
Collaborative Filtering for Binary, Positive-only Data

Koen Verstrepen
∗

Kanishka Bhaduri
†

Froomle Apple, Inc.
Antwerp, Belgium Cupertino, USA

koen.verstrepen@froomle.com kanishka.bh@gmail.com

Boris Cule Bart Goethals
University of Antwerp Froomle, University of Antwerp

Antwerp, Belgium Antwerp, Belgium
boris.cule@uantwerp.be bart.goethals@uantwerp.be

ABSTRACT
Traditional collaborative filtering assumes the availability of
explicit ratings of users for items. However, in many cases
these ratings are not available and only binary, positive-only
data is available. Binary, positive-only data is typically as-
sociated with implicit feedback such as items bought, videos
watched, ads clicked on, etc. However, it can also be the re-
sults of explicit feedback such as likes on social networking
sites. Because binary, positive-only data contains no neg-
ative information, it needs to be treated differently than
rating data. As a result of the growing relevance of this
problem setting, the number of publications in this field in-
creases rapidly. In this survey, we provide an overview of the
existing work from an innovative perspective that allows us
to emphasize surprising commonalities and key differences.

1. INTRODUCTION
Increasingly, people are overwhelmed by an abundance of
choice. Via the World Wide Web, everybody has access to
a wide variety of news, opinions, (encyclopedic) informa-
tion, social contacts, books, music, videos, pictures, prod-
ucts, jobs, houses, and many other items, from all over the
world. However, from the perspective of a particular person,
the vast majority of items is irrelevant; and the few relevant
items are difficult to find because they are buried under a
large pile or irrelevant ones. There exist, for example, lots
of books that one would enjoy reading, if only one could
identify them. Moreover, not only do people fail to find rel-
evant existing items, niche items fail to be created because
it is anticipated that the target audience will not be able to
find them under the pile of irrelevant items. Certain books,
for example, are never written because writers anticipate
they will not be able to reach a sufficiently large portion of
their target audience, although the audience exists. Recom-
mender systems contribute to overcome these difficulties by
connecting individuals with items relevant to them. A good
book recommender system, for example, would typically rec-
ommend 3, previously unknown, books that the user would
enjoy reading, and that are sufficiently different from each

∗This work was done while Koen Verstrepen was working at
the University of Antwerp.
†This work was done while Kanishka Bhaduri was working
at Netflix, Inc.

other. Studying recommender systems specifically, and the
connection between individuals and relevant items in gen-
eral, is the subject of recommendation research. But the
relevance of recommendation research goes beyond connect-
ing users with items. Recommender systems can, for exam-
ple, also connect genes with diseases, biological targets with
drug compounds, words with documents, tags with photos,
etc.

1.1 Collaborative Filtering
Collaborative filtering is a principal problem in recommen-
dation research. In the most abstract sense, collaborative
filtering is the problem of weighting missing edges in a bi-
partite graph.

The concrete version of this problem that got most atten-
tion until recently is rating prediction. In rating prediction,
one set of nodes in the bipartite graph represent users, the
other set of nodes represent items, an edge with weight r
between user u and item i expresses that u has given i the
rating r, and the task is to predict the missing ratings. Since
rating prediction is a mature domain, multiple overviews ex-
ist [23; 47; 1; 59]. Recently, the attention for rating predic-
tion diminished because of multiple reasons. First, collect-
ing rating data is relatively expensive in the sense that it
requires a non-negligible effort from the users. Second, user
ratings do not correlate as well with user behavior as one
would expect. Users tend to give high ratings to items they
think they should consume, for example a famous book by
Dostoyevsky. However, they would rather read Superman
comic books, which they rate much lower. Finally, in many
applications, predicting ratings is not the final goal, and the
predicted ratings are only used to find the most relevant
items for every user. Consequently, high ratings need to
be accurate whereas the exact value of low ratings is irrel-
evant. However, in rating prediction high and low ratings
are equally important.

Today, attention is increasingly shifting towards collabora-
tive filtering with binary, positive-only data. In this version,
edges are unweighted, an edge between user u and item i ex-
presses that user u has given positive feedback about item
i, and the task is to attach to every missing edge between
a user u and an item i a score that indicates the suitabil-
ity of recommending i to u. Binary, positive-only data is
typically associated with implicit feedback such as items
bought, videos watched, songs listened to, books lent from

a library, ads clicked on, etc. However, it can also be the
result of explicit feedback, such as likes on social networking
sites. As a result of the growing relevance of this problem
setting, the number of publications in this field increases
rapidly. In this survey, we provide an overview of the exist-
ing work on collaborative filtering with binary, positive-only
data from an innovative perspective that allows us to em-
phasize surprising commonalities and key differences. To
enhance the readability, we sometimes omit the specifica-
tion ‘binary, positive-only’ and use the abbreviated term
‘collaborative filtering’.

Besides the bipartite graph, five types of extra information
can be available. First, there can be item content or item
metadata. In the case of books, for example, the content is
the full text of the book and the metadata can include the
writer, the publisher, the year it was published etc. Meth-
ods that exclusively use this kind of information are typi-
cally classified as content based. Methods that combine this
kind of information with a collaborative filtering method
are typically classified as hybrid. Second, there can be user
metadata such as gender, age, location, etc. Third, users
can be connected with each other in an extra, unipartite
graph. A typical example is a social network between the
users. An analogous graph can exist for the items. Finally,
there can be contextual information such as location, date,
time, intent, company, device, etc. Exploiting information
besides the bipartite graph, is out of the scope of this sur-
vey. Comprehensive discussions on exploiting information
outside the user-item matrix have been presented [53; 72].

1.2 Relation to Other Domains
To emphasize the unique aspects of collaborative filtering,
we highlight the commonalities and differences with two re-
lated data science problems: classification and association
rule mining.

First, collaborative filtering is equivalent to jointly solving
many one-class classification problems, in which every one-
class classification problem corresponds to one of the items.
In the classification problem that corresponds to item i, i
serves as the class, all other items serve as the features, the
users that have i as a known preference serve as labeled
examples and the other users serve as unlabeled examples.
Amazon.com, for example, has more than 200 million items
in its catalog, hence solving the collaborative filtering prob-
lem for Amazon.com is equivalent to jointly solving more
than 200 million one-class classification problems, which ob-
viously requires a distinct approach. However, collaborative
filtering is more than efficiently solving many one-class clas-
sification problems. Because they are tightly linked, jointly
solving all classification problems allows for sharing informa-
tion between them. The individual classification problems
share most of their features; and while i serves as the class
in one of the classification problems, it serves as a feature
in all other classification problems.

Second, association rule mining also assumes bipartite, un-
weighted data and can therefore be applied to datasets used
for collaborative filtering. Furthermore, recommending item
i to user u can be considered as the application of the as-
sociation rule I(u) → i, with I(u) the itemset containing
the known preferences of u. However, the goals of associa-
tion rule mining and collaborative filtering are different. If
a rule I(u) → i is crucial for recommending i to u, but ir-
relevant on the rest of the data, giving the rule a high score

is desirable for collaborative filtering, but typically not for
association rule mining.

1.3 Outline
After the Preliminaries (Sec. 2), we introduce our framework
(Sec. 3) and review the state of the art along the three di-
mensions of our framework: Factorization Models (Sec. 4),
Deviation Functions (Sec. 5), and Minimization Algorithms
(Sec. 6). Finally, we discuss the usability of methods for
rating prediction (Sec. 7) and conclude (Sec. 8).

2. PRELIMINARIES
We introduced collaborative filtering as the problem of weight-
ing missing edges in a bipartite graph. Typically, however,
this bipartite graph is represented by its adjacency matrix,
which is called the preference matrix.

Let U be a set of users and I a set of items. We are given
a preference matrix with training data R ∈ {0, 1}|U|×|I|.
Rui = 1 indicates that there is a known preference of user
u ∈ U for item i ∈ I. Rui = 0 indicates that there is no
such information. Notice that the absence of information
means that either there exists no preference or there exists
a preference but it is not known.

Collaborative filtering methods compute for every user-item
pair (u, i) a recommendation score s(u, i) that indicates the
suitability of recommending i to u. Typically, the user-item-
pairs are (partially) sorted by their recommendation scores.

We define the matrix S ∈ R|U|×|I| as Sui = s(u, i). Further-
more, c(x) gives the count of x, meaning

c(x) =

{∑
i∈I Rxi if x ∈ U∑
u∈U Rux if x ∈ I.

Although we conveniently call the elements of U users and
the elements of I items, these sets can contain any type of
object. In the case of online social networks, for example,
both sets contain the people that participate in the social
network, i.e., U = I, and Rui = 1 if there exists a friendship
link between persons u and i. In image tagging/annotation
problems, U contains images, I contains words, and Rui = 1
if image u was tagged with word i. In chemogenomics, an
early stage in the drug discovery process, U contains active
drug compounds, I contains biological targets, and Rui = 1
if there is a strong interaction between compound u and
biological target i.

Typically, datasets for collaborative filtering are extremely
sparse, which makes it a challenging problem. The sparsity
S, computed as

S = 1−
∑

(u,i)∈U×I Rui

|U| · |I| , (1)

typically ranges from 0.98 to 0.999 and is visualized in Fig-
ure 1. This means that a score must be computed for ap-
proximately 99% of the (u, i)-pairs based on only 1% of the
(u, i)-pairs. This is undeniably a challenging task.

3. FRAMEWORK
In the most general sense, every method for collaborative
filtering is defined as a function F that computes the rec-
ommendation scores S based on the data R: S = F (R).

Since different methods F originate from different intuitions
about the problem, they are typically explained from very

1 0
0 1 0 0 0 0 0 0 0 0
0 0
0 0
0 0 0 0 0 0 0 0 1 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0
0 1 0 0 0
0 0
0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

… …

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0
0 1 0 0 0 0 0 0 0
0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0
0 0 0 0 0 1 0

Figure 1: Typical sparsity of training data matrix R for
binary, positive-only collaborative filtering.

different perspectives. In the literature on recommender sys-
tems in general and collaborative filtering specifically, two
dominant perspectives have emerged: the model based per-
spective and the memory-based perspective. Unfortunately,
these two are often described as two fundamentally separate
classes of methods, instead of merely two perspectives on the
same class of methods [47; 23]. As a result, the comparison
between methods often remains superficial.

We, however, will explain many different collaborative fil-
tering methods F from one and the same perspective. As
such we facilitate the comparison and classification of these
methods. Our perspective is a matrix factorization frame-
work in which every method F consists of three fundamental
building blocks: a factorization model of the recommenda-
tion scores S, a deviation function that measures the devia-
tion between the data R and the recommendation scores S,
and a minimization procedure that tries to find the model
parameters that minimize the deviation function.

First, the factorization model computes the matrix of
recommendation scores S as a link function l of a sum of T
terms in which a term t is the product of Ft factor matrices:

S = l

 T∑
t=1

Ft∏
f=1

S(t,f)

 . (2)

For many methods, l is the identity function, T = 1 and
F1 = 2. In this case, the factorization is given by:

S = S(1,1)S(1,2). (3)

Because of their dimensions, S(1,1) ∈ R|U|×D and S(1,2) ∈
RD×|I| are often called the user-factor matrix and item-
factor matrix, respectively. Figure 2 visualizes Equation 3.
More complex models are often more realistic, but generally
contain more parameters which increases the risk of overfit-
ting.

Second, the number of terms T , the number of factor ma-
trices Ft and the dimensions of the factor matrices are an
integral part of the model, independent of the data R1. Ev-
ery entry in the factor matrices however, is a parameter
that needs to be computed based on the data R. We col-
lectively denote these parameters as θ. Whenever we want

1High level statistics of the data might be taken into con-
sideration to choose the model. There is however no clear,
direct dependence on the data.

D"

D"

="S" S(1,1)"

S(1,2)"
u" u"

i"i"

A Survey of Collaborative Filtering Algorithms for Binary, Positive-only Data 1:23

Also the maximum margin based deviation function in Equation ?? cannot be solved
with ALS because it contains the hinge loss. Rennie and Srebro propose a conjugate
gradients method for minimizing this function [Rennie and Srebro 2005]. However,
this method suffers from similar problems as SGD, related to the high number of
terms in the loss function. Therefore, Pan and Scholz [Pan and Scholz 2009] propose a
bagging approach. The essence of their bagging approach is that they do not explicitly
weight every user-item pair for which Rui = 0, but sample from all these pairs instead.
They create multiple samples, and compute multiple different pairs (S(1,1),S(1,2)) cor-
responding to their samples. These computations are also performed with the conju-
gate gradients method. They are, however, much less intensive since they only con-
sider a small sample of the many user-item pairs for which Rui = 0. The different
corresponding factor matrices are finally merged by simply taking their average.

For solving Equation ??, Kabbur et al. propose to subsequently apply SGD to a num-
ber of reduced datasets that each contain all known preferences and a different random
sample of the missing preferences, although an ALS-like solution seems to be in reach
.

When the deviation function is reconstruction based and S(1) = R, i.e. an item-based
neighborhood model is used, the user factors are fixed by definition, and the problem
resembles a single ALS step. However, when constraints such as non-negativity are
imposed, things get more complicated [Ning and Karypis 2011]. Therefore, Ning and
Karypis adopt cyclic coordinate descent and soft thresholding [Friedman et al. 2010].

When a deviation functions contains a triple summations, it contains even more
terms, and the minimization with SGD becomes even more expensive. Moreover, most
of the terms only have a small influence on the parameters that need to be learned and
are therefore a waste to consider. However, in some cases no other solution has been
proposed yet (Eq.22,26). To mitigate this problem, Rendle and Freudenthaler propose
to sample the terms in deviation function not uniformly but proportional to their im-
pact on the parameters [Rendle and Freudenthaler 2014]. Weston et al. mitigate this
problem by, for every known preference i, sampling non preferred items j until they
encounter one for which Suj + 1 > Sui, i.e. it violates the hinge-loss approximation
of the ground truth ranking. Consequently, their updates will be significant [Weston
et al. 2013b].

Also the deviation function in Equation 24 contains a triple summation. However,
Takács and Tikk [Takács and Tikk 2012] are able to propose an ALS algorithm and
therefore do not suffer from the triple summation like an SGD-based algorithm would.

Finally, In line with his maximum likelihood approach, Hofmann proposes to min-
imize the deviation function in Equation ?? by means of a regularized expectation
maximization (EM) algorithm [Hofmann 2004].

6.2. Convex Minimization
Aiolli [Aiolli 2014] proposed the convex deviation function in Equation 28 and indicates
that it can be solved with any algorithm for convex optimization.

Also the analytically solvable deviation functions are convex. Moreover, minimiz-
ing them is equivalent to computing all the similarities involved in the model. Most
works assume a brute force computation of the similarities. However, Verstrepen and
Goethals [Verstrepen and Goethals 2016], recently proposed two methods that are eas-
ily an order of magnitude faster than the brute force computation.

|U|

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:24 K. Verstrepen et al.

|I|

REFERENCES
Fabio Aiolli. 2013. Efficient top-n recommendation for very large scale binary rated datasets. In Proceedings

of the 7th ACM conference on Recommender systems. ACM, 273–280.
Fabio Aiolli. 2014. Convex AUC optimization for top-N recommendation with implicit feedback. In Proceed-

ings of the 8th ACM Conference on Recommender systems. ACM, 293–296.
C.M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, New York, NY.
Evangelia Christakopoulou and George Karypis. 2014. Hoslim: Higher-order sparse linear method for top-n

recommender systems. In Advances in Knowledge Discovery and Data Mining. Springer, 38–49.
Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Trans-

actions on Information Systems (TOIS) 22, 1 (2004), 143–177.
Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2010. Regularization paths for generalized linear

models via coordinate descent. Journal of statistical software 33, 1 (2010), 1.
Eric Gaussier and Cyril Goutte. 2005. Relation between PLSA and NMF and implications. In Proceedings

of the 28th annual international ACM SIGIR conference on Research and development in information
retrieval. ACM, 601–602.

Prem Gopalan, J Hofman, and D Blei. 2015. Scalable recommendation with hierarchical poisson factor-
ization. In Proceedings of the Thirti-first Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-15). AUAI Press.

Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and development in information retrieval. ACM, 50–57.

Thomas Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Transactions on Informa-
tion Systems (TOIS) 22, 1 (2004), 89–115.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In
Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 263–272.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. 2010. Recommender sys-
tems: an introduction. Cambridge University Press.

Christopher Johnson. 2014. Logistic Matrix Factorization for Implicit Feedback Data. In Workshop on Dis-
tributed Machine Learning and Matrix Computations at the Twenty-eighth Annual Conference on Neural
Information Processing Systems (NIPS).

Santosh Kabbur and George Karypis. 2014. NLMF: NonLinear Matrix Factorization Methods for Top-N
Recommender Systems. In Data Mining Workshop (ICDMW), 2014 IEEE International Conference on.
IEEE, 167–174.

Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item similarity models for top-n rec-
ommender systems. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 659–667.

Noam Koenigstein, Nir Nice, Ulrich Paquet, and Nir Schleyen. 2012. The Xbox recommender system. In
Proceedings of the sixth ACM conference on Recommender systems. ACM, 281–284.

Yehuda Koren and Robert Bell. 2011. Advances in collaborative filtering. In Recommender systems hand-
book. Springer, 145–186.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender
systems. Computer 8 (2009), 30–37.

Weiyang Lin, Sergio A Alvarez, and Carolina Ruiz. 2002. Efficient adaptive-support association rule mining
for recommender systems. Data mining and knowledge discovery 6, 1 (2002), 83–105.

Guilherme Vale Menezes, Jussara M Almeida, Fabiano Belém, Marcos André Gonçalves, Anı́sio Lacerda,
Edleno Silva De Moura, Gisele L Pappa, Adriano Veloso, and Nivio Ziviani. 2010. Demand-driven tag
recommendation. In Machine Learning and Knowledge Discovery in Databases. Springer, 402–417.

Andriy Mnih and Ruslan Salakhutdinov. 2007. Probabilistic matrix factorization. In Advances in neural
information processing systems. 1257–1264.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2001. Effective personalization based on
association rule discovery from web usage data. In Proceedings of the 3rd international workshop on
Web information and data management. ACM, 9–15.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:24 K. Verstrepen et al.

|I|

REFERENCES
Fabio Aiolli. 2013. Efficient top-n recommendation for very large scale binary rated datasets. In Proceedings

of the 7th ACM conference on Recommender systems. ACM, 273–280.
Fabio Aiolli. 2014. Convex AUC optimization for top-N recommendation with implicit feedback. In Proceed-

ings of the 8th ACM Conference on Recommender systems. ACM, 293–296.
C.M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, New York, NY.
Evangelia Christakopoulou and George Karypis. 2014. Hoslim: Higher-order sparse linear method for top-n

recommender systems. In Advances in Knowledge Discovery and Data Mining. Springer, 38–49.
Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Trans-

actions on Information Systems (TOIS) 22, 1 (2004), 143–177.
Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2010. Regularization paths for generalized linear

models via coordinate descent. Journal of statistical software 33, 1 (2010), 1.
Eric Gaussier and Cyril Goutte. 2005. Relation between PLSA and NMF and implications. In Proceedings

of the 28th annual international ACM SIGIR conference on Research and development in information
retrieval. ACM, 601–602.

Prem Gopalan, J Hofman, and D Blei. 2015. Scalable recommendation with hierarchical poisson factor-
ization. In Proceedings of the Thirti-first Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-15). AUAI Press.

Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and development in information retrieval. ACM, 50–57.

Thomas Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Transactions on Informa-
tion Systems (TOIS) 22, 1 (2004), 89–115.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In
Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 263–272.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. 2010. Recommender sys-
tems: an introduction. Cambridge University Press.

Christopher Johnson. 2014. Logistic Matrix Factorization for Implicit Feedback Data. In Workshop on Dis-
tributed Machine Learning and Matrix Computations at the Twenty-eighth Annual Conference on Neural
Information Processing Systems (NIPS).

Santosh Kabbur and George Karypis. 2014. NLMF: NonLinear Matrix Factorization Methods for Top-N
Recommender Systems. In Data Mining Workshop (ICDMW), 2014 IEEE International Conference on.
IEEE, 167–174.

Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item similarity models for top-n rec-
ommender systems. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 659–667.

Noam Koenigstein, Nir Nice, Ulrich Paquet, and Nir Schleyen. 2012. The Xbox recommender system. In
Proceedings of the sixth ACM conference on Recommender systems. ACM, 281–284.

Yehuda Koren and Robert Bell. 2011. Advances in collaborative filtering. In Recommender systems hand-
book. Springer, 145–186.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender
systems. Computer 8 (2009), 30–37.

Weiyang Lin, Sergio A Alvarez, and Carolina Ruiz. 2002. Efficient adaptive-support association rule mining
for recommender systems. Data mining and knowledge discovery 6, 1 (2002), 83–105.

Guilherme Vale Menezes, Jussara M Almeida, Fabiano Belém, Marcos André Gonçalves, Anı́sio Lacerda,
Edleno Silva De Moura, Gisele L Pappa, Adriano Veloso, and Nivio Ziviani. 2010. Demand-driven tag
recommendation. In Machine Learning and Knowledge Discovery in Databases. Springer, 402–417.

Andriy Mnih and Ruslan Salakhutdinov. 2007. Probabilistic matrix factorization. In Advances in neural
information processing systems. 1257–1264.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2001. Effective personalization based on
association rule discovery from web usage data. In Proceedings of the 3rd international workshop on
Web information and data management. ACM, 9–15.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Figure 2: Matrix Factorization with 2 factor matrices
(Eq. 3).

to emphasize that the matrix of recommendation scores S
is dependent on these parameters, we will write it as S(θ).
The model in Figure 2, for example, contains (|U|+ |I|) ·D
parameters. Computing all the parameters in a factoriza-
tion model is done by minimizing the deviation between the
data R and the parameters θ. This deviation is measured
by the deviation function D (θ,R). Formally we compute
the optimal values θ∗ of the parameters θ as

θ∗ = arg min
θ
D (θ,R) .

Many deviation functions exist, and every deviation function
mathematically expresses a different interpretation of the
concept deviation.

Third, efficiently computing the parameters that minimize
a deviation function is often non trivial because the major-
ity of deviation functions is non-convex in the parameters
of the factorization model. In that case, minimization al-
gorithms can only compute parameters that correspond to
a local minimum. The initialization of the parameters in
the factorization model and the chosen hyperparameters of
the minimization algorithm determine which local minimum
will be found. If the value of the deviation function in this
local minimum is not much higher than that of the global
minimum, it is considered a good minimum. An intuitively
appealing deviation function is worthless if there exists no
algorithm that can efficiently compute parameters that cor-
respond to a good local minimum of this deviation function.

Finally, we assume a basic usage scenario in which model pa-
rameters are recomputed periodically (typically, a few times
a day). Computing the recommendation scores for a user
based on the model, and extracting the items correspond-
ing to the top-N scores, is assumed to be performed in real
time. Specific aspects of scenarios in which models need
to be recomputed in real time, are out of the scope of this
survey.

In this overview, we first survey existing models in Section 4.
Next, we compare the existing deviation functions in Sec-
tion 5. Afterwards, we discuss the minimization algorithms
that are used for fitting the model parameters to the devia-
tion functions in Section 6. Finally, we discuss the applica-
bility of rating-based methods in Section 7 and conclude in
Section 8.

4. FACTORIZATION MODELS
Equation 2 gives a general description of all models for col-
laborative filtering. In this section, we discuss how the spe-
cific collaborative filtering models map to this equation.

4.1 Basic Models
A statistically well founded method is probabilistic latent
semantic analysis (pLSA) by Hofmann, which is centered
around the so called aspect model [19]. Hofmann models
the probability p(i|u) that a user u will prefer an item i as
the mixture of D probability distributions induced by the
hidden variables d:

p(i|u) =

D∑
d=1

p(i, d|u).

Furthermore, by assuming u and i conditionally independent
given d, he obtains:

p(i|u) =

D∑
d=1

p(i|d) · p(d|u).

This model corresponds to a basic two-factor matrix factor-
ization:

S = S(1,1)S(1,2)

Sui = p(i|u)

S
(1,1)
ud = p(d|u)

S
(1,2)
di = p(i|d),

(4)

in which the |U| × D parameters in S
(1,1)
ud and the D × |I|

parameters in S
(1,2)
di are a priori unknown and need to be

computed based on the data R. An appealing property of
this model is the probabilistic interpretation of both the pa-
rameters and the recommendation scores. Fully in line with
the probabilistic foundation, the parameters are constrained
as:

S
(1,1)
ud ≥ 0

S
(1,2)
di ≥ 0∑

i∈I

p(i|d) = 1

D∑
d=1

p(d|u) = 1,

(5)

expressing that both factor matrices are non-negative and
that all row sums of S(1,1) and S(1,2) must be equal to 1
since they represent probabilities.

Latent dirichlet allocation (LDA) is a more rigorous statis-
tical model, which puts Dirichlet priors on the parameters
p(d|u) [6; 19]. However, for collaborative filtering these pri-
ors are integrated out and the resulting model for computing
recommendation scores is again a simple two factor factor-
ization model.

The aspect model also has a geometric interpretation. In
the training data R, every user is profiled as a binary vec-
tor in an |I|-dimensional space in which every dimension
corresponds to an item. Analogously, every item is profiled
as a binary vector in a |U|-dimensional space in which every
dimension corresponds to a user. Now, in the factorized rep-
resentation, every hidden variable d represents a dimension
of a D-dimensional space. Therefore, the matrix factoriza-
tion S = S(1,1)S(1,2) implies a transformation of both user-
and item-vectors to the same D-dimensional space. A row

vector S
(1,1)
u· ∈ R1×D is the representation of user u in this

D-dimensional space and a column vector S
(1,2)
·i ∈ RD×1

is the representation of item i in this D-dimensional space.

Figure 2 visualizes the user-vector of user u and the item-
vector of item i. Now, as a result of the factorization model,
a recommendation score Sui is computed as the dotproduct
of the user-vector of u with the item-vector of i:

S(1,1)
u· · S(1,2)

·i =

D∑
d=1

S
(1,1)
ud S

(1,2)
di

= ||S(1,1)
u· || · ||S(1,2)

·i || · cos(φui)

= ||S(1,2)
·i || · cos(φui),

(6)

with φui the angle between the two vectors, and ||S(1,1)
u· || = 1

a probabilistic constraint of the model (Eq.5). Therefore,

an item i will be recommended if its vector norm ||S(1,2)
·i ||

is large and φui, the angle of its vector with the user vec-
tor, is small. From this geometric interpretation we learn
that the recommendation scores computed with the model
in Equation 4 contain both a personalized factor cos(φui)

and a non-personalized, popularity based factor ||S(1,2)
·i ||.

Many other authors adopted this two-factor model. How-
ever, they abandoned its probabilistic foundation by remov-
ing the constraints on the parameters (Eq.5) [21; 36; 37; 55;
73; 45; 52; 61; 16; 12]:

S = S(1,1)S(1,2). (7)

Yet another interpretation of this two-factor model is that
every hidden variable d represents a cluster containing both

users and items. A large value S
(1,1)
ud means that user u

has a large degree of membership in cluster d. Similarly, a

large value S
(1,2)
di means that item i has a large degree of

membership in cluster d. As such, pLSA can be interpreted
as a soft clustering model. According to the interpretation,
item i will be recommended to a user u if they have high
degrees of membership in the same clusters.

Although much less common, hard clustering models for col-
laborative filtering also exist. Hofmann and Puzicha [20]
proposed the model

p(i|u, e(u) = c, d(i) = d) = p(i)φ(e, d), (8)

in which e(u) indicates the cluster user u belongs to and
d(i) indicates the cluster item i belongs to. Furthermore,
φ(e, d) is the association value between the user-cluster e
and the item-cluster d. This cluster association factor in-
creases or decreases the probability that u likes i relative
to the independence model p(i|u) = p(i). As opposed to
the aspect model, this model assumes E user-clusters only
containing users and D item-clusters only containing items.
Furthermore a user or item belongs to exactly one cluster.

The factorization model corresponding to this approach is:

S = S(1,1)S(1,2)S(1,3)S(1,4),

Sui = p(i|u),

S(1,1)
ue = I(e(u) = e),

S
(1,2)
ed = φ(e, d),

S
(1,3)
di = I(d(i) = d),

S
(1,4)
ij = p(i) · I(i = j),

in which I(true) = 1, I(false) = 0, and E and D are hyper-

parameters. The |U| × E parameters in S(1,1), E × D pa-

rameters in S(1,2), D × |I| parameters in S(1,3) and the |I|

parameters S(1,4) need to be computed based on the data.
Ungar and Foster [63] proposed a similar hard clustering
method.

4.2 Explicitly Biased Models
In the above models, the recommendation score Sui of an
item i for a user u is the product of a personalized fac-
tor with an item-bias factor related to item-popularity. In
Equation 6 the personalized factor is cos(φui), and the bias

factor is ||S(1,2)
·i ||. In Equation 8 the personalized factor is

φ(e, d), and the bias factor is p(i). Other authors [28; 40;
24] proposed to model item- and user-biases as explicit terms
instead of implicit factors. This results in the following fac-
torization model:

S = σ
(
S(1,1) + S(2,1) + S(3,1)S(3,2)

)
S

(1,1)
ui = bu

S
(2,1)
ui = bi,

(9)

with σ the sigmoid link-function, and S(1,1),S(2,1) ∈ R|U|×|I|
the user- and item-bias matrices in which all columns of
S(1,1) are identical and also all rows of S(2,1) are identical.
The |U| parameters in S(1,1), |I| parameters in S(2,1), |U| ·D
parameters in S(3,1), and |I| · D parameters in S(3,2) need
to be computed based on the data. D is a hyperparame-
ter of the model. The goal of explicitly modeling the bias
terms is to make the interaction term S(3,1)S(3,2) a pure per-
sonalization term. Although bias terms are commonly used
for collaborative filtering with rating data, only a few works
with collaborative filtering with binary, positive-only data
use them.

4.3 Basic Neighborhood Models
Multiple authors proposed special cases of the basic two-
factor factorization in Equation 7.

4.3.1 Item-based
In a first special case, S(1,1) = R [10; 54; 45; 2; 34]. In this
case, the factorization model is given by

S = RS(1,2). (10)

Consequently, a user u is profiled by an |I|-dimensional bi-
nary vector Ru· and an item is profiled by an |U|-dimensional

real valued vector S
(1,2)
·i . This model is often interpreted as

an item-based neighborhood model because the recommen-
dation score Sui of item i for user u is computed as

Sui = Ru· · S(1,2)
·i =

∑
j∈I

Ruj · S(1,2)
ji =

∑
j∈I(u)

S
(1,2)
ji ,

with I(u) the known preferences of user u, and a parameter

S
(1,2)
ji typically interpreted as the similarity between items

j and i, i.e., S
(1,2)
ji = sim(j, i). Consequently, S(1,2) is often

called the item-similarity matrix. The SLIM method [34]
adopts this model and additionally imposes the constraints

S
(1,2)
ji ≥ 0,S

(1,2)
ii = 0. (11)

The non-negativity is imposed to enhance interpretability.
The zero-diagonal is imposed to avoid finding a trivial so-
lution for the parameters in which every item is maximally
similar to itself and has zero similarity with any other item.

This model is rooted in the intuition that good recommen-
dations are similar to the known preferences of the user.
Although they do not present it as such, Gori et al. [18]
proposed ItemRank, a method that is based on an interest-
ing extension of this intuition: good recommendations are
similar to other good recommendations, with a bias towards
the known preferences of the user. The factorization model
corresponding to ItemRank is based on PageRank [35] and
given by:

S = α · SS(1,2) + (1− α) ·R. (12)

Because of the recursive nature of this model, S needs to be
computed iteratively [18; 35].

4.3.2 User-based
Other authors proposed the symmetric counterpart of Equa-
tion 10 in which S(1,2) = R [48; 2; 3]. In this case, the
factorization model is given by

S = S(1,1)R, (13)

which is often interpreted as a user-based neighborhood model
because the recommendation score Sui of item i for user u
is computed as

Sui = S(1,1)
u· ·R·i =

∑
v∈U

S(1,1)
uv ·Rvi,

in which parameter S
(1,1)
uv is interpreted as the similarity

between users u and v, i.e., S
(1,1)
uv = sim(u, v). S(1,1) is of-

ten called the user-similarity matrix. The intuition behind
this model is that good recommendations are preferred by
similar users. Furthermore, Aiolli [2; 3] foresees the possi-
bility to rescale the scores such that popular items get less
importance. This changes the factorization model to

S = S(1,1)RS(1,3), S
(1,3)
ji = I(j = i) · c(i)−(1−β),

in which S(1,3) is a diagonal rescaling matrix that rescales
the item scores according to the item popularity c(i), and
β ∈ [0, 1] a hyperparameter. Additionally, Aiolli [3] imposes

the constraint that S(1,1) needs to be row normalized:

||S(1,1)
u. || = 1.

To the best of our knowledge, there exists no user-based
counterpart for the ItemRank model of Equation 12.

4.3.3 Explicitly Biased
Furthermore, it is, obviously, possible to add explicit bias
terms to neighborhood models. Wang et al. [68] proposed
an item-based neighborhood model with one bias term:

S = S(1,1) + RS(2,2), S
(1,1)
ui = bi,

and an analogous user-based model:

S = S(1,1) + S(2,1)R, S
(1,1)
ui = bi.

4.3.4 Unified
Moreover, Verstrepen and Goethals [66] showed that the
item- and user-based neighborhood models are two incom-
plete instances of the same general neighborhood model.
Consequently they propose KUNN, a complete instance of
this general neighborhood model. The model they propose

can be written as a weighted sum of a user- and an item-
based model, in which the weights depend on the user u and
the item i for which a recommendation score is computed:

S =
(
S(1,1)R

)
S(1,3) + S(2,1)

(
RS(2,3)

)
S

(1,3)
ij = I(i = j) · c(i)−1/2

S(2,1)
uv = I(u = v) · c(u)−1/2.

(14)

Finally, note that the above matrix factorization based de-
scriptions of nearest neighbors methods imply that matrix
factorization methods and neighborhood methods are not
two separate approaches, but two perspectives on the same
approach.

4.4 Factored Similarity Neighborhood Models
The item-similarity matrix S(1,2) in Equation 10 contains
|I|2 parameters, which is in practice often a very large num-
ber. Consequently, it can happen that the training data is
not sufficient to accurately compute this many parameters.
Furthermore, one often precomputes the item-similarity ma-

trix S(1,2) and performs the dotproducts Ru· ·S(1,2)
·i to com-

pute the recommendation scores Sui in real time. In this
case, the dotproduct is between two |I|-dimensional vectors,
which is often prohibitive in real time, high traffic applica-
tions. One solution2 is to factorize the similarity matrix,
which leads to the following factorization model:

S = RS(1,2)S(1,2)T ,

in which every row of S(1,2) ∈ R|I|×D represents a D-dimen-
sional item-profile vector, with D a hyperparameter [71; 8].
In this case the item-similarity matrix is equal to

S(1,2)S(1,2)T ,

which means that the similarity sim(i, j) between two items
i and j is defined as the dotproduct of their respective profile
vectors

S
(1,2)
i· · S(1,2)

j·
T
.

This model only contains |I| ·D parameters instead of |I|2
which is much fewer since typically D � |I|. Further-

more, by first precomputing the item vectors S(1,2) and
then precomputing the D-dimensional user-profile vectors
given by RS(1,2), the real time computation of a score Sui
encompasses a dotproduct between a D-dimensional user-
profile vector and a D-dimensional item-profile vector. Since
D � |I|, this dotproduct is much less expensive and can be
more easily performed in real time. Furthermore, there is
no trivial solution for the parameters of this model, as is the
case for the non factored item-similarity model in Equation
10. Consequently, it is never required to impose the con-
straints from Equation 11. To avoid scaling problems when
fitting parameters, Weston et al. [71] augment this model
with a diagonal normalization factor matrix:

S = S(1,1)RS(1,3)S(1,3)T (15)

S(1,1)
uv = I(u = v) · c(u)−2/2. (16)

2Another solution is to enforce sparsity on the similarity
matrix by means of the deviation function. This is discussed
in Section 5.

A limitation of this model is that it implies that the sim-
ilarity matrix is symmetric. This might hurt the model’s
accuracy in certain applications such as recommending tags
for images. For an image of the Eiffel tower that is already
tagged Eiffel tower, for example, the tag Paris is a reason-
able recommendation. However, for an image of the Louvre
already tagged Paris, the tag Eiffel tower is a bad recom-
mendation. Paterek solved this problem for rating data by
representing every item by two separate D-dimensional vec-
tors [41]. One vector represents the item if it serves as evi-
dence for computing recommendations, the other vector rep-
resents the item if it serves as a candidate recommendation.
In this way, they can model also asymmetric similarities.
This idea is not restricted to rating data, and for binary,
positive-only data, it was adopted by Steck [58]:

S = S(1,1)RS(1,3)S(1,4) (17)

S(1,1)
uv = I(u = v) · c(u)−1/2. (18)

Kabbur et al. also adopted this idea. However, similar to
Equation 9, they also add bias terms:

S = S(1,1) + S(2,1) + S(3,1)RS(3,3)S(3,4)

S
(1,1)
ui = bu

S
(2,1)
ui = bi

S(3,1)
uv = I(u = v) · c(u)−β/2,

(19)

with S(3,3) ∈ R|I|×D the matrix of item profiles when they
serve as evidence, S(3,4) ∈ RD×|I| the matrix of item pro-
files when they serve as candidates , and β ∈ [0, 1] and D
hyperparameters.

4.5 Higher Order Neighborhood Models
The nearest neighbors methods discussed up to this point
only consider pairwise interactions sim(j, i) and/or sim(u, v)
and aggregate all the relevant ones for computing recommen-
dations. Several authors [10; 31; 64; 50; 30; 33; 7] have pro-
posed to incorporate also higher order interactions sim(J, i)
and/or sim(u, V) with J ⊂ I and V ⊂ U . Also in this case
we can distinguish item-based approaches from user-based
approaches.

4.5.1 Item-based
For the item-based approach, most authors [10; 31; 64; 30;
7] propose to replace the user-item matrix R in the pairwise
model of Equation 10 by the user-itemset matrix X:

S = XS(1,2)

XuJ =
∏
j∈J

Ruj ,
(20)

with S(1,2) ∈ RD×|I| the itemset-item similarity matrix and
X ∈ {0, 1}|U|×D the user-itemset matrix, in which D ≤ 2|I|

is the result of an itemset selection procedure.

The HOSLIM method [7] adopts this model and additionally
imposes the constraints in Equation 11.

The case in which D = 2|I|, and S(1,2) is dense, is in-
tractable. Tractable methods either limit D � 2|I| or im-
pose sparsity on S(1,2) via the deviation function. While we
discuss the latter in Section 5.11, there are multiple ways to
do the former. Deshpande and Karypis [10] limit the number
of itemsets by limiting the size of J . Alternatively, Chris-
takopoulou and Karypis [7] only consider itemsets J that

were preferred by more than a minimal number of users.
van Leeuwen and Puspitaningrum, on the other hand, limit
the number of higher order itemsets by using an itemset se-
lection algorithm based on the minimal description length
principle [64]. Finally, Menezes et al. claim that it is in cer-
tain applications possible to compute all higher order inter-
actions if one computes all higher order interactions on de-
mand instead of in advance [31]. However, delaying the com-
putation does not reduce its exponential complexity. Only
if a large portion of the users requires recommendations on
a very infrequent basis, computations for these users can be
spread over a very long period of time and their approach
might be feasible.

An alternative model for incorporating higher order interac-
tions between items consists of finding the best association
rule for making recommendations [50; 33]. This corresponds
to the matrix factorization model

S = X⊗ S(1,2), XuJ =
∏
j∈J

Ruj ,

with

(A⊗B)xy = max
i=1...m

AxiBiy,

in which A ∈ Rn×m and B ∈ Rm×k.

We did not find a convincing motivation for either of the
two aggregation strategies. Moreover, multiple authors re-
port that their attempt to incorporate higher order inter-
actions heavily increased computational costs and did not
significantly improve the results [10; 64].

4.5.2 User-based
Incorporating higher order interactions between users can
be achieved be replacing the user-item matrix in Equation
13 by the userset-item matrix Y [30; 60]:

S = S(1,1)Y, YV i =
∏
v∈V

Rvi, (21)

with Y ∈ {0, 1}D×|I| and, S(1,1) ∈ R|U|×D the user-userset

similarity matrix, in which D ≤ 2|U| is the result of a userset
selection procedure [30; 60].

4.6 Multi-profile Models
When multiple users, e.g., members of the same family, share
a single account, or when a user has multiple distinct tastes,
the above matrix factorization models can be too limited
because they aggregate all the distinct tastes of an account
into one vector [67; 70; 26]. Therefore, Weston et al. [70]
propose MaxMF, in which they model every account with
multiple vectors instead of just one. Then, for every candi-
date recommendation, their model chooses the vector that
maximizes the score of the candidate:

Sui = max
p=1...P

(
S(1,1,p)S(1,2)

)
ui
.

Kabbur and Karypis [26] argue that this approach worsens
the performance for accounts with homogeneous taste or
a low number of known preferences and therefore propose,
NLMFi, an adapted version that combines a global account
profile with multiple taste-specific account profiles:

Sui =
(
S(1,1)S(1,2)

)
ui

+ max
p=1...P

(
S(2,1,p)S(2,2)

)
ui
.

Alternatively, they also propose NLMFs, a version in which
S(2,2) = S(1,2), i.e., the item profiles are shared between the
global and the taste-specific terms:

S =
(
S(1,1)S(1,2)

)
ui

+ max
p=1...P

(
S(2,1,p)S(1,2)

)
ui
.

An important downside of the above two models is that P ,
the number of distinct account-profiles, is a hyperparameter
that is the same for every account and cannot be too large
(typically 2 or 3) to avoid an explosion of the computational
cost and the number of parameters. DAMIB-Cover [67], on
the other hand, starts from the item-based model in Equa-
tion 10, and efficiently considers P = 2c(u) different profiles
for every account u. Specifically, every profile corresponds
to a subset S(p) of the known preferences of u, I(u). This
results in the factorization model

Sui = max
p=1...2c(u)

(
RS(1,2,p)S(1,3)

)
ui

S
(1,2,p)
jk =

I(j = k) · |S(p) ∩ {j}|
|S(p)|β ,

with S(1,2,p) a diagonal matrix that selects and rescales the
known preferences of u that correspond to the subset S(p) ⊆
I(u), and β ∈ [0, 1] a hyperparameter.

5. DEVIATION FUNCTIONS
The factorization models described in Sec. 4 contain many
parameters, i.e., the entries in the a priori unknown fac-
tor matrices, which we collectively denote as θ. These pa-
rameters need to be computed based on the training data
R. Computing all the parameters in a factorization model
is done by minimizing the deviation between the training
data R and the parameters θ of the factorization model.
This deviation is measured by a deviation function D (θ,R).
Many deviation functions exist, and every deviation func-
tion mathematically expresses a different interpretation of
the concept deviation.

The majority of deviation functions is non-convex in the
parameters θ. Consequently, minimization algorithms can
only compute parameters that correspond to a local min-
imum. The initialization of the parameters in the factor-
ization model and the chosen hyperparameters of the mini-
mization algorithm determine which local minimum will be
found. If the value of the deviation function in this local
minimum is not much higher than that of the global mini-
mum, it is considered a good minimum.

5.1 Probabilistic Scores-based
Hofmann [19] proposes to compute the optimal parameters
θ∗ of the model as those that maximize the loglikelihood of
the model, i.e., log p(R|θ), the logprobability of the known
preferences given the model:

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

Rui log p(Rui|θ). (22)

Furthermore, he models p(Rui = 1|θ) with Sui, i.e., he in-
terprets the scores S as probabilities. This gives

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

Rui logSui,

which is equivalent to minimizing the deviation function

D (θ,R) = −
∑
u∈U

∑
i∈I

Rui logSui. (23)

Recall that parameters θ are not directly visible in the right
hand side of this equation but that scores Sui are computed
based on the factorization model which contains parameters
θ, i.e., we use short notation Sui instead of the full notation
Sui(θ).

This deviation function was also adopted by Blei et al. in
their approach called latent dirichlet allocation (LDA) [6].

Furthermore, note that Hofmann only maximizes the log-
probability of the observed feedback and ignores the missing
preferences. This is equivalent to the assumption that there
is no information in the missing preferences, which implicitly
corresponds to the assumption that feedback is missing at
random (MAR) [56]. Clearly, this is not a realistic assump-
tion, since negative feedback is missing by definition, which
is obviously non random. Moreover, the number of items in
collaborative filtering problems is typically very large, and
only a very small subset of them will be preferred by a user.
Consequently, the probability that a missing preference is
actually not preferred is high. Hence, in reality, the feedback
is missing not at random (MNAR), and a good deviation
function needs to account for this [56]. Furthermore, notice
that Hofmann only maximizes the logprobability of the ob-
served feedback and ignores the missing preferences. This is
equivalent to the assumption that there is no information in
the missing preferences, which implicitly corresponds to the
assumption that feedback is missing at random (MAR) [56].
Clearly, this is not a realistic assumption, since negative
feedback is missing by definition, which is obviously non
random. Moreover, the number of items in collaborative fil-
tering problems is typically very large, and only a very small
subset of them will be preferred by a user. Consequently,
the probability that a missing preference is actually not pre-
ferred is high. Hence, in reality, the feedback is missing not
at random (MNAR), and a good deviation function needs
to account for this [56].

One approach is to assume, for the purposes of defining the
deviation function, that all missing preferences are not pre-
ferred. This assumption is called all missing are negative
(AMAN) [37]. Under this assumption, the parameters that
maximize the loglikelihood of the model are computed as

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

log p(Rui|θ).

For binary, positive-only data, one can model p(Rui|θ) as

SRui
ui · (1 − Sui)

(1−Rui). In this case, the parameters are
computed as

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

(Rui logSui + (1−Rui) log(1− Sui)) .

While the AMAN assumption is more realistic than the
MAR assumption, it adopts a conceptually flawed missing
data model. Specifically, it assumes that all missing prefer-
ences are not preferred, which contradicts the goal of collab-
orative filtering: to find the missing preferences that are ac-
tually preferred. A better missing data model still assumes
that all missing preferences are not preferred. However, it
attaches a lower confidence to the assumption that a missing
preference is not preferred, and a higher confidence to the

assumption that an observed preference is indeed preferred.
One possible way to apply this missing data model was pro-
posed by Steck [56]. Although his original approach is more
general, we give a specific simplified version that for binary,
positive-only data:

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

(
Rui logSui

+ α · (1−Rui) log (1− Sui)
)
, (24)

in which the hyperparameter α < 1 attaches a lower im-
portance to the contributions that correspond to Rui = 0.
Johnson [24] proposed a very similar computation, but does
not motivate why he deviates from the theoretically well
founded version of Steck. Furthermore, Steck adds regular-
ization terms to avoid overfitting and finally proposes the
deviation function

D (θ,R) =
∑
u∈U

∑
i∈I

(
−Rui logSui

− α · (1−Rui) · log(1− Sui)

+ λ · α · (||θu||2F + ||θi||2F)
)
,

with || · ||F the Frobenius norm, λ a regularization hyper-
parameter, and θu, θi the vectors that group the model pa-
rameters related to user u and item i, respectively.

5.2 Basic Squared Error-based
Most deviation functions, however, abandon the interpreta-
tion that the scores S are probabilities. In this case, one
can choose to model p(Rui|θ) with a normal distribution
N (Rui|Sui, σ). By additionally adopting the AMAN as-
sumption, the optimal parameters are computed as the ones
that maximize the loglikelihood log p(R|θ):

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

logN (Rui|Sui, σ) ,

which is equivalent to

θ∗ = arg max
θ

∑
u∈U

∑
i∈I

− (Rui − Sui)
2

= arg min
θ

∑
u∈U

∑
i∈I

(Rui − Sui)
2 .

The Eckart-Young theorem [13] states that the scores matrix
S that results from these parameters θ∗, is the same as that
found by singular value decomposition (SVD) with the same
dimensions of the training data matrix R. As such, the the-
orem relates the above approach of minimizing the squared
error between R and S to latent semantic analysis (LSA) [9]
and the SVD based collaborative filtering methods [8; 49].

Alternatively, it is possible to compute the optimal param-
eters as those that maximize the logposterior log p(θ|R),
which relates to the loglikelihood log p(R|θ) as

p(θ|R) ∝ p(R|θ) · p(θ).

When p(θ), the prior distribution of the parameters, is cho-
sen to be a zero-mean, spherical normal distribution, maxi-
mizing the logposterior is equivalent to minimizing the de-

viation function [32]

D (θ,R) =
∑
u∈U

∑
i∈I

(
(Rui − Sui)

2

+ λu · ||θu||2F + λi · ||θi||2F
)
,

with λu, λi regularization hyperparameters. Hence, maxi-
mizing the logposterior instead of the loglikelihood is equiv-
alent to adding a regularization term. This deviation func-
tion is adopted by the FISM and NLMF methods [27; 26].

In an alternative interpretation of this deviation function, S
is a factorized approximation of R and the deviation func-
tion minimizes the squared error of the approximation. The
regularization with the Frobenius norm is added to avoid
overfitting. For the SLIM and HOSLIM methods, an alter-
native regularization term is proposed:

D (θ,R) =
∑
u∈U

∑
i∈I

(Rui − Sui)
2

+

T∑
t=1

F∑
f=1

λR||S(t,f)||2F + λ1||S(t,f)||1,

with || · ||1 the l1-norm. Whereas the role of the Frobenius-
norm is to avoid overfitting, the role of the l1-norm is to in-
troduce sparsity. The combined use of both norms is called
elastic net regularization, which is known to implicitly group
correlated items [34]. The sparsity induced by the l1-norm
regularization lowers the memory required for storing the
model and allows to speed-up the computation of recom-
mendations by means of the sparse dotproduct. Even more
sparsity can be obtained by fixing a majority of the param-
eters to 0, based on a simple feature selection method. Ning
and Karypis [34] empirically show that this significantly re-
duces runtimes, while only slightly reducing the accuracy.

5.3 Weighted Squared Error-based
These squared error based deviation functions can also be
adapted to diverge from the AMAN assumption to a missing
data model that attaches lower confidence to the missing
preferences [21; 37; 56]:

D (θ,R) =
∑
u∈U

∑
i∈I

Wui (Rui − Sui)
2

+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F , (25)

in which W ∈ R|U|×|I| assigns weights to values in R. The
higher Wui, the higher the confidence about Rui. Hu et
al. [21] provide two potential definitions of W:

Wui = 1 + βRui,

Wui = 1 + α log (1 + Rui/ε) ,

with α, β, ε hyperparameters. Clearly, this method is not
limited to binary data, but works on positive-only data
in general. We, however, only consider its use for binary,
positive-only data. Equivalently, Steck [56] proposed:

Wui = Rui + (1−Rui) · α,
with α < 1.

Additionally, Steck [57] pointed out that a preference is more
likely to show up in the training data if the item is more

popular. To compensate for this bias, Steck proposes to
weight the known preferences non-uniformly:

Wui = Rui · C

c(i)β
+ (1−Rui) · α,

with C a constant, R the number of non-zeros in the training
data R, and β ∈ [0, 1] a hyperparameter. Analogously, a
preference is more likely to be missing in the training data
if the item is less popular. To compensate for this bias, Steck
proposes to weight the missing preferences non-uniformly:

Wui = Rui + (1−Rui) · C · c(i)β , (26)

with C a constant. Steck proposed these two weighting
strategies as alternatives to each other. However, we be-
lieve that they can be combined since they are the applica-
tion of the same idea to the known and missing preferences
respectively.

Although they provide less motivation, Pan et al. [37] arrive
at similar weighting schemes. They propose Wui = 1 if
Rui = 1 and give three possibilities for the case when Rui =
0:

Wui = δ, (27)

Wui = α · c(u), (28)

Wui = α (|U| − c(i)) , (29)

with δ ∈ [0, 1] a uniform hyperparameter and α a hyper-
parameter such that Wui ≤ 1 for all pairs (u, i) for which
Rui = 0. In the first case, all missing preferences get the
same weight. In the second case, a missing preference is
more negative if the user already has many preferences. In
the third case, a missing preference is less negative if the
item is popular. Interestingly, the third weighting scheme
is orthogonal to the one of Steck in Equation 26. Addition-
ally, Pan et al. [37] propose a deviation function with an
alternative regularization:

D (θ,R) =
∑
u∈U

∑
i∈I

Wui

(
(Rui − Sui)

2

+ λ
(
||θu||2F + ||θi||2F

))
. (30)

Yao et al. [73] adopt a more complex missing data model
that has a hyperparameter p, which indicates the overall
likelihood that a missing preference is preferred. This trans-
lates into the deviation function:

∑
u∈U

∑
i∈I

RuiWui(1− Sui)
2

+
∑
u∈U

∑
i∈I

(1−Rui)Wui(p− Sui)
2

+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F (31)

The special case with p = 0 reduces this deviation function
to the one in Equation 25.

An even more complex missing data model and correspond-

ing deviation function was proposed by Sindhwani et al. [55]:∑
u∈U

∑
i∈I

RuiWui(1− Sui)
2

+
∑
u∈U

∑
i∈I

(1−Rui)Wui (Pui − Sui)
2

+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F

− λH
∑
u∈U

∑
i∈I

(1−Rui)H(Pui) (32)

with P and W additional parameters of the model that need
to be computed based on the data R, together with all other
parameters. The last term contains the entropy function H
and serves as a regularizer for P. Furthermore, they define
the constraint

1

|U||I| − |R|
∑
u∈U

∑
i∈I

Pui = p,

which expresses that the average probability that a missing
value is actually one must be equal to the hyperparame-
ter p. To reduce the computational cost, they fix Pui = 0
for most (u, i)-pairs and randomly choose a few (u, i)-pairs
for which Pui is computed based on the data. It seems that
this simplification completely offsets the modeling flexibil-
ity that was obtained by introducing P. Additionally, they
simplify W as the one-dimensional matrix factorization

Wui = VuVi.

A conceptual inconsistency of this deviation function is that
although the recommendation score is given by Sui, Pui

could also be used. Hence, there exist two parameters for
the same concept, which is, at best, ambiguous.

5.4 Maximum Margin-based
A disadvantage of the squared error-based deviation func-
tions is their symmetry. For example, if Rui = 1 and
Sui = 0, (Rui − Sui)

2 = 1. This is desirable behavior be-
cause we want to penalize the model for predicting that a
preference is not preferred. However if Sui = 2, we obtain
the same penalty: (Rui − Sui)

2 = 1. This, on the other
hand, is not desirable because we do not want to penalize
the model for predicting that a preference will definitely be
preferred.

A maximum margin-based deviation function does not suffer
from this problem [36]:

D (θ,R) =
∑
u∈U

∑
i∈I

Wui · h
(
R̃ui · Sui

)
+ λ||S||Σ, (33)

with ||.||Σ the trace norm, λ a regularization hyperparame-

ter, h
(
R̃ui · Sui

)
a smooth hinge loss given by Figure 3 [46],

W given by one of the Equations 27-29 and the matrix R̃
defined as {

R̃ui = 1 if Rui = 1

R̃ui = −1 if Rui = 0.

This deviation function incorporates the confidence about
the training data by means of W and the missing knowledge
about the degree of preference by means of the hinge loss

h
(
R̃ui · Sui

)
. Since the degree of a preference Rui = 1

Fast Maximum Margin Matrix Factorization

The thresholds θr can be learned from the data. Further-
more, a different set of thresholds can be learned for each
user, allowing users to “use ratings differently” and allevi-
ates the need to normalize the data. The problem can then
be written as:

minimize ∥X∥Σ + C
∑

ij∈S

R−1∑

r=1

h(T r
ij(θir − Xij)) (4)

where the variables optimized over are the matrix X and
the thresholds θ. In other work, we find that such a for-
mulation is highly effective for rating prediction (Rennie &
Srebro, 2005).

Although the problem was formulated here as a single op-
timization problem with a combined objective, ∥X∥Σ +
C · error, it should really be viewed as a dual-objective
problem of balancing between low trace-norm and low er-
ror. Considering the entire set of attainable (∥X∥Σ , error)
pairs, the true object of interest is the exterior “front” of
this set, i.e. the set of matricesX for which it is not possi-
ble to reduce one of the two objectives without increasing
the other. This “front” can be found by varying the value
of C from zero (hard-margin) to infinity (no norm regular-
ization).

All optimization problems discussed in this section can be
written as semi-definite programs (Srebro et al., 2005).

3. Optimization Methods
We describe here a local search heursitic for the problem
(4). Instead of searching over X , we search over pairs of
matrices (U, V), as well as sets of thresholds θ, and attempt
to minimize the objective:

J(U, V, θ)
.
=

1

2
(∥U∥2

Fro + ∥V ∥2
Fro)

+ C

R−1∑

r=1

∑

ij∈S

h
(
T r

ij(θir − UiV
′
j)

)
. (5)

For any U, V we have ∥UV ∥Σ ≤ 1
2 (∥U∥2

Fro + ∥V ∥2
Fro) and

so J(U, V, θ) upper bounds the minimization objective of
(4), where X = UV ′. Furthermore, for anyX , and in par-
ticular theX minimizing (4), some factorizationX = UV ′

achieves ∥X∥Σ = 1
2 (∥U∥2

Fro + ∥V ∥2
Fro). The minimization

problem (4) is therefore equivalent to:

minimize J(U, V, θ). (6)

The advantage of considering (6) instead of (4) is that
∥X∥Σ is a complicated non-differentiable function for
which it is not easy to find the subdifrential. Finding good
descent directions for (4) is not easy. On the other hand, the

 0

 0.5

 1

 1.5

 2

-0.5 0 0.5 1 1.5

Lo
ss

z

Hinge
Smooth Hinge

-1.5

-1

-0.5

 0

 0.5

-0.5 0 0.5 1 1.5

De
riv

at
ive

 o
f L

os
s

z

Hinge
Smooth Hinge

Figure 1. Shown are the loss function values (left) and gradients
(right) for the Hinge and Smooth Hinge. Note that the gradients
are identical outside the region z ∈ (0, 1).

objective J(U, V, θ) is fairly simple. Ignoring for the mo-
ment the non-differentiability of h(z) = (1 − z)+ at one,
the gradient of J(U, V, θ) is easy to compute. The partial
derivative with respect to each element of U is:

∂J

∂Uia
= Uia − C

R−1∑

r=1

∑

j|ij∈S

Tij(k)h′
(
T r

ij(θir − UiV
′
j)

)
Vja

(7)

The partial derivative with respect to Vja is analogous. The
partial derivative with respect to θik is

∂J

∂θir
= C

∑

j|ij∈S

T r
ijh

′
(
T r

ij(θir − UiV
′
j)

)
. (8)

With the gradient in-hand, we can turn to gradient descent
methods for localy optimizing J(U, V, θ). The disadvan-
tage of considering (6) instead of (4) is that although the
minimization objective in (4) is a convex function of X, θ,
the objective J(U, V, θ) is not a convex function of U, V .
This is potentially bothersome, and might inhibit conver-
gence to the global minimum.

3.1. Smooth Hinge

In the previous discussion, we ignored the non-
differentiability of the Hinge loss function h(z) at z = 1.
In order to give us a smooth optimization surface, we use
an alternative to the Hinge loss, which we refer to as the
Smooth Hinge. Figure 1 shows the Hinge and Smooth
Hinge loss functions. The Smooth Hinge shares many
properties with the Hinge, but is much easier to optimize
directly via gradient descent methods. Like the Hinge, the
Smooth Hinge is not sensitive to outliers, and does not
continuously “reward” the model for increasing the output
value for an example. This contrasts with other smooth loss
functions, such as the truncated quadratic (which is sensi-
tive to outliers) and the Logistic (which “rewards” large
output values). We use the Smooth Hinge and the corre-
sponding objective for our experiments in Section 4.

Figure 3: Shown are the loss function values h(z) (left) and
the gradients dh(z)/dz (right) for the Hinge and Smooth
Hinge. Note that the gradients are identical outside the
region z ∈ (0, 1) [46].

is considered unknown, a value Sui > 1 is not penalized if
Rui = 1.

5.5 Overall Ranking Error-based
The scores S computed by a collaborative filtering method
are used to personally rank all items for every user. There-
fore, one can argue that it is more natural to directly op-
timize the ranking of the items instead of their individual
scores.

Rendle et al. [45], aim to maximize the area under the ROC
curve (AUC), which is given by:

AUC =
1

|U|
∑
u∈U

1

|u| · (|I| − |u|)

·
∑

Rui=1

∑
Ruj=0

I(Sui > Suj). (34)

If the AUC is higher, the pairwise rankings induced by the
model S are more in line with the observed data R. How-
ever, because I(Sui > Suj) is non-differentiable, it is im-
possible to actually compute the parameters that (locally)
maximize the AUC. Their solution is a deviation function,
called the Bayesian Personalized Ranking(BPR)-criterium,
which is a differentiable approximation of the negative AUC
from which constant factors have been removed and to which
a regularization term has been added:

D (θ,R) =
∑
u∈U

∑
Rui=1

∑
Ruj=0

− log σ(Sui − Suj)

+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F , (35)

with σ(·) the sigmoid function and λtf regularization hyper-
parameters. Since this approach explicitly accounts for the
missing data, it corresponds to the MNAR assumption.

Pan and Chen claim that it is beneficial to relax the BPR
deviation function by Rendle et al. to account for noise in
the data [38; 39]. Specifically, they propose CoFiSet [38],
which allows certain violations Sui < Suj when Rui > Ruj :

D (θ,R) =
∑
u∈U

∑
I⊆I(u)

∑
J⊆I\I(u)

− log σ

(∑
i∈I Sui

|I| −
∑
j∈J Suj

|J |

)
+ Γ(θ), (36)

with Γ(θ) a regularization term that slightly deviates from
the one proposed by Rendle et al. for no clear reason. Alter-
natively, they propose GBPR [39], which relaxes the BPR
deviation function in a different way:

D (θ,R) =
∑
u∈U

∑
Rui=1

∑
Ruj=0

Γ(θ)

− log σ2

(
α ·
∑
g∈Gu,i

Sgi

|Gu,i|
+ (1− α) · Sui − Suj

)
, (37)

with Gu,i the union of {u} with a random subset of {g ∈
U \ {u}|Rgi = 1}, and α a hyperparameter.

Furthermore, Kabbur et al. [27] also aim to maximize AUC
with their method FISMauc. However, they propose to use
a different differentiable approximation of AUC:

D (θ,R) =
∑
u∈U

∑
Rui=1

∑
Ruj=0

((Rui −Ruj)− (Sui − Suj))
2

+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F . (38)

The same model without regularization was proposed by
Töscher and Jahrer [62]:

D (θ,R) =∑
u∈U

∑
Rui=1

∑
Ruj=0

((Rui −Ruj)− (Sui − Suj))
2 . (39)

A similar deviation function was proposed by Takács and
Tikk [61]:

D (θ,R) =
∑
u∈U

∑
i∈I

Rui

∑
j∈I

w(j)

· ((Sui − Suj)− (Rui −Ruj))
2 , (40)

with w(·) a user-defined item weighting function. The sim-
plest choice is w(j) = 1 for all j. An alternative proposed
by Takács and Tikk is w(j) = c(j). Another important
difference is that this deviation function also minimizes the
score-difference between the known preferences mutually.

Finally, it is remarkable that both Töscher and Jahrer, and
Takács and Tikk, explicitly do not add a regularization term,
whereas most other authors find that the regularization term
is important for their model’s performance.

5.6 Top of Ranking Error-based
Very often, only the N highest ranked items are shown to
users. Therefore, Shi et al. [52] propose to improve the top
of the ranking at the cost of worsening the overall ranking.
Specifically, they propose the CLiMF method, which aims
to minimize the mean reciprocal rank (MRR) instead of the
AUC. The MRR is defined as

MRR =
1

|U|
∑
u∈U

r>

(
max
Rui=1

Sui | Su·
)−1

,

in which r>(a|b) gives the rank of a among all numbers in b
when ordered in descending order. Unfortunately, the non-
smoothness of r>() and max makes the direct optimization
of MRR unfeasible. Hence, Shi et al. derive a differentiable
version of MRR. Yet, optimizing it is intractable. Therefore,

they optimize a lower bound instead. After also adding reg-
ularization terms, their final deviation function is given by

D (θ,R) = −
∑
u∈U

∑
i∈I

Rui

(
log σ(Sui)

+
∑
j∈I

log (1−Rujσ(Suj − Sui))
)

+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F (41)

with λ a regularization constant and σ(·) the sigmoid func-
tion. A disadvantage of this deviation function is that it
ignores all missing data, i.e., it corresponds to the MAR
assumption.

An alternative for MRR is mean average precision (MAP):

MAP =
1

|U|
∑
u∈U

1

c(u)

∑
R)ui=1

1

r>(Sui|Su·)∑
Ruj=1

I(Suj ≥ Sui),

which still emphasizes the top of the ranking, but less ex-
tremely than MRR. However, MAP is also non-smooth, pre-
venting its direct optimization. For MAP, too, Shi et al.
derived a differentiable version, called TFMAP [51]:

D (θ,R) = −
∑
u∈U

1

c(u)

∑
R)ui=1

σ (Sui)
∑

Ruj=1

σ (Suj − Sui)

+ λ ·
T∑
t=1

F∑
f=1

||S(t,f)||2F , (42)

with λ a regularization hyperparameter. Besides, the for-
mulation of TFMAP in Equation 42 is a simplified version
of the original, concieved for multi-context data, which is
out of the scope of this survey.

Dhanjal et al. proposed yet another alternative [12]. They
start from the definition of AUC in Equation 34, approx-
imate the indicator function I(Sui − Suj) by the squared
hinge loss (max (0, 1 + Suj − Sui))

2 and emphasize the de-
viation at the top of the ranking by means of the hyperbolic
tangent function tanh(·):

D (θ,R) =∑
u∈U

∑
Rui=1

tanh

(∑
Ruj=0

(max (0, 1 + Suj − Sui))
2

)
. (43)

5.7 k-Order Statistic-based
On the one hand, the deviation functions in Equations 35-40
try to minimize the overall rank of the known preferences.
On the other hand, the deviation functions in Equations
41 and 43 try to push one or a few known preferences as
high as possible to the top of the item-ranking. Weston et
al. [71] propose to minimize a trade-off between the above

two extremes:∑
u∈U

∑
Rui=1

w

(
r>(Sui | {Sui | Rui = 1})

c(u)

)

·
∑

Ruj=0

I(Suj + 1 ≥ Sui)

r>(Suj | {Suk | Ruk = 0}) , (44)

with w(·) a function that weights the importance of the
known preference as a function of their predicted rank among
all known preferences. This weighting function is user-defined
and determines the trade-off between the two extremes, i.e.,
minimizing the mean rank of the known preferences and
minimizing the maximal rank of the known preferences. Be-
cause this deviation function is non-differentiable, Weston
et al. propose the differentiable approximation

D (θ,R) =
∑
u∈U

∑
Rui=1

w

(
r>(Sui | {Sui | Rui = 1})

c(u)

)

·
∑

Ruj=0

max(0, 1 + Suj − Sui)

N−1 (|I| − c(u))
, (45)

where they replaced the indicator function by the hinge-loss
and approximated the rank with N−1 (|I| − c(u)), in which
N is the number of items k that were randomly sampled
until Suk + 1 > Sui

3. Furthermore, they use the simple
weighting function

w

(
r>(Sui | {Sui | Rui = 1})

|u|

)
={

1 if r>(Sui | S ⊆ {Sui | Rui = 1}, |S| = K) = k and

0 otherwise ,

i.e., from the set S that containsK randomly sampled known
preferences, ranked by their predicted score, only the item at
rank k is selected to contribute to the training error. When
k is set low, the top of the ranking will be optimized at the
cost of a worse mean rank. The opposite will hold when k is
set high. The regularization is not done by adding a regular-
ization term but by forcing the norm of the factor matrices
to be below a maximum, which is a hyperparameter.

Alternatively, Weston et al. also propose a simplified devia-
tion function:

D (θ,R) =
∑
u∈U

∑
Rui=1

w

(
r>(Sui | {Sui | Rui = 1})

c(u)

)
·
∑

Ruj=0

max(0, 1 + Suj − Sui). (46)

5.8 Rank Link Function-based
The ranking-based deviation functions discussed so far, are
all tailor made differentiable approximations with respect to
the recommendation scores of a certain ranking quality mea-
sure, like AUC, MRR or the k-th order statistic. Steck [58]
proposes a more general approach that is applicable to any
ranking quality measure that is differentiable with respect to
the rankings. He demonstrates his method on two ranking
quality measures: AUC and nDCG. For AUCu, the AUC

3Weston et al. [69] provide a justification for this approxi-
mation.

for user u, he does not use the formulation in Equation 34,
but uses the equivalent

AUCu =
1

c(u) · (|I| − c(u))

·
[

(|I|+ 1)c(u)−
(
c(u) + 1

2

)
−
∑

Rui=1

rui

]
,

with rui the rank of item i in the recommendation list of
user u. Second, nDCGu is defined as

nDCGu =
DCG

DCGopt
, DCG =

∑
Rui=1

1

log(rui + 1)
,

with DCGopt the DCG of the optimal ranking. In both
cases, Steck proposes to relate the rank rui with the recom-
mendation score Rui by means of a link function

rui = max
{

1, |I| ·
(

1− cdf (Ŝui)
)}

, (47)

with Ŝui = (Sui − µu)/stdu the normalized recommenda-
tion score in which µu and stdu are the mean and stan-
dard deviation of the recommendation scores for user u,
and cdf is the cumulative distribution of the normalized
scores. However, to know cdf , he needs to assume a dis-
tribution for the normalized recommendation scores. He
motivates that a zero-mean normal distribution of the rec-
ommendation scores is a reasonable assumption. Conse-
quently, cdf (Ŝui) = probit(Ŝui). Furthermore, he proposes
to approximate the probit function with the computation-
ally more efficient sigmoid function or the even more efficient
function

rankSE(Ŝui) = [1− ([1− Ŝui]+)2]+,

with [x]+ = max{0, x}. In his pointwise approach, Steck
uses Equation 47 to compute the ranks based on the rec-
ommendation scores. In his listwise approach, on the other
hand, he finds the actual rank of a recommendation score
by sorting the recommendation scores for every user, and
uses Equation 47 only to compute the gradient of the rank
with respect to the recommendation score during the min-
imization procedure. After adding regularizaton terms, he
proposes the deviation function

D (θ,R) =
∑
u∈U

(∑
Rui=1

(
L(Sui) + λ ·

(
||θu||2F + ||θi||2F

))
+
∑
j∈I

γ · [Suj]2+
)
, (48)

with θu, θi the vectors that group all model parameters re-
lated to user u and item i, respectively, λ, γ regularization
hyperparameters, and L(Sui) equal to−AUCu or−nDCGu,
which are a function of Sui via rui. The last regularization
term is introduced to enforce an approximately normal dis-
tribution on the scores.

5.9 Posterior KL-divergence-based
In our framework, the optimal parameters θ∗ are computed
as θ∗ = arg minθ D (θ,R). However, we can consider this a
special case of

θ∗ = ψ

(
arg min

φ
D (θ(φ),R)

)
,

in which ψ is chosen to be the identity function and the
parameters θ are identical to the parameters φ, i.e., θ(φ) =
φ. Now, some authors [28; 40; 16] propose to choose ψ()
and φ differently.

Specifically, they model every parameter θj of the factoriza-
tion model as a random variable with a parameterized pos-
terior probability density function p(θj |φj). Hence, finding
the variables φ corresponds to finding the posterior distri-
butions of the model parameters θ. Because it is intractable
to find the true posterior distribution p(θ|R) of the param-
eters, they settle for a mean-field approximation q(θ|φ), in
which all variables are assumed to be independent.

Then, they define ψ as ψ(φ∗) = Eq(θ|φ∗)[θ], i.e., the point-
estimate of the parameters θ equals their expected value
under the mean-field approximation of their posterior dis-
tributions. Note that θ∗j = Eq(θj |φ∗

j)[θj] because of the inde-

pendence assumption.

If all parameters θj are assumed to be normally distributed
with mean µj and variance σ2

j [28; 40], φj = (µj , σj) and
θ∗j = Eq(θj |φ∗

j)[θj] = µ∗j . If, on the other hand, all parameters

θj are assumed to be gamma distributed with shape αj and
rate βj [16], φj = (αj , βj) and θ∗j = Eq(θj |φ∗

j)[θj] = α∗j/β
∗
j .

Furthermore, prior distributions are defined for all parame-
ters θ. Typically, when this approach is adopted, the under-
lying assumptions are represented as a graphical model [5].

The parameters φ, and therefore the corresponding mean-
field approximations of the posterior distribution of the pa-
rameters θ, can be inferred by defining the deviation func-
tion as the KL-divergence of the real (unknown) posterior
distribution of the parameters, p(θ|R), from the modeled
posterior distribution of the parameters, q(θ|φ),

D (θ(φ),R) = DKL (q(θ|φ)‖p(θ|R)) ,

which can be solved despite the fact that p(θ|R) is un-
known [25]. This approach goes by the name variational
inference [25].

A nonparametric version of this approach also considers D,
the number of latent dimensions in the simple two factor
factorization model of Equation 7, as a parameter that de-
pends on the data R instead of a hyperparameter, as most
other methods do [17].

Note that certain solutions for latent Dirichlet allocation [6]
also use variational inference techniques. However, in this
case, variational inference is a part of the (variational) expec-
tation-maximization algorithm for computing the parame-
ters that optimize the negative log-likelihood of the model
parameters, which serves as the deviation function. This is
different from the methods discussed in this section, where
the KL-divergence between the real and the approximate
posterior is the one and only deviation function.

5.10 Convex
An intuitively appealing but non-convex deviation function
is worthless if there exists no algorithm that can efficiently
compute parameters that correspond to its good local min-
imum. Convex deviation functions on the other hand, have
only one global minimum that can be computed with one
of the well studied convex optimization algorithms. For this
reason, it is worthwhile to pursue convex deviation func-
tions.

Aiolli [3] proposes a convex deviation function based on the
AUC (Eq. 34). For every individual user u ∈ U , Aiolli starts

from AUCu, the AUC for u:

AUCu =
1

c(u) · (|I| − c(u))

∑
Rui=1

∑
Ruj=0

I(Sui > Suj).

Next, he proposes a lower bound on AUCu:

AUCu ≥ 1

c(u) · (|I| − c(u))

∑
Rui=1

∑
Ruj=0

Sui − Suj
2

,

and interprets it as a weighted sum of margins
Sui−Suj

2
between any known preferences and any absent feedback,
in which every margin gets the same weight 1

c(u)·(|I|−c(u))
.

Hence maximizing this lower bound on the AUC corresponds
to maximizing the sum of margins between any known pref-
erence and any absent feedback in which every margin has
the same weight. A problem with maximizing this sum is
that very high margins on pairs that are easily ranked cor-
rectly can hide poor (negative) margins on pairs that are
difficult to rank correctly. Aiolli proposes to replace the
uniform weights with a weighting scheme that emphasizes
the difficult pairs such that the total margin is the worst
possible case, i.e., the lowest possible sum of weighted mar-
gins. Specifically, he proposes to solve for every user u the
joint optimization problem

θ∗ = arg max
θ

min
αu∗

∑
Rui=1

∑
Ruj=0

αuiαuj(Sui − Suj),

where for every user u, it holds that
∑

Rui=1 αui = 1 and∑
Ruj=0 αuj = 1. To avoid overfitting of α, he adds two

regularization terms:

θ∗ = arg max
θ

min
αu∗

(∑
Rui=1

∑
Ruj=0

αuiαuj(Sui − Suj)

+ λp
∑

Rui=1

α2
ui + λn

∑
Rui=0

α2
ui

)
,

with λp, λn regularization hyperparameters. The model pa-
rameters θ, on the other hand, are regularized by normaliza-
tion constraints on the factor matrices. Solving the above
maximization for every user, is equivalent to minimizing the
deviation function

D (θ,R) =
∑
u∈U

(
max
αu∗

(∑
Rui=1

∑
Ruj=0

αuiαuj(Suj − Sui)

− λp
∑

Rui=1

α2
ui − λn

∑
Rui=0

α2
ui

))
. (49)

5.11 Analytically Solvable
Some deviation functions are not only convex, but also an-
alytically solvable. This means that the parameters that
minimize these deviation functions can be exactly computed
from a formula and that no numerical optimization algo-
rithm is required.

Traditionally, methods that adopt these deviation functions
have been inappropriately called neighborhood or memory-
based methods. First, although these methods adopt neigh-
borhood-based factorization models, there are also neighbor-
hood-based methods that adopt non-convex deviation func-
tions, such as SLIM [34] and BPR-kNN [45], which were,

amongst others, discussed in Section 4. Second, a memory-
based implementation of these methods, in which the neces-
sary parameters of the factorization model are not precom-
puted, but computed in real time when they are required
is conceptually possible, yet practically intractable in most
cases. Instead, a model-based implementation of these meth-
ods, in which the factorization model is precomputed, is the
best choice for the majority of applications.

5.11.1 Basic Neighborhood-based
A first set of analytically solvable deviation functions is tai-
lored to the item-based neighborhood factorization models
of Equation 10:

S = RS(1,2).

As explained in Section 4, the factor matrix S(1,2) can be in-
terpreted as an item-similarity matrix. Consequently, these
deviation functions compute every parameter in S(1,2) as

S
(1,2)
ji = sim(j, i),

with sim(j, i) the similarity between items j and i according
to some analytically computable similarity function. This is
equivalent to

S
(1,2)
ji − sim(j, i) = 0,

which is true for all (j, i)-pairs if and only if∑
j∈I

∑
i∈I

(
S

(1,2)
ji − sim(j, i)

)2

= 0.

Hence, computing the factor matrix S
(1,2)
ji corresponds to

minimizing the deviation function

D (θ,R) =
∑
j∈I

∑
i∈I

(
S

(1,2)
ji − sim(j, i)

)2

.

In this case, the deviation function mathematically expresses
the interpretation that sim(j, i) is a good predictor for pre-
ferring i if j is also preferred. The key property that de-
termines the analytical solvability of this deviation function
is the absence of products of parameters. The non-convex
deviation functions in Section 6.1, on the other hand, do
contain products of parameters, which are contained in the
term Sui. Consequently, they are harder to solve but allow
richer parameter interactions.

A typical choice for sim(j, i) is the cosine similarity [10].
The cosine similarity between two items j and i is given by:

cos(j, i) =

∑
v∈U RvjRvi√
c(i) · c(j)

. (50)

Another similarity measure is the conditional probability
similarity measure [10], which is for two items i and j given
by:

condProb(j, i) =
∑
v∈U

RviRvj

c(j)
. (51)

Deshpande and Karypis also proposed an adapted version:

condProb∗(j, i) =
∑
v∈U

RviRvj

c(i) · c(j)α · c(v)
, (52)

in which α ∈ [0, 1] is a hyperparameter. They introduced
the factor 1/c(j)α to avoid the recommendation of overly

frequent items and the factor 1/c(v) to reduce the weight of
i and j co-occurring in the preferences of v, if v has more
preferences. Other similarity measures were proposed by
Aiolli [2]:

sim(j, i) =

(∑
v∈U

RviRvj

c(j)α · c(i)(1−α)

)q
,

with α, q hyperparameters, Gori et al. [18]:

sim(j, i) =

∑
v∈U RvjRvi∑

k∈I
∑
v∈U RvjRvk

,

and Wang et al. [68]:

sim(j, i) = log

(
1 + α ·

∑
v∈U RvjRvi

c(j)c(i)

)
,

with α ∈ R+
0 a hyperparameter. Furthermore, Huang et

al. show that sim(j, i) can also be chosen from a number of
similarity measures that are typically associated with link
prediction [22]. Similarly, Bellogin et al. show that typical
scoring functions used in information retrieval can also be
used for sim(j, i) [4].

It is common practice to introduce sparsity in S(1,2) by defin-
ing

sim(j, i) = sim ′(j, i) · |KNN (j) ∩ {i}|, (53)

with sim ′(j, i) one of the similarity functions defined by
Equations 50-52, KNN (j) the set of items l that correspond
to the k highest values sim ′(j, l), and k a hyperparameter.

Motivated by a qualitative examination of their results, Sig-
urbjörnsson and Van Zwol [54] proposed additional adapta-
tions:

sim(j, i) = s(j) · d(i) · r(j, i) · sim ′(j, i) · |KNN (j) ∩ {i}|,
with

s(j) =
ks

ks + |ks − log c(j)| , (54)

d(i) =
kd

kd + |kd − log c(i)| , (55)

r(j, i) =
kr

kr + (r − 1)
, (56)

in which i is the r-th most similar item to j and ks, kd and
kr are hyperparameters.

Finally, Desphande and Karypis [10] propose to normalize
sim(j, i) as

sim(j, i) =
sim ′′(j, i)∑

l∈I\{j} sim ′′(j, l)
,

with sim ′′(j, i) defined using Equation 53. Alternatively,
Aiolli [2] proposes the normalization

sim(j, i) =
sim ′′(j, i)∑

l∈I\{i} sim ′′(l, i)2(1−β)
,

with β a hyperparameter.

A second set of analytically solvable deviation functions is
tailored to the user-based neighborhood factorization model
of Equation 13:

S = S(1,1)R.

In this case, the factor matrix S(1,1) can be interpreted as a
user-similarity matrix. Consequently, these deviation func-
tions compute every parameter in S(1,1) as

S(1,1)
uv = sim(u, v),

with sim(u, v) the similarity between users u and v accord-
ing to some analytically computable similarity function. In
the same way as for the item-based case, computing the fac-

tor matrix S
(1,1)
uv corresponds to minimizing the deviation

function

D (θ,R) =
∑
u∈U

∑
v∈U

(
S(1,1)
uv − sim(u, v)

)2

.

In this case, the deviation function mathematically expresses
the interpretation that users u and v for which sim(u, v) is
high, prefer the same items.

Sarwar et al. [48] propose

sim(u, v) = |KNN (u) ∩ {v}|,
with KNN (u) the set of users w that have the k highest
cosine similarities cos(u,w) with user u, and k a hyperpa-
rameter. In this case, cosine similarity is defined as

cos(u, v) =

∑
j∈I RujRvj√
c(u) · c(v)

. (57)

Alternatively, Aiolli [2] proposes

sim(u, v) =

(∑
j∈I

RujRvj

c(u)α · c(v)(1−α)

)q
,

with α, q hyperparameters, and Wang et al. [68] propose

sim(u, v) = log

(
1 + α ·

∑
j∈U RujRvj

c(u)c(v)

)
,

with α a hyperparameter.

The deviation function for the unified neighborhood based
factorization model in Equation 14 is given by

D (θ,R) =
∑
u∈U

∑
v∈U

(
S(1,1)
uv − sim(u, v)

)2

+
∑
j∈I

∑
i∈I

(
S

(2,3)
ji − sim(j, i)

)2

.

However, sim(j, i) and sim(u, v) cannot be chosen arbitrar-
ily. Verstrepen and Goethals [67] show that they need to
satisfy certain constraints in order to render a well founded
unification. Consequently, they propose KUNN, which cor-
responds to the following similarity definitions that satisfy
the necessary constraints:

sim(u, v) =
∑
j∈I

RujRvj√
c(u) · c(v) · c(j)

sim(i, j) =
∑
v∈U

RviRvj√
c(i) · c(j) · c(v)

.

5.11.2 Higher Order Neighborhood-based
A fourth set of analytically solvable deviation functions is
tailored to the higher order itemset-based neighborhood fac-
torization model of Equation 20:

S = XS(1,2).

In this case, the deviation function is given by

D (θ,R) =
∑
j∈S

∑
i∈I

(
S

(1,2)
ji − sim(j, i)

)2

.

with S ⊆ 2I the selected itemsets considered in the factor-
ization model.

Deshpande and Karypis [10] propose to define sim(j, i) simi-
larly as for the pairwise interactions (Eq. 53). Alternatively,
others [33; 48] proposed

sim(j, i) = sim ′(j, i) ·max (0, c(j ∪ {i})− f) ,

with f a hyperparameter.

Lin et al. [30] proposed yet another alternative:

sim(j, i) = sim ′(j, i) · |KNN c(i) ∩ {j}|
·max (0, condProb(j, i)− c) ,

with KNN c(i) the set of items l that correspond to the k
highest values c(i, l), k a hyperparameter, condProb the con-
ditional probability according to Equation 51 and c a hyper-
parameter. Furthermore, they define

sim ′(j, i) =

(∑
v∈U XviXvj

)2
c(j)

. (58)

A fifth and final set of analytically solvable deviation func-
tions is tailored to the higher order userset-based neigh-
borhood factorization model of Equation 21: S = S(1,1)Y.
In this case, the deviation function is given by D (θ,R) =∑
v∈S

∑
u∈U

(
S

(1,1)
uv − sim(v, u)

)2

, with S ⊆ 2U the selected

usersets considered in the factorization model. Lin et al. [30]
proposed to define

sim ′(v, u) =

(∑
j∈IYujYvj

)2

c(v)
. (59)

Alternatively, Symeonidis et al. [60] propose

sim(v, u) =

∑
j∈IYujYvj

c(v)
· |v| · |KNN (u)cp ∩ {v}|,

with KNN (u)cp the set of usersets w that correspond to the
k highest values ∑

j∈IYujYwj

c(w)
.

6. MINIMIZATION ALGORITHMS
Efficiently computing the parameters that minimize a de-
viation function is often non trivial. Furthermore, there is
a big difference between minimizing convex and non-convex
deviation functions.

6.1 Non-convex Minimization
The two most popular families of minimization algorithms
for non-convex deviation functions of collaborative filter-
ing algorithms are gradient descent and alternating least
squares. We discuss both in this section. Furthermore, we
also briefly discuss a few other interesting approaches.

6.1.1 Gradient Descent
For deviation functions that assume preferences are miss-
ing at random, and consequently consider only the known

preferences [52], gradient descent (GD) is generally the nu-
merical optimization algorithm of choice. In GD, the param-
eters θ are randomly initialized. Then, they are iteratively
updated in the direction that reduces D (θ,R):

θk+1 = θk − η∇D (θ,R) ,

with η a hyperparameter called the learning rate. The up-
date step is larger if the absolute value of the gradient
∇D (θ,R) is larger. A version of GD that converges faster is
Stochastic Gradient Descent (SGD). SGD uses the fact that

∇D (θ,R) =

T∑
t=1

∇Dt (S,R) ,

with T the number of terms in D (S,R). Now, instead of
computing ∇D (θ,R) in every iteration, only one term t is
randomly sampled (with replacement) and the parameters
θ are updated as

θk+1 = θk − η∇Dt (S,R) .

Typically, a convergence criterium of choice is only reached
after every term t is sampled multiple times on average.

However, when the deviation function assumes the missing
feedback is missing not at random, the summation over the
known preferences,

∑
u∈U

∑
i∈I Rui, is replaced by a sum-

mation over all user item pairs,
∑
u∈U

∑
i∈I , and SGD needs

to visit approximately 1000 times more terms. This makes
the algorithm less attractive for deviation functions that as-
sume the missing feedback is missing not at random.

To mitigate the large number of terms in the gradient, sev-
eral authors propose to sample the terms in the gradient
not uniformly but proportional to their impact on the pa-
rameters [75; 44; 76]. These approaches have not only been
proven to speed up convergence, but also to improve the
quality of the resulting parameters. Weston et al., on the
other hand, sample for every known preference i, a number
of non preferred items j until they encounter one for which
Suj + 1 > Sui, i.e., it violates the hinge-loss approximation
of the ground truth ranking. In this way, they ensure that
every update significantly changes the parameters θ [71].

Additionally, due to recent advances in distributed comput-
ing infrastructure, parallel and distributed approaches have
been proposed to speed up the convergence of SGD-style
computations.

One of the classic works is the HogWild algorithm by Recht
et al. [43]. In that work, the authors assume that the rat-
ing matrix is highly sparse and hence, for any two sampled
ratings, their SGD updates will likely be non-conflicting (in-
dependent), since any two such updates are unlikely to share
either the user or item vectors. As a result, HogWild drops
the synchronization requirements, and lets each thread or
processor update a random rating value. In the worst case
of a conflict, there will be contention in writing out the re-
sults. The authors prove convergence of the algorithm under
a simple assumption of rating matrix sparsity.

Gemulla et al. [15] present a distributed SGD algorithm
(DSGD) in which the main assumption is that some blocks
of the rating matrix are mutually independent and hence
their variables can be updated in parallel. DSGD uniformly
grids the rating matrix R into sub-matrices or blocks, such
that they are independent with respect to the rows and
columns. This method generates several configurations of
the original rating matrix R, which are then fed to the SGD

algorithm in sequence. In the actual algorithm, there are
two nested for loops. The outer loop selects a configuration
C of the independent blocks and sends it to the SGD sched-
uler. The latter, simply spawns as many parallel threads as
the number of independent blocks in each configuration and
applies SGD to each of them in parallel. Once the results
are back, the next configuration is loaded to each proces-
sor after consolidating the results of the last iteration. This
process continues until all the configurations are computed.

Zhuang et al. [78] argue that both these methods suffer from
two problems. The first is the issue of locking of threads,
in which a thread that is executing a slower block needs to
finish before the next round of assignments can begin. Sec-
ond, since the elements of the rating matrix are accessed at
random, it may result in high cache-miss and performance
degradation. To solve both these problems, the authors pro-
pose a shared memory parallel algorithm called Fast Par-
allel SGD (FPSGD). There are two main features of the
algorithm. To overcome the locking issue, the authors sug-
gest continuous execution of SGD blocks by the scheduler.
The only two conditions it needs to satisfy are (1) it has to
be a free block, and (2) its number of past updates has to
be smallest among all the free blocks (random if there is a
tie). The second condition is necessary because otherwise
all blocks will not get same chance of being updated. For
dealing with memory discontinuity, the authors suggest up-
dating each block in a fixed order of users and items. The
randomness of the algorithm is introduced in selecting each
block for the next update. Since FPSGD always selects the
next block in a deterministic fashion, one simple strategy to
select the next block in a random fashion is to split the orig-
inal rating matrix R into many sub blocks (more than the
number of available threads). Since many blocks will have
the same update number, randomization is needed to select
the next block for update. The authors call this method
partial randomization. The results of experiments on a va-
riety of datasets show that FPSGD achieves lower RMSE in
a far smaller number of iterations.

A natural strategy to optimize the update rules in matrix
factorization (MF) is to do a block-wise update and let each
block be handled by a separate processor/computing unit.
This is the strategy proposed by Yin et. al [74]. The au-
thors first show that most of the loss functions used in MF
are decomposable in the sense that they are sums over in-
dividual loss terms. Hence they can easily be parallelized.
Given A = WH as the model, the proposal is to split W
and H into W (I) and H(J), such that the total loss can be
written as the sum of the losses over indices I and J . Then
the task is to develop a block-wise partition rule, in which
blocks are updated independently when updating a factor
matrix (by fixing the other factor matrix). Each block can
be treated as one update unit. There are several ways in
which the blocks can be updated. A straightforward way
is to update update all blocks of H and then update all
blocks of W . This approach can be referred to as concur-
rent block updates since each update happens concurrently.
An alternate strategy is to update some blocks of H and W
alternately. This method, called the frequent block-wise up-
date, has the advantage of faster convergence. This happens
due to the fact that updated block information are used in
each alternating sequence and hence converges faster. The
remainder of the paper presents a recipe for implementing
these algorithms in MapReduce.

6.1.2 Alternating Least Squares
If the deviation function allows it, alternating least squares
(ALS) becomes an interesting alternative to SGD when pref-
erences are assumed to be missing not at random [29; 21].
In this respect, the deviation functions of Equations 25, 30,
31, and 48 are, amongst others, appealing because they can
be minimized with a variant of the alternating least squares
(ALS) method. Take for example the deviation function
from Equation 25:

D (θ,R) =
∑
u∈U

∑
i∈I

Wui (Rui − Sui)
2+

T∑
t=1

F∑
f=1

λtf ||S(t,f)||2F ,

combined with the basic two-factor factorization model from
Equation 7:

S = S(1,1)S(1,2).

As most deviation functions, this deviation function is non-
convex in the parameters θ and has therefore multiple local
optima. However, if one temporarily fixes the parameters
in S(1,1), it becomes convex in S(1,2) and we can analyti-
cally find updated values for S(1,2) that minimize this convex
function and are therefore guaranteed to reduce D (θ,R).
Subsequently, one can temporarily fix the parameters in
S(1,2) and in the same way compute updated values for S(1,1)

that are also guaranteed to reduceD (θ,R). One can keep al-

ternating between fixing S(1,1) and S(1,2) until a convergence
criterium of choice is met. Hu et al. [21], Pan et al. [37] and
Pan and Scholz [36] give detailed descriptions of different
ALS variations. The version by Hu et al. contains optimiza-
tions for the case in which missing preferences are uniformly
weighted. Pan and Scholz [36] describe optimizations that
apply to a wider range of weighting schemes. Finally, Pi-
laszy et al. propose to further speed-up the computation by
only approximately solving each convex ALS-step [42].

Additionally, ALS has the advantages that it does not re-
quire the tuning of a learning rate, that it can benefit from
linear algebra packages such as Intel MKL, and that it needs
relatively few iterations to converge. Furthermore, when the
basic two-factor factorization of Equation 7 is used, every
row of S(1,1) and every column of S(1,2) can be updated in-
dependently of all other rows or columns, respectively, which
makes it fairly easy to massively parallelize the computation
of the factor matrices [77].

6.1.3 Bagging
The maximum margin based deviation function in Equa-
tion 33 cannot be solved with ALS because it contains the
hinge loss. Rennie and Srebro propose a conjugate gradi-
ents method for minimizing this function [46]. However,
this method suffers from similar problems as SGD, related
to the high number of terms in the loss function. There-
fore, Pan and Scholz [36] propose a bagging approach. The
essence of their bagging approach is that they do not ex-
plicitly weight every user-item pair for which Rui = 0, but
sample from all these pairs instead. They create multiple

samples, and compute multiple different solutions S̃ corre-
sponding to their samples. These computations are also
performed with the conjugate gradients method. They are,
however, much less intensive since they only consider a small
sample of the many user-item pairs for which Rui = 0. The

different solutions S̃ are finally aggregated by simply taking
their average.

6.1.4 Coordinate Descent
When an item-based neighborhood model is used in com-
bination with a squared error-based deviation function, the
user factors are fixed by definition, and the problem resem-
bles a single ALS step. However, imposing the constraints in
Equation 11 complicates the minimization [34]. Therefore,
Ning and Karypis adopt cyclic coordinate descent and soft
thresholding [14] for SLIM.

6.2 Convex Minimization
Aiolli [3] proposed the convex deviation function in Equation
49 and indicates that it can be solved with any algorithm
for convex optimization.

The analytically solvable deviation functions are also con-
vex. Moreover, minimizing them is equivalent to computing
all the similarities involved in the model. Most works as-
sume a brute force computation of the similarities. However,
Verstrepen [65] recently proposed two methods that are an
order of magnitude faster than the brute force computation.

7. RATING BASED METHODS
Interest in collaborative filtering on binary, positive-only
data only recently increased. The majority of existing col-
laborative filtering research assumes rating data. In this
case, the feedback of user u about item i, Rui, is an integer
between Bl and Bh, with Bl and Bh the most negative and
positive feedback, respectively. The most typical example of
such data was provided in the context of the Netflix Prize
with Bl = 1 and Bh = 5.

Technically, our case of binary, positive-only data is just a
special case of rating data with Bl = Bh = 1. However,
collaborative filtering methods for rating data are in general
built on the implicit assumption that Bl < Bh, i.e., that
both positive and negative feedback is available. Since this
negative feedback is not available in our problem setting, it
is not surprising that, in general, methods for rating data
generate poor or even nonsensical results [21; 37; 56].

k-NN methods for rating data, for example, often use the
Pearson correlation coefficient as a similarity measure. The
Pearson correlation coefficient between users u and v is given
by

pcc(u, v) = ∑
Ruj ,Rvj>0

(Ruj −Ru)(Rvj −Rv)√ ∑
Ruj ,Rvj>0

(Ruj −Ru)2
√ ∑

Ruj ,Rvj>0

(Rvj −Rv)2
,

with Ru and Rv the average rating of u and v respectively.
In our setting, with binary, positive-only data however, Ruj

and Rvj are by definition always one or zero. Consequently,
Ru and Rv are always one. Therefore, the Pearson corre-
lation is always zero or undefined (zero divided by zero),
making it a useless similarity measure for binary, positive-
only data. Even if we would hack it by omitting the terms
for mean centering, −Ru and −Rv, it is still useless since it
would always be equal to either one or zero.

Furthermore, when computing the score of user u for item
i, user(item)-based k-NN methods for rating data typically
find the k users (items) that are most similar to u (i) and
that have rated i (have been rated by u) [11; 23]. On binary,
positive-only data, this approach results in the nonsensical

result that Sui = 1 for every (u, i)-pair.

The matrix factorization methods for rating data are in gen-
eral also not applicable to binary, positive-only data. Take
for example a basic loss function for matrix factorization on
rating data:

min
S(1),S(2)

∑
Rui>0

(
Rui − S(1)

u· S
(2)
·i

)2

+ λ
(
||S(1)

u· ||2F + ||S(2)
·i ||2F

)
,

which for binary, positive-only data simplifies to

min
S(1),S(2)

∑
Rui=1

(
1− S(1)

u· S
(2)
·i

)2

+ λ
(
||S(1)

u· ||2F + ||S(2)
·i ||2F

)
.

The squared error term of this loss function is minimized
when the rows and columns of S(1) and S(2), respectively,
are all the same unit vector. This is obviously a nonsensical
solution.

The matrix factorization method for rating data that uses
singular value decomposition to factorize R also considers
the entries where Rui = 0 and does not suffer from the above
problem [49; 8]. Although this method does not result in
nonsensical results, the performance has been shown inferior
to methods specialized for binary, positive-only data [34; 56;
57].

In summary, although we cannot exclude the possibility that
there exists a method for rating data that does perform well
on binary, positive-only data, in general this is clearly not
the case.

8. CONCLUSIONS
We have presented a comprehensive survey of collabora-
tive filtering methods for binary, positive-only data. Its
backbone is an innovative unified matrix factorization per-
spective on collaborative filtering methods, also those that
are typically not associated with matrix factorization mod-
els such as nearest neighbors methods and association rule
mining-based methods. From this perspective, a collabo-
rative filtering algorithm consists of three building blocks:
a matrix factorization model, a deviation function and a
numerical minimization algorithm. By comparing methods
along these three dimensions, we were able to highlight sur-
prising commonalities and key differences.

An interesting direction for future work is to survey certain
aspects that were not included in the scope of this survey.
Examples are surveying the different strategies to deal with
cold-start problems that are applicable to binary, positive-
only data; and comparing the applicability of models and
deviation functions for recomputation of models in real time
upon receiving novel feedback.

9. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next gen-
eration of recommender systems: a survey of the state-
of-the-art and possible extensions. 17(6):734–749, 2005.

[2] F. Aiolli. Efficient top-n recommendation for very large
scale binary rated datasets. In Proc. of the 7th ACM
Conf. on Recommender Systems, pages 273–280. ACM,
2013.

[3] F. Aiolli. Convex auc optimization for top-n recommen-
dation with implicit feedback. In Proc. of the 8th ACM

Conf. on Recommender Systems, pages 293–296. ACM,
2014.

[4] A. Bellogin, J. Wang, and P. Castells. Text retrieval
methods for item ranking in collaborative filtering. In
P. Clough, C. Foley, C. Gurrin, G. Jones, W. Kraaij,
H. Lee, and V. Mudoch, editors, Advances in Informa-
tion Retrieval, volume 6611, pages 301–306. Springer
Berlin Heidelberg, 2011.

[5] C. M. Bishop. Pattern recognition. Machine Learning,
128:1–58, 2006.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. The Journal of machine Learning research,
3:993–1022, 2003.

[7] E. Christakopoulou and G. Karypis. Hoslim: Higher-
order sparse linear method for top-n recommender sys-
tems. In Advances in Knowledge Discovery and Data
Mining, pages 38–49. Springer, 2014.

[8] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-n recommendation
tasks. In Proc. of the fourth ACM Conf. on Recom-
mender Systems, pages 39–46. ACM, 2010.

[9] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent seman-
tic analysis. Journal of the American Society of Infor-
mation Science, 41(6):391–407, 1990.

[10] M. Deshpande and G. Karypis. Item-based top-n rec-
ommendation algorithms. ACM Transactions on Infor-
mation Systems (TOIS), 22(1):143–177, 2004.

[11] C. Desrosiers and G. Karypis. A comprehensive sur-
vey of neighborhood-based recommendation methods.
In Recommender systems handbook, pages 107–144.
Springer, 2011.

[12] C. Dhanjal, R. Gaudel, and S. Clémençon. Collabora-
tive filtering with localised ranking. In Proc. of the 29th
AAAI Conf. on Artificial Intelligence, 2015.

[13] C. Eckart and G. Young. The approximation of one ma-
trix by another of lower rank. Psychometrika, 1(3):211–
218, 1936.

[14] J. Friedman, T. Hastie, and R. Tibshirani. Regulariza-
tion paths for generalized linear models via coordinate
descent. Journal of statistical software, 33(1):1, 2010.

[15] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sisma-
nis. Large-scale matrix factorization with distributed
stochastic gradient descent. In Proc. of the 17th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 69–77, 2011.

[16] P. Gopalan, J. Hofman, and D. Blei. Scalable recom-
mendation with hierarchical poisson factorization. In
Proc. of the 31st Conf. Annual Conf. on Uncertainty
in Artificial Intelligence (UAI-15). AUAI Press, 2015.

[17] P. Gopalan, F. J. Ruiz, R. Ranganath, and D. M.
Blei. Bayesian nonparametric poisson factorization for
recommendation systems. Artificial Intelligence and
Statistics (AISTATS), 33:275–283, 2014.

[18] M. Gori, A. Pucci, V. Roma, and I. Siena. Itemrank: A
random-walk based scoring algorithm for recommender
engines. In Proc. of the 20th Int. Joint Conf. on Artifi-
cial Intelligence, volume 7, pages 2766–2771, 2007.

[19] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Transactions on Information Systems
(TOIS), 22(1):89–115, 2004.

[20] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In Proc. of the 16th Int. Joint
Conf. on Artificial Intelligence, pages 688–693, 1999.

[21] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filter-
ing for implicit feedback datasets. In Proc. of the Eighth
IEEE Int. Conf. on Data Mining, pages 263–272. IEEE,
2008.

[22] Z. Huang, X. Li, and H. Chen. Link prediction ap-
proach to collaborative filtering. In Proc. of the 5th
ACM/IEEE-CS joint Conf. on Digital libraries, pages
141–142. ACM, 2005.

[23] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender systems: an introduction. Cambridge
University Press, 2010.

[24] C. Johnson. Logistic matrix factorization for implicit
feedback data. In Workshop on Distributed Machine
Learning and Matrix Computations at the Twenty-
eighth Annual Conf. on Neural Information Processing
Systems (NIPS), 2014.

[25] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K.
Saul. An introduction to variational methods for graph-
ical models. Machine learning, 37(2):183–233, 1999.

[26] S. Kabbur and G. Karypis. Nlmf: Nonlinear matrix fac-
torization methods for top-n recommender systems. In
Workshop Proc. of the IEEE Int. Conf. on Data Min-
ing, pages 167–174. IEEE, 2014.

[27] S. Kabbur, X. Ning, and G. Karypis. Fism: factored
item similarity models for top-n recommender systems.
In Proc. of the 19th ACM SIGKDD Int. Conf. on
Knowledge discovery and data mining, pages 659–667.
ACM, 2013.

[28] N. Koenigstein, N. Nice, U. Paquet, and N. Schleyen.
The xbox recommender system. In Proc. of the sixth
ACM Conf. on Recommender Systems, pages 281–284.
ACM, 2012.

[29] Y. Koren, R. Bell, and C. Volinsky. Matrix factoriza-
tion techniques for recommender systems. Computer,
(8):30–37, 2009.

[30] W. Lin, S. A. Alvarez, and C. Ruiz. Efficient adaptive-
support association rule mining for recommender sys-
tems. Data mining and knowledge discovery, 6(1):83–
105, 2002.

[31] G. V. Menezes, J. M. Almeida, F. Belém, M. A.
Gonçalves, A. Lacerda, E. S. De Moura, G. L. Pappa,
A. Veloso, and N. Ziviani. Demand-driven tag recom-
mendation. In Machine Learning and Knowledge Dis-
covery in Databases, pages 402–417. Springer, 2010.

[32] A. Mnih and R. Salakhutdinov. Probabilistic matrix
factorization. In Advances in neural information pro-
cessing systems, pages 1257–1264, 2007.

[33] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effec-
tive personalization based on association rule discovery
from web usage data. In Proc. of the 3rd Int. workshop
on Web information and data management, pages 9–15.
ACM, 2001.

[34] X. Ning and G. Karypis. Slim: Sparse linear methods
for top-n recommender systems. In Proc. of the 11th
IEEE Int. Conf. on Data Mining, pages 497–506. IEEE,
2011.

[35] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[36] R. Pan and M. Scholz. Mind the gaps: weighting the un-
known in large-scale one-class collaborative filtering. In
Proc. of the 15th ACM SIGKDD Int. Conf. on Knowl-
edge discovery and data mining, pages 667–676. ACM,
2009.

[37] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose,
M. Scholz, and Q. Yang. One-class collaborative filter-
ing. In Proc. of the Eighth IEEE Int. Conf. on Data
Mining, pages 502–511. IEEE, 2008.

[38] W. Pan and L. Chen. Cofiset: Collaborative filtering via
learning pairwise preferences over item-sets. In Proc. of
the 13th SIAM Int. Conf. on Data Mining, pages 180–
188, 2013.

[39] W. Pan and L. Chen. Gbpr: Group preference based
bayesian personalized ranking for one-class collabora-
tive filtering. In Proc. of the Twenty-Third Int. joint
Conf. on Artificial Intelligence, pages 2691–2697. AAAI
Press, 2013.

[40] U. Paquet and N. Koenigstein. One-class collaborative
filtering with random graphs. In Proc. of the 22nd Int.
Conf. on WWW, pages 999–1008, 2013.

[41] A. Paterek. Improving regularized singular value de-
composition for collaborative filtering. In Proc. of KDD
cup and workshop, volume 2007, pages 5–8, 2007.

[42] I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based
matrix factorization for explicit and implicit feedback
datasets. In Proc. of the fourth ACM Conf. on Recom-
mender Systems, pages 71–78. ACM, 2010.

[43] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems 24, pages 693–701. 2011.

[44] S. Rendle and C. Freudenthaler. Improving pairwise
learning for item recommendation from implicit feed-
back. In Proc. of the 7th ACM Int. Conf. on Web search
and data mining, pages 273–282. ACM, 2014.

[45] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized rank-
ing from implicit feedback. In Proc. of the Twenty-Fifth
Conf. on Uncertainty in Artificial Intelligence, pages
452–461. AUAI Press, 2009.

[46] J. D. Rennie and N. Srebro. Fast maximum margin ma-
trix factorization for collaborative prediction. In Proc.
of the 22nd Int. Conf. on Machine learning, pages 713–
719. ACM, 2005.

[47] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Rec-
ommender Systems Handbook. Springer, Boston, MA,
2011.

[48] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Anal-
ysis of recommendation algorithms for e-commerce. In
Proc. of the 2nd ACM Conf. on Electronic commerce,
pages 158–167. ACM, 2000.

[49] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Ap-
plication of dimensionality reduction in recommender
system-a case study. Technical report, DTIC Docu-
ment, 2000.

[50] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation al-
gorithms. In Proc. of the 10th Int. Conf. on WWW,
pages 285–295. ACM, 2001.

[51] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
A. Hanjalic, and N. Oliver. Tfmap: Optimizing map
for top-n context-aware recommendation. In Proc. of
the 35th Int. ACM SIGIR Conf. on Research and devel-
opment in information retrieval, pages 155–164. ACM,
2012.

[52] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. Climf: learning to maximize
reciprocal rank with collaborative less-is-more filtering.
In Proc. of the sixth ACM Conf. on Recommender Sys-
tems, pages 139–146. ACM, 2012.

[53] Y. Shi, M. Larson, and A. Hanjalic. Collaborative fil-
tering beyond the user-item matrix: A survey of the
state of the art and future challenges. ACM Computing
Surveys (CSUR), 47(1):3, 2014.

[54] B. Sigurbjörnsson and R. Van Zwol. Flickr tag recom-
mendation based on collective knowledge. In The 17th
Int. Conf. on WWW, pages 327–336. ACM, 2008.

[55] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic.
One-class matrix completion with low-density factor-
izations. In Proc. of the 10th IEEE Int. Conf. on Data
Mining, pages 1055–1060. IEEE, 2010.

[56] H. Steck. Training and testing of recommender systems
on data missing not at random. In Proc. of the 16th
ACM SIGKDD Int. Conf. on Knowledge discovery and
data mining, pages 713–722. ACM, 2010.

[57] H. Steck. Item popularity and recommendation accu-
racy. In Proc. of the fifth ACM Conf. on Recommender
Systems, pages 125–132. ACM, 2011.

[58] H. Steck. Gaussian ranking by matrix factorization. In
Proc. of the 9th ACM Conf. on Recommender Systems,
pages 115–122. ACM, 2015.

[59] X. Su and T. M. Khoshgoftaar. A survey of collabora-
tive filtering techniques. Advances in artificial intelli-
gence, 2009:4, 2009.

[60] P. Symeonidis, A. Nanopoulos, A. N. Papadopoulos,
and Y. Manolopoulos. Nearest-biclusters collaborative
filtering based on constant and coherent values. Inf.
Retr., 11(1):51–75, 2008.

[61] G. Takács and D. Tikk. Alternating least squares for
personalized ranking. In Proc. of the sixth ACM Conf.
on Recommender Systems, pages 83–90. ACM, 2012.

[62] A. Töscher and M. Jahrer. Collaborative filtering en-
semble for ranking. Journal of Machine Learning Re-
search W&CP: Proc. of KDD Cup 2011, 18:61–74,
2012.

[63] L. H. Ungar and D. P. Foster. Clustering methods for
collaborative filtering. In AAAI workshop on recom-
mendation systems, volume 1, pages 114–129, 1998.

[64] M. van Leeuwen and D. Puspitaningrum. Improving tag
recommendation using few associations. In Advances in
Intelligent Data Analysis XI, pages 184–194. Springer,
2012.

[65] K. Verstrepen. Collaborative Filtering with Binary,
Positive-Only Data. PhD thesis, University of Antwerp,
2015.

[66] K. Verstrepen and B. Goethals. Unifying nearest neigh-
bors collaborative filtering. In Proc. of the 8th ACM
Conf. on Recommender Systems, pages 177–184. ACM,
2014.

[67] K. Verstrepen and B. Goethals. Top-n recommendation
for shared accounts. In Proc. of the 9th ACM Conf. on
Recommender Systems, pages 59–66. ACM, 2015.

[68] J. Wang, A. P. De Vries, and M. J. Reinders. A user-
item relevance model for log-based collaborative filter-
ing. In Advances in Information Retrieval, pages 37–48.
Springer, 2006.

[69] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling
up to large vocabulary image annotation. In Proc. of the
22th Interantional Joint Conf. on Artifical Intelligence,
volume 11, pages 2764–2770, 2011.

[70] J. Weston, R. J. Weiss, and H. Yee. Nonlinear latent
factorization by embedding multiple user interests. In
Proc. of the 7th ACM Conf. on Recommender Systems,
pages 65–68. ACM, 2013.

[71] J. Weston, H. Yee, and R. J. Weiss. Learning to rank
recommendations with the k-order statistic loss. In
Proc. of the 7th ACM Conf. on Recommender Systems,
pages 245–248. ACM, 2013.

[72] X. Yang, Y. Guo, Y. Liu, and H. Steck. A survey of col-
laborative filtering based social recommender systems.
Computer Communications, 41:1–10, 2014.

[73] Y. Yao, H. Tong, G. Yan, F. Xu, X. Zhang, B. K. Szy-
manski, and J. Lu. Dual-regularized one-class collabo-
rative filtering. In Proc. of the 23rd ACM Int. Conf. on
Information and Knowledge Management, pages 759–
768. ACM, 2014.

[74] J. Yin, L. Gao, and Z. M. Zhang. Machine Learning and
Knowledge Discovery in Databases: European Conf.,
ECML PKDD 2014, Nancy, France, September 15-19,
2014. Proc., Part III, chapter Scalable Nonnegative
Matrix Factorization with Block-wise Updates, pages
337–352. 2014.

[75] W. Zhang, T. Chen, J. Wang, and Y. Yu. Optimizing
top-n collaborative filtering via dynamic negative item
sampling. In Proc. of the 36th Int. ACM SIGIR Conf.
on Research and development in information retrieval,
pages 785–788. ACM, 2013.

[76] H. Zhong, W. Pan, C. Xu, Z. Yin, and Z. Ming. Adap-
tive pairwise preference learning for collaborative rec-
ommendation with implicit feedbacks. In Proc. of the
23rd ACM Int. Conf. on Conf. on Information and
Knowledge Management, pages 1999–2002. ACM, 2014.

[77] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the net-
flix prize. In Algorithmic Aspects in Information and
Management, pages 337–348. Springer, 2008.

[78] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A
fast parallel sgd for matrix factorization in shared mem-
ory systems. In Proc. of the 7th ACM Conf. on Recom-
mender Systems, pages 249–256, 2013.

