two distinct new variables and then use the fixed access constraint to recover the original G. For example, a cycle $(v_1, v_2), (v_2, v_3), (v_3, v_1)$ in G is represented by the following set of atoms in Q_E:

$$R(x_{(v_1, v_2)}^1, x_{(v_2, v_3)}^2, x_{(v_3, v_1)}^2), R(x_{(v_2, v_3)}^1, x_{(v_3, v_1)}^2, x_{(v_1, v_2)}^2), \text{and } R(x_{(v_1, v_2)}^1, x_{(v_2, v_3)}^2, x_{(v_3, v_1)}^2),$$

where $x_{(v_i, v_j)}^1 \in \bar{x}_1$ and $x_{(v_i, v_j)}^2 \in \bar{x}_2$, and similarly for the other variables. Although these seem like disconnected edges, we will ensure that $v_1 = x_{(v_1, v_2)}^1 = x_{(v_2, v_3)}^2$, $v_2 = x_{(v_2, v_3)}^1 = x_{(v_3, v_1)}^2$, and $v_3 = x_{(v_3, v_1)}^1 = x_{(v_1, v_2)}^2$ by means of the access constraint and queries Q^1_v and Q^2_v. This allows us to recover the cycle in G and encode cyclic graphs in an acyclic query Q_f.

We will use relation R to encode edges in E as well as coloring of vertices in V_G.

Queries $Q_E, Q^1_v, Q^2_v, Q_L, Q_1,$ and Q_f are in ACQ and are given as follows.

— The following subquery renames the nodes of each edge in G:

$$Q_E(\bar{x}_1, \bar{x}_2) = \bigwedge_{(v_i, v_j) \in E} \left(R(x_{(v_i, v_j)}^1, x_{(v_i, v_j)}^2) \land R(x_{(v_i, v_j)}^2, x_{(v_i, v_j)}^1) \right).$$

We use two directed edges to encode one edge in G so that the access constraint $R(A \rightarrow B, 2)$ can be used to recover variables $x_{(v_i, v_j)}^1$ and $x_{(v_i, v_j)}^2$.

— The following subquery ensures that each variable $x_{e_j}^1 = x_{(v_i, v_j)}^1$ in \bar{x}_1 denotes node v_i by enforcing that $x_{e_j}^1 = v_i$:

$$Q^1_v(v_i, \bar{x}_1) = \bigwedge_{e_j=(v_i, v_j) \in E} \left(R(i, 1) \land R(i, v_j) \land R(i, x_{e_j}^1) \right) \land \bigwedge_{Q^1_j} (R(i \land n, 2) \land R(i \land n, v_i) \land R(i \land n, x_{e_j}^1) \land R(i \land 2 \land n, 3) \land R(i \land 2 \land n, v_j) \land R(i \land 2 \land n, x_{e_j}^1)) \right).$$

Indeed, suppose that $x_{e_j}^1 \neq v_i$. Then, by the access constraint $R(A \rightarrow B, 2) \in \mathcal{A}$, from Q^1_j (marked underlying Q^1_v), we know that $v_i = 1 \lor x_{e_j}^1 = 1$. Similarly, $v_i = 2 \lor x_{e_j}^2 = 2$ or $v_i = 3 \lor x_{e_j}^3 = 3$ by Q^1_j and Q^1_j. That is, $\{v_i, x_{e_j}^1\} = \{1, 2, 3\}$, a contradiction. Hence, $x_{e_j}^1 = v_i$.

ACM Transactions on Database Systems, Vol. 43, No. 1, Article 6. Publication date: March 2018.
Similarly, the following subquery ensures that each variable $x_{e_j}^2$ in \bar{x}_2 corresponding to v_i satisfies $x_{e_j}^2 = v_i$:

$Q_v^2(v_i, \bar{x}_2) = \bigwedge_{e_j = (v_i, v_i) \in E} \left((R(i, 1) \land R(i, v_i) \land R(i, x_{e_j}^2)) \land (R(i + n, 2) \land R(i + n, v_i) \land R(i + n, x_{e_j}^2)) \land (R(i + 2 * n, 3) \land R(i + 2 * n, v_i) \land R(i + 2 * n, x_{e_j}^2)) \right)\).

The following subquery ensures that for each vertex $v \in V_1$, $v = \mu_0(v)$; i.e., the coloring preserves the precoloring μ_0 of the leaves, making use of R to encode the coloring:

$Q_{L}(v_i) = (R(i, 1) \land R(i, v_i) \land R(i, \mu_0(v_i))) \land (R(i + n, 2) \land R(i + n, v_i) \land R(i + n, \mu_0(v_i))) \land (R(i + 2 * n, 3) \land R(i + 2 * n, v_i) \land R(i + 2 * n, \mu_0(v_i)))\).

The following subquery is to ensure that graph G is colored with $\{r, g, b\}$. $Q_1() = R(r, g) \land R(r, b) \land R(g, r) \land R(r, b) \land R(b, g) \land R(b, r) \land R(b, g)$. More specifically, consider any instance $D \models \mathcal{A}$ of R such that $Q(D) \neq \emptyset$. Suppose that ν is a valuation of the variables of Q to vertices in D. We next show that for each vertex $v \in V_G$, $\nu(v) \in \{r, g, b\}$; i.e., G is colored with $\{r, g, b\}$, and for any edge $(v, v') \in E$, $\mu(v) \neq \mu(v')$. Let ν be any vertex in V_G. Since we assume that each connected component of G has at least one leaf and each edge of G is represented by two directed edges in G_E, there exist a leaf $v_1 \in V_1$ and a path $v_1, v'_1, v'_2, \ldots, v'_k, v$ from v_1 to v. Hence, there exist tuples $R(v(v_1)), R(v(v'_1)), R(v(v'_2)), \ldots, R(v(v'_k), v(v))$ in D. Since v_1 is a leaf, we know that $v_1 = \mu_0(v_1)$ and $v(v_1) \in \{r, g, b\}$. Suppose w.l.o.g. that $v(v_1) = r$. Since $Q_1(D) \neq \emptyset$, there exist two tuples $R(r, g)$ and $R(r, b)$ in D. By the access constraint $R(A \rightarrow B, 2)$, we have that $v(v'_1) \in \{g, b\}$. Similarly, we can show that $v(v) \in \{r, g, b\}$ and hence the coloring is valid (see details below).

Finally, we consider subquery $Q_f() = \exists y \left(\bigwedge_{i \leq \min(\mid V \mid \times \mid R \mid \mid)} R(y_{ij}, i) \right)$. It is to fill Q with $M \times \mid V \mid \times \mid R \mid$ constants. Since there are already another three constants $r, g,$ and b in Q, if Q is satisfiable, then each element query of Q contains at least $M \times \mid V \mid \times \mid R \mid + 3$ constants. However, each M-bounded rewriting can only have at most $M \times \mid V \mid \times \mid R \mid$ constants. Indeed, such an M-bounded rewriting can have at most $M \times \mid V \mid \times \mid R \mid$ distinct constants. Therefore, Q has an M-bounded rewriting in ACQ under \mathcal{A} if and only if $Q \equiv_{ACQ} \emptyset$.

Obviously, Q is an ACQ. By the definition of Q_f, we can see that Q has an M-bounded rewriting in ACQ using \mathcal{V} under \mathcal{A} if and only if $Q \equiv_{ACQ} \emptyset$. Thus, it suffices to show that $Q \equiv_{ACQ} \emptyset$ if and only if the precoloring μ_0 cannot be extended to a valid coloring of G.

(\(\Leftarrow\)) Suppose that μ_0 cannot be extended to a valid coloring of G. We show that $Q \equiv_{ACQ} \emptyset$ by contradiction. Suppose that $Q \equiv_{ACQ} \emptyset$. Then there exists $D \models \mathcal{A}$ such that $Q(D) \neq \emptyset$. Let ν be a valuation of variables in Q. Clearly, $Q_E(D) \neq \emptyset$, $Q_L(D) \neq \emptyset$, and $Q_i(D) \neq \emptyset$. From $Q_L(D) \neq \emptyset$, we know that for each leaf $v \in V_1$, $\nu(v) = \mu_0(v)$. Since $Q_1(D) \neq \emptyset$, there are tuples $R(r, g), R(r, b), R(g, r), R(g, b), R(b, r), R(b, g)$ in D. Putting these together, by the argument about Q_1, we can conclude that G is colored with $\{r, g, b\}$. Since $Q_E(D) \neq \emptyset$ and $R(A \rightarrow B, 2)$, for every
edge \((v_i, v_j) \in E, v(v_i) \neq v(v_j)\). Indeed, suppose otherwise that \(v(v_i) = v(v_j) = r\); then there will be a tuple \(R(r, r)\) in \(D\). Now there are three tuples \(R(r, g), R(r, b), \) and \(R(r, r)\) in \(D\), contradicting that \(D \models \mathcal{A}\). Therefore, there exists a valid 3-coloring of \(G\) extending \(\mu_0\), a contradiction. Hence, \(Q \equiv_{\mathcal{A}} \emptyset\).

\((\Rightarrow)\) Suppose that \(Q \equiv_{\mathcal{A}} \emptyset\). We show that \(\mu_0\) cannot be extended to a valid coloring of \(G\). Suppose by contradiction that \(\mu\) is a valid 3-coloring of \(G\) that extends the precoloring \(\mu_0\). We construct below an instance \(D\) of \(R\) such that \(D \models \mathcal{A}\) and \(Q(D) \neq \emptyset\), which will contradict to that \(Q \equiv_{\mathcal{A}} \emptyset\). The database \(D\) consists of the following tuples:

1. The 6 tuples demanded by \(Q_1\): \(R(r, g), R(r, b), R(g, r), R(g, b), R(b, r), R(b, g)\)
2. For each vertex \(v_i \in V_G\), 6 tuples corresponding to the queries \(Q^1_V\) and \(Q^2_V\):
 \[\begin{align*}
 R(i, 1), & R(i + n, 2), R(i + 2n, 3), R(i, \mu(v_i)), R(i + n, \mu(v_i)), R(i + 2n, \mu(v_i))
 \end{align*}\]
3. For each natural number \(i \leq (M \times |V| \times |R|)\), one tuple \(R(c_i, i)\), where \(c_i\)s are distinct new constants.

It is easy to verify that \(D \models \mathcal{A}\). We next show that \(Q(D) \neq \emptyset\). Since \(Q^1_V\) and \(Q^2_V\) ensure that each variable in \(\bar{x}_1\) or \(\bar{x}_2\) equals the corresponding variable in \(V_G\), we know that \(Q\) can be simplified to the following query:

\[Q_2() = \exists \bar{\nu} \left(Q_E^r(\bar{\nu}) \land \bigwedge_{v_i \in V_G} Q_V^r(v_i) \land \bigwedge_{v_i \in V_G} Q_V'^r(v_i) \land \bigwedge_{v_i \in V} Q_L(v_i) \land Q_1() \land Q_f() \right).\]

Here \(Q_L, Q_1(),\) and \(Q_f\) are subqueries of \(Q\), and \(Q_E^r, Q_V^r,\) and \(Q_V'^r\) are defined as follows:

\[Q_E^r(\bar{\nu}) = \bigwedge_{(v_i, v_j) \in E} (R(v_i, v_j) \land R(v_j, v_i));\]

\[Q_V^r(v_i) = \bigwedge_{e_j = (v_i, v_j) \in E} \left((R(i, 1) \land R(i, v_j)) \land \left(R(i + n, 2) \land R(i + n, v_j) \right) \right) \land (R(i + 2, 3) \land R(i + 2, v_j)) ;\]

\[Q_V'^r(v_i) = \bigwedge_{e_j = (v_i, v_j) \in E} \left((R(i, 1) \land R(i, v_j)) \land \left(R(i + n, 2) \land R(i + n, v_j) \right) \right) \land (R(i + 2, 3) \land R(i + 2, v_j)).\]

Since \(Q_2\) is obtained from \(Q\) by simply replacing equivalent variables in \(Q, Q_2 \equiv_{\mathcal{A}} Q\). Since the variables in \(Q_2\) occur in either \(\bar{\nu}\) or \(\bar{y}\) (\(\bar{y}\) is used in \(Q_f\)), we can construct a valuation \(v\) of variables of \(Q_2\) as follows: for each \(i \leq (M \times |V| \times |R|), v(y_i) = c_i\); and for each vertex \(v \in V_G, v(v) = \mu(v)\). One can verify that \(v\) satisfies \(Q_2(D) \subseteq D\) and hence \(Q \equiv_{\mathcal{A}} \emptyset\), contradicting \(Q \equiv_{\mathcal{A}} \emptyset\). Thus, \(\mu_0\) cannot be extended to a valid coloring of \(G\).

When \(N > 2\), we only need to fill the relation \(R\) with some constants and use the same reduction. For example, when \(N = 3\), let \(c_1, c_2,\) and \(c_3\) be distinct new constants. Then \(Q_1\) can be rewritten as \(Q_1() = R(r, g) \land R(r, b) \land R(g, r) \land R(g, b) \land R(b, r) \land R(b, g) \land R(r, c_1) \land R(g, c_2) \land R(b, c_3)\). This revised \(Q_1\) also ensures that \(G\) is colored by \(\{r, g, b\}\). Indeed, consider any \(D \models \mathcal{A}\) such that \(Q(D) \neq \emptyset\). Suppose that \(v\) is a valuation of variables of \(Q\). We show that for each vertex \(v \in V_G, v(v) \in \{r, g, b\}\). Let \(v\) be any vertex in \(V_G\). Similar to the argument above, we can show...
that there exist a leaf \(v_1 \in V_1 \) and a path \(v_1, v'_1, v'_2, \ldots, v'_r, v \) from \(v_1 \) to \(v \). Hence, there exist tuples \(R(v(v_1), v(v'_1)), R(v(v'_1), v(v'_2)), \ldots, R(v(v'_r), v(v)) \) in \(D \). Because \(v_1 \) is a leaf, we know that \(v_1 = \mu_0(v_1) \) and \(v(v_1) \in \{ r, g, b \} \). Suppose that \(v(v_1) = r \). Since \(Q_1(D) \neq \emptyset \), there are three tuples \(R(r, g), R(r, b) \), and \(R(r, c_1) \) in \(D \). By constraint \(R(A \rightarrow B, 3) \), we have that \(v(v'_1) \in \{ g, b, c_1 \} \). However, by the construction of \(Q_E \), tuple \(R(v(v'_1), v(v)) \) is also in \(D \). Hence, \(v(v'_1) \) also appears in the first column of \(R \). But \(c_1 \) only appears in the second column of \(R \). Hence, \(v(v'_1) \neq c_1 \) and \(v(v'_1) \in \{ g, b \} \). Using the same argument, we can show that \(v(v) \in \{ r, g, b \} \). The other queries can be revised similarly. For other values of \(N \), we can verify the coNP-hardness along the same lines.

(2) When \(A \) consists of two access constraints \(R(A \rightarrow B, 1) \) and \(R'(\emptyset \rightarrow (E, F), N) \), and \(N \geq 6 \). We will only use the binary relations \(R(A, B) \) and \(R'(E, F) \) in our proof. We take any predefined constant as \(M \), and \(\mathcal{V} \) to be any fixed set of ACQ queries.

We start with \(N = 6 \) and then extend the proof to \(N > 6 \). We show that VBRP(ACQ) is coNP-hard in this setting by reduction from the complement of the 3-Colorability problem, which is NP-complete (cf. [27]). The 3-Colorability problem is to decide, given an undirected graph \(G = (V_G, E) \), whether there exists a 3-coloring \(\mu : V_G \rightarrow \{ r, g, b \} \) such that for every edge \((v_i, v_j) \in E \), \(\mu(v_i) \neq \mu(v_j) \).

Given \(G = (V_G, E) \) with \(\mathcal{V} \subset \{ v_1, \ldots, v_n \} \), we define an ACQ \(Q \) such that \(Q \) has an \(M \)-bounded rewriting in ACQ using \(\mathcal{V} \) under \(A \) if and only if \(G \) is not 3-colorable:

\[
Q() = \exists v, x_1, x_2 (Q_E(x_1, x_2) \land Q_V(v, x_1, x_2) \land Q_1() \land Q_f())
\]

Here \(Q_E, Q_V, Q_1 \), and \(Q_f \) are similar to their counterparts in case (1), as follows:

\[
- Q_E(x_1, x_2) = \bigwedge_{(v_i, v_j) \in E} \left(R'(x_1^{(v_i, v_j)}, x_2^{(v_i, v_j)}) \land R'(x_2^{(v_i, v_j)}, x_1^{(v_i, v_j)}) \right), \quad \text{where} \quad x_1^{(v_i, v_j)} \in x_1 \text{ and } x_2^{(v_i, v_j)} \in x_2.
\]

\[
- Q_V(v, x_1, x_2) = \bigwedge_{v \in V_G} \left(R(i, v_1) \land \bigwedge_{(v_i, v_j) \in E} R(i, x_1^{(v_i, v_j)}) \land \bigwedge_{(v_i, v_j) \in E} R(i, x_2^{(v_i, v_j)}) \right).
\]

It is to recover the original \(G \). Indeed, constraint \(R(A \rightarrow B, 1) \) ensures that the variables \(v_i, x_1^{(v_i, v_j)} \) and \(x_2^{(v_i, v_j)} \) are “equivalent”; i.e., they always take the same value.

We define \(Q_1() = R'(r, g) \land R'(r, b) \land R'(g, r) \land R'(g, b) \land R'(b, r) \land R'(b, g) \). Since \(R'(\emptyset \rightarrow (E, F), 6) \in A \), \(Q_1 \) ensures that if \(Q() \) is satisfiable, then there exists a valid 3-coloring of \(G \). Consider any \(\mathcal{D} \models A \) such that \(Q(\mathcal{D}) \neq \emptyset \), and let \(v \) be a valuation of variables of \(Q \) in \(\mathcal{D} \). Then \(Q_E(\mathcal{D}) \neq \emptyset \), \(Q_V(\mathcal{D}) \neq \emptyset \), and \(Q_1(\mathcal{D}) \neq \emptyset \). From \(Q(\mathcal{D}) \neq \emptyset \), we know that for each edge \((v_i, v_j) \in E \), there exists a tuple \(R'(v(x_1^{(v_i, v_j)}), v(x_2^{(v_i, v_j)})) \) in \(D \). By \(Q_V(\mathcal{D}) \neq \emptyset \) and constraint \(R(A \rightarrow B, 1) \), we have that \(v(v_1) = v(x_1^{(v_i, v_j)}) \) and \(v(v_2) = v(x_2^{(v_i, v_j)}) \). Hence, there exists a tuple \(R'(v(v_1), v(v_2)) \) in \(D \). On the other hand, since \(Q_1(\mathcal{D}) \neq \emptyset \), there are 6 tuples \(R'(r, g), R'(r, b), R'(g, r), R'(g, b), R'(b, r), R'(b, g) \) in \(D \). By \(R'(\emptyset \rightarrow (E, F), 6) \in A \), for each vertex \(v \in V_G, v(v) \in \{ r, g, b \} \), and for each edge \((v_i, v_j) \in E \), \(v(v_1) \neq v(v_2) \). Indeed, the relation \(R' \) must otherwise have more than six tuples and \(\mathcal{D} \models A \) does not hold. Therefore, if \(Q() \) is satisfiable, then there exists a correct 3-coloring of \(G \):

\[
- Q_f() = \exists y_i \bigwedge_{1 \leq i \leq |M(x')|} R(y_i, i).
\]

It fills \(Q \) with sufficiently many constants such that if \(Q \) is satisfiable, then \(Q \) does not have an \(M \)-bounded rewriting in ACQ.

It can be verified that \(Q \) is in ACQ along the same lines as in case (1).

From the definition of \(Q_f \), we can conclude that \(Q \) has an \(M \)-bounded rewriting in ACQ using \(\mathcal{V} \) under \(A \) if and only if \(Q \equiv_A \emptyset \). Indeed, from the argument above, we can see that if \(Q \equiv_A \emptyset \), then \(G \) is 3-colorable. Hence, we only need to show that if \(Q \equiv_A \emptyset \), then \(G \) is not 3-colorable. We
show this by contradiction. Let μ be a valid 3-coloring of G. We construct a database D such that $D \models A$ and $Q(D) \neq \emptyset$, which contradicts the assumption that $Q \equiv A \emptyset$. The database D consists of the following tuples:

1. the 6 tuples in Q_1: $R'(r,g), R'(r,b), R'(g,r), R'(g,b), R'(b,r), R'(b,g)$;
2. for each vertex $v_i \in V_G$, one tuple encoding the 3-coloring of G: $R(i, \mu(v_i))$; and
3. for each natural number $i \leq (M \times |V| \times |R|)$, one tuple $R(c_i, i)$, where c_i's are distinct new constants.

It is easy to verify that $D \models A$. We next show that $Q(D) \neq \emptyset$. Since Q_V ensures that each variable in X^1 or X^2 is equal to the corresponding variable in V_G, we know that Q can be simplified to the following query:

$$Q_2() = \exists \bar{v}(Q_E'(\bar{v}) \land Q_V'(\bar{v}) \land Q_1() \land Q_c())$$

Here $Q_1()$ and Q_c are the queries already defined in Q, and Q'_E and Q'_V are defined as:

$$-Q'_E(\bar{v}) = \bigwedge_{(v_i, v_j) \in E} (R'(v_i, v_j) \land R'(v_j, v_i))$$

and

$$-Q'_V(\bar{v}) = \bigwedge_{v_i \in V_G} R(i, v_i).$$

Since Q_2 is obtained from Q by replacing equivalent variables in Q with those in V_G, we have that $Q_2 \equiv A Q$. Moreover, since the only variables in Q_2 occur in \bar{v} or \bar{g} in Q, we can construct a valuation ν of variables of Q_2 in D as follows: for each $i \leq (M \times |V| \times |R|)$ (see the proof of case (1) of Theorem 4.1 for an explanation of $M \times |V| \times |R|$), $\nu(v_i) = c_i$; and for each vertex $v \in V_G$, $\nu(v) = \mu(v)$. We can verify that ν satisfies $Q_2 \subseteq D$. That is, $Q \not\equiv A \emptyset$, which contradicts the assumption that $Q \equiv A \emptyset$. Hence, G is not 3-colorable.

For $N > 6$, we only need to fill the relation R' with some additional constants such that the same reduction works. For example, suppose that $N = 7$, and let d_1 and d_2 be two distinct new constants. Then we modify Q_1 as $Q_1() = R'(d_1, d_2) \land R'(r, g) \land R'(r, b) \land R'(g, r) \land R'(g, b) \land R'(b, r) \land R'(b, g)$. Similar to the proof of case (1) of Theorem 4.1, this revised query can also ensure that if $Q()$ is satisfiable, then there exists a valid 3-coloring of G. Indeed, consider any $D \models A$ such that $Q(D) \neq \emptyset$, and let ν be a valuation of variables of Q in D. Then $Q_E(D) \neq \emptyset$, $Q_V(D) \neq \emptyset$, and $Q_1(D) \neq \emptyset$. From $Q_E(D) \neq \emptyset$, we know that for each edge $(v_i, v_j) \in E$, there exists a tuple $R'(v(x_{v_i, v_j}^1), v(x_{v_i, v_j}^2))$ in D. By $Q_V(D) \neq \emptyset$ and $R(A \rightarrow B, 1)$, we have that $\nu(v_i) = v(x_{v_i, v_j}^1)$ and $\nu(v_j) = v(x_{v_i, v_j}^2)$. Thus, there exists a tuple $R'(v(v_i), v(v_j))$ in D. On the other hand, since $Q_1(D) \neq \emptyset$, there are seven tuples $R'(d_1, d_2), R'(r, g), R'(r, b), R'(g, r), R'(g, b), R'(b, r), R'(b, g)$ in D. By $Q_E(D) \neq \emptyset$ and access constraint $R'(0 \rightarrow (E, F), 7) \in A$, for each edge $(v_i, v_j) \in E$, there must exist a tuple $R'(v(v_i), v(v_j))$ in D, $v(v_i) \in \{r, g, b, d_1\}$, and $v(v_j) \in \{r, g, b, d_2\}$. Since we encode each edge in G by two directed edges, there is also another tuple $R'(v(v_i), v(v_j))$ in D. However, d_1 can only appear in the first column of R' and d_2 can only appear in the second column of R'. Indeed, otherwise, R' would consist of more than 7 tuples, contradicting that $D \models A$. Therefore, $\nu(v_i) \in \{r, g, b\}$ and $\nu(v_j) \in \{r, g, b\}$. Suppose that G is not 3-colorable. Then there exists an edge $(v_i, v_j) \in E$ such that $\nu(v_i) = v(v_j)$. Let $\nu(v_j) = r$. Then there exists a tuple $R'(r, r)$ in D, which contradicts the assumption that $D \models A$. Hence, G is 3-colorable. Therefore, if $Q()$ is satisfiable, there exists a correct 3-coloring of G.

For other values of N, we can modify Q_1 along the same lines.

(3) When A consists of $R((A,B) \rightarrow C, 1)$ and $R'(\emptyset \rightarrow E, N)$, and $N \geq 2$. We assume that R consists of a ternary relation $R(A,B,C)$ and a unary relation $R'(E)$, M is any constant, and V is any fixed set of ACQ queries.
We start with $N = 2$ and then extend the proof to $N > 2$. We show that VBRP(AQC) is coNP-hard in this setting by reduction from the complement of the 3SAT problem (see the proof of Theorem 3.4 for 3SAT). Consider an instance ψ of 3SAT, where ψ contains k clauses C_1, C_2, \ldots, C_k defined over variables in $X = \{x_1, \ldots, x_m\}$. We define an AQC query Q such that Q has an M-bounded rewriting in AQC using \mathcal{V} under \mathcal{A} if and only if ψ is false.

The query Q is defined in AQC and is constructed as follows:

$$Q() = \exists \tilde{x}_1, \tilde{x}_2, \tilde{x}_3 (Q_{o1}() \land Q_{o2}() \land Q_{o3}() \land Q_X(\tilde{x}) \land Q_V(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3) \land Q_P(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3) \land Q_f()) .$$

Here $\tilde{x} = (x_1, \ldots, x_m)$ and $\tilde{x}_i = (x^i_1, \ldots, x^i_m)$ for $i = 1, 2, 3$. In order for Q to encode ψ, we need Boolean operations. However, in contrast to the proof of Theorem 3.4, here we only have one ternary relation to store instances similar to those shown in Figure 2. Hence, we store all tuples needed in R and use different constants in the x-attribute to extract from R the right set of tuples that encode each of the Boolean operations. The definitions of $Q_{o1}, Q_{o2},$ and Q_{o3} are such defined that tuples with their x-attribute set to $0, 1, \Delta, \lor, \land, \lor, \land$ encode Boolean disjunction; tuples with their x-attribute set to \bot or \top encode Boolean conjunction; and tuples with their x-attribute set to \star encode Boolean negation. More specifically, $Q_{o1}, Q_{o2},$ and Q_{o3} are defined as follows:

$$-Q_{o1}() = (R(0, 0, \Delta) \land R(0, 1, \lor) \land R(1, 0, \land) \land R(1, 1, \top)) \land (R(\Delta, 0, \bot) \land R(\Delta, 1, \top) \land R(\top, 0, \land));$$

$$-Q_{o2}() = (R(\bot, \bot, \bot) \land R(\bot, \top, \top) \land R(\top, \bot, \bot) \land R(\top, \top, \top));$$

$$-Q_{o3}() = R(\star, 0, 1) \land R(\star, 1, 0),$$

where $\lor, \Delta, \bot, \top,$ and \star are new constants. The constants Δ, \bot and \top, \top represent false and true, respectively. Subqueries Q_{o1} and Q_X are defined as follows:

$$-Q_{o1}() = R'(0) \land R'(1) \land R(\downarrow, 0, 0) \land R(\downarrow, 1, 1)$$

is used to encode the Boolean values false and true; here \downarrow is a new constant; and

$$-Q_X(\tilde{x}) = \bigwedge_{1 \leq i \leq m} (R'(x_i) \land R(\downarrow, x_i, x_i))$$

ensures that \tilde{x} is a truth assignment of X. Indeed, constraint $R'(0 \to E, 2)$ together with Q_{o1} ensures that each x_i is mapped to $\{0, 1\}$ when Q_X is evaluated on instances D such that $D \models \mathcal{A}$ and $Q_{o1}(D) \neq \emptyset$.

It should be remarked that even without using the relation $R, Q_{o1}()$ and $Q_X(\tilde{x})$ can also ensure that \tilde{x} is a truth assignment of X. However, we will use these atoms to handle the cases when $N > 2$, as will become clear shortly.

Furthermore, Q_V, Q_P, and Q_f are defined as follows:

$$-Q_V(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3) = \bigwedge_{1 \leq i \leq m} R(i + 2, \star, x_i) \land \bigwedge_{1 \leq i \leq k} R(f_1(C_i) + 2, \star, x^j_1) \land R(f_2(C_i) + 2, \star, x^j_2)$$

where \star is a new constant and for $j = 1, 2, 3, f_j(C_i) = \ell$ if x^j_ℓ is the jth variable in clause C_i.

This query is used to rename the variables in \tilde{x} such that each clause has a new copy of the variables in \tilde{x}, represented by $\tilde{x}_1, \tilde{x}_2,$ and \tilde{x}_3, one copy for each of the three literals in a clause. Moreover, if $f_j(C_i) = \ell$, then x^j_ℓ and x^j_ℓ are equivalent due to access constraint $R(A, B \to C, 1); i.e., these variables take the same values in instances $D \models \mathcal{A}$. This allows us to encode ψ by using distinct variables to ensure acyclicity, as will be elaborated shortly.

Query $Q_p(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)$ is to check whether ψ is true given a truth assignment μ_X encoded in \tilde{x} (and thus also in $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3$ since they carry the same values as \tilde{x}) by query Q_V. We first explain how clauses C_j in ψ are encoded. Consider, e.g., $C_j = x_1 \lor x_2 \lor x_3$. We construct a
query \(Q_j(\bar{x}_1, \bar{x}_2, \bar{x}_3, y_j)\) such that \(y_j\) holds the truth value of \(C_j\) given \(\mu_X\). More specifically,
\(Q_j(\bar{x}_2, \bar{x}_3, y_j) = \exists x'_2 \bar{y}' R(x'_2, x'_2, y') \land R(y'_1, x'_3, y_j) \land R(\bar{x}, x'_j, x'_j)\). Note that \(x'_1, x'_2, \) and \(x'_3\) take Boolean values as specified by \(x_1, x_2, \) and \(x_3\), respectively, as argued earlier. Hence, by the definitions of \(Q_v\) and \(Q_\psi\), \(Q_j\) correctly encodes \(C_j\). Moreover, observe that \(y_j\) is either \(\bot\) (when \(C_j\) is false under \(\mu_X\)) or \(\top\) (when \(C_j\) is true under \(\mu_X\)). In the context of acyclicity, it is also important to observe that the variables \(x'_1, x'_2, \) and \(x'_3\) are only used in \(Q_j(\bar{x}_1, \bar{x}_2, \bar{x}_3, y_j)\) and in \(Q_v(\bar{x}, \bar{x}_1, \bar{x}_2, \bar{x}_3)\), where they occur together with constants. The construction of \(Q_j\) is similar for clauses of another form. We now define
\[
Q'_{\psi}(\bar{x}_1, \bar{x}_2, \bar{x}_3) = \exists y \left(\bigwedge_{1 \leq j \leq k} Q_j(\bar{x}_1, \bar{x}_2, \bar{x}_3, y_j) \right) \land Q'(y_1, y_2, \ldots, y_k),
\]
where \(Q'(y_1, y_2, \ldots, y_k)\) checks whether \(y_1 \land y_2 \land \cdots \land y_k\) evaluates to true, i.e., whether all clauses in \(\psi\) are satisfied. In particular, \(Q'(y) = \exists y R(y_1, y_2, y_3) \land R(\bar{y}_2, y_2, \bar{y}_3) \land \cdots \land R(\bar{y}_k, y_k, \top)\). Since the \(y_i\)'s take values from \([\bot, \top]\), by the definition of \(Q_\lambda\), \(Q'\) encodes the required conjunction and enforces all \(y_i\)'s to be \(\top\) (due to the last atom). The acyclicity of \(Q_\psi\) immediately follows from the use of distinct variables for each clause and the fact that these only appear in \(Q_v\) together with constants.

Finally, we define \(Q_f() = (\exists \bar{y}, \forall y \left(R(y_1, y_1, i) \right)\). It is used to fill \(Q\) with sufficiently many constants such that if \(Q\) is satisfiable, then \(Q\) does not have an \(M\)-bounded rewriting in \(\mathcal{ACQ}\) using \(\mathcal{V}\) under \(\mathcal{A}\).

From the definition of \(Q_f\), we can conclude that \(Q\) has an \(M\)-bounded rewriting in \(\mathcal{ACQ}\) using \(\mathcal{V}\) under \(\mathcal{A}\) if and only if \(Q \equiv_{\mathcal{A}} \emptyset\). Thus, we only need to verify that \(Q \equiv_{\mathcal{A}} \emptyset\) if and only if \(\psi\) is false.

\((\Leftarrow)\) Suppose that \(\psi\) is false. We prove \(Q \equiv_{\mathcal{A}} \emptyset\), by contradiction. If \(Q \not\equiv_{\mathcal{A}} \emptyset\), then there exists \(\mathcal{D} \models \mathcal{A}\) such that \(Q(\mathcal{D}) \neq \emptyset\). Let \(v\) be a valuation of variables of \(Q\) in \(\mathcal{D}\). Since \(Q_{\psi}(\mathcal{D}) \neq \emptyset\), \(Q_X(\mathcal{D}) \neq \emptyset\), and \(\mathcal{D} \models R(\emptyset \rightarrow E, 2)\), for each variable \(x \in X\), \(v(x) \in \{0, 1\}\). We show that \(\mu_0 = (v(x_1), \ldots, v(x_m))\) forms a truth assignment of \(X\) that makes \(\psi\) true. Indeed, since \(Q'(\mathcal{D}) \neq \emptyset\), we know that \(v(y_j) = \top\) for \(1 \leq i \leq k\). This implies that \(Q_j(\mu_0, \top)\) evaluates to true over \(\mathcal{D}\) for each \(j \in [1, k]\). In other words, each clause \(C_j\) is satisfied under \(\mu_0\), contradicting the assumption that \(\psi\) is false. Hence, \(Q \equiv_{\mathcal{A}} \emptyset\).

\((\Rightarrow)\) Suppose that \(Q \equiv_{\mathcal{A}} \emptyset\). We show that \(\psi\) is false by contradiction. Let \(\mu_0\) be a truth assignment of \(X\) that makes \(\psi\) true. Based on \(\mu_0\), we construct an instance \(\mathcal{D}\) of \(\mathcal{R}\) such that \(\mathcal{D} \models \mathcal{A}\) and \(Q(\mathcal{D}) \neq \emptyset\). This contradicts our assumption that \(Q \equiv_{\mathcal{A}} \emptyset\). Therefore, \(\psi\) must be false. More specifically, database \(\mathcal{D}\) consists of the following tuples:

1. the 18 tuples in \(Q_{\psi}, Q_\lambda, Q_\psi, Q_{\neg}\);
2. for each variable \(x_i \in X\), one tuple corresponding to \(\mu_0(x_i): R(\bar{i} + 2, \bullet, \mu_0(x_i))\); and
3. for each natural number \(i \leq (M \times |\mathcal{V}| \times |\mathcal{R}|)\), one tuple \(R(c^1_i, c^2_i, i)\), where \(c^1_i\) and \(c^2_i\) are two distinct new constants.

It is easy to verify that \(\mathcal{D} \models \mathcal{A}\). We next show that \(Q(\mathcal{D}) \neq \emptyset\). Indeed, we can construct a valuation \(v\) from variables of \(Q\) to values of \(\mathcal{D}\) as follows: for each number \(i \leq (M \times |\mathcal{V}| \times |\mathcal{R}|)\), \(v(y^1_i) = c^1_i\) and \(v(y^2_i) = c^2_i\), for each variable \(x_i \in X\), \(v(x_i) = \mu_0(x_i)\). Because \(\mu_0\) is a truth assignment of \(X\) that makes \(\psi\) true, we can easily verify that \(v\) satisfies \(v(Q) \subseteq \mathcal{D}\). Hence, \(Q(\mathcal{D}) \neq \emptyset\) and thus \(Q \not\equiv_{\mathcal{A}} \emptyset\).

For \(N > 2\), we only need to fill the relations \(R'\) and \(R\) with more constants such that the same reduction as for \(N = 2\) works. For example, suppose that \(N = 3\), and let \(e_1\) and \(e_2\) be two distinct
new constants. Then we modify Q_{01} as $Q_{01}(\nu) = R'(0) \land R'(1) \land R'(e_1) \land R(\nu, 0, 0) \land R(\nu, 1, 1) \land R(\nu, e_1, e_2)$. This revised query can also ensure that \bar{x} is a truth assignment of X. Indeed, consider any instance $D \models A$ of R such that $Q(D) \neq \emptyset$, and let ν be a valuation of variables in Q. Then $Q_{01}(D) \neq \emptyset$ and $Q_X(D) \neq \emptyset$. By $Q_{01}(D) \neq \emptyset$, there exist tuples $R'(0), R'(1), \text{and } R'(e_1)$ in D. By $Q_X(D) \neq \emptyset$ and $R'(0 \to E, 3)$, for each variable x_i, we have that $\nu(x_i) \in \{0, 1, e_1\}$. Suppose that $\nu(x_i) = e_1$. Because $Q_X(D) \neq \emptyset$, there exists a tuple $R(\nu, e_1, e_1)$ in D. However, since $Q_{01}(D) \neq \emptyset$, there exists also a tuple $R(\nu, e_1, e_2)$ in D. From the access constraint $R(A, B) \to C, 1$, we can conclude that $e_1 = e_2$, which contradicts our assumption that e_1 and e_2 are two distinct constants. Hence, $\nu(x_i) \neq e_1$ and thus $\nu(x_i) \in \{0, 1\}$. Therefore, \bar{x} is a truth assignment of X. Using the same argument for the case $N = 2$, we can show that Q has an M-bounded rewriting in ACQ using \mathcal{V} under A if and only if ψ is false.

For other values of $N > 2$, we can modify Q_{01} along the same lines. □

9.3 Proof of Theorem 5.1

We verify the three conditions of effective syntax one by one as follows.

1. Each FO query Q with an M-bounded rewriting is A-equivalent to a query topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$. By definition, an FO query Q with an M-bounded rewriting is A-equivalent to an M-bounded query plan $\xi(Q, \mathcal{V}, \mathcal{R})$ under A. Hence, it suffices to show that for each M-bounded query plan ξ using \mathcal{V} under A, there exists a query Q_{ξ} topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$ such that $\xi \equiv_A Q_{\xi}$.

 Base case. We first show that the statement holds when $M = 1$. In this case, ξ can only be one of the following three forms (see the definition of query plans in Section 2): (i) a constant $\{c\}$; (ii) a view $V(\bar{x})$ in \mathcal{V}; or (iii) a fetch operator $\text{fetch}(\emptyset, R, X)$ with access constraint $R(\emptyset \to X, N) \in A$. Define Q_{ξ} as $Q = c$, $V(\bar{x})$, or $\exists \bar{y} R(\bar{y}, \bar{x})$, respectively. Clearly, $Q_{\xi} \equiv_A \xi$, so it remains to verify whether Q_{ξ} is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$, i.e., whether $\text{covq}(Q_{\xi}, Q_{\xi})$ is true and $\text{size}(Q_{\xi}, Q_{\xi}) = 1$. This is an immediate consequence of the definition of these two functions. Indeed, case (i) corresponds to case (1) of topped queries given in Section 5; case (ii) corresponds to case (2) with $\bar{z} = \bar{x}$; and case (iii) corresponds to case (7a) with $\bar{z} = \bar{x}$ and $\bar{w} = \bar{y}$. Hence, Q_{ξ} is indeed topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$.

 Induction step. Suppose that the statement holds for $(M - 1)$-bounded query plans ξ using \mathcal{V} under A. We next show that the statement also holds for M-bounded query plans ξ. By analyzing the structure of ξ, we can distinguish the following six cases: (i) $\xi = (\xi', \sigma_{X=c}(\xi'))$ ($\xi', \sigma_{X=Y}(\xi')$), respectively; (ii) $\xi = (\xi', \pi_Y(\xi'))$; (iii) $\xi = (\xi_1, \xi_2, \xi_1 \times \xi_2)$; (iv) $\xi = (\xi_1, \xi_2, \xi_1 \cup \xi_2)$; (v) $\xi = (T = \xi', \text{fetch}(X \in T, R, Y))$. We next show that there exists an FO query Q_{ξ} topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$ such that $Q_{\xi} \equiv_A \xi$ for each of these six cases.

 Case (i). We prove the case when $\xi = (\xi', \sigma_{X=c}(\xi'))$; the case when $\xi = (\xi', \sigma_{X=Y}(\xi'))$ is similar. Clearly, ξ' is an $(M - 1)$-bounded query plan under \mathcal{V} using A. Hence, by the induction hypothesis, there exists $Q_{\xi'}$ topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M - 1)$ such that $Q_{\xi'} \equiv_A \xi'$. Let $Q_{\xi'}$ be $Q_{\xi'} \land (x = c)$. Since $Q_{\xi'} \equiv_A \xi'$, we also have that $Q_{\xi} \equiv_A \xi$.

 We next show that Q_{ξ} is topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$. To see this, consider the conjunction case (3) of topped queries given in Section 5. Under the induction hypothesis, $\text{covq}(Q_{\xi}, Q_{\xi'}) = true$. Therefore, case (3) applies here. That is, $\text{covq}(Q_{\xi}, Q_{\xi'}) = \text{covq}(Q_{\xi}, Q_{\xi'}) = true$ and $\text{size}(Q_{\xi}, Q_{\xi}) = \text{size}(Q_{\xi}, Q_{\xi'}) + 1$. We know by the induction hypothesis that the size is bounded by $(M - 1) + 1 = M$. Hence, Q_{ξ} is indeed topped by $(\mathcal{R}, \mathcal{V}, \mathcal{A}, M)$.
Furthermore, and covq queries topped by query plan such that

\(Q' \equiv_{\mathcal{A}} \xi' \), let \(Q' \) be \(\exists (x \in y) Q(\mathcal{E}) \). From \(Q' \equiv_{\mathcal{A}} \xi' \), it follows that \(Q' \equiv_{\mathcal{A}} \xi \) also holds.

We next verify that query \(Q' \) is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \). Observe that there are two cases of covq(\(Q, Q' \)) and size(\(Q, Q' \)), corresponding to cases (7a) and (7c) given in Section 5, respectively. Note that case (7b) does not apply here as the last operation of \(\xi \) is \(\pi_Y(\xi') \) instead of a fetch as for case (7b). We show that in both cases, \(Q' \) is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \).

(a) If \(Q' = \mathcal{R}(\mathcal{E}) \) and \(R(\emptyset \rightarrow Z, N) \in \mathcal{A} \), then case (7a) of Section 5 applies here. Thus, covq(\(Q, Q' \)) = true and size(\(Q, Q' \)) = 1 \(\leq M \). Hence, \(Q' \) is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \).

(b) Otherwise, case (7c) applies here because \(\xi \) is an \(M \)-bounded query plan. Hence, by the induction hypothesis, covq(\(Q, Q' \)) = covq(\(Q, Q' \)) = true and size(\(Q, Q' \)) = size(\(Q, Q' \)) + 1 \(\leq M \). Thus, \(Q' \) is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \).

Case (ii). When \(\xi = (\xi', \pi_Y(\xi')) \), \(\xi' \) is an \((M - 1) \)-bounded query plan under \(\mathcal{V} \) using \(\mathcal{A} \). Hence, by the induction hypothesis, there exists an FO query \(Q(\mathcal{E}) \) topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M - 1) \) such that

\(\xi' \equiv_{\mathcal{A}} Q(\mathcal{E}) \). Let \(Q' = \exists (x \in y) Q(\mathcal{E}) \). From \(Q(\mathcal{E}) \equiv_{\mathcal{A}} \xi' \), it follows that \(Q' \equiv_{\mathcal{A}} \xi \) also holds.

Case (iii). When \(\xi = (\xi_1, \xi_2, \xi_1 \times \xi_2) \), then \(\xi_1 \) is an \(M_1 \)-bounded query plan and \(\xi_2 \) is an \(M_2 \)-bounded query plan such that \(M_1 + M_2 \leq M - 1 \). Let \(Q_{\xi_1}(\xi_1) \equiv_{\mathcal{A}} \xi_1 \) and \(Q_{\xi_2}(\xi_2) \equiv_{\mathcal{A}} \xi_2 \) be the corresponding queries topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M_1) \) and \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M_2) \), respectively. Note that \(\xi_1 \cap \xi_2 = \emptyset \). Consider \(Q = Q_{\xi_1}(\xi_1) \wedge Q_{\xi_2}(\xi_2) \). Clearly, \(Q \equiv_{\mathcal{A}} \xi \).

We show that query \(Q = \mathcal{R}(\mathcal{V}, \mathcal{A}, M) \). Since covq(\(Q, Q' \)) and covq(\(Q, Q' \)) are both true, we know from the conjunction case (4b) of topped queries given in Section 5 that covq(\(Q, Q' \)) = true as well. Furthermore, since \(\xi_1 \cap \xi_2 = \emptyset \), size(\(Q, Q' \)) is defined in case (4b) as

\(2 \cdot \text{size}(\mathcal{E}, \mathcal{E}) + \text{size}(\mathcal{E}, \mathcal{E}) + \text{size}(\mathcal{E}, \mathcal{E}) + 1 \), which is bounded by \(M_1 + M_2 + 1 \leq M \).

Therefore, query \(Q = \mathcal{R}(\mathcal{V}, \mathcal{A}, M) \).

Case (iv). The case when \(\xi = (\xi_1, \xi_2, \xi_1 \cup \xi_2) \) is verified in the same way as the previous case, by using the disjunction case (5) of topped queries specified in Section 5.

Case (v). When \(\xi = (\xi_1, \xi_2, \xi_1 \setminus \xi_2) \), the case is handled in the same way as case (iii), using the negation case (6a) given in Section 5.

Case (vi). When \(\xi = (S = \xi', \text{fetch}(X \in S, R, Z)) \), since \(\xi \) is an \(M \)-bounded query plan using \(\mathcal{V} \) under \(\mathcal{A} \), we know that there exists an access constraint \(R(X \rightarrow Z, N) \) in \(\mathcal{A} \) such that \(Z \subseteq X \cup Z' \), and as before, \(\xi' \) is an \((M - 1) \)-bounded query plan using \(\mathcal{V} \) under \(\mathcal{A} \). In addition, \(\xi' \) must have bounded output. Hence, the induction hypothesis applies here. Let \(Q(\mathcal{E}) \) be a query topped by

\((\mathcal{R}, \mathcal{V}, \mathcal{A}, M - 1) \) such that

\(Q(\mathcal{E}) \equiv_{\mathcal{A}} \xi' \) and consider

\(Q(\mathcal{E}, \mathcal{E}) = Q(\mathcal{E}) \wedge \exists \mathcal{A} R(\mathcal{E}, \mathcal{E}) \). Clearly,

\(Q(\mathcal{E}, \mathcal{E}) \equiv_{\mathcal{A}} \xi \).

We next verify that query \(Q = \mathcal{R}(\mathcal{V}, \mathcal{A}, M) \). This follows from the conjunction case (4a) given in Section 5. Indeed, by the induction hypothesis, we have that covq(\(Q, Q' \)) = true. Furthermore, \(Q' = \mathcal{R}(\mathcal{V}, \mathcal{A}, M) \) has bounded output. Thus, by the definition of topped queries in case (4a), we have that covq(\(Q, Q' \)) = true and size(\(Q, Q' \)) = size(\(Q, Q' \)) + 1 bounded by \(M \). Hence, \(Q = \mathcal{R}(\mathcal{V}, \mathcal{A}, M) \).

(2) Every query topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \) has an \(M \)-bounded rewriting using \(\mathcal{V} \) under \(\mathcal{A} \). We show that every query \(Q \) topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \) indeed has a size(\(Q, Q \))-bounded rewriting using \(\mathcal{V} \) under \(\mathcal{A} \). The statement we will prove is as follows:

\[
\text{If } \text{covq}(\mathcal{E}, \mathcal{E}) = \text{covq}(\mathcal{E}, \mathcal{E}) = \text{true and } \mathcal{E} \text{ has a size}(\mathcal{E}, \mathcal{E})-\text{bounded plan, then } \text{covq}(\mathcal{E}, \mathcal{E} \wedge \mathcal{E}) = \text{true and } \mathcal{E} \wedge \mathcal{E} \text{ has a size}(\mathcal{E}, \mathcal{E} \wedge \mathcal{E})-\text{bounded plan.}
\]

If this holds, then \(Q \) has an \(M \)-bounded plan if it is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \). Indeed, when \(Q \) is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \), covq(\(Q, Q \)) = true and size(\(Q, Q \)) \(\leq M \). Since covq(\(Q, Q \)) = true and \(Q \) has a 0-bound plan, by the statement, \(Q \wedge Q \) has a size(\(Q, Q \wedge Q \)) = size(\(Q, Q \))-bounded plan, i.e., an \(M \)-bounded plan. That is, \(Q \) has an \(M \)-bounded rewriting using \(\mathcal{V} \) under \(\mathcal{A} \) if \(Q \) is topped by \((\mathcal{R}, \mathcal{V}, \mathcal{A}, M) \).
Below we prove the statement by induction on the structure of Q. In the sequel, for a tuple x of a variable, we denote by X its corresponding set of attributes, and vice versa.

Base case. We first show that the statement holds when Q has one of the following forms: (b1) $z = c$, (b2) a view $V(z)$ in \mathcal{V}, or (b3) a relation $\exists w R(\bar{w}, z)$.

Case (b1). For base case (b1), i.e., when $Q = z = c$, if $\text{covq}(Q, Q) = \text{covq}(Q, Q) = \text{true}$ and Q_s has a size(Q, Q_s)-bounded plan (say, $\hat{\xi}$), then consider plan $\hat{\xi} = (\xi_s, \sigma_{\Xi}(\xi_s))$. Since $Q_s \equiv_{\mathcal{A}} \xi_s$, we have that $Q_s \land Q \equiv_{\mathcal{A}} \hat{\xi}$. Since $\text{covq}(Q_s, Q) = \text{true}$, we know that case (3) of topped queries specified in Section 5 can apply to $Q_s \land Q$. Hence, $\text{covq}(Q_s, Q) = \text{true}$ and $Q_s \land Q$ has a $(|\xi_s| + 1)$-bounded plan, where $|\xi_s| + 1 \leq \text{size}(Q, Q_s) + 1 = \text{size}(Q, Q_s \land (z = c))$. That is, the statement holds for case (b1).

Case (b2). For base case (b2), i.e., when Q is a view $V(z)$, if $\text{covq}(Q, Q) = \text{covq}(Q, Q) = \text{true}$ and Q_s has a size(Q, Q_s)-bounded plan (say, $\hat{\xi}$), then we have the following plans for $Q_s \land Q$. For $Q_s(\hat{x})$ and $V(z)$, (i) if $\bar{x} \cap \bar{z} = \emptyset$, then let plan $\hat{\xi}$ be $(T_1 = \xi_s, T_2 = V(z), T_3 = T_1 \times T_2)$, and (ii) if $\bar{x} \cap \bar{z} = \hat{w} \neq \emptyset$, then let plan $\hat{\xi}$ be $(T_1 = \xi_s, T_2 = V(z), T_3 = p(T_2), T_4 = T_1 \times T_3, T_5 = \sigma_{\xi_A[w]=|T_2|}(T_4), T_6 = \pi_{T_1[X]}[T_2[Z][w](T_5)])$. In both cases, $\hat{\xi} \equiv_{\mathcal{A}} Q_s \land Q$ when $\xi_s \equiv_{\mathcal{A}} Q_s$. Moreover, note that by case (2) of Section 5, we have that $\text{covq}(Q_s, V(z)) = \text{true}$, since $\text{covq}(Q_s, Q_s) = \text{true}$ following case (4b) of Section 5, and we also have that $\text{covq}(Q_s, Q_s \land V(z)) = \text{true}$ and size$(Q_s, Q_s \land V(z)) = \text{size}(Q_s, Q_s) + \text{size}(Q_s, V(z)) + \lambda_{(x, z)} \geq |\xi|$. In both cases (i) and (ii) (recall $\hat{\lambda}_{(x, z)}$ from case (4b); note that $\hat{\lambda}_{(x, z)} = 1$ for case (i) and $\hat{\lambda}_{(x, z)} = 4$ for case (ii)). Therefore, the statement holds for case (b2).

Case (b3). For base case (b3), i.e., when $Q = \exists w R(\bar{w}, z)$, if $\text{covq}(Q, Q) = \text{covq}(Q, Q) = \text{true}$ and Q_s has a size(Q, Q_s)-bounded plan $\hat{\xi}$, observe the following. Given that $\text{covq}(Q_s, Q) = \text{true}$, from cases (7a) and (7b) of Section 5, we know that either (i) $R(\emptyset \rightarrow Z, N) \in \mathcal{A}$ or (ii) $R(X \rightarrow Z', N) \in \mathcal{A}$, $X \cup Z' = Z$ and $Q_s(\hat{x})$ has bounded output under \mathcal{A}.

First consider case (i). We distinguish two cases: $\bar{x} \cap \bar{z} = \emptyset$ and $\bar{x} \cap \bar{z} = \hat{w} \neq \emptyset$. When $\bar{x} \cap \bar{z} = \emptyset$, let $\hat{\xi} = (T_1 = \xi_s, T_2 = \text{fetch}(\emptyset, R, Z), T_3 = T_1 \times T_2)$. Since $\xi_s \equiv_{\mathcal{A}} Q_s$, we have that $\hat{\xi} \equiv_{\mathcal{A}} Q_s$. Observe that by case (7a) of Section 5, $\text{covq}(Q_s, Q) = \text{true}$. In addition, $\text{covq}(Q_s, Q_s) = \text{true}$ by the condition of the statement. Therefore, case (4b) specified in Section 5 applies to $Q_s \land Q$. Hence, $\text{covq}(Q_s, Q_s \land Q) = \text{true}$, size$(Q_s, Q_s \land Q) = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q) + 1 = \text{size}(Q_s, Q_s) + 2 \geq |\xi|$. That is, $Q_s \land Q$ has a size$(Q_s, Q_s \land Q)$-bounded plan. For the case when $\bar{x} \cap \bar{z} = \hat{w} \neq \emptyset$, one can verify that $Q_s(\hat{x}) \land Q(z)$ has a size$(Q_s, Q_s \land Q)$-bounded plan along the same lines as above.

Next consider case (ii). Since Q_s has bounded output under \mathcal{A} and $\text{covq}(Q_s, Q) = \text{true}$, case (4a) given in Section 5 applies to $\text{covq}(Q_s, Q_s \land Q)$ here. Hence, $\text{covq}(Q_s, Q_s \land Q) = \text{true}$. Consider a plan $\hat{\xi} = (T_1 = \xi_s, T_2 = \text{fetch}(X \in T_1, R, Z'))$. Since $\xi_s \equiv_{\mathcal{A}} Q_s$, we have that $\hat{\xi} \equiv_{\mathcal{A}} Q_s \land Q$. Hence, $|\xi| = |\xi_s| + 1 \leq \text{size}(Q_s, Q_s) + 1 = \text{size}(Q_s, Q_s \land Q)$ by case (4a) of Section 5. That is, $Q_s \land Q$ has a size$(Q_s, Q_s \land Q)$-bounded plan.

Induction step. Assume that the statement holds for subqueries of a topped query Q. Below we show that the statement also holds for Q itself, by analyzing the structure of $Q(z)$ as follows, corresponding to the different cases presented in Section 5. We number the cases accordingly in the proof below.

(3) $Q(z)$ is $Q'(z) \land (x = c)$. Since $\text{covq}(Q_s, Q) = \text{true}$, we know that $\text{covq}(Q_s, Q') = \text{true}$ as well. Since $\text{covq}(Q_s, Q_s) = \text{true}$ and Q_s has a size(Q_s, Q_s)-bounded plan, by the induction hypothesis, $\text{covq}(Q_s, Q_s \land Q') = \text{true}$ and $Q_s \land Q'$ has a size$(Q_s, Q_s \land Q')$-bounded plan $\hat{\xi}'$. Thus, by the definition of $\text{covq}(\cdot, \cdot)$ in case (3) in Section 5, we know that $\text{covq}(Q_s, Q_s \land (Q' \land (x = c))) = \text{true}$.
Moreover, \(Q_s \land Q \) has a bounded plan \(\xi = (T_1 = \xi', T_2 = \sigma_{X=e}T_1) \) and \(|\xi| = |\xi'| + 1 \leq \text{size}(e, Q_s \land Q') + 1 = \text{size}(e, Q_s \land Q) \). That is, the statement holds for \(Q(\hat{z}) \). The cases when \(Q \) is \(Q' \land (x = y) \), \(Q' \land (x \neq y) \) or \(Q' \land (x = c) \) can be verified in the same way.

(4) \(Q(\hat{z}) \) is \(Q(\hat{z}_1) \land Q_s(\hat{z}_2) \). There are three cases (4a), (4b), and (4c) of topped queries given in Section 5 when \(\text{covq}(Q_s, Q(\hat{z})) \) is true. We verify these cases one by one below.

Case (4a). For case (4a) of topped queries specified in Section 5, when \(\text{covq}(Q_s, Q) \) is true, we have that \(\text{covq}(Q_s, Q(\hat{z}_1)) = true \); \(Q_s(\hat{z}_2) \) is a relation \(\exists \text{w} \ R(\hat{z}_1, \text{w}, \text{w}', \text{w}) \), \(R(\text{z}_1 \rightarrow \text{z}'_2, \text{N}) \in \mathcal{A} \) with \(\text{z}_1 \cup \text{z}_2 = \text{z}_2 \); and \(Q_s \land Q \) has bounded output under \(\mathcal{A} \). Now consider \(Q_s \land Q = Q_s \land (Q_1 \land Q_2) \). Since \(\text{covq}(Q_s, Q_1) = \text{covq}(Q_s, Q_2) = true \) and \(Q_s \) has a size \((Q_s, Q_s) \) - bounded plan, by the induction hypothesis, we know that \(\text{covq}(Q_s, Q_s \land Q_1) = true \) and \(Q_s \land Q \) has a size \((Q_s, Q_s \land Q_1) \) - bounded plan \(\xi_{s1} \). In addition, \(\xi_{s1} \) has bounded output. Now case (4c) in Section 5 applies to \(Q_s \land (Q_1 \land Q_2) \) to handle multiple conjuncts. Thus, \(\text{covq}(Q_s, Q_s \land (Q_1 \land Q_2)) = \text{covq}(Q_s, Q_s) \land \text{covq}(Q_s, Q_1 \land Q_2) = true \). Consider plan \(\xi = (T_1 = \xi_{s1}, T_2 = \text{fetch}(T_1, R, \text{z}'_2)) \). Note that \(\xi \equiv_{\mathcal{A}} Q_s \land Q \) because \(\xi_{s1} \equiv_{\mathcal{A}} Q_s \land Q_s \). Since \(T_1 \) is of bounded size, \(\xi \) is a \((|\xi_{s1}| + 1) \) - bounded plan, where \((|\xi_{s1}| + 1) \leq \text{size}(Q_s, Q_s \land Q_1) + 1 = \text{size}(Q_s, (Q_s \land Q_1) \land Q_2) \leq \text{size}(Q_s, Q_s \land Q) \). That is, the statement holds for \(Q \) when \(Q \) falls in case (4a).

Case (4b). For case (4b) of topped queries of Section 5, when \(\text{covq}(Q_s, Q) = true \), we have that \(\text{covq}(Q_s, Q_1) = \text{covq}(Q_s, Q_2) = true \). To be more specific, we distinguish four cases: (i) \(\text{covq}(Q_s, Q_1) = \text{covq}(Q_s, Q_2) = true \), (ii) \(\text{covq}(Q_s, Q_1) = true \) and \(\text{covq}(Q_s, Q_2) = false \), (iii) \(\text{covq}(Q_s, Q_1) = false \) and \(\text{covq}(Q_s, Q_2) = true \), and (iv) \(\text{covq}(Q_s, Q_1) = \text{covq}(Q_s, Q_2) = false \). Assume \(\hat{z}_1 \land \hat{z}_2 = \emptyset \). For case (i), since \(\text{covq}(Q_s, Q_1) = true(i \in [1, 2]) \), by the induction hypothesis, there are size \((Q_s, Q_1) \) - bounded plans \(\xi_i \) for \(Q_i \). Let \(\xi_i \) be the size \((Q_s, Q_s) \) - bounded plan for \(Q_2 \). Now consider plan \(\xi = (T_1 = \xi_1, T_2 = \xi_2, T_3 = T_1 \times T_2, T_4 = \xi_3, T_5 = T_3 \times T_4) \). Then \(\xi \equiv_{\mathcal{A}} \xi \). Note that \(|\xi| = |\xi_1| + |\xi_2| + |\xi_3| + 2 \leq \text{size}(Q_s, Q_1) + \text{size}(Q_s, Q_2) + \text{size}(Q_s, Q_2) + 2 \). Hence, size \((Q_s, Q_s, Q_s) \land Q_2 = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + 1 = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + 1 + 1 \geq |\xi| \). For case (ii), since \(\text{covq}(Q_s, Q_1) = true \) and \(\text{covq}(Q_s, Q_2) = true \), by the induction hypothesis, we know that \(Q_i \) has a size \((Q_s, Q_1) \) - bounded plan \(\xi_1 \) and \(Q_s \land Q \) has a size \((Q_s, Q_s) \) - bounded plan \(\xi_2 \) (note that \(\text{covq}(Q_s, Q_s) = \text{covq}(Q_s, Q_s) \land \text{covq}(Q_s, Q_s) \land \text{covq}(Q_s, Q_s) \land \text{covq}(Q_s, Q_s) \land \text{covq}(Q_s, Q_s) \) = true). Consider plan \(\xi = (T_1 = \xi_1, T_2 = \xi_2, T_3 = T_1 \times T_2) \). Then \(\xi \equiv_{\mathcal{A}} Q_s \land (Q_s \land Q_2) = Q_s \land Q \) and \(|\xi| \leq \text{size}((Q_s, Q_1) \land Q_s) + \text{size}(Q_s, Q_1) \land Q_2 = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + 1 = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + 1 + 1 \geq |\xi| \). In addition, one can easily verify that, when \(\text{covq}(Q_s, Q) = \text{covq}(Q_s, Q) = true \), \(\text{size}(Q_s, Q) \leq \text{size}(Q_s, Q_2) \), by induction on \(Q_s \). Hence, \(\text{size}(Q_s, Q) \land Q \) \(\geq |\xi| \). This is similar for case (iii). For case (iv), from \(\text{covq}(Q_s, Q_1) \neq true \) and \(\text{covq}(Q_s, Q_1) = true \) and the induction hypothesis, we know that \(Q_s \land Q \) has a size \((Q_s, Q_s) \) - bounded plan \(\xi_{s1} \), for \(i \in [1, 2] \). Consider plan \(\xi = (T_1 = \xi_{s1}, T_2 = \xi_{s2}, T_3 = T_1 \times T_2) \). Then \(\xi \equiv_{\mathcal{A}} Q_s \land Q \land Q_2 = Q_s \land Q \) and \(|\xi| \leq \text{size}(Q_s, Q_s) \land Q_2 = \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + \text{size}(Q_s, Q_s) + 1 + 1 \geq |\xi| \). Similarly, one can verify the case when \(\hat{z}_1 \land \hat{z}_2 = \emptyset \). Furthermore, \(\text{covq}(Q_s, Q_s \land Q) = true \) since \(\text{covq}(Q_s, Q_s) \land \text{covq}(Q_s, Q_s) = true \). Therefore, we have that the statement holds on \(Q \) in case (4b).

Case (4c). When \(Q \) falls in case (4c) of topped queries in Section 5, from \(\text{covq}(Q_s, Q_1 \land Q_2) = true \), we know that \(\text{covq}(Q_s, Q_s \land Q_1) = true \) and \(\text{covq}(Q_s, Q_s \land Q_2) = true \). By the induction hypothesis, from \(\text{covq}(Q_s, Q_s \land Q_1) = true \), we have that \(Q_s \land Q_1 \) has a size \((Q_s, Q_s \land Q_1) \) - bounded plan \(\xi_{s1} \). Hence, further by the induction hypothesis, from \(\text{covq}(Q_s, Q_s \land Q_1) = \text{covq}(Q_s, Q_s \land Q_2) = true \) and that \(Q_s \land Q_1 \) has plan \(\xi_{s1} \), we have that \((Q_s \land Q_1) \land Q_2 \) has a size \((Q_s, Q_s \land Q_1) \land Q_2 \) - bounded plan \(\xi \), by treating \(Q_s \land Q_1 \) as a “new \(Q_s \)”. Note that \(\xi \) is also a plan for
$Q_3 \land (Q_1 \land Q_2)$. Observe that $|\xi| \leq \text{size}(Q_e, (Q_3 \land Q_1) \land Q_2) = \text{size}(Q_e, Q_3 \land Q_1) + \text{size}(Q_3 \land Q_1, Q_2)$.

Therefore, by case (4c) $\text{size}(Q_e, Q_3 \land (Q_1 \land Q_2)) = \text{size}(Q_e, Q_3) + \text{size}(Q_3, Q_1 \land Q_2) = \text{size}(Q_e, Q_3) + \text{size}(Q_3, Q_1) + \text{size}(Q_1 \land Q_2, Q_2) \geq |\xi|$. Since $\text{covq}(Q_e, Q_3 \land (Q_1 \land Q_2)) = \text{covq}(Q_e, Q_3) \land \text{covq}(Q_3, Q_1 \land Q_2) = \text{true}$, the statement holds on Q when Q is in case (4c).

A size$(Q_e, Q_3 \land Q)$-bounded plan in this case can be constructed along the same lines as its counterpart for (4b) above, distinguishing the case when there exist common variables in $Q_e \land Q_1$ and Q_2 from the case when they contain disjoint variables.

Remark. Note that when $Q = Q_1 \land Q_2$, to compute $\text{covq}(Q_3, Q)$, we need to compute both $\text{covq}(Q_3, Q_2)$ (case (4b)) and $\text{covq}(Q_3, Q_1, Q_2)$ (case (4c)). When Q_2 is $Q_21 \land Q_22$, we need to compute $\text{covq}(Q_2, Q_22)$, $\text{covq}(Q_3 \land Q_1, Q_22)$, $\text{covq}(Q_3 \land Q_21, Q_22)$, and $\text{covq}(Q_3 \land Q_1 \land Q_21, Q_22)$. In the worst case, we test $2^{\|Q_2\|}$ many different cases. Hence, we restrict the size of Q_2 to bound the number of expansions of Q_3 when computing $\text{covq}(Q_e, Q)$ to ensure that $\text{covq}(\cdot, \cdot)$ is computable in PTIME (statement (3) of Theorem 5.1), although this has no impact on the statement we are proving now.

(5) $Q(\bar{z}) = Q_1(\bar{z}) \lor Q_2(\bar{z})$. The case when $Q = Q_1 \lor Q_2$ is verified in the same way as for case (4b) above.

(6) $Q(\bar{z}) = Q_1(\bar{z}) \land \neg Q_2(\bar{z})$. When Q is $Q_1 \land \neg Q_2$ and $\text{covq}(Q_3, Q) = \text{true}$, there are two cases corresponding to cases (6a) and (6b) given in Section 5, respectively.

Case (6a). The statement can be verified in the same way as case (4b) above.

Case (6b). Since $\text{covq}(Q_3, Q) = \text{true}$, we have that $\text{covq}(Q_3, Q_1) = \text{true}$ and $\text{covq}(Q_3, Q_1 \land Q_2) = \text{true}$. By the induction, we have $\text{covq}(Q_3, Q_3 \land Q_1) = \text{true}$ and $Q_3 \land Q_1$ has a size$(Q_e, Q_3 \land Q_1)$-bounded plan ξ_{s1}; similarly, $Q_1 \land (Q_1 \land Q_2)$ has a size$(Q_e, Q_1 \land Q_2)$-bounded plan ξ_{s2}. Therefore, $\text{covq}(Q_e, Q_3 \land Q) = \text{covq}(Q_e, Q_3) \land \text{covq}(Q_3, Q) = \text{true}$, and $Q_3 \land Q$ has a plan $\xi = (\xi_{s1}, \xi_{s2}, \xi_{s2} - \xi_{s1})$. Since $Q_1(\bar{z}) \land \neg Q_2(\bar{z}) = Q_1(\bar{z}) \land \neg (Q_1(\bar{z}) \land Q_2(\bar{z}))$, ξ is a plan of $Q_3 \land Q$. Moreover, $|\xi| \leq \text{size}(Q_e, Q_3 \land Q_1) + \text{size}(Q_e, Q_3 \land Q_1 \land Q_2) + 1 = \text{size}(Q_e, Q_3 \land Q)$. Thus, the statement holds for case (6).

(7) $Q(\bar{z}) = \exists w Q'(\bar{w}, \bar{z})$. When Q falls in case (7) of topped queries in Section 5, i.e., $Q(\bar{z}) = \exists w Q'(\bar{w}, \bar{z})$, we only need to consider case (7c) when Q' is not a relation, since cases (7a) and (7b) have already been covered in the base step. In case (7c), when $\text{covq}(Q_3, Q) = \text{true}$, $\text{covq}(Q_3, Q')$ is also true. Thus, by the induction hypothesis, $\text{covq}(Q_e, Q_3(\bar{x}) \land Q'(\bar{w}, \bar{z}))$ is true and $Q_3(\bar{x}) \land Q'(\bar{w}, \bar{z})$ has a size$(Q_e, Q_3(\bar{x}) \land Q'(\bar{w}, \bar{z}))$-bounded plan ξ'. Consider plan $\xi' = (\xi_1 = \xi', T_2 = \pi_2(T_1))$. Then $\xi \equiv_{\mathcal{A}} Q$ since $\xi' \equiv_{\mathcal{A}} Q'$. That is, $Q_3 \land Q$ has a $(\lfloor |\xi'| \rfloor + 1)$-bounded plan, where $(\lfloor |\xi'| \rfloor + 1) \leq \text{size}(Q_e, Q_3 \land Q') + 1 = \text{size}(Q_e, Q)$. Observe that $\text{covq}(Q_e, Q_3 \land Q) = \text{covq}(Q_e, Q_3 \land Q') = \text{true}$. Thus, the statement holds for case (7).

The proof above gives a construction of a bounded rewriting of Q using \mathcal{V} under \mathcal{A}, by defining the bounded rewriting for each case of computing $\text{covq}(Q_3, Q)$ and size(Q_3, Q). To show that the construction is in PTIME in $|Q|, |\mathcal{A}|$, and $|\mathcal{V}|$, we only need to show that the computation of $\text{covq}(Q_3, Q)$ and size(Q_3, Q) can be done in polynomially many induction steps (i.e., applications of the seven cases above). This is verified below.

(3) It is in PTIME to check whether FO queries are topped by (R, \mathcal{V}, A, M) with a PTIME oracle for checking output boundedness. It suffices to show that both functions $\text{covq}(Q_3, Q)$ and size(Q_3, Q) are polynomial in $|Q|, |Q_3|, |\mathcal{A}|$, and $|\mathcal{V}|$. Below we verify this for $\text{covq}(Q_3, Q)$; the proof for size(Q_3, Q) is similar. Observe the following:

- At most $O(|Q|)$ induction steps are needed for computing $\text{covq}(Q_3, Q)$, where each induction step is an application of one of the seven cases given in the definition of $\text{covq}(Q_3, Q)$ in
Section 5. To see this, observe the following: (i) When only cases (1), (2), (3), (5), (4a), 6(a), and (7) are involved, \(\text{covq}(Q_s, Q) \) can be computed within \(|Q|\) induction steps because each application of such cases decreases \(|Q|\) by 1 while keeping \(|Q_s|\) unchanged. (ii) For case (4c) (when \(Q = Q_1 \land Q_2 \)), we need to check \(2^{|Q_2|} \) possible expansions of \(Q_s \) to compute \(\text{covq}(Q_s, Q) \), as remarked in the the proof of statement (2) for case (4c) above. Since \(|Q_2|\) is bounded by a predefined constant \(K \) (see Section 5), the checking can be done in \(\text{PTIME} \). Moreover, \(Q_s \) can be expanded at most \(O(|Q|) \) times, and each step corresponds to an induction step. That is, the total number of induction steps remains bounded by \(O(|Q|) \). This is similar when case (6b) (when \(Q = Q_1 \land \neg Q_2 \)) is also concerned.

- Each induction step is in \(\text{PTIME} \) in \(|Q|\), \(|V|\), and \(|A|\) when a \(\text{PTIME} \) oracle for checking output boundedness is available (Theorem 5.2). This is because (i) \(|Q_s|\) can be increased by no larger than \(|Q|\) when computing \(\text{covq}(Q_s, Q) \) and \(\text{size}(Q_s, Q) \), and (ii) each step can be done by syntactically checking \(Q_s, Q, A, \) and \(V \), and for output boundedness checking in cases (4a) and (7b).

Thus, it is in \(\text{PTIME} \) in \(|Q|\), \(|A|\), and \(|V|\) to decide whether \(\text{covq}(Q_s, Q) = \text{true} \). Similarly, it takes \(\text{PTIME} \) in \(M, |Q|, |A|, \) and \(|V|\) to check whether \(\text{size}(Q_s, Q) \leq M \). Taken together with the constructive proof given in (2) above, these show that it takes \(\text{PTIME} \) to generate an \(M \)-bounded rewriting using \(V \) for each query topped by \((R, V, A, M)\).

\[\square\]