
Unifying Nearest Neighbors Collaborative Filtering

Koen Verstrepen Bart Goethals
University of Antwerp

Antwerp, Belgium
{koen.verstrepen,bart.goethals}@uantwerp.be

ABSTRACT
We study collaborative filtering for applications in which
there exists for every user a set of items about which the
user has given binary, positive-only feedback (one-class col-
laborative filtering). Take for example an on-line store that
knows all past purchases of every customer. An important
class of algorithms for one-class collaborative filtering are
the nearest neighbors algorithms, typically divided into user-
based and item-based algorithms. We introduce a reformu-
lation that unifies user- and item-based nearest neighbors
algorithms and use this reformulation to propose a novel
algorithm that incorporates the best of both worlds and
outperforms state-of-the-art algorithms. Additionally, we
propose a method for naturally explaining the recommen-
dations made by our algorithm and show that this method
is also applicable to existing user-based nearest neighbors
methods.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information filtering

Keywords: One-class collaborative filtering, nearest neigh-
bors, explaining recommendations, top-N recommendation,
recommender systems.

1. INTRODUCTION
Typically, the training data for collaborative filtering is

represented by a matrix in which the rows represent the
users and the columns represent the items. A value in this
matrix can be unknown or can reflect the preference of the
respective user for the respective item. Here, we consider the
specific setting of binary, positive-only preference feedback.
Hence, every value in the preference matrix is 1 or 0, with
1 representing a known preference and 0 representing the
unknown. Pan et al. [10] call this setting one-class collab-
orative filtering (OCCF). Applications that correspond to
this version of the collaborative filtering problem are likes
on social networking sites, tags for photo’s, websites visited
during a surfing session, articles bought by a customer etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or corecsysercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’14, October 6–10, 2014, Foster City, Silicon Valley, CA, USA.
Copyright 2014 ACM 978-1-4503-2668-1/14/10 ...$15.00.
http://dx.doi.org/10.1145/2645710.2645731.

In this setting, identifying the best recommendations can
be formalized as ranking all user-item-pairs (u, i) according
to the probability that u prefers i.

One class of algorithms for solving OCCF are the nearest
neighbors algorithms. Sarwar et al. [13] proposed the well
known user-based algorithm that uses cosine similarity and
Deshpande et al. [2] proposed several widely used item-based
algorithms.

Another class of algorithms for solving OCCF are matrix
factorization algorithms. The state-of-the-art algorithms in
this class are Weighted Rating Matrix Factorization [7, 10],
Bayesian Personalized Ranking Matrix Factorization [12] and
Collaborative Less is More Filtering [14].

This work builds upon the different item-based algorithms
by Deshpande et al. [2] and the user-based algorithm by Sar-
war et al. [13] that uses cosine similarity. We introduce a
reformulation of these algorithms that unifies their existing
formulations. From this reformulation, it becomes clear that
the existing user- and item-based algorithms unnecessarily
discard important parts of the available information. There-
fore, we propose a novel algorithm that combines both user-
and item-based information. Hence, this algorithm is nei-
ther user-based nor item-based, but nearest-neighbors-based.
Our experiments show that our algorithm not only outper-
forms the individual nearest neighbors algorithms but also
state-of-the-art matrix factorization algorithms.

Furthermore, it is well accepted that every recommenda-
tion should come with a short explanation to why it is rec-
ommended [7, 6]. Good explanations help users to put the
recommendations in the right perspective [17]. Typically,
item-based nearest neighbors algorithms are considered to
be superior for this task [3, 7].

Thanks to our reformulation however, we are able to chal-
lenge this belief and show that also other nearest neighbors
algorithms have a natural explanation.

The main contributions of this work are:

• We propose a reformulation that unifies user-and item-
based nearest neighbors algorithms for OCCF (Sec. 3)
[13, 2].
• We propose KUNN, a novel algorithm for OCCF that

is grounded in our unifying reformulation (Sec. 4).
• We extensively evaluate our algorithm on real life data

and show that it outperforms state-of-the-art algorithms
(Sec. 5).
• We propose a method that naturally explains the rec-

ommendations by our novel algorithm and user-based
algorithms (Sec. 6)

2. PRELIMINARIES
Let U be a set of users and I a set of items. We are given

a matrix with training data R ∈ {0, 1}|U|×|I|. Rui = 1
indicates that there is a known preference of user u ∈ U
for item i ∈ I. Rui = 0 indicates that there is no such
information.

Furthermore, c(x) gives the count of x, meaning

c(x) =

{∑
i∈I Rxi if x ∈ U∑
u∈U Rux if x ∈ I.

The goal of OCCF is to rank all user-item-pairs (u, i) for
which Rui = 0 according to the likelihood of u preferring
i. The most well known algorithms perform this task by
computing for every user-item-pair (u, i) a score s(u, i), by
which the user-item-pairs are then ranked.

A key element of nearest neighbors algorithms is their
definition of the neighborhood of an object, or more specifi-
cally, the similarity measure sim() used for computing it. A
typical choice for sim() is the cosine similarity. The cosine
similarity between two users u and v is given by

cos(u, v) =

∑
j∈I RujRvj√
c(u)c(v)

. (1)

Analogously, the cosine similarity between two items i and
j is given by

cos(i, j) =

∑
v∈U RviRvj√
c(i)c(j)

. (2)

We denote the kU (kI) nearest neighbors of a user u (an
item i) by KNN (u) (KNN (i)).

3. UNIFYING NEAREST NEIGHBORS
In this section we propose a novel formulation of nearest

neighbors collaborative filtering that unifies the known for-
mulations of the user-based algorithm by Sarwar et al. [13]
and the different item-based algorithms by Deshpande et
al. [2]. This formulation is given by

s(u, i) =
∑
v∈U

∑
j∈I

(L · N · G · S)
(
(u, i) , (v, j)

)
. (3)

The score s(u, i), that represents the likelihood that a user
u prefers an item i, is computed as a weighted sum over all
possible user-item pairs (v, j). The weight of every (v, j)-
pair with respect to the pair (u, i) is a multiplication of four
functions: the local function L

(
(u, i) , (v, j)

)
, the neighbor-

hood function N
(
(u, i) , (v, j)

)
, the global function G

(
(u, i) ,

(v, j)
)

and the rescaling function S
(
(u, i) , (v, j)

)
.

Before giving a general definition of L,N ,G and S, we
first discuss the reformulation of the user-based algorithm
by Sarwar et al. [13] and the different item-based algorithms
by Deshpande et al. [2].

3.1 Item-Based
Deshpande et al. [2] proposed the now widely used class

of item-based nearest neighbors algorithms. We discuss the
variation that uses cosine similarity without similarity nor-
malization (cosine, SNorm-) because of its clean formula-
tion. The analysis for the other variations is analogous.

This algorithm first finds the neighborhood KNN (j) for
every preferred item j (Ruj = 1) by using the cosine sim-
ilarity cos(j, i). Next, every preferred item independently

increases the score for its kI most similar items i ∈ KNN (j)
with the similarity value cos(j, i). Thus, the score of a can-
didate recommendation i for user u is given by [2]:

s(u, i) =
∑
j∈I

Ruj=1

cos(j, i) · |KNN (j) ∩ {i}|. (4)

We reformulate this algorithm by substituting cos(j, i) by
its definition (Eq. 2) and regrouping the terms. This gives

s(u, i) =
∑
v∈U

∑
j∈I

RujRvjRvi · |KNN (j) ∩ {i}| · 1√
c(j)c(i)

.

This particular formulation now nicely fits our Equation 3: a
weighted sum over all possible user-item pairs (v, j) in which
the weight of every (v, j)-pair with respect to the pair (u, i)
is determined by the functions L,N ,G and S.

The local function L selects the pairs (v, j) based on their
direct relation to the pair (u, i). For the item-based algo-
rithm, it is given by

L
(
(u, i) , (v, j)

)
= RujRvjRvi.

It thus only selects those pairs (v, j) such that v and u share
a preference for j and both i and j are preferred by v.

Next, the neighborhood function N further selects the
pairs (v, j) based on their neighborhood relations to the pair
(u, i). For the item-based algorithm, it is given by

N
(
(u, i) , (v, j)

)
= |KNN (j) ∩ {i}|.

Thus, only those pairs (v, j) for which i is in the neighbor-
hood of j are selected. Notice that the selection of the pair
(v, j) by N is independent of v. As such, the item-based al-
gorithm ignores half of the neighborhood information about
the pair (v, j).

Then, the global function G weighs the selected pairs (v, j)
based on global statistics of the items i and j. For the item-
based algorithm, it is given by

G
(
(u, i) , (v, j)

)
= 1/

√
c(i)c(j).

It thus gives lower weights to those pairs (v, j) for which
j has a higher count. Intuitively, if j is more popular, the
evidence related to the pair (v, j) is considered less informa-
tive. Similarly, if i is more popular, all evidence with respect
to s(u, i) is considered less informative. Notice that, in this
case, also the weight of the pair (v, j), as determined by G, is
independent of v. As such, the item-based algorithm ignores
c(v) and c(u), the global information about v and u. Notice
furthermore that G is also used in the definition of the cosine
similarity measure (Eq. 2), used to determine KNN (j).

As in this case no rescaling is applied, S is given by

S
(
(u, i) , (v, j)

)
= 1.

3.2 User-Based
For a given user u, the user-based nearest neighbors al-

gorithm by Sarwar et al. [13] first finds the neighborhood
KNN (u) using the cosine similarity. Next, each neighboring
user v ∈ KNN (u) increases the score of a candidate rec-
ommendation i, if i is preferred by v. Thus, the score of a
candidate recommendation i for user u is given by [13]:

s(u, i) =
1

|KNN (u)|
∑

v∈KNN (u)

Rvi. (5)

Multiplying the above equation with the constant |I| =∑
j∈I 1 does not change the ordering of the pairs (u, i) and

allows us to rewrite it as

s(u, i) =
∑
v∈U

∑
j∈I

Rvi · |KNN (u) ∩ {v}| · 1

|KNN (u)| .

Hence we have reformulated also the user-based algorithm
as a weighted sum over all possible user-item pairs (v, j) in
which the weight of a (v, j)-pair with respect to the pair
(u, i) is determined by the functions L,N ,G and S (Eq. 3).

The local function L, which selects the pairs (v, j) based
on their direct relation to the pair (u, i), is for the user-based
algorithm given by

L
(
(u, i) , (v, j)

)
= Rvi.

It thus selects those pairs (v, j) such that v prefers i. Un-
like the item-based algorithm, it does not consider the in-
formation Ruj and Rvj to discriminate between different
(v, j)-pairs. Hence, the selection of the pair (v, j) by L is
independent of j. As such, the user-based algorithm ignores
local information related to j when weighing the pair (v, j).

Next, the neighborhood function N further selects the
pairs (v, j) based on their neighborhood relations to the pair
(u, i). For the user-based algorithm, it is given by

N
(
(u, i) , (v, j)

)
= |KNN (u) ∩ {v}|.

Thus, only those pairs (v, j) for which v is in the neighbor-
hood of u are selected. Notice that the selection of the pair
(v, j) by N is independent of j. As such, the user-based al-
gorithm ignores half of the neighborhood information about
the pair (v, j).

Furthermore, since this algorithm does not weight the
pairs (v, j) with any global statistic of u, i, v or j, the global
function for the user-based algorithm is given by

G
(
(u, i) , (v, j)

)
= 1.

Finally, for the user-based algorithm, the rescaling func-
tion S rescales the weight of the pairs (v, j) with the size of
the neighborhood of u and is therefore given by

S
(
(u, i) , (v, j)

)
= |KNN (u)|.

3.3 Generalization
Now we generalize the definitions of the four functions
L,N ,G and S such that our formulation covers the most
well known user- and item-based algorithms. Table 1 gives
an overview of how these functions are defined for both the
existing algorithms and our novel algorithm, which we will
propose in the next section.

First, the local function L selects the pairs (v, j) depend-
ing on the direct relations Rui, Rvj and Rvi between (v, j)
and (u, i). The user-based algorithm (Sec. 3.2) considers
only Rvi and ignores the other information. The item-
based algorithm (Sec. 3.1) on the other hand, combines
all three pieces of direct information in the multiplication
RuiRvjRvi, and thus selects those pairs (v, j) such that v
and u share a preference for j and both i and j are preferred
by v. Essentially, any combination of these direct relation-
ships between u,i,v and j is possible.

Secondly, the neighborhood function N weighs the pairs
(v, j) depending on the neighborhoods KNN (u), KNN (v),

KNN (i) and KNN (j). Existing algorithms for OCCF con-
sider only one of the four neighborhoods, as shown in Sec-
tions 3.2 and 3.1. Consequently, the weighing function N
reduces to a selection function for these algorithms . How-
ever, any function of these four neighborhoods can be used.
For example, in our novel algorithm KUNN, which we will
propose in Section 4, we use

N
(
(u, i) , (v, j)

)
= |KNN (u) ∩ {v}|+ |KNN (i) ∩ {j}|.

Both the user- and the item-based algorithm discussed in
the previous two sections used the cosine similarity mea-
sure to compute KNN (x) of an object x. Our formulation
however, covers a broader range of similarity measures. Let
pu, pi, pv, pj ∈ R. For users u, v ∈ U , we define the similarity
measure to compute KNN (u) as

sim(u, v) =
∑
rI∈I

RurIRvrI · c(u)puc(v)pvc(rI)pj . (6)

Similarly, for items i, j ∈ I, we define the similarity measure
to compute KNN (i) as

sim(i, j) =
∑
rU∈U

RrU iRrU j · c(i)pic(rU)pvc(j)pj . (7)

Notice that, in our formulation, the similarity between users
(Eq. 6) and the similarity between items (Eq. 7) share the
parameters pv and pj . Thus, choosing the user similarity
limits the possibilities for choosing the item similarity and
vice versa.

Thirdly, the global function G uses the global statistics
c(u), c(i), c(v) and c(j) to weigh the pairs (v, j) with respect
to the pair (u, i). It is given by

G
(
(u, i) , (v, j)

)
=

(
c(u)puc(i)pic(v)pvc(j)pj

)pg

, (8)

with pg ∈ {0, 1} and pu, pi, pv, pj the same parameters as
in Equations 6 and 7. Typically, these parameters are neg-
ative or zero. In that case, users u, v and items i, j with
higher counts reduce the weight of the (v, j)-pairs with re-
spect to (u, i). Intuitively, a more popular item is considered
less informative for determining a taste, since this item is
more likely preferred by diverse users. Similarly, a user that
prefers many items is considered less informative for deter-
mining a taste, since this user’s preferences are more likely
to cover diverse items.

Notice that G, sim(u, v) and sim(i, j) (Eq. 8, 7 and 6)
share the factors c(u)pu , c(i)pi , c(v)pv and c(j)pj . Therefore
we introduce the notation

W
(
(u, i) , (v, j)

)
= c(u)puc(i)pic(v)pvc(j)pj ,

which allows us to rewrite the global function (Eq. 8) as

G
(
(u, i) , (v, j)

)
=W

(
(u, i) , (v, j)

)pg , (9)

and the similarities (Eq. 6 and 7) as

sim(u, v) =
∑
rI∈I

RurIRvrI · W
(
(u, ∗) , (v, rI)

)
,

sim(i, j) =
∑
rU∈U

RrU iRrU j · W
(
(∗, i) , (rU , j)

)
,

with c(∗) = 1. This definition of W covers both the user-
based algorithm by Sarwar et al. [13] and the different item-
based algorithms by Deshpande et al. [2]. A more general

Table 1: Function definitions of the unifying formulation for selected algorithms. Our novel algorithm is bold
faced and marked with a ?.

Algorithm L
(
(u, i) , (v, j)

)
N

(
(u, i) , (v, j)

)
S
(
(u, i) , (v, j)

)
W

(
(u, i) , (v, j)

)
pg kU kI

user-based,
cosine [13]

Rvi |KNN (u) ∩ {v}| Su(u)
1√

c(u)c(v) 0 ≤ |U| 0

item-based,
cosine,

SNorm- [2]
RujRvjRvi |KNN (j) ∩ {i}| 1

1√
c(i)c(j) 1 0 ≤ |I|

item-based,
cosine,

SNorm+ [2]
RujRvjRvi |KNN (j) ∩ {i}| Sj(j)

1√
c(i)c(j) 1 0 ≤ |I|

? KUNN RujRvjRvi
|KNN (u) ∩ {v}|
+|KNN (i) ∩ {j}| 1

1√
c(u)c(j)c(v)c(i) 1 ≤ |U| ≤ |I|

definition ofW would cover a broader range of nearest neigh-
bors algorithms. We choose this definition over a more gen-
eral one to emphasize the strong similarity between the lat-
ter two algorithms.

Finally, some algorithms rescale the weights of the pairs
(v, j) with the density of KNN (u), KNN (i), KNN (v) or
KNN (j). A neighborhood KNN (x) of x is denser if the total
distance of x to its neighbors is smaller. In other words, if
the sum of the similarities of x to its neighbors is higher.
Depending on the choice for KNN (u), KNN (i), KNN (v) or
KNN (j), the rescaling function is given by one of the four
density functions

Su(u) = 1/
∑

rU∈KNN (u)

sim(u, rU)pg ,

Si(i) = 1/
∑

rI∈KNN (i)

sim(i, rI)pg ,

Sv(v) = 1/
∑

rU∈KNN (v)

sim(rU , v)pg ,

Sj(j) = 1/
∑

rI∈KNN (j)

sim(rI , j)
pg ,

with pg the same parameter as for the global function G
(Eq. 9).

For an algorithm that does not apply rescaling,

S
(
(u, i) , (v, j)

)
= 1

4. KUNN UNIFIED NEAREST NEIGHBORS
Looking at Table 1, we observe that the user-based al-

gorithm by Sarwar et al. [13] ignores the information Ruj ,
Rvj , c(i), c(j), KNN (i) and KNN (j) for weighing the pairs
(v, j) with respect to (u, i). Similarly, all item-based algo-
rithms by Deshpande et al. [2] ignore the information c(u),
c(v), KNN (u) and KNN (v) for weighing the pairs (v, j) with
respect to (u, i). Thus, the existing algorithms ignore an
important part of the available information. What is more,
the information ignored by item-based algorithms is disjoint
with the information ignored by the user-based algorithm.
However, the fact that both user- and item-based algorithms
generate acceptable results [13, 2], indicates that most likely
both types of information are useful. Therefore, a novel al-
gorithm that combines both types of information, KUNN1,

1KUNN is a recursive acronym for KUNN Unified Nearest
Neighbors

potentially leads to improved results. The experiments dis-
cussed in Section 5 confirm that this is indeed the case. It
is not only possible to outperform the individual user- and
item-based algorithms, but also to outperform state-of-the-
art matrix factorization algorithms [12, 7, 10].

The definitions of L, N , G and S corresponding to KUNN
are given on the last row of Table 1.

For KUNN, the local function is given by

L
(
(u, i) , (v, j)

)
= RujRvjRvi

and thus selects those pairs (v, j) such that v and u share
a preference for j and both i and j are preferred by v. As
such, KUNN does not discard any information about the
direct relation between (v, j) and (u, i).

Next, the neighborhood function for KUNN is given by

N
(
(u, i) , (v, j)

)
= |KNN (u) ∩ {v}|+ |KNN (i) ∩ {j}|.

It thus selects those pairs (v, j) such that v is in the neigh-
borhood of u or j is in the neighborhood of i. If both condi-
tions are fulfilled, the weight of the pair (v, j) with respect
to s(u, i) is doubled. As such, KUNN uses neighborhood
information of both v and j to weight (v, j) with respect to
(u, i).

Furthermore, for KUNN, W is given by

W
(
(u, i) , (v, j)

)
=

1√
c(u)c(i)c(v)c(j)

.

Consequently, the user-similarity results in

sim(u, v) =
∑
rI∈I

RurIRvrI√
c(u)c(v)c(rI)

,

and the item-similarity:

sim(i, j) =
∑
rU∈U

RrU iRrU j√
c(i)c(rU)c(j)

.

Intuitively, if u and v share a preference for an item rI , it
is only weak evidence of their similarity if rI is popular and
both u and v have many preferences. Similarly, if i and j
are both preferred by rU , it is only weak evidence of their
similarity if rU has many preferences and both i and j are
popular items.

In addition, the global function for KUNN is given by

G
(
(u, i) , (v, j)

)
=W

(
(u, i) , (v, j)

)1
=

1√
c(u)c(i)c(v)c(j)

.

Intuitively, if the counts of u, i, v and j are higher, it
is more likely that the direct relation between (v, j) and

(u, i)(L
(
(u, i) , (v, j)

)
= 1), exists by chance. Therefore, this

direct relation is less informative.
Finally, we see no convincing arguments for making KUNN

more complex by introducing a rescaling factor. Therefore
we define

S
(
(u, i) , (v, j)

)
= 1.

To enhance the intuitive understanding of KUNN, we rewrite
Equation 3 as

s(u, i) =
sU (u, i) + sI(u, i)√

c(u)c(i)
, (10)

with

sU (u, i) =
∑

v∈KNN (u)

Rvi
1√
c(v)

∑
j∈I

Ruj=1
Rvj=1

1√
c(j)

and

sI(u, i) =
∑

j∈KNN (i)

Ruj
1√
c(j)

∑
v∈U

Rvi=1
Rvj=1

1√
c(v)

.

Thus, we can decompose s(u, i) in a user-based part sU (u, i)
and an item-based part sI(u, i). Notice that these two parts
cannot be reduced to any existing user- or item-based algo-
rithm.

The user-based part sU (u, i) is a weighted sum over the
neighbors of u in which the weight of a neighbor v is pro-
portional to:

• Rvi: v has a known preference for i,
• 1/

√
c(v): if v prefers many items, her known prefer-

ence for i becomes less informative,
•
∑

j∈I,Ruj=1,Rvj=1: every preference that v shares with

u increases the weight of v for recommending items to
u,
• 1/

√
c(j): if v and u share a preference for j, it is less

informative if j is a more popular item.

A similar intuition holds for the item-based part sI(u, i).
Finally, the denominator of Equation 10, reduces the strength

of the evidence if u prefers many items and i is popular.

5. EXPERIMENTAL EVALUATION
We experimentally evaluate the accuracy of KUNN on

three datasets: the Movielens, the Yahoo!Musicuser and the
Yahoo!Musicrandom datasets [19, 5]. These datasets contain
ratings of users for movies and songs respectively. The rat-
ings are on a 1 to 5 scale with 5 expressing the highest pref-
erence. We convert these datasets to binary, positive-only
datasets. Following Pradel et al. [11], we convert the ratings
4 and 5 to preferences and the ratings 1 and 2 to dislikes.
Furthermore, we ignore the ratings 3, effectively converting
them to unknowns. As such, we obtain a buffer between
preferences and dislikes. Since our setting presumes binary,
positive-only data, both the unknowns and the dislikes are
represented by zeros in the training data. For evaluating the
recommendations however, we are allowed to distinguish be-
tween unknowns and dislikes.

In our evaluation we compare KUNN with five other al-
gorithms. As a baseline, we select pop, the non-personalized

algorithm that ranks all items according to their popular-
ity, i.e. the number of users in the training set that prefer
the item. Next, we select the user-based nearest neighbors
algorithm with cosine similarity by Sarwar et al. [13] and
the widely used item-based nearest neighbors algorithm with
cosine similarity and similarity normalization (SNorm+) by
Deshpande et al. [2]. We choose this item-based algorithm
because it performed well in comparison to other item-based
algorithms [2]. Furthermore, we also compare with UB+IB,
a linear ensemble that computes a recommendation score as

s(u, i) = λsUB (u, i) + (1− λ)sIB (u, i),

with sUB (u, i) the user-based score from the algorithm by
Sarwar et al. and sIB (u, i) the item-based score from the al-
gorithm by Deshpande et al. Finally, we compare with two
state-of-the-art matrix factorization algorithms for OCCF:
the BPRMF algorithm by Rendle et al. and the WRMF al-
gorithm by Hu et al. [7]. For WRMF and BPRMF we used
the MyMediaLite implementation [4]. For all other algo-
rithms, we used our own implementation, which is available
at https://bitbucket.org/KVs/unncf_submit.

To thoroughly evaluate the performance of KUNN, we
use evaluation measures from multiple previous works [2,
12, 11, 13]. The experimental evaluation consists of two
experimental setups. In the user selected setup (Sec. 5.1),
the users selected which items they rated. In the random
selected setup (Sec. 5.2), users were asked to rate randomly
chosen items.

5.1 User Selected Setup
This experimental setup is applicable to the Movielens

and the Yahoo!Musicuser datasets. In both datasets, users
chose themselves which items they rated. Following Desh-
pande et al. [2] and Rendle et al. [12], one preference of every
user is randomly chosen to be the test preference for that
user. If a user has only one preference, no test preference is
chosen. The remaining preferences are represented as a 1 in
the training matrix R. All other entries of R are zero. We
define the hit set Hu of a user u as the set containing all test
preferences of that user. For this setup, this is a singleton,
denoted as {hu}, or the empty set if no test preference is
chosen. Furthermore, we define Ut as the set of users with
a test preference, i.e. Ut = {u ∈ U | |Hu| > 0}. Table 2
summarizes some characteristics of the datasets.

For every user u ∈ Ut, every algorithm ranks the items
{i ∈ I | Rui = 0} based on R. We denote the rank of the
test preference hu in such a ranking as r(hu).

Then, every set of rankings is evaluated using three mea-
sures. Following Deshpande et al. [2] we use hit rate at 10
and average reciprocal hit rate at 10. In general, 10 can
be replaced by any natural number N ≤ |I|. We follow
Deshpande et al. [2] and choose N=10.

Hit rate at 10 is given by

HR@10 =
1

|Ut|
∑
u∈Ut

|Hu ∩ top10 (u)|,

with top10(u) the 10 highest ranked items for user u. Hence,
HR@10 gives the percentage of test users for which the test
preference is in the top 10 recommendations.

Average reciprocal hit rate at 10 is given by

ARHR@10 =
1

|Ut|
∑
u∈Ut

|Hu ∩ top10 (u)| · 1

r(hu)
.

https://bitbucket.org/KVs/unncf_submit

Table 2: Dataset characteristics after transformation to binary, positive-only data.

c(u) |Hu| |Mu|

Dataset |U| |Ut| |I| mean std mean std mean std

Movielens 6040 6037 3706 94.3 105.0 1 0 NA NA

Yahoo!Musicuser 15400 13204 1000 7.70 11.57 1 0 NA NA

Yahoo!Musicrandom 15400 2401 1000 8.70 11.57 1.89 1.23 6.17 2.09

Unlike hit rate, average reciprocal hit rate takes into account
the rank of the test preference in the top 10 of a user.

Following Rendle et al. [12], we also use the AMAN version
of area under the curve, which is for this experimental setup
given by

AUCAMAN =
1

|Ut|
∑
u∈Ut

|I| − r(hu)

|I| − 1
.

AMAN stands for All Missing As Negative, meaning that
a missing preference is evaluated as a dislike. Like average
reciprocal hit rate, the area under the curve takes into ac-
count the rank of the test preference in the recommendation
list for a user. However, AUCAMAN decreases slower than
ARHR@10 when r(hu) increases.

We repeat all experiments five times, drawing a different
random sample of test preferences every time.

5.2 Random Selected Setup
The user selected experimental setup introduces two bi-

ases in the evaluation. Firstly, popular items get more rat-
ings. Secondly, the majority of the ratings is positive. These
two biases can have strong influences on the results and are
thoroughly discussed by Pradel et al. [11]. The random se-
lected test setup avoids these biases.

Following Pradel et al. [11], the training dataset is con-
structed in the user selected way: users chose to rate a
number of items they selected themselves. The test data-
set however, is the result of a voluntary survey in which
random items were presented to the users and a rating was
asked. In this way, both the popularity and the positivity
bias are avoided.

This experimental setup is applicable to the dataset
Yahoo!Musicrandom. The training data, R, of this dataset is
identical to the full Yahoo!Musicuser dataset. Additionally,
this dataset includes a test dataset in which the rated items
were randomly selected. For a given user u, the hit set Hu

contains all preferences of this user which are present in the
test dataset. The set of dislikes Mu contains all dislikes of
this user which are present in the test dataset. We define
Ut = {u ∈ U | |Hu| > 0, |Mu| > 0}, i.e. all users with
both preferences and dislikes in the test dataset. Table 2
summarizes some characteristics of the dataset.

For every user u ∈ Ut, every algorithm ranks the items
in Hu ∪Mu based on the training data R. The rank of an
item i in such a ranking is denoted r(i).

Then, following Pradel et al. [11], we evaluate every set of
rankings with the AMAU version of area under the curve,
which is given by

AUCAMAU =
1

|Ut|
∑
u∈Ut

AUCAMAU (u),

with

AUCAMAU (u) =
∑

h∈Hu

|{m ∈Mu | r(m) > r(h)}|
|Hu||Mu|

.

AMAU stands for All Missing As Unknown, meaning that a
missing preference does not influence the evaluation. Hence,
AUCAMAU (u) measures, for a user u, the fraction of dislikes
that is, on average, ranked behind the preferences. A big
advantage of this measure is that it only relies on known
preferences and known dislikes. Unlike the other measures,
it does not make the bold assumption that items not pre-
ferred by u in the past are disliked by u.

Because of the natural split in a test and training dataset,
repeating the experiment with different test preferences is
not applicable.

5.3 Parameter Selection
Every personalization algorithm in the experimental eval-

uation has at least one parameter. For every experiment we
try to find the best set of parameters using grid search. An
experiment is defined by (1) the outer training dataset R,
(2) the outer hitset

⋃
u∈Ut

Hu, (3) the outer dislikes
⋃

u∈Ut
Mu,

(4) the evaluation measure, and (5) the algorithm. Apply-
ing grid search, we first choose a finite number of parameter
sets. Secondly, from the training data R, we create five in-
ner data splits, defined by Rk,

⋃
u∈Ut

Hk
u, and

⋃
u∈Ut

Mu for

k ∈ {1, 2, 3, 4, 5}. Then, for every parameter set, we re-
run the algorithm on all five inner training datasets Rk and
evaluate them on the corresponding inner test datasets with
the chosen evaluation measure. Finally, the parameter set
with the best average score over the five inner data splits,
is chosen to be the best parameter set for the outer training
dataset R with respect to the chosen evaluation measure.
Notice that, given an outer training dataset, the best pa-
rameters with respect to one evaluation measure, can differ
from the best parameters with respect to another evaluation
measure.

5.4 Results and Discussion
Table 3 shows the evaluation of the considered algorithms

on different datasets, with different measures. The exper-
iments belonging to the user selected setup were repeated
5 times, drawing a different random sample of test prefer-
ences every time. Therefore, we report both the mean and
the standard deviation for these experiments. The experi-
ments belonging to the random selected setup use a natural
split between the test and training dataset. Therefore, ran-
domizing the test set choice is not applicable and only one
value is reported for every experiment. Scripts for auto-
matically repeating all experiments are available at https:

//bitbucket.org/KVs/unncf_submit. The exact paramter

https://bitbucket.org/KVs/unncf_submit
https://bitbucket.org/KVs/unncf_submit

Table 3: Selected algorithms evaluated with multiple experiments. Our novel algorithm is marked with a ?

dataset measure ? KUNN
WRMF
[7, 10]

BPRMF
[12]

UB+IB

item-
based,
cosine,
SNorm+
[2]

user-
based,
cosine
[13]

pop

Movielens

HR@10
mean .217 .217 .174 .209 .165 .209 .063

std .002 .001 .004 .002 .002 .002 .002

ARHR@10
mean .093 .091 .071 .090 .073 .090 .022

std .003 .002 .001 .002 .002 .002 .002

AUCAMAN mean .941 .944 .934 .927 .916 .927 .865
std .001 .001 .002 .001 .001 .001 .001

Yahoo!Musicuser

HR@10
mean .378 .338 .285 .365 .364 .316 .187

std .009 .007 .009 .003 .012 .012 .004

ARHR@10
mean .163 .145 .102 .160 .160 .127 .062

std .003 .007 .006 .006 .007 .003 .002

AUCAMAN mean .926 .910 .891 .910 .911 .910 .841
std .002 .002 .003 .003 .003 .003 .001

Yahoo!Musicrandom AUCAMAU .788 .770 .755 .768 .768 .761 .670

combinations explored by the grid search procedure (Sec. 5.3)
and other details can be inspected in these scripts.

From Table 3 we can make several observations. First of
all, KUNN outperforms every other algorithm five out of
seven times, shares one best performance with WRMF, and
is one time outperformed by WRMF.

Secondly, the user-based algorithm clearly outperforms
the item-based algorithm on the Movielens dataset. On the
Yahoo!Musicuser dataset on the other hand, the item-based
algorithm clearly outperforms the user-based algorithm. For
UB+IB, the grid search procedure (Sec. 5.3) is successful
in choosing λ such that the best of both algorithms in the
ensemble gets the highest weight. However, UB+IB cannot
outperform the best of both individual algorithms. KUNN,
on the other hand, successfully combines the user- and item-
based information and consistently outperforms both indi-
vidual algorithms.

Thirdly, the rather disappointing performance of BPRMF
stands out. A possible explanation lies in the choice of the
parameters. Following Rendle et al. [12], we used grid search
(Sec. 5.3) to choose the best out of 267 parameter combina-
tions for BPRMF in every experiment. We can however not
rule out that there exist parameter combinations outside our
267 possibilities, for which BPRMF performs better. Find-
ing a good set of parameters is harder for BPRMF than
for the other algorithms because BPRMF uses 7 parameters
that can all take an infinite number of values. The param-
eters kU and kI of KUNN, on the other hand, are integers
within the bounds [0, |U|] and [0, |I|] respectively. There-
fore, we can find a good set of parameters among only 25
possibilities.

Finally, all personalized algorithms perform much better
than the non personalized baseline pop.

6. EXPLAINABILITY
The consideration that explanations of item-based algo-

rithms are superior comes from observing the formulas for
computing the recommendation scores [3, 7]. For item-based
algorithms on the one hand, this formula is given by Equa-
tion 4 in which every term can be attributed to one of the
known preferences of the target user. Therefore the known

preferences related to the biggest terms can naturally serve
as an explanation for the recommendation. For user-based
algorithms on the other hand, the formula is given by Equa-
tion 5 in which every term can be attributed to one of the
collaborative users. This is much less useful because the
most similar users give no intuitive explanation for the rec-
ommendation as they are probably strangers to the target
user and the same for every recommendation. Furthermore,
this kind of explanation would also be an invasion on the
privacy of these collaborative users.

However, this difference is only artificial. Thanks to our
reformulation, we can write both the user-based algorithm
by Sarwar et al. [13] (Eq. 5) and KUNN as a sum over the
known preferences of the target user.

We start with the user-based algorithm (Eq. 5). This
algorithm can be rewritten as

s(u, i) =
1

|KNN (u)|
∑

v∈KNN(u)

Rvi

(∑
l1∈I Rul1Rvl1∑
l2∈I Rul2Rvl2

)
.

Notice that the last factor in the summation is simply 1, but
allows us to rewrite the equation as

s(u, i) =
1

|KNN (u)|
∑
l1∈I
Rul1

 ∑
v∈KNN (u)

Rvl1Rvi∑
l2∈I Rul2Rvl2

 ,

In the above equation, we have written the user based score
s(u, i) as a weighted sum over the known preferences of u.

The known preferences l1 with the biggest weights, serve
as a natural explanation for recommending i to u. Hence,
we have naturally explained the user-based recommendation
of i for u.

Next, we consider KUNN, which can be rewritten as

s(u, i) =
1√

c(u)c(i)

∑
j∈I

Ruj=1

 1√
c(j)

∑
v∈U

Rvi=1
Rvj=1

N
(
(u, i) , (v, j)

)√
c(v)

 ,

by regrouping Equation 3. Thus, also KUNN computes
s(u, i) as a weighted sum over the known preferences of u.

Again, the known preferences with the biggest weights
serve as a natural explanation for recommending i to u.
Hence, we have naturally explained recommendations made
by KUNN.

7. RELATED WORK
The majority of the work on collaborative filtering pre-

sumes rating data. This setting is significantly different from
our setting with binary, positive-only data. Therefore, the
algorithms for rating based collaborative filtering differ on
important aspects such as how they measure similarity, how
their performance is measured and how they handle missing
ratings, user- and item-biases.

Hence, specific algorithms have been proposed for OCCF.
First, an analysis of user-based nearest neighbors algorithms
for OCCF was given by Sarwar et al. [13]. We discussed
their work in Section 3.2 and compared experimentally to it
in Section 5.

Later, Deshpande et al. [2] introduced the item-based near-
est neighbors approach for OCCF. We discussed their work
in Section 3.1 and experimentally compared to it in Section
5. Afterwards, similar approaches were suggested [15, 1].
Recently, multiple authors proposed to minimize a global
cost function for computing the item similarities [12, 9, 8].

Furthermore, Symeonidis et al. [16] recognized that com-
bining user- and item-based approaches could be beneficial.
Additionally, Wang et al. [18] proposed a unification of user-
and item-based algorithms. However, their work presumes
rating data.

Finally, there exist also matrix factorization algorithms
for OCCF [7, 10, 12, 14]. In our experimental evaluation
(Sec. 5), we compared with two state-of-the-art algorithms
of this class: WRMF by Hu et al. [7] and BPRMF by Rendle
et al. [12].

8. CONCLUSIONS AND FUTURE WORK
We proposed KUNN, a novel algorithm for one class col-

laborative filtering, a setting that covers many applications.
KUNN originates from a reformulation that unifies user-

and item-based nearest neighbors algorithms. Thanks to
this reformulation, it becomes clear that user- and item-
based nearest neighbors algorithms discard important parts
of the available information.

KUNN improves upon these existing nearest neighbors al-
gorithms by actually using more of the available informa-
tion. Our experimental evaluation shows that KUNN not
only outperforms existing nearest neighbors algorithms, but
also state-of-the-art matrix factorization algorithms.

Finally, we challenged the well accepted belief that item-
based algorithms are superior for explaining the recommen-
dations they produce. Thanks to our reformulation, we were
able to show that also recommendations by KUNN and the
traditional user-based algorithm come with a natural expla-
nation.

We see research on novel definitions of the functions L, N ,
G and S as the most important direction for future work.

9. REFERENCES
[1] F. Aiolli. Efficient top-n recommendation for very

large scale binary rated datasets. In RecSys, pages
273–280, 2013.

[2] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. TOIS, 22(1):143–177,
2004.

[3] C. Desrosiers and G. Karypis. A comprehensive survey
of neighborhood-based recommendation methods. In
F. Ricci, L. Rokach, B. Shapira, and P. Kantor,
editors, Recommender Systems Handbook. Springer,
Boston, MA, 2011.

[4] Z. Gantner, S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. Mymedialite: A free recommender
system library. In RecSys, pages 305–308, 2011.

[5] Grouplens. ml-1m.zip.
http://grouplens.org/datasets/movielens/.

[6] J. Herlocker, J. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. In CSCW,
pages 241–250, 2000.

[7] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM,
pages 263–272, 2008.

[8] S. Kabbur, X. Ning, and G. Karypis. Fism: Factored
item similarity models for top-n recommender
systems. In KDD, pages 659–667, 2013.

[9] X. Ning and G. Karypis. Slim: Sparse linear methods
for top-n recommender systems. In ICDM, pages
497–506, 2011.

[10] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In ICDM, pages 502–511, 2008.

[11] B. Pradel, N. Usunier, and P. Gallinari. Ranking with
non-random missing ratings: Influence of popularity
and positivity on evaluation metrics. In RecSys, pages
147–154, 2012.

[12] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In UAI, pages
452–461, 2009.

[13] B. Sarwar, G. Karypis, J. Kostan, and J. Riedl.
Analysis of recommendation algorithms for
e-commerce. In EC, pages 158–167, 2000.

[14] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. Climf: learning to
maximize reciprocal rank with collaborative
less-is-more filtering. In RecSys, pages 139–146, 2012.

[15] B. Sigurbjornsson and R. van Zwol. Flickr tag
recommendation based on collective knowledge. In
WWW, pages 327–336, 2008.

[16] P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and
Y. Manolopoulos. Nearest-biclusters collaborative
filtering based on constant and coherent values. Inf.
Retr., 11(1):51–75, 2008.

[17] N. Tintarev. Explanations of recommendations. In
RecSys, pages 203–206, 2007.

[18] J. Wang, A. P. de Vries, and M. J. Reinders. Unifying
user-based and item-based collaborative filtering
approaches by similarity fusion. In SIGIR, pages
501–508, 2006.

[19] Yahoo!Research. Yahoo webscope r3.tgz.
http://research.yahoo.com/Academic Relations.

	Introduction
	Preliminaries
	Unifying Nearest Neighbors
	Item-Based
	User-Based
	Generalization

	KUNN Unified Nearest Neighbors
	Experimental Evaluation
	User Selected Setup
	Random Selected Setup
	Parameter Selection
	Results and Discussion

	Explainability
	Related Work
	Conclusions and Future Work
	References

