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Abstract

Recommendation systems usually create static models from historical data. Due

to concept drift and changes in the environment, such models are doomed to

become stale, which causes their performance to degrade. In live production

environments, models are therefore typically retrained at fixed time-intervals.

Of course, every retraining comes at a significant computational cost, making

very frequent model updates unrealistic in practice. In some cases, the cost

is worth it, but in other cases an update could be redundant and the cost an

unnecessary loss. The research question then consists of finding an acceptable

update schedule for your recommendation system, given a limited budget. This

work provides a pragmatic analysis of model staleness for a variety of collabo-

rative filtering algorithms in news and retail domains, where concept drift is a

known impediment. We highlight that the rate at which models become stale

is highly dependent on the environment they perform in and that this property

can be derived from data. These findings are corroborated by empirical observa-

tions from four large-scale online experiments. Instead of retraining at regular

intervals, we propose an adaptive scheduling method that aims to maximise the

accuracy of the recommendations within a fixed resource budget. Offline experi-

ments show that our proposed approach improves recommendation performance
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while keeping the cost constant. Our findings can guide practitioners to spend

their available resources more efficiently.

1. Introduction

Recommendation systems are deployed in production environments where

they help users find relevant items in typically large catalogues. In modern-day

settings, these users generate millions of interactions every day. This continuous

stream of information creates two challenges for recommender systems: 1. the

amount of data they need to process calls for efficient algorithms that can keep

up with these ever-growing data streams, and 2. the dynamic nature of this

data calls for frequent model updates (Gama et al., 2014; Al-Ghossein et al.,

2018). As time passes, new items become available, others disappear, interests

of the global population change, seasons make different items relevant, and

interests of single users also change over time. These changes are crucial for the

recommendation system to take into account.

Much research has concentrated on developing algorithms to better leverage

large amounts of data and achieve greater accuracy. Additional improvements

also account for concept drift in the data (Campos et al., 2014; Koren et al.,

2009).

Recommendation methods are usually evaluated by splitting the dataset

into a static training-, validation-, and test-set (Jeunen, 2019; Cañamares et al.,

2020). While this is effective for evaluating the quality of the models, it does not

address the dynamic nature of the data, due to which even the most accurate

algorithms inevitably become stale.

Understanding how model staleness affects recommendation systems for spe-

cific environments is necessary to determine how frequently models should be

updated (Breck et al., 2017). Therefore, we first study how recommender sys-

tems are impacted by model staleness as a result of concept drift in the envi-

ronment. We study both the change that models undergo as new data becomes

available and the resulting performance degradation. Our experiments in Fig-

2



ure 1 show that model staleness impacts quality very quickly in news domains,

due to rapidly changing content and user interests. After just a few hours, the

models will recommend mostly irrelevant items. In traditional retail settings,

drift is much less pronounced, and as a result, models remain useful for longer

periods of time.

The straightforward solution to avoid model staleness is to retrain the model.

To the best of our knowledge, the natural question “When should the model be

retrained?”, remains unanswered in the scientific literature. In this paper, we

attempt to formulate an answer to this often overlooked, yet important question.

A näıve answer is to continuously update the computed models. Once a

model is trained and deployed, a new training cycle begins that recomputes a

model on the updated dataset. In practice however, such a continuous training

cycle incurs a significant cost of computational resources. Therefore, the go-to

approach is to schedule model updates at regular intervals.

A more elegant solution is to create incremental models (Vinagre et al.,

2014; Anyosa et al., 2018; Al-Ghossein et al., 2018; Jeunen et al., 2019; Vinagre

et al., 2020; Jeunen et al., 2022). Instead of recomputing the model on the entire

dataset, these models only process newly collected data and update a previously

computed model with this new information. These methods have the advantage

that the computational cost for each update is typically much lower than when

the model is retrained on the full, potentially huge dataset. Still, the same

research question holds, since even for incremental methods, a choice must be

made on when each update is scheduled. This can be continuous, immediately

as new data arrives, or more typically as the cost of computational resources

can be high, in batches after a certain amount of time.

We challenge the implicit assumption made in regular interval scheduling

that each update results in a similar increase in accuracy. To illustrate this,

imagine a local news website. At night, much fewer interactions occur and

usually no new articles become available. As a result, we can safely state that

any updates scheduled during the night add very little to the quality of the

model. Yet, they are roughly equal in cost to model updates that are being
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computed at peak traffic hours (e.g. lunchtime) when drifting user interests and

new items significantly impact the model. A clear need arises for a scheduling

procedure that allows models to be trained at more opportune times. Such a

scheduling procedure would increase the online performance of the model over

the entire time period, whilst keeping computational costs constant. The day-

and-night example serves to illustrate this phenomenon, but it should be clear

that a scheduling algorithm that learns from the data is superior.

We posit that the goal of a scheduling procedure is to ensure that each up-

date captures the same amount of new information. As such, updates should

be scheduled more frequently in periods of high information gain, and less fre-

quently in periods of lower gain. All this should happen whilst keeping a fixed

budget into account. As we do not know the distribution of high-information

periods over the next scheduling period, this adds a non-trivial complexity to

the problem.

To overcome these challenges, we propose novel methods for scheduling up-

dates based on summary statistics from previously observed batches of data.

Our methods aim to detect when model updates benefit the system the most,

considering either the informational value of the data or changes in the pro-

jected output of the model. We show that these methods improve on the widely

used approach with regular intervals. Furthermore, our methods provide a so-

lution to create an optimized schedule for a given budget, which is a common

concern for practitioners. So far we intentionally did not mention the specific

recommendation method used, as we wish to propose a method independent of

the specific algorithm used. After all, even complex systems often rely on basic

building blocks that need retraining.

The remainder of this paper is organized as follows: In Section 2, we highlight

related work. In Section 3, we describe the methods used in the analysis of model

staleness in a recommendation context, and describe the scheduling methods.

In Section 4, the experimental results are presented and analysed. Finally, in

Section 5, we present how our work provides valuable insights and guidance for

practitioners that need to balance the trade-off between keeping a model up to
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date and the computational cost that comes with it.

2. Related Work

Detecting concept drift. This is a well studied problem in a variety of applica-

tions (Bifet and Gavalda, 2007; Klinkenberg and Renz, 1998; Gama et al., 2014;

Qahtan et al., 2015; Widmer and Kubat, 1996; Yu and Abraham, 2017). Its goal

is to detect when the underlying distribution of incoming observed data samples

changes. Typically, these methods either: 1. measure changes in performance,

2. inspect changing properties of the model, or 3. inspect changing properties

of the data (Klinkenberg and Renz, 1998).

Concept drift detection can be used to decide when to update a model, by

simply coupling the detection of change with the action of a model update. In an

environment where change is rapid, online performance measures, such as click-

through-rate or offline metrics, such as precision and recall, are not suitable for

such purposes, because they typically show high variance, and detecting changes

in such metrics in short intervals is prone to false positives. Depending on the

sensitivity of the model it is likely to either wait too long (for the confidence

estimate to be smoothed by more samples), or act too soon (as each sudden

change in the target value due to variance is considered a detected change in

the underlying data).

The alternative of model introspection can provide a way forward in specific

use-cases, when the model can be efficiently inspected. However, a generally

applicable solution should preferably be model-agnostic. Because of these rea-

sons, in this work we focus on the properties of the data, as this seems to be

the most interesting avenue to decide on model updates in general yet highly

dynamic recommendation scenarios.

Increasing the computational efficiency of model training. In virtually all prac-

tical recommendation applications, models that train faster are favourable. The

reason for this is two-fold: 1. New data can be incorporated more quickly to

5



combat concept drift, and 2. The cost of keeping the model up-to-date is re-

duced.

Different approaches to improve the computation time of models exist. A

first class of methods suggests a trade-off between the accuracy of the model

and the computation time. Approximate models explicitly trade the exactness

of the model for improved computational complexity (Arya et al., 1998; Li et al.,

2019; Steck, 2019c). Forgetting mechanisms reduce computational complexity

by reducing the amount of data used for training (Vinagre and Jorge, 2012). A

second way to reduce computational cost is to adopt models that can be updated

incrementally, using only the latest batch of information collected, rather than

the complete historical data set. Incremental methods either compute an exact

model, which is interchangeable with the traditional non-incremental one, while

requiring less time to update (Jeunen et al., 2019; Vinagre et al., 2014), or

use approximate methods (Zhang et al., 2020; Jeunen et al., 2022). Although

both of these approaches to reduce computational cost study the cost-accuracy

trade-off, they still lack a method for scheduling the updates. For example, in

the extreme case where an update of the model is triggered with every new

transaction, the model would be continuously recomputed. This introduces the

high cost of a constantly running resource. More typically a fixed schedule is

used, such that models are updated at regular intervals. Alternatively, a fixed

window size is used, such that the model will be updated after a fixed number of

transactions. In this work, we challenge both the assumption that every update

is equally valuable and the assumption that every transaction carries the same

amount of information.

Model staleness. In practical machine learning, model staleness is a fundamen-

tal pitfall that must be avoided to achieve satisfactory results consistently over

time (Breck et al., 2017). In recommendation systems this notion is to the best

of our knowledge under-explored. Jambor et al. (2012) describe an application

of systems control theory to the problem of updating the recommendation sys-

tem. In their method, they make the assumption that each transaction carries
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the same information value, which we challenge in this work. In addition, the

method relies on performance metrics to monitor the system, which introduces

large variance when looking at very fine grained control at the granularity of

minutes.

Zanardi and Capra (2011) present an approach using feed-forward control

system theory to decide on updating a model. Based on the number of new

users and items that have arrived in the system, it decides when to retrain. This

approach manages to avoid waiting for the model to degrade by predicting the

degradation based on summary statistics. Contrary to the previous method,

this method does not assume a linear relationship between transactions and

degradation, instead they assume a relationship between new users and items

arriving in the system. However, if known users behave differently, this update

strategy will not suggest a model update, and similarly, if no new items arrive,

the model will also not be retrained, while users’ interests in items might be

changing.

Al-Ghossein et al. (2018) use an adaptive windowing technique (ADWIN)

to decide when to update a Latent Dirichlet Allocation (LDA) topic model

in production (Bifet and Gavalda, 2007; Blei et al., 2003). Their approach

monitors the probability that a word occurs in a text, given the inferred LDA

model. When this probability shifts significantly, the older data is discarded,

and the model is updated using only the more recent data.

Our work differs from these approaches in that it is independent of a specific

modelling technique, handles changing behaviour of users, and additionally takes

into account the budget available for scheduling model updates, since that is

often the variable that is constrained in a real-world scenario.

3. Methodology

Throughout this work, we assume the user-item interaction data to be binary

and positive only, as this encompasses the most commonly encountered use-

cases in practice (Verstrepen et al., 2017). A dataset D consists of user-item-

timestamp triplets (u, i, t) ∈ U × I × N. We assume the timestamp to be at
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the granularity of seconds. User-item interactions can make up various different

types of events (e.g. view, add-to-cart, click, purchase, . . . ), we will refer to them

as “events” in general. A recommendation model ϕ maps a user representation

to a vector of recommendation scores: ϕ : U → R|I|. For a user-item matrix

X ∈ R|U |×|I|, ϕ(X) indicates a row-wise transformation from user histories to

recommendation scores. For simplicity and without the loss of generalit, we do

not consider more involved models that take into account contextual features

or the sequence of the user history.

3.1. Measuring Model Staleness

We formalise the concept of “staleness” in two ways. First, a model is

considered stale if its prediction accuracy is worse than a more recently updated

model. Second, a model can be considered stale if its output is significantly

different from that of a more recent model.

3.1.1. Accuracy

To measure changes in model accuracy over time, we evaluate models for

consecutive, non-overlapping windows of w seconds on the test data. We will

refer to these batches of test data as slices. As is typical in temporal evaluation,

we split the data on timestamps tval and t0. The user-item interactions with

timestamp t < tval are used for model training, those with tval ≤ t < t0 for

validation, and the remaining interactions with t ≥ t0 make up the test set.

We further divide the test data into n slices. This allows us to gain a more

fine-grained view of model performance in the test set, since we can now obtain

n performance estimates where ti = t0+(i ·w) and slice i (0-indexed) consists of

data ti ≤ t < ti+1. Now, we evaluate the out-of-date model ϕ0 trained on data

up to t0 and the up-to-date models ϕi trained on data up to ti, and observe the

impact of model recency on accuracy. This evaluation method boils down to

the SW-EVAL method presented by Jeunen et al. (2018), where we additionally

evaluate stale models on every test slice.

The decrease in accuracy as the model grows older is a manifestation of

model staleness. For some datasets, the slope of this degradation is steep: a
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couple of hours after training, the model achieves only 50% of the accuracy of

an up-to-date model. For others, this degradation is far slower: after several

days, the model still achieves 90% of the accuracy of an up-to-date model.

3.1.2. Output correlation

Two models might attain the same level of recommendation accuracy in a

very different manner (i.e. being correct on non-overlapping sets of users and

items). As such, one could argue in favour of focusing on the recommendations

that these models generate. That is, we now define model change as differences

in model output. To avoid biases present in real user histories, we choose to

generate k psuedo-user histories using the following procedure. For each psuedo-

user, we first generate a uniformly distributed random integer N between Nmin

and Nmax, which defines the number of items in this user’s history. Second,

we generate this pseudo-user’s history by sampling N items from the dataset

without replacement. During sampling each item is given a uniform probability

of getting chosen.

This produces a binary matrix X ∈ Nk×|I|, where Xui = 1 when the item i was

sampled for the pseudo-user u. For example, when the dataset contains 5 items

and we generate k = 3 users with Nmin = 2 and Nmax = 4, we might get the

following matrix.

X =


1 0 1 1 0

0 1 1 0 0

0 1 1 1 1


This matrix X will be used as input to the recommendation models for which

we want to evaluate staleness.

Let the updated model at slice s be ϕs. For each slice, we compute rec-

ommendation scores using an up-to-date model ϕs, and an outdated model ϕ0.

Let P = ϕs(X) and Q = ϕ0(X). To calculate the change between models, we

compute the correlation of the recommendation ranking implied by these two

output matrices. We use the Kendall Tau b statistic (Kendall, 1945) to account

for ties in scores. This uses the number of concordant, discordant and tied pairs
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in the models’ outputs. Intuitively, a high Kendall Tau value in a comparison

between two model outputs indicates that the models agree on the ranking of

most items, and therefore using them in the top-N recommendation scenarios

would result in similar outcomes. A low Kendall Tau value indicates that the

updated model disagrees with the ranking of the old model. So staleness occurs

in ϕ0, as using ϕs in top-N recommendation results in significantly different

recommendations.

For each row i we consider all pairs of items (j, k) for which j < k and items

j and k have received a non-zero score in either Pi or Qi.

3.2. Estimating information gain

The basis of our scheduling method is that we estimate the amount of infor-

mation gained from events collected since the last update.

Number of events (EV). We assign an equal information value to each event col-

lected since the previous update. So we compute the amount of new information

at time ti since the last update timestamp tl as

informationEV =
∑

(u,i,t)∈D:tl<t≤ti

1 = |{(u, i, t) ∈ D|tl < t ≤ ti}| (1)

Inverse predicted relevance (IPR). The assumption that each event contains

the same information for the recommender system is often an oversimplifica-

tion. Unexpected interactions are more valuable than expected ones because

they indicate the inability of the model to predict a user’s behaviour. To en-

code the informational value of an event to the model, we propose to use the

inverted normalised recommendation score. High recommendation scores will

give rise to lower information values and vice versa. Intuitively, if the recom-

mendation model already expected the new user-item interaction, it holds less

information than when it is unexpected. Formally, let ϕt : U → R|I| be the

model deployed at time t, and let ϕt(u, i) ≡ [ϕt(u)]i denote the ith output (i.e.

the recommendation score for item i). We additionally assume recommenda-

tion scores to be normalised to the unit interval. Then, the information value
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collected at time ti since the last update timestamp tl is computed as:

informationIPR =
∑

(u,i,t)∈D:tl<t≤ti

1

ϕtl(u, i)
(2)

Output correlation (CORR). Rather than estimate the value of an event, we can

also look at the effect the collected events had on a model. If a model computed

with the new events would recommend significantly different items to similar

users, we can surmise that a large amount of information has been gathered.

Conversely if the output is closely correlated, we can assume that the new inter-

actions did not carry much information. Let Mll be the model computed at the

time of the last update (tl), Mti the model computed at ti and U’ a fixed sam-

ple of users. We compute CORR = correlation(Ml(U
′),Mi(U

′)), as described

in Section 3.1. Ideally we would like to compute the change of the model de-

ployed in production, however this would require updating that model, which

is exactly the action we are aiming to avoid doing unless necessary. Instead,

we use a more cost-efficient but less accurate proxy-model that can be updated

frequently without high cost. In our, experiments we use a “recently popular”

model to compute correlations, but more sophisticated, efficiently computable,

models can be used in exactly the same way.

3.3. Scheduling Model Updates

At each discrete timestamp t, our scheduling method needs to decide whether

or not to schedule an update of the model. The scheduling method should most

efficiently use an allowed budget to update the model such that performance

over the whole period is maximized. For the first two methods EV and IPR,

if the amount of collected information since the last update at timestamp tl

is above a threshold δ, an update will be scheduled. For CORR an update is

scheduled once the model correlation falls below the threshold δ.

The “optimal” value for δ yields the highest model accuracy, within a spec-

ified update budget. As such, to find the optimal value for the threshold, our

proposed methods should disregard any values that would introduce too frequent

updates.
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The allowed update frequency fupdate depends on the available budget for

model computations and the computational complexity of the model m used.

fupdate =
budget

∆t · cost(m)
.

Where budget
∆t is the available budget for a certain period, and cost(m) the

monetary cost of training the model once. Evidently, models that require more

resources, can be updated less frequently.

Using EV the value for δEV is the number of events before scheduling an

update. Given a requested number of updates, this can be computed exactly. If

fEV is the average frequency of events (events / day) and fupdate the requested

update frequency (updates / day), then δEV is computed as:

δEV =
informationEV

update
=

fEV

fupdate
(3)

For the two other methods, we cannot compute an exact value, and so offline

optimisation on a validation dataset is required. That is, for a range of values

for δ, we calculate the number of updates that would have been scheduled by

IPR or CORR. Then, we pick the maximal value of δ that remains within the

prespecified budget.

4. Experimental Results

4.1. Datasets

In order to validate the proposed methods in a variety of domains, we use

publicly available datasets for both news and retail use-cases, as well as two pro-

prietary industrial datasets. For the news use-case, we use the Adressa (Gulla

et al., 2017) and GLOBO (de Souza Pereira Moreira et al., 2018) datasets and

the proprietary “News” dataset. For the retail use-case, we use the Cosmetic-

sShop Kaggle dataset, as well as the proprietary “Retail” dataset. 23

As is common in the literature – we pruned users and items with very low

numbers of interactions from the dataset (Beel and Brunel, 2019). In doing

2https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
3https://rees46.com/
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Dataset |D| |U| |I| Period

Adressa 2 526 497 226 795 2 643 7d
Globo.com 2 720 889 218 081 9 668 17d
Industry News 3 323 941 239 149 3 378 7d

CosmeticsShop 7 187 824 361 775 22 932 152d
Industry Retail 12 066 513 995 651 15 712 46d

Table 1: Properties for the datasets used in the offline experiments.

so, we significantly decrease the computational complexity of model training

without significantly impacting the results obtained. As our experimental setup

consists of an iterative model training and evaluation process, this benefits the

reproducibility of our work with reasonable computational resources. We require

users to have interacted with at least 3 items, and 10/50 interactions per item

for the news/retail datasets respectively.

Table 1 shows summary statistics of the pre-processed datasets. The news

datasets contain fewer items, and are collected over much shorter periods of

time compared to the retail datasets. The train-test timestamp t0 was kept

constant per dataset for each experiment. For Adressa and the proprietary

News dataset, we used the last two days of the data as test data. For Globo,

we used the last five days. For CosmeticsShop we used the final month as test

data. For the proprietary Retail dataset, we used the last two weeks. When

evaluating algorithmic performance, we used sliding windows of 15 minutes for

the news datasets, and 6 hours for the retail settings. This significantly reduced

granularity for retail datasets is justified by our findings that models for retail

take longer to change compared to news models.

4.2. Recommendation Algorithms

Table 2 lists the recommendation algorithms we considered for comparison

in our offline experiments. Although we acknowledge that real-life industrial

recommender systems are much more complex than any of these algorithms,

we do believe that they are prototypical and can represent such systems for

which the same principles of drift and scheduling apply. The cost per update is

the estimated cost in USD for training the model once on a dedicated virtual
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Dataset Algorithm
Runtime

(s)
Memory
(GB)

Monthly Cost
(USD)

Adressa

ItemKNN 35 1 0.47
EASEr 44 1.2 0.60
Mult-VAE 2120 3 695
BPR-MF 7538 3 1180

Globo

ItemKNN 34 3 0.46
EASEr 302 8 4.1
Mult-VAE 3275 4 1074
BPR-MF 7627 3 1080

CosmeticsShop

ItemKNN 94 11 2.6
EASEr 3490 32 330
Mult-VAE 15800 32 1346
BPR-MF - > 60 -

Table 2: Computational requirements for public datasets and algorithms. Monthly cost as-
sumes computing the model every hour. If training takes longer than one hour we make the
assumption that training is only started once the previous model is done computing. For
Mult-VAE we used the default parameters for hidden and bottleneck layer sizes (600 and
200). BPR-MF models were trained with embedding size = 100. Mult-VAE and BPR-MF
were both run for 50 epochs. The BPR-MF computation for CosmeticsShop dataset ran out
of memory on our testing machine with 60 GB RAM.

machine (VM) on Google Cloud Services 4. The approaches that benefit from

dedicated GPUs (BPR-MF (Rendle et al., 2009) and Mult-VAE (Liang et al.,

2018)), were given a single NVIDIA Tesla P100. The computation time was

computed on a machine with 14 virtual cores and 60 GB of RAM memory. As

BPR-MF required more RAM than available on the CosmeticsShop dataset in

our test setup, it is left blank in Table 2. For deep learning approaches, the

introduction of a GPU increases costs dramatically, as well as their relatively

higher run times. These costs are based on the training times of these models on

the available data. In real world applications, the data available usually spans

a longer period, more users and more items than we have available in the offline

datasets. Because of this, we can expect practical estimates of the cost per

update to be multiple times higher than the values reported here. Nevertheless,

our method is unaffected by this scaling factor. By adjusting the cost estimate

to the data at hand, we can still schedule updates on a given budget. Parameters

used in the experiments were tuned using grid search on the validation set.

4https://cloud.google.com/products/calculator/
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Because of the long training times for Mult-VAE and BPR-MF, our ex-

periments that rely on iterative model retraining to simulate online behaviour

would require several weeks of computation time. To improve reproducibility

of the work whilst remaining relevant for state-of-the-art methods, we therefore

focus on two scalable and highly competitive item-based collaborative filtering

algorithms:

Item-kNN is a well-known and often used baseline algorithm for neighbourhood-

based collaborative filtering (Sarwar et al., 2001). The model consists of a

single matrix multiplication with an item-item matrix S ∈ R|I|×|I|: ϕ(X) =

XS. Here, Si,j holds the cosine similarity between items i and j, for which

efficient algorithms exist (Jeunen et al., 2019). As X and S will often be

sparse in nature, computing recommendation scores ϕ(X) is also fast. Recent

work on neural news recommendation highlights the remarkable competitive-

ness of simple neighbourhood-based methods compared to more complex alter-

natives (Ludewig and Jannach, 2018; Moreira et al., 2019).

EASEr was recently proposed as an extension of the well-known SLIM

method (Ning and Karypis, 2011; Steck, 2019b). In EASEr, the item-item

matrix S is found through a least-squares optimisation problem that allows

for closed-form computation. This makes the model much more efficient to

compute than various complex neural alternatives, whilst yielding highly com-

petitive results. As the optimisation requires inverting the Gramian item-item

matrix, EASEr becomes more costly to update as the size of the item catalogue

grows. We refer the interested reader to the work of Steck (2019a) for further

information on their approach.

We will release all source code to reproduce the results on the public data

presented throughout the following sections upon acceptance.

4.3. Model Staleness

In this section we investigate why it is important to update recommendation

models. First we show that models grow stale when they are not updated. In

a second experiment, we show that (frequent) model updates mitigate model
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staleness and are necessary to achieve adequate performance.

4.3.1. Existence of Model Staleness

We investigate the existence of model staleness by looking at how a models

performance evolves as it gets older and how much the output changes between

models trained at various points in the timeline. We follow the methodology

defined in Section 3.1.

In Figure 1, we show how the accuracy of a model degrades over time for

each of the datasets. To reduce the variance, and impact of time of day in

evaluation, we compute the degradation for 12 different starting timestamps,

each separated by one hour. As expected, models for news datasets suffer from

staleness after only a couple of hours, while models in retail contexts remain

similarly performant for a longer time. Interestingly, models on Globo and

Adressa behave differently. On Adressa the degradation is much stronger than

for Globo. The rate of model staleness is specific to the dataset, and thus it

should be taken into account when choosing a training schedule in production.

To investigate the change in model output, we use lmin = 4, lmax = 10 such

that the sampled histories contain between 4 and 10 interactions and k = 5000

samples for Adresssa, k = 10000 for Globo, and k = 20000 for CosmeticsShop.

The correlation results in Figure 2 extend the results of our analysis on ac-

curacy. Based on their output, the models for all datasets grow stale. However,

this change is not directly related to the chosen accuracy metrics. For example,

a week-old ItemKNN model for CosmeticsShop still has an accuracy of 95%

compared to the up-to-date model, despite their outputs only having a correla-

tion of 0.7. Therefore, we remark that the model changes faster than it becomes

stale, and this change could affect metrics such as diversity or fairness. This

highlights that the number of required updates depends strongly on the chosen

success metric as well. In this work, we limit the scope of our study to accuracy

metrics.

Both decreases in accuracy and correlation of output between models confirm

for recommendation models that, if we want high performance, we need to make
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Figure 1: The y-axis shows the accuracy of the model as a percentage of the accuracy of the
up to date model. Accuracy decreases much faster for news datasets, compared to the mostly
stable performance on the retail dataset, both for EASEr (Dotted line) and ItemKNN (full
line) models. The shaded area shows the 90% confidence interval.
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Figure 2: The y-axis shows the correlation between the output of an out-of-date model, and
the up-to-date model. The x-axis shows the age of the out-of-date model. The shaded area
shows the 90% confidence interval.

sure the model is up-to-date (Breck et al., 2017).

4.3.2. Impact of model staleness on model performance

We investigate how scheduling can mitigate the staleness effect, by evaluat-

ing how well a traditional regular interval scheduler mitigates the staleness of

models. Specifically, we vary the update frequency to investigate the benefit

gained from more frequent updates, as well as the costs associated with them.

Based on the results in Section 4.3.1, we expect more frequent updates to

result in higher accuracy. Figure 3 reflects this expectation. For both news

datasets, infrequent updates lead to lower performance than the more frequently

updated models. However, we do notice a diminishing return on the number of

updates, illustrated by the sections of the plots with zero gradient. For example,

updating twice per hour (96 updates) to three times per hour (144 updates) is

not significant. Updating from a single update every four hours, to two updates

per hour does show a significant increase (p < 0.05) in performance.

For the retail dataset, CosmeticsShop, the stable performance of out-of-
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Figure 3: The y-axis shows NDCG@10 of the model, the x-axis shows the number of times the
model was updated and the cost associated with these updates. Similar results are obtained
with Recall@10, which we omit here for brevity. Costs for ItemKNN are far lower, as the
model trains much faster, especially when the number of items grows. On cosmeticsshop the
cost difference between ItemKNN and EASE is so big, that all ItemKNN point are around
the same (low) cost.

date models shown in Figure 2 suggests that the benefit of increased updates

is low. This expectation is confirmed here as well, as further increasing the

number of updates past 14 for the period of 14 days yields only minimal accuracy

improvement.

For both retail and news datasets, there is a significant performance gap

between the ItemKNN results and the EASEr accuracy scores. While it is not

the goal of this paper to investigate the relative performance of these models, it

is interesting to remark that more complex models that have a higher accuracy,

also require a higher computational cost. Therefore, it is necessary to consider

the estimated cost of each update in addition to the number of times a model

is updated.

Given the estimated costs per update in Table 2, the second row of plots in

Figure 3 shows the cost associated with the updates and resulting model perfor-

mance. Costs scale linearly with the amount of updates, but vary strongly from

model to model. For example, computing the EASEr model for CosmeticsShop

once is more expensive than computing the ItemKNN model 35 times. When

deploying a recommender system in production, it is necessary to take this cost

into account. Neural network approaches are popular in the literature, and, as

we have shown, they often require high computation costs to train. In many
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use-cases, simpler up-to-date models can perform better within tight budget

constraints. Additionally, if we can decrease the cost of a single model compu-

tation, we can update more frequently and increase accuracy as a consequence.

This highlights the importance of incremental models.

Similarly, faster-to-compute approximate approaches can also increase ac-

curacy compared to their exact counterparts when the budget is constrained –

despite losing accuracy in static evaluation scenarios. As an example, in their

paper on “Markov Random Fields for Collaborative Filtering”, Steck (2019c)

reports that the approximate version of the algorithm requires five times less

computation time, while only losing 0.8% accuracy. This means that the cost

per update for the approximation is at least five times lower than that of the

exact model. As such, at constant cost, the approximate model can be trained

five times more often. This compensates the theoretical loss in accuracy in many

production settings. For the remainder of this work, we return to an abstract

notion of cost to focus on the impact of well-timed model updates on accuracy.

4.4. Comparing scheduling methods

In order to evaluate which of the methods for estimating the information

gain described in Section 3.2 performs the best, we compare them for Item-kNN

and EASEr on all datasets.

For each of our two types of datasets, we use two different update frequencies.

For the news datasets (evaluated over a period of 48 hours), we use schedules

with 24 and 48 updates (fupdate = 12/day and 24/day). For the retail dataset

(evaluated over 14 days), we use schedules with 7 and 14 updates (fupdate =

0.5/day and 1/day). We choose these numbers of updates, such that the amount

of model updates does not yet counteract staleness entirely, as visualised in

Figure 3. Thus, leaving room for smarter scheduling to make a measurable

difference. Furthermore, these update frequencies are typical in production

settings.

In order to make results between schedulers comparable, we ensured that

all schedulers updated the model exactly as often as requested. Simulating
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a situation where the threshold selection on the validation dataset results in

exactly the same amount of updates on the test dataset. To do this, we started

by computing the threshold as defined in Section 3.3, and then slightly increased

or decreased it until the right amount of updates are scheduled during the test

period.

While this procedure goes against good practices for optimising parameters, we

show in Figure 4 that given more data than available in the offline datasets, we

would be able to accurately estimate the correct threshold value that schedules

exactly the right amount of updates for a given frequency. We visualise how

accurate our estimates of the thresholds really are, by plotting the amount of

updates scheduled by each of the methods, compared to the amount requested.

We only present the results for all schedulers for the Adressa dataset, due to

run-time constraints. Compared to the equal time schedule, which by design

schedules the right amount of updates, the fitted parameters mostly schedule the

expected amount of updates. The EV method is the strongest outlier, scheduling

fewer updates than expected. This is a direct consequence of the event frequency

that changes significantly throughout the dataset, showing that the EV method

is more susceptible to variations in amount of traffic than the other two. In order

to validate that in practice the right amount of updates would be scheduled,

we also show the results on a real-world news dataset. With two months of

validation data and 14 days of test data, the results confirm that given more

data, the day-to-day variance is removed, such that in realistic scenarios the

expected amount of updates will be scheduled during the test period, and our

proposed methods compute the right thresholds. It is therefore an effect of

the size of the offline datasets, that we need to modify our thresholds after

computing them on the validation dataset to obtain a fair comparison.

The results of experiments comparing scheduling methods, are presenteed in

Tables 3 and 4.

Key empirical observations from these experiments are as follows:

For the large majority of settings, at least one of the proposed novel methods

outperforms the widely used “equal time” baseline. This confirms that smart
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ItemKNN
NDCG Recall NDCG Recall

Number of updates 24 48

Adressa
equal time 0.0360 0.0682 0.0378 0.0721

EV 0.0367 0.0698 0.0383 0.0730
CORR 0.0353 0.0674 0.0376 0.0726

IPR 0.0364 0.0700 0.0382 0.0738
Globo

equal time 0.0133 0.0214 0.0143 0.0233
EV 0.0136 0.0221 0.0144 0.0235

CORR 0.0136 0.0221 0.0144 0.0235
IPR 0.0138 0.0223 0.0145 0.0236

Industry news dataset
equal time 0.0379 0.0700 0.0404 0.0749

EV 0.0391 0.0725 0.0411 0.0763
CORR 0.0377 0.0698 0.0398 0.0735

IPR 0.0388 0.0720 0.0410 0.0761

Number of updates 7 14

CosmeticsShop
equal time 0.0581 0.0813 0.0587 0.0821

EV 0.0579 0.0812 0.0584 0.0817
CORR 0.0582 0.0918 0.0585 0.0923

IPR 0.0579 0.0913 0.0586 0.0924
Industry retail dataset

equal time 0.1217 0.1563 0.1222 0.1569
EV 0.1216 0.1562 0.1223 0.1570

CORR 0.1210 0.1553 0.1222 0.1568
IPR 0.1218 0.1565 0.1223 0.1569

Table 3: The NDCG@10 and Recall@10 results with the ItemKNN algorithm for all considered
datasets. Experiments on news datasets were evaluated over a period of 48 hours, on retail
datasets over a period of 14 days. The results for the best scheduling methods are shown in
bold per configuration.
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EASEr

NDCG Recall NDCG Recall

Number of updates 24 48

Adressa
equal time 0.0461 0.0858 0.0486 0.0906

EV 0.0469 0.0877 0.0492 0.0920
CORR 0.0465 0.0878 0.0491 0.0929

IPR 0.0473 0.0893 0.0496 0.0940
Globo

equal time 0.0192 0.0318 0.0203 0.0338
EV 0.0192 0.0320 0.0202 0.0337

CORR 0.0197 0.0326 0.0202 0.0336
IPR 0.0197 0.0328 0.0202 0.0338

Industry news dataset
equal time 0.0461 0.0808 0.0494 0.0875

EV 0.0477 0.0841 0.0504 0.0894
CORR 0.0455 0.0797 0.0483 0.0851

IPR 0.0473 0.0832 0.0501 0.0889

Number of updates 7 14

CosmeticsShop
equal time 0.0809 0.1099 0.0824 0.1121

EV 0.0803 0.1094 0.0820 0.1115
CORR 0.0812 0.1232 0.0825 0.1253

IPR 0.0810 0.1231 0.0825 0.1255
Industry retail dataset

equal time 0.1479 0.1849 0.1486 0.1861
EV 0.1478 0.1849 0.1487 0.1862

CORR 0.1471 0.1838 0.1486 0.1861
IPR 0.1479 0.1850 0.1487 0.1863

Table 4: The NDCG@10 and Recall@10 results for EASEr algorithm on all considered
datasets. Experiments on news datasets were evaluated over a period of 48 hours, on re-
tail datasets over a period of 14 days. The results for the best scheduling methods are shown
in bold per configuration.
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Figure 4: The x-axis shows the number of updates requested during optimisation, the y-axis
shows number of updates effectively scheduled during testing. Results are shown for the
Adressa dataset, using 2 days of validation data to select the threshold parameters. The right
plot presents the schedule correctness for the number of events scheduling threshold. We
perform this only for this schedule, as it is the one with highest variance in the experiments
on the small dataset.

scheduling regimes can improve recommendation performance at constant cost.

The IPR method generalises the best to all datasets, either performing su-

perior or close second. This confirms that the method is able to detect the right

signals to decide on updating the model, regardless of the context in which it is

used.

Since both IPR and CORR improve over EV in some settings, we confirm our

hypothesis that not all events carry the same amount of information. Depending

on the context, it is necessary to take this into account to find the optimal

schedule.

Each of the three methods is model-agnostic, and can be used with any

model that generates recommendation scores. The EV and CORR methods do

not depend on the deployed model for choosing their updates. IPR conversely

does depend on the relevance scores predicted by the recommendation model,

but the results for ItemKNN and EASE show that it generalises to different

models.

Improvements with novel methods are most notable on the Recall@10 metric,

rather than on the NDCG@10 metric. This can be explained by the fact that

new items typically get recommended at the bottom of the top-K. Recall is
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much more sensitive to these lower ranked, but correct new items, compared to

NDCG, which focuses on ranking the correct items at the top of the list.

4.5. Online Experiments

In order to validate the offline results in this article, we also performed

several online experiments on both news and retail websites.

For the news use-case we got the opportunity to use a Dutch-language,

local, newspaper website. The staleness rates in the offline experiments showed

patterns matching the Adressa dataset, suggesting that models will grow stale

quickly when not retrained.

For the retail use-case we used two very different online webshops. A “tra-

ditional” retail webshop, showing similar staleness patterns as CosmeticsShop

and a “flash” retail webshop, where items are only available for a limited time,

whose offline staleness patterns showed behaviour between the news and retail

datasets. Models do grow stale, but not as quickly as they do for news.

Model staleness. To confirm that the results for our model staleness hypothe-

ses presented in Section 4.3.2 also hold in an online setting, we performed

three randomised controlled trials, colloquially known as an A/B-test, with con-

trol/treatment corresponding to the same recommendation model updated at

different intervals. In these trials, we do not yet make use of the new scheduling

methods we proposed, but instead use the traditional fixed schedule.

In the first of these trials we verified that model staleness impacts perfor-

mance quickly in a fast moving news context, such that faster updates result

in better performance. For the control group, we updated the model every 30

minutes and the treatment group had its model updated at an increased rate of

once every 15 minutes. Based on our offline experiments, we expected the treat-

ment group to outperform the control group due to the reduced staleness in the

serving models. This was confirmed after a 2-week trial, in which the treatment

group showed a 2% relative increase in click-through-rate (CTR) compared to

the control group.
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In a second trial on the traditional webshop, we verified that fewer updates

did not reduce recommendation performance. For the control group in this trial

the model is updated every 3 hours, while for the treatment group it is updated

once per day. We expected no significant difference in CTR between the two

groups, given the offline results. After a trial that ran for 4 weeks with more

than 1.5 million recommendation opportunities for each of the groups, indeed no

significant difference was found between the two schedules. This is an important

insight: indeed, reducing the number of model updates by a factor of 8 implies

reducing the computational costs for this model by a factor of 8.

The final trial was held on the flash-retail website. Our expectation was that

increasing the amount of model updates from 4 per day (control group) to 8

per day (treatment group) would prove beneficial on both CTR and conversion.

This was confirmed after the 10-day trial, with the treatment group showing a

significant improvement in both CTR (+20%) and conversion (+25%) over the

control group.

Smart scheduler. To extend our evaluation of the smart scheduling methods

proposed, we performed two trials where a smart scheduling approach was com-

pared to a baseline fixed schedule approach. During these trials we opted to use

the scheduler based on the CORR information metric, computed on a “recently

popular” model, for practical reasons. While the IPR scheduler performed bet-

ter in many of the offline settings, it was much harder to integrate into the

recommendation pipeline.

For the first trial, on the news website, we used the winning treatment from

our previous test (identifying model staleness) as the control group in this test.

The models are updated according to a fixed schedule, with an update every

15 minutes. The treatment group used the CORR scheduler, whose threshold

was fitted to schedule 48 updates per day using a validation dataset. Note that

the treatment will perform half as many updates as the control group, which

without the scheduler was significantly worse in the previous test. This trial

was carried out on 3 different lists of recommendations on the website, each
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shown on different pages. After a trial of one week, no significant difference was

found between the two groups for two out of three lists. On one of the lists, the

control group performed significantly better than the treatment group, though

the improvement was small (< 1%) especially given that it required twice the

cost. As such, this test confirms that the CORR scheduler manages to schedule

its updates at better timepoints, so it requires only half of the updates—and

half of the budget— to get the improved performance we previously only found

using 96 updates per day.

The second trial was held on the flash retail website. During this trial the

control group received recommendations from a model updated 8 times per

day, and the models for the treatment group were scheduled using the CORR

scheduler whose threshold was fitted to also schedule 8 models per day. Over the

evaluation period of 2 weeks, the CORR scheduler method showed a significant

(p < 0.05) improvement of 2% in CTR (relative) over the control group.

Given the positive online results of the CORR scheduler, and the better

offline performance of IPR, we are considering it future work to also implement

the IPR scheduler online, and verify its offline superiority over the popularity

change scheduler in online trials.

5. Conclusions

In this article we have demonstrated the effect of retraining and model stal-

eness in different environments and for a variety of collaborative filtering ap-

proaches, and we have studied the cost-accuracy trade-off. Achieving higher

accuracy requires increased computational costs up to some asymptotic point,

after which more updates have no further benefit. In real world applications of

recommendation systems we cannot ignore this cost of computing models and

therefore it is paramount to find an optimal balance between cost and accu-

racy. Our results indicate the importance of models that can be efficiently and

incrementally trained for real-world applications – because they allow frequent

updates while keeping costs low.
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We have proposed a generic method to create a smart schedule for retraining

or updating models, which results in higher accuracy than retraining at fixed

intervals given the same resources. Our scheduling approach uses a heuristic

to comply to the budget constraint. Applying this budget constraint to control

methods and drift detection methods is an interesting avenue to further improve

the use of resources in practice.

In our experiments, we have hinted at the fact that up-to-date models also

have an impact on other metrics, such as fairness or diversity. It remains inter-

esting future work to investigate this impact thoroughly.
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Adaptive collaborative topic modeling for online recommendation, in: Proc.

of the 12th ACM Conference on Recommender Systems, ACM. p. 338–346.

Anyosa, S.C., Vinagre, J., Jorge, A.M., 2018. Incremental matrix co-

factorization for recommender systems with implicit feedback, in: Companion

Proceedings of the The Web Conference 2018, International World Wide Web

Conferences Steering Committee. p. 1413–1418.

Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y., 1998. An op-

timal algorithm for approximate nearest neighbor searching fixed dimensions.

Journal of the ACM (JACM) 45, 891–923.

Beel, J., Brunel, V., 2019. Data pruning in recommender systems research:

Best practice or malpractice?, in: Proc. of the 13th ACM Conference on

Recommender Systems, ACM.

27



Bifet, A., Gavalda, R., 2007. Learning from time-changing data with adaptive

windowing, in: Proc. of the 2007 SIAM international conference on data

mining, SIAM. pp. 443–448.

Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. the Journal

of machine Learning research 3, 993–1022.

Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D., 2017. The ml test score: A

rubric for ml production readiness and technical debt reduction, in: Proc. of

the 2017 IEEE International Conference on Big Data, IEEE. pp. 1123–1132.

Campos, P.G., Dı́ez, F., Cantador, I., 2014. Time-aware recommender systems:

a comprehensive survey and analysis of existing evaluation protocols. User

Modeling and User-Adapted Interaction 24, 67–119.
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