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In the context of mining for frequent patterns using the standard levelwise algorithm, the following
question arises: given the current level and the current set of frequent patterns, what is the maximal
number of candidate patterns that can be generated on the next level? We answer this question
by providing tight upper bounds, derived from a combinatorial result from the sixties by Kruskal
and Katona. Our result is useful to secure existing algorithms from a combinatorial explosion of
the number of candidate patterns.
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1. INTRODUCTION

The frequent pattern mining problem is by now well known [Agrawal et al.
1993]. We are given a set of items I and a database D of subsets of I called
transactions. A pattern is some set of items; its support in D is defined as the

A preliminary report on this work was presented at the 2001 IEEE International Conference on
Data Mining [Geerts et al. 2001].
Authors’ addresses: F. Geerts, University of Edinburgh, Laboratory for Foundations of Computer
Science, School of Informatics, Appleton Tower Room 206, Crichton Street, Edinburgh EH8 9LE,
Scotland, UK; email: fgeerts@infoed.ac.uk; B. Goethals, ADReM, Department of Mathematics and
Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium; email:
bart.goethals@ua.ac.be; J. Van den Bussche, Limburgs Universitair Centrum, Department WNI,
Universitair Campus, B-3590 Diepenbeek, Belgium; email: jan.vandenbussche@lnc.uc.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0362-5915/05/0600-0333 $5.00

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005, Pages 333–363.



334 • F. Geerts et al.

number of transactions in D that contain the pattern; and a pattern is called
frequent in D if its support exceeds a given minimal support threshold. The goal
is now to find all frequent patterns in D.

The search space of this problem, the lattice of all subsets of I, is clearly
huge. Instead of generating and counting the supports of all these patterns at
once, several solutions have been proposed to perform a more directed search
through all patterns. During such a search, several collections of candidate
patterns are generated and their supports computed until all frequent patterns
have been found. Obviously, the size of a collection of candidate patterns must
not exceed the amount of available main memory. Moreover, it is important to
generate as few candidate patterns as possible, since computing the supports
of a collection of patterns is a time consuming procedure. The main underlying
property exploited by most algorithms is that support is monotone decreasing
with respect to extension of a pattern. Hence, if a pattern is infrequent, all of
its supersets must be infrequent.

The standard Apriori algorithm for solving this problem performs a breadth-
first levelwise search by iteratively generating all (candidate) patterns for
which all subsets are known to be frequent, after which their support is counted
by performing a scan through the transaction database. This is repeated until
no new candidate patterns can be generated [Agrawal et al. 1996]. Recently,
it has been shown that this algorithm and its enhancements sometimes still
outperform more recent algorithms [Zheng et al. 2001; Goethals and Zaki 2003].

Several variants on this algorithm try to improve the time spent on counting
the support of all candidate patterns, for example [Brin et al. 1997; Toivonen
1996; Savasere et al. 1995; Agrawal and Srikant 1994a], but they are strongly
dependent on the number of candidate patterns that are generated. More specif-
ically, the main risk lies in the fact that the number of candidate patterns can
grow exponentially. At the heart of these techniques lies the following purely
combinatorial problem, that must be solved first before we can seriously start
applying them: given the current set of frequent patterns at a certain pass of the
algorithm, what is the maximal number of candidate patterns that still need to
be generated?

A brute force method to answer the above question is to simply count the
candidate patterns by generating them without storing them. When a com-
binatorial explosion occurs, however, this method takes a prohibitive amount
of time. Indeed, the problem is precisely to predict a combinatorial explosion
without suffering from it, neither in space, nor in time.

Our contribution is to theoretically study this problem, which enables us
to provide hard and tight combinatorial upper bounds that can be computed
efficiently. By computing any of these upper bounds after every iteration of the
algorithm, we have at all times a watertight guarantee on the size of what is still
to come, on which we can then base various optimization decisions, depending
on the specific algorithm that is used.

In the next Section, we will discuss existing optimization techniques, and
point out the dangers of using existing heuristics for estimating the number
of candidate patterns. Using our upper bound, these techniques can be made
watertight. In Section 3, we derive our upper bound, using a combinatorial
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result from the sixties by Kruskal and Katona. In Section 4, we show how
to get even more out of this upper bound by applying it recursively. We will
then generalize the given upper bounds such that they can be applied by a
wider range of algorithms in Section 5. In Section 6, we discuss several issues
concerning the implementation of the given upper bounds on top of Apriori-
like algorithms. In Section 7, we consider three brute force counting meth-
ods, that simply generate all possible candidates in order to get the desired
numbers we have been trying to bound. In Section 8, we give experimental
results, showing the effectiveness of our result in estimating, far ahead, how
much will still be generated in the future. Finally, we conclude the article in
Section 9.

2. RELATED WORK

Nearly all frequent pattern mining algorithms developed after the proposal of
the Apriori algorithm, rely on its levelwise candidate generation and pruning
strategy. Most of them differ in how they generate and count candidate patterns.

One of the first optimizations was the DHP algorithm proposed by Park
et al. [1995]. This algorithm uses a hashing scheme to collect upper bounds on
the frequencies of the candidate patterns for the following iteration. Patterns
for which it is already known that they will turn up infrequently can then be
eliminated from further consideration and their supports need not be counted
anymore. The effectiveness of this technique only showed for the first few
iterations.

Since our upper bound can be used to eliminate passes at the end, both
techniques can be combined.

Other strategies, discussed next, try to reduce the number of iterations.
However, such a reduction often causes an increase in the number of candi-
date patterns that need to be explored during a single iteration. This tradeoff
between the reduction of iterations and the number of candidate patterns is
important since the time needed to process a single transaction is dependent
on the number of candidates that are contained in that transaction, which might
blow up exponentially. Our upper bound can be used to predict whether or not
this blowup will occur.

The Partition algorithm, proposed by Savasere et al. [1995], reduces the
number of database passes to two. Towards this end, the database is parti-
tioned into parts small enough to be handled in main memory. The partitions
are then considered one at a time and all frequent patterns for that partition
are generated with an Apriori-like algorithm using a fast in-memory support
counting mechanism. At the end of the first pass, all these patterns are merged
to generate a set of all potential frequent patterns, which can then be counted
over the complete database. Although this method performs only two database
passes, its performance is heavily dependent on the distribution of the data,
and could generate far too many candidates.

The Sampling algorithm proposed by Toivonen [1996] performs at most two
scans through the database by picking a random sample from the database,
then finding all frequent patterns that probably hold in the whole database,
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and then verifying the results with the rest of the database. In the cases
where the sampling method does not produce all frequent patterns, the missing
patterns can be found by generating all remaining potentially frequent patterns
and verifying their frequencies during a second pass through the database.
The probability of such a failure can be kept small by decreasing the minimal
support threshold. However, for a reasonably small probability of failure, the
threshold must be drastically decreased, which can again cause a combinatorial
explosion of the number of candidate patterns.

The DIC algorithm, proposed by Brin et al. [1997], tries to reduce the number
of passes over the database by dividing the database into intervals of a specific
size. First, all candidate patterns of size 1 are generated. The frequencies of the
candidate sets are then counted over the first interval of the database. Based on
these frequencies, candidate patterns of size 2 are generated and are counted
over the next interval together with the patterns of size 1. In general, after
every interval k, candidate patterns of size k+1 are generated and counted. The
algorithm stops if no more candidates can be generated. Again, this technique
can be combined with our technique in the same algorithm.

Another type of algorithm generates frequent patterns using a depth-first
search [Zaki et al. 1997; Agarwal et al. 2000, 2001; Han et al. 2000]. Gener-
ating patterns in a depth-first manner implies that the monotonicity property
cannot be fully exploited anymore. Hence, many more candidate patterns will
be generated and need to be counted as compared to the breadth-first algo-
rithms. On the other hand, the depth-first approach facilitates easy and fast
support counting by loading the database into main memory. If this is impos-
sible, then several techniques exist to load only (not necessarily disjoint) parts
of the database into memory [Savasere et al. 1995; Han et al. 2000]. However,
these techniques significantly reduce the performance of such algorithms.

Other strategies try to find only a subset of all frequent patterns from which
the support of all remaining frequent patterns can be derived. For example,
a very interesting stream of research is primarily focused on finding only all
closed frequent itemsets [Pasquier et al. 1999; Zaki and Hsiao 2002; Burdick
et al. 2001; Pei et al. 2000]; that is, all frequent itemsets that do not have a
superset with the same support. These algorithms typically first have to find the
so called free frequent itemsets: those itemsets that do not have a subset with
the same support [Boulicaut et al. 2003]. This collection of free frequent itemsets
is, like all frequent itemsets, downward closed, hence similar algorithms to
those that mine all frequent itemsets, must be used.

When some very long itemsets are frequent, it becomes simply infeasible to
mine all frequent itemsets. Therefore, others try to find only the set of maximal
frequent patterns: those frequent patterns that have no superset that is also
frequent [Bayardo 1998; Lin and Kedem 1998; Burdick et al. 2001]. The main
techniques of most of these algorithms still iteratively generate collections of
candidate itemsets, hence, they are also susceptible to the risk of a combinato-
rial explosion. The bounds presented in this article will also be able to predict
the maximal size of a frequent itemset, which makes it possible to detect long
itemsets early in the process, and could for example, allow us to switch to
maximal itemset mining before being caught in a combinatorial explosion.
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The first heuristic specifically proposed to estimate the number of candidate
patterns that can still be generated was used in the AprioriHybrid algorithm
[Agrawal and Srikant 1994a, 1994b]. This algorithm uses Apriori in the initial
iterations and switches to AprioriTid if it expects it to run faster. This AprioriTid
algorithm does not use the database at all for counting the support of candidate
patterns. Rather, an encoding of the candidate patterns used in the previous
iteration is employed for this purpose. The AprioriHybrid algorithm switches
to AprioriTid when it expects this encoding of the candidate patterns to be
small enough to fit in main memory. The size of the encoding grows with the
number of candidate patterns. Therefore, it calculates the size the encoding
would have in the current iteration. If this size is small enough and there were
fewer candidate patterns in the current iteration than the previous iteration,
the heuristic decides to switch to AprioriTid.

This heuristic (like all heuristics) is not watertight, however. Take, for
example, two disjoint datasets. The first dataset consists of all subsets of a
frequent pattern of size 20. The second dataset consists of all subsets of 1000
disjoint frequent patterns of size 5. If we merge these two datasets, we get(20

3

) + 1000
(5

3

) = 11140 patterns of size 3 and
(20

4

) + 1000
(5

4

) = 9845 patterns of
size 4. If we have enough memory to store the encoding for all these patterns,
then the heuristic decides to switch to AprioriTid. This decision is premature,
however, because the number of new patterns in each pass will start growing
exponentially afterwards.

Also, current state-of-the-art algorithms for frequent itemset mining, such as
Opportunistic Project [Liu et al. 2002] and DCI [Orlando et al. 2002] use several
techniques within the same algorithm and switch between these techniques
using several simple, but not watertight heuristics. Both of these algorithms
perform an Apriori-like levelwise generation in the first iterations, until the
active part of the database can be stored into main memory. Again, the decision
to perform this switch is mainly dependent on the number of candidate itemsets
that can still be generated.

Another improvement of the Apriori algorithm, which is part of the
folklore, tries to combine as many iterations as possible in the end, when only
few candidate patterns can still be generated. The potential of such a combi-
nation technique was realized early on [Agrawal and Srikant 1994a; Agrawal
et al. 1996], but the modalities under which it can be applied were never further
examined. Our work does exactly that.

3. THE BASIC UPPER BOUNDS

In all that follows, L is some family of patterns of size k.

Definition 3.1. A candidate pattern for L is a pattern (of size larger than
k) of which all k-subsets are in L. For a given p > 0, we denote the set of all
size-k + p candidate patterns for L by Ck+p(L).

For any p ≥ 1, we will provide an upper bound on |Ck+p(L)| in terms of |L|.
The following lemma is central to our approach. (A simple proof was given by
Katona [1968].)
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LEMMA 3.2. Given n and k, there exists a unique representation

n =
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
mr

r

)
,

with r ≥ 1, mk > mk−1 > · · · > mr, and mi ≥ i for i = r, r + 1, . . . , k.

This representation is called the k-canonical representation of n and can be
computed as follows: Find the integer mk satisfying

(mk
k

) ≤ n <
(mk+1

k

)
, then

find the integer mk−1 satisfying
(mk−1

k−1

) ≤ n − (mk
k

)
<

(mk−1+1
k−1

)
, and so on, until

n − (mk
k

) − (mk−1
k−1

) − · · · − (mr
r

)
is zero. In order to compute this in practice, we

only need the combinations
( i

j

)
for i = 1, . . . , n and j = 1, . . . , k. These can

be computed by filling up Pascal’s triangle, which needs n × k arithmetical
operations.

We now establish:

THEOREM 3.3. If

|L| =
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
mr

r

)

in k-canonical representation, then

|Ck+p(L)| ≤
(

mk

k + p

)
+

(
mk−1

k − 1 + p

)
+ · · · +

(
ms+1

s + p + 1

)
,

where s is the smallest integer in {r, r +1, . . . , k} such that ms < s+ p. If no such
integer exists, we set s = r − 1.

PROOF. Suppose, for the sake of contradiction, that

|Ck+p(L)| ≥
(

mk

k + p

)
+

(
mk−1

k − 1 + p

)
+ · · · +

(
ms+1

s + p + 1

)
+

(
s + p
s + p

)
.

Note that this is in k + p-canonical representation. A theorem by Kruskal and
Katona [Frankl 1984; Katona 1968; Kruskal 1963] says that if the above as-
sumption on the the cardinality of Ck+p(L) holds, then the cardinality of L must
be larger or equal than(

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
ms+1

s + 1

)
+

(
s + p

s

)
.

But this is impossible, because

|L| =
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
ms+1

s + 1

)
+

(
ms

s

)
+ · · · +

(
mr

r

)

≤
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
ms+1

s + 1

)
+

∑
1≤i≤s

(
i + p − 1

i

)

<

(
mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
ms+1

s + 1

)
+

∑
0≤i≤s

(
i + p − 1

i

)

=
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
ms+1

s + 1

)
+

(
s + p

s

)
.
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The first inequality follows from the observation that ms ≤ s + p − 1 implies
mi ≤ i + p − 1 for all i = s, s − 1, . . . , r. The last equality follows from a
well-known binomial identity.

Notation. We will refer to the upper bound provided by the above theorem
as KK k+p

k (|L|) (for Kruskal-Katona). The subscript k, the level at which we are
predicting, is important, as the only parameter is the cardinality |L| of L, not
L itself. The superscript k + p denotes the level we are predicting.

PROPOSITION 3.4 (TIGHTNESS). The upper bound provided by Theorem 3.3 is
tight: for any given n and k there always exists an L with |L| = n such that for
any given p, |Ck+p(L)| = KK k+p

k (|L|).
PROOF. Let us write a finite set of natural numbers as a string of natural

numbers by writing its members in decreasing order. We can then compare two
such sets by comparing their strings in lexicographic order. The resulting order
on the sets is known as the colexicographic (or colex) order. An intuitive proof of
the Kruskal-Katona theorem, based on this colex order, was given by Bollobás
[1986]. Let (

mk

k

)
+

(
mk−1

k − 1

)
+ · · · +

(
mr

r

)
be the k-canonical representation of n. Then, Bollobás has shown that all k − p-
subsets of the first n k-sets of natural numbers in colex order, are exactly the
first (

mk

k − p

)
+

(
mk−1

k − 1 − p

)
+ · · · +

(
ms

r − s

)
k − p-sets of natural numbers in colex order, with s the smallest integer such
that s > p. Using the same reasoning as above, we can conclude that all k + p-
supersets of the first n k-sets of natural numbers in colex order are exactly the
first KK k+p

k (n) k + p-sets of natural numbers in colex order.

Analogous tightness properties hold for all upper bounds we will present in this
article, but we will no longer explicitly state this.

Example 3.5. Let L be the set of 13 patterns of size 3:

{{3, 2, 1}, {4, 2, 1}, {4, 3, 1}, {4, 3, 2},
{5, 2, 1}, {5, 3, 1}, {5, 3, 2}, {5, 4, 1}, {5, 4, 2}, {5, 4, 3},
{6, 2, 1}, {6, 3, 1}, {6, 3, 2}}.

The 3-canonical representation of 13 is
(5

3

) + (3
2

)
, hence the maximum number

of candidate patterns of size 4 is KK 4
3(13) = (5

4

) + (3
3

) = 6 and the maximum
number of candidate patterns of size 5 is KK 5

3(13) = (5
5

) = 1. This is tight
indeed, because

C4(L) = {{4, 3, 2, 1}, {5, 3, 2, 1}, {5, 4, 2, 1}, {5, 4, 3, 1}, {5, 4, 3, 2}, {6, 3, 2, 1}}
and

C5(L) = {{5, 4, 3, 2, 1}}.
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Estimating the number of levels. The k-canonical representation of |L| also
yields an upper bound on the maximal size of a candidate pattern, denoted by
maxsize(L). Recall that this size equals the number of iterations the standard
Apriori algorithm will perform. Indeed, since |L| <

(mk+1
k

)
, there cannot be a

candidate pattern of size mk + 1 or higher, so:

PROPOSITION 3.6. If
(mk

k

)
is the first term in the k-canonical representation of

|L|, then maxsize(L) ≤ mk.

We denote this number mk by µk(|L|). From the form of KK k+p
k as given by

Theorem 3.3, it is immediate that µ also tells us the last level before which KK
becomes zero. Formally:

PROPOSITION 3.7.

µk(|L|) = k + min{p | KK k+p
k (|L|) = 0} − 1.

Estimating all levels. As a result of the above, we can also bound, at any
given level k, the total number of candidate patterns that can be generated, as
follows:

PROPOSITION 3.8. The total number of candidate patterns that can be gener-
ated from a set L of k-patterns is at most

KK total
k (|L|) :=

∑
p≥1

KK k+p
k (|L|).

4. IMPROVED UPPER BOUNDS

The upper bound KK on itself is neat and simple, as it takes as parameters
only two numbers: the current size k, and the number |L| of current frequent
patterns. However, in reality, when we have arrived at a certain level k, we do
not merely have the cardinality: we have the actual set L of current k-patterns!
For example, if the frequent patterns in the current pass are all disjoint, our
current upper bound will still estimate their number to a certain non-zero
figure. However, by the pairwise disjointness, it is clear that no further pat-
terns will be possible at all. In sum, because we have richer information than
a mere cardinality, we should be able to get a better upper bound.

To get inspiration, let us recall that the candidate generation process of the
Apriori algorithm works in two steps. In the join step, we join L with itself to
obtain a superset of Ck+1. The union p ∪ q of two patterns p, q ∈ L is inserted
in Ck+1 if they share their k − 1 smallest items:

insert into Ck+1
select p[1], p[2], . . . , p[k], q[k]
from Lk p, Lk q
where p[1] = q[1], . . . , p[k − 1] = q[k − 1], p[k] < q[k].

Next, in the prune step, we delete every pattern c ∈ Ck+1 such that some
k-subset of c is not in L.

Let us now take a closer look at the join step from another point of view.
Consider a family of all frequent patterns of size k that share their k−1 smallest
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items, and let its cardinality be n. If we now remove from each of these patterns
all these shared k − 1 smallest items, we get exactly n distinct single-item
patterns. The number of pairs that can be formed from these single items,
being

(n
2

)
, is exactly the number of candidates the join step will generate for the

family under consideration. We thus get an obvious upper bound on the total
number of candidates by taking the sum of all

(n f
2

)
, for every possible family f .

This obvious upper bound on |Ck+1|, which we denote by obviousk+1(L), can
be recursively computed in the following manner. Let I denote the set of items
occurring in L. For an arbitrary item x, define the set Lx as

Lx = {s − {x} | s ∈ L and x = min s}.

Then

obviousk+1(L) :=



(|L|
2

)
if k = 1;∑

x∈I obviousk(Lx) if k > 1.

We can now simply combine this new upper bound with the KK upper bound,
obtaining:

improvedk+1(L) :=



(|L|
2

)
if k = 1;

min{KK k+1
k (|L|), ∑

x∈I improvedk(Lx)} if k > 1.

Actually, as in the previous section, we can do this not only to estimate |Ck+1|,
but also more generally to estimate |Ck+p| for any p ≥ 1. Henceforth we will
denote our general improved upper bound by KK ∗

k+p(L). The general definition
is as follows:

KK ∗
k+p(L) :=

{
KK k+p

k (|L|) if k = 1;
min{KK k+p

k (|L|), ∑
x∈I KK ∗

k+p−1(Lx)} if k > 1.

(For the base case, note that KK k+p
k (|L|), when k = 1, is nothing but

( |L|
p+1

)
.)

By definition, KK ∗
k+p is always smaller than KK k+p

k . We now prove formally
that it is still an upper bound on the number of candidate patterns of size k + p:

THEOREM 4.1.

|Ck+p(L)| ≤ KK ∗
k+p(L).

PROOF. By induction on k. The base case k = 1 is clear. For k > 1, it suffices
to show that for all p > 0

Ck+p(L) ⊆
⋃
x∈I

Ck+p−1(Lx) + x. (1)

(For any set of patterns H, we denote {h ∪ {x} | h ∈ H} by H + x.)
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From the above containment we can conclude

|Ck+p(L)| ≤ |
⋃
x∈I

Ck+p−1(Lx) + x|

≤
∑
x∈I

|Ck+p−1(Lx) + x|

=
∑
x∈I

|Ck+p−1(Lx)|

≤
∑
x∈I

KK ∗
k+p−1(Lx)

where the last inequality is by induction.
To show (1), we need to show that for every p > 0 and every s ∈ Ck+p(L),

s − {x} ∈ Ck+p−1(Lx), where x = min s. This means that every subset of
s − {x} of size k − 1 must be an element of Lx . Let s − {x} − { y1, . . . , yp} be
such a subset. This subset is an element of Lx iff s − { y1, . . . , yp} ∈ L and
x = min(s − { y1, . . . , yp}). The first condition follows from s ∈ Ck+p(L), and the
second condition is trivial. Hence the theorem.

A natural question is why we must take the minimum in the definition of
KK ∗. The answer is that the two terms of which we take the minimum are
incomparable. The example of an L where all patterns are pairwise disjoint,
already mentioned in the beginning of this section, shows that, for example,
KK k+1

k (|L|) can be larger than the summation
∑

x∈I KK ∗
k (Lx). But the con-

verse is also possible: consider L = {{1, 2}, {1, 3}}. Then KK 3
2(L) = 0, but the

summation yields 1.

Example 4.2. Let L consist of {5, 7, 8} and {5, 8, 9} plus all 19 3-subsets of
{1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}. Because 21 = (6

3

) + (2
2

)
, we have KK 4

3(21) = 15,
KK 5

3(21) = 6 and KK 6
3(21) = 1. On the other hand,

KK ∗
4(L) = KK ∗

3(L1) + KK ∗
3(L2) + KK ∗

3(L3) + KK ∗
3(L4)

+ KK ∗
2((L5)6) + KK ∗

2((L5)7) + KK ∗
2((L5)8) + KK ∗

2((L5)9)

+ KK ∗
3(L6) + KK ∗

3(L7) + KK ∗
3(L8) + KK ∗

3(L9)
= 4 + 1 + 4 + 1 + 0 + · · · + 0
= 10

and

KK ∗
5(L) = KK ∗

4(L1) + KK ∗
4(L2) + KK ∗

4(L3) + KK ∗
4(L4)

+ KK ∗
3((L5)6) + KK ∗

3((L5)7) + KK ∗
3((L5)8) + KK ∗

3((L5)9)

+ KK ∗
4(L6) + KK ∗

4(L7) + KK ∗
4(L8) + KK ∗

4(L9)
= 1 + 0 + 1 + 0 + 0 + · · · + 0
= 2.

Indeed, we have 10 4-subsets of {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}, and the two
5-sets themselves.
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We can also improve the upper bound µk(|L|) on maxsize(L). In analogy with
Proposition 3.7, we define:

µ∗
k(L) := k + min{p | KK ∗

k+p(L) = 0} − 1.

We then have:

PROPOSITION 4.3.

maxsize(L) ≤ µ∗
k(L) ≤ µk(L).

We finally use Theorem 4.1 for improving the upper bound KK total
k on the

total number of candidate patterns. We define:

KK ∗
total(L) :=

∑
p≥1

KK ∗
k+p(L).

Then we have:

PROPOSITION 4.4. The total number of candidate patterns that can be gener-
ated from a set L of k-patterns is bounded by KK ∗

total(L). Moreover,

KK ∗
total(L) ≤ KK total

k (L).

5. GENERALIZED UPPER BOUNDS

The upper bounds presented in the previous sections work well for algorithms
that generate and test candidate patterns of one specific size at a time. How-
ever, several algorithms generate and test patterns of different sizes within the
same pass of the algorithm [Brin et al. 1997; Bayardo 1998; Toivonen 1996].
For example, if the given database does not fit into main memory or even is
too large to be scanned multiple times, one can first try to find an approxi-
mation of the collection of frequent itemsets by mining only a sample of the
database, which can be stored into main memory [Toivonen 1996]. After this,
a lot of frequent itemsets might still not have been found. Nevertheless, if
the sample was correctly chosen, and the support threshold lowered, as de-
scribed in Toivonen [1996], there exists a good chance that one can generate all
possible remaining candidates immediately, such that only a single additional
pass over the massive database is needed. In order to prevent a combinatorial
explosion of the number of candidate itemsets, we should be able to compute
our upper bounds based on the frequency and infrequency information given
by the, in the sample, generated collection of itemsets of different lengths. Also,
one of the most successful algorithms that generates only all maximal item-
sets, MaxMiner [Bayardo 1998], uses a look-ahead and support lower bounding
technique such that at a given stage, itemsets of different sizes are known to be
frequent or not. As also presented in that paper, these techniques can also be
added into Apriori resulting in significant performance improvements. Again,
it would be useful if our upper bounds could be adapted to take this valuable
information into account.

Since our upper bound is solely based on the patterns of a certain length k, it
does not use information about patterns of length larger than k. Nevertheless,
these larger sets could give crucial information. More specifically, suppose we
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have generated all frequent patterns of size k, and we also already know in
advance that a certain set of size larger than k is not frequent. Our upper
bound on the total number of candidate patterns that can still be generated,
would disregard this information. We will therefore generalize our upper bound
such that it will also incorporate this additional information.

5.1 Generalized KK-Bound

From now on, L is some family of sets of patterns Lk , Lk+1, . . . , Lk+q that are
known to be frequent, such that Lk+p contains patterns of size k + p, and all
k + p − 1-subsets of all patterns in Lk+p are in Lk+p−1. We denote by |L| the
sequence of numbers |Lk|, |Lk+1|, . . . , |Lk+q|.

Similarly, let I be a family of sets of patterns Ik , Ik+1, . . . , Ik+q that are known
to be infrequent, such that Ik+p contains patterns of size k + p and all k + p−1-
subsets of all patterns in Ik+p are in Lk+p−1. We denote by |I | the sequence
of numbers |Ik|, |Ik+1|, . . . , |Ik+q|. Note that for each p ≥ 0, Lk+p and Ik+p are
disjoint.

Before we present the general upper bounds, we also generalize our notion
of a candidate pattern.

Definition 5.1. A candidate pattern for (L, I ) of size k + p is a pattern that
is not in Lk+p or Ik+p, all of its k-subsets are in Lk , and none of its subsets of
size larger than k is included in Ik ∪ Ik+1 ∪ · · · ∪ Ik+q . For a given p, we denote
the set of all k + p-size candidate patterns for (L, I ) by Ck+p(L, I ).

We note:

LEMMA 5.2.

Ck+p(L, I ) =
{

Ck+1(Lk) \ (Lk+1 ∪ Ik+1) if p = 1;
Ck+p

(
Ck+p−1(L, I ) ∪ Lk+p−1

) \ (Lk+p ∪ Ik+p) if p > 1.

PROOF. The case p = 1 is clear. For p > 1, we show the inclusion in both
directions.

⊇For every set in Ck+p
(
Ck+p−1(L, I )∪ Lk+p−1

)
, we know that all of its k-subsets

are always contained in a k + p − 1 subset, and these are in Ck+p−1(L, I ) ∪
Lk+p−1. By definition, we know that for every set in Ck+p−1(L, I ), all of its
k-subsets are in Lk . Also, for every set in Lk+p−1, all of its k-subsets are in
Lk . By definition, for every set in Ck+p−1(L, I ), all of its k + p − i-subsets are
not in Ik+p−i. Also, for every set in Lk+p−1, all of its k + p − i-subsets are in
Lk+p−i hence they are not in Ik+p−i since they are disjoint. By definition, none
of the patterns in Lk+p ∪ Ik+p are in Ck+p(L, I ).

⊆It suffices to show that for every set in Ck+p(L, I ), every k + p − 1-subset s
is in Ck+p−1(L, I ) ∪ Lk+p−1. Obviously, this is true, since if it is not already in
Lk+p−1, all k-subsets of s must still be in Lk , s cannot be in Ik+p−1 and none
of its subsets can be in any Ik+p−� with � > 1.
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Hence, we define

gKK k+p
k (|L|, |I |) :={

KK k+1
k (|Lk|) − |Lk+1| − |Ik+1| if p = 1;

KK k+p
k+p−1(gKK k+p−1

k (|L|, |I |) + |Lk+p−1|) − |Lk+p| − |Ik+p| if p > 1,

and obtain:

THEOREM 5.3.

|Ck+p(L, I )| ≤ gKK k+p
k (|L|, |I |) ≤ KK k+p

k (|Lk|) − |Lk+p| − |Ik+p|.
PROOF. The first inequality is clear by Lemma 5.2. The second inequality is

by induction on p. The base case p = 1 is by definition. For p > 1, we have:

gKK k+p
k (|L|, |I |) = KK k+p

k+p−1

(
gKK k+p−1

k (|L|, |I |) + |Lk+p−1|
)

− |Lk+p| − |Ik+p|
≤ KK k+p

k+p−1

(
KK k+p−1

k (|Lk|) − |Ik+p−1|
) − |Lk+p| − |Ik+p|

≤ KK k+p
k+p−1

(
KK k+p−1

k (|Lk|)) − |Lk+p| − |Ik+p|
= KK k+p

k (|Lk|) − |Lk+p| − |Ik+p|
where the first inequality is by induction and because of the monotonicity of
KK, the second inequality also because of the monotonicity of KK and the last
equality follows from

KK k+p
k (|Lk|)) = KKk+p

k+p−1

(
KK k+p−1

k (|Lk|)).
Again, we can also generalize the upper bound on the maximal size of a

candidate pattern, denoted by maxsize(L, I ), and the upper bound on the total
number of candidate patterns, both also incorporating (L, I ):

gµ(|L|, |I |) := k + min{p | gKK k+p
k (|L|, |I |) = 0} − 1

gKK total
k (|L|, |I |) :=

∑
p≥1

gKK k+p
k (|L|, |I |).

We obtain:

PROPOSITION 5.4.

maxsize(L, I ) ≤ gµ(|L|, |I |) ≤ µ(|L|).
PROPOSITION 5.5. The total number of candidate patterns that can be gener-

ated from (L, I ) is bounded by gKK total
k (|L|, |I |). Moreover,

gKK total
k (|L|, |I |) ≤ KK total

k (|Lk|).
Example 5.6. Suppose L3 consists of all subsets of size 3 of the set {1, 2, 3, 4,

5, 6}. Now assume we already know that I4 contains patterns {1, 2, 3, 4} and
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{3, 4, 5, 6}. The KK upper bound presented in the previous section would
estimate the number of candidate patterns of sizes 4, 5, and 6 to be at most(6

4

) = 15,
(6

5

) = 6, and
(6

6

) = 1 respectively. Nevertheless, using the additional
information, gKK can already reduce these numbers to 13, 3, and 0. Also, µ

would predict the maximal size of a candidate pattern to be 6, while gµ can
already predict this number to be at most 5. Similarly, KKtotal would predict the
total number of candidate patterns that can still be generated to be at most 22,
while gKKtotal can already deduce this number to be at most 16.

5.2 Generalized KK∗-Bound

Using the generalized basic upper bound, we can now also generalize our
improved upper bound KK ∗. For an arbitrary item x, define the family of sets
Lx as Lx

k , Lx
k+1, . . . , Lx

k+q , and I x as I x
k , I x

k+1, . . . , I x
k+q . We define:

gKK ∗
k+p(L, I ) :={

gKK k+p
k (|L|, |I |) if k = 1;

min
{
gKK k+p

k (|L|, |I |), ∑
x∈I gKK ∗

k+p−1(Lx , I x)
}

if k > 1.

We then have:

THEOREM 5.7.

|Ck+p(L, I )| ≤ gKK ∗
k+p(L, I ) ≤ KK ∗

k+p(Lk) − |Lk+p| − |Ik+p|.

PROOF. The proof of the first inequality is similar to the proof of Theorem 4.1,
but we now need to show that for all p > 0,

Ck+p(L, I ) ⊆
⋃
x∈I

Ck+p−1(Lx , I x) + x.

Therefore, we need to show for every s ∈ Ck+p(L, I ), s − {x} ∈ Ck+p−1(Lx , I x),
where x = min s. First, this means that every subset of s−{x} of size k −1 must
be in Lx

k . Let s − {x} − { y1, . . . , yp} be such a subset. This subset is an element
of Lx

k if and only if s − { y1, . . . , yp} ∈ Lk and x = min(s − { y1, . . . , yp}). The
first condition follows from s ∈ Ck+p(L, I ), and the second condition is trivial.
Second, we need to show that s − {x} is not in Lx

k+p. Since s ∈ Ck+p(L, I ), s is
not in Lk+p, hence s−{x} cannot be in Lx

k+p. Finally, we need to show that none
of the subsets of s − {x} of size greater than k − 1 are in I x

k+1, . . . , I x
k+p−1. Let

s − {x} − { y1, . . . , ym} be such a subset. Since s ∈ Ck+p(L, I ), s − { y1, . . . , ym} is
not in Ik+p−m, hence s − {x} − { y1, . . . , ym} cannot be in I x

k+p−m.
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We prove the second inequality by induction on k. The base case k = 1 is
clear. For all k > 0, we have

gKK ∗
k+p(L, I )

= min
{
gKK k+p

k (|L|, |I |),
∑
x∈I

gKK ∗
k+p−1(Lx , I x)

}
≤ min

{
KK k+p

k (|Lk|) − |Lk+p| − |Ik+p|,
∑
x∈I

KK ∗
k+p−1(Lx

k) − |Lx
k+p| − |I x

k+p|
}

= min
{
KK k+p

k (|L|),
∑
x∈I

KK ∗
k+p−1(Lx)

} − |Lk+p| − |Ik+p|

= KK ∗
k+p(Lk) − |Lk+p| − |Ik+p|

where the left hand side of the minimum in the inequality is by Theorem 5.3
and the right hand side is by induction.

Again, we get an upper bound on maxsize(L, I ):

gµ∗(L, I ) := k + min{p | gKK ∗
k+p(L, I ) = 0} − 1,

and on the total number of candidate patterns that can still be generated:

gKK ∗
total(L, I ) :=

∑
p≥1

gKK ∗
k+p(L, I ).

We then have the following propositions analogous to 4.3 and 4.4:

PROPOSITION 5.8.

maxsize(L, I ) ≤ gµ∗(L, I ) ≤ µ∗(L).

PROPOSITION 5.9. The total number of candidate patterns that can be gener-
ated from (L, I ) is bounded by gKK ∗

total(L, I ). Moreover,

gKK ∗
total(L, I ) ≤ KK ∗

total(Lk).

Example 5.10. Consider the same set of patterns as in the previous exam-
ple. L3 consists of all subsets of size 3 of the set {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4}
and {3, 4, 5, 6} are included in I4. The KK ∗ upper bound presented in the previ-
ous section would also estimate the number of candidate patterns of sizes 4, 5,
and 6 to be at most

(6
4

) = 15,
(6

5

) = 6, and
(6

6

) = 1 respectively. Nevertheless,
using the additional information, gKK ∗ can perfectly predict these numbers to
be 13, 2, and 0. Again, µ∗ would predict the maximal size of a candidate pattern
to be 6, while gµ∗ can already predict this number to be at most 5. Similarly,
KK ∗

total would predict the total number of candidate patterns that can still be
generated to be at most 22, while gKK ∗

total can already deduce this number to
be at most 15.

6. EFFICIENT IMPLEMENTATION

For simplicity reasons, we will restrict ourselves to the explanation of how the
improved upper bounds can be implemented. The proposed implementation can
be easily extended to support the computation of the generalized upper bounds.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



348 • F. Geerts et al.

To evaluate our upper bounds, we implemented an optimized version of the
Apriori algorithm using a trie data structure to store all generated patterns,
similar to the one described by Brin et al. [1997]. This trie structure makes it
cheap and straightforward to implement the computation of all upper bounds.
Indeed, a top-level subtrie (rooted at some singleton pattern {x}) represents
exactly the set Lx we defined in Section 4. Every top-level subtrie of this subtrie
(rooted at some two-element pattern {x, y}) then represents (Lx) y , and so on.
Hence, we can compute the recursive bounds while traversing the trie, after the
frequencies of all candidate patterns are counted, and we have to traverse the
trie once more to remove all candidate patterns that turned out to be infrequent.
This can be done as follows.

Remember, at that point we have the current set of frequent patterns of size
k stored in the trie. For every node at depth d smaller than k, we compute the
k − d -canonical representation of the number of descendants this node has at
depth k, which can be used to compute µk−d (cf. Proposition 3.6), KK �

k−d for any
� ≤ µk−d (cf. Theorem 3.3), hence also KK total

k−d (cf. Proposition 3.8). For every
node at depth k − 1, its KK ∗ and µ∗ values are equal to its KK and µ values
respectively. Then compute for every p > 0, the sum of the KK ∗

k−d+p−1 values
of all its children, and let KK ∗

k−d+p be the smallest of this sum and KK k−d+p
k−d

until this minimum becomes zero, which also gives us the value of µ∗. Finally,
we can compute KK ∗

total for this node. If this is done for every node, traversed in
a depth-first manner, then finally the root node will contain the upper bounds
on the number of candidate patterns that can still be generated, and on the
maximum size of any such pattern. The soundness and completeness of this
method follows directly from the theorems and propositions of the previous
sections.

We conclude that the time needed to compute K K ∗
k+p(L), in terms of the

number of arithmetical operations, is linearly proportional to the time needed
to construct L in the first place.

We should also point out that, since the numbers involved can become
exponentially large (in the number of items), an implementation should take
care to use arbitrary-length integers such as provided by standard mathemati-
cal packages. Since the length of an integer is only logarithmic in its value, the
lengths of the numbers involved will remain polynomially bounded.

7. BRUTE FORCE COMPUTATION

As already mentioned in the introduction, instead of using any of the presented
upper bound computations, one could also actually generate all possible can-
didate itemsets using the Apriori candidate generation technique and simply
count them. Obviously, this brute force method doesn’t give an upper bound,
but the exact number of candidate itemsets. On the other hand, when a combi-
natorial explosion occurs, this method could take a prohibitive amount of space
and time, which is exactly what the presented upper bounding techniques try
to prevent. Nevertheless, when one is not necessarily interested in the exact
number of possible candidate itemsets, but simply wants to know whether this
number is above a certain threshold, it might still be feasible to compute in a
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brute force manner. Indeed, we can prevent a combinatorial explosion by sim-
ply stopping the generation and counting as soon as the number of generated
candidate itemsets reaches the given threshold. Then, in the worst case, the
only drawback is the time and space needed to generate exactly that maximum
number of itemsets.

This brute force method can still be implemented in several different man-
ners. A first option is to perform the exact breadth-first, levelwise candidate
generation mechanism as is used by Apriori. Second, it might be more efficient
to generate all candidate itemsets immediately in a depth-first manner and in
colex order, such that all subsets of a candidate itemset have been generated
earlier. While the breadth-first technique only has to store the itemsets of size
k and k + 1 in each iteration, the depth-first technique might be faster, but
it has the major drawback that it must store all generated candidates since
they might be necessary to check monotonicity of any itemset that is generated
later. This problem, however, can also be resolved. Suppose we have generated
all frequent itemsets up to depth k and we are generating all possible candidate
itemsets of size larger than k. At the generation of a candidate k + p-itemset,
we normally test whether all its subsets of size k + p − 1 are also known to
be frequent, or in this case, potentially frequent. We know, however, for p > 1,
that those sets are candidate itemsets themselves, and they have been gener-
ated on the basis of the frequent k-itemsets. Hence, instead of testing whether
all k+ p−1 itemsets are (potentially) frequent, we can limit ourselves to testing
whether all k-subsets of the k + p candidate itemset are frequent. In that way,
we do not have to store all depth-first generated candidates, but only those on
the immediate recursion path to the current itemset. Although this third tech-
nique might use much less memory, it can consume a lot more time. Indeed,
testing whether all immediate subsets of a k + p-itemset exist, takes only k + p
operations, while testing whether all k subsets of a k + p-itemset exist, takes(k+p

k

)
operations.

All three of these brute force generating and counting methods will be com-
pared to the computation of the presented upper bounds in the following section.

8. EXPERIMENTAL EVALUATION

All experiments were performed on a 400 MHz Sun Ultra Sparc with 512 MB
main memory, running Sun Solaris 8. The algorithm was implemented in C++
and uses the GNU MP library for arbitrary-length integers (http://directory.
fsf.org/gnump.html).

Data sets. We have experimented using three real data sets, of which two
are publicly available, and one synthetic data set generated by the program
provided by the Quest research group at IBM Almaden [Agrawal and Srikant
1994c]. The mushroom data set contains characteristics of various species of
mushrooms, and was originally obtained from the UCI repository of machine
learning databases [Blake and Merz 1998]. The BMS-WebView-1 data set con-
tains several months worth of clickstream data from an e-commerce web site,
and is made publicly available by Blue Martini Software [Kohavi et al. 2000].
The basket data set contains transactions from a Belgian retail store, but can
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Table I. Database Characteristics

Data Set #Items #Transactions MinSup #Iterations Time
T40I10D100K 1000 100000 700 18 1700 s
mushroom 120 8124 813 16 663 s
BMS-Webview-1 498 59602 36 15 86 s
basket 13103 41373 5 11 43 s

unfortunately not be made publicly available. Table I shows the number of
items and the number of transactions in each data set. The table additionally
shows the minimal support threshold we used in our experiments for each data
set, together with the resulting number of iterations and the time (in seconds)
which the Apriori algorithm needed to find all frequent patterns.

The results from the experiment with the real data sets were not immediately
as good as the results from the synthetic data set. The reason for this, however,
turned out to be the bad ordering of the items, as explained next.

Reordering. From the form of Lx , it can be seen that the order of the items
can affect the recursive upper bounds. By computing the upper bound only
for a subset of all frequent patterns (namely Lx), we win by incorporating the
structure of the current collection of frequent patterns, but we also lose some
information. Indeed, whenever we recursively restrict ourselves to a subtrie
Lx , then for every candidate pattern s with x = min s, we lose the information
about exactly one subpattern in L, namely s − x.

We therefore would like to make it likely that many of these excluded pat-
terns are frequent. A good heuristic, which has already been used for several
other optimizations in frequent pattern mining [Bayardo 1998; Brin et al. 1997;
Agarwal et al. 2001], is to force the most frequent items to appear in the most
candidate patterns, by reordering the single item patterns in increasing order
of frequency.

After reordering the items in the real life data set, using this heuris-
tic, the results became very analogous with the results using the synthetic
datasets.

Efficiency. The cost for the computation of the upper bounds is negligible
compared to the cost of the complete algorithm. Indeed, the time T needed
to calculate the upper bounds is largely dictated by the number n of currently
known frequent sets. We have shown experimentally that T scales linearly with
n. Moreover, the constant factor in our implementation is very small (around
0.00001). We ran several experiments using the different data sets and varying
minimal support thresholds. After every pass of the algorithm, we registered
the number of known frequent sets and the time spent to compute all upper
bounds, resulting in 145 different data points. Figure 1 shows these results.

In Figure 2, we compare the performance of the three brute force candidate
generation and count methods with the computation of the KK ∗

total upper bound.
For each level k, the total time spent on computing upper bounds until that level
is shown. The line BF shows the time spent by the breadth-first method, the line
DF shows this for the depth-first method, and the line DFmem for the memory
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Fig. 1. Time needed to compute upper bounds is linear in the number of nodes.

efficient depth-first method. For all three methods, the maximum number of
candidate itemsets that was allowed to be generated was 500 000. In practice,
however, a lot more candidate itemsets can reside in main memory, but higher
thresholds would slow down these methods even more.

In Table II, we compare the memory consumption between the three brute
force candidate generation and count methods with the computation of the
KK ∗

total upper bound. The values shown represent the total amount of memory
used for the whole itemset mining algorithm, which is the same for all four
implementations. Only the computation of the number of candidate itemsets
differs, hence, is responsible for the differences in memory consumption.

As can be seen, the computation of the KK ∗
total upper bound always gives the

fastest answer, significantly faster than all three other brute force methods.
Together with DFmem, it also consumes the least amount of memory. Among
the three brute force algorithms, it shows that DF is almost always the fastest,
but it also consumes enormous amounts of memory as compared to the other
techniques. On the other hand, while DFmem also consumes the least memory, it
is also the slowest of the three brute force techniques. The breadth-first method
BF is always in between the two other breadth-first methods, for memory
consumption as well as performance. None of the three methods come near the
speed of the upper bound computation performance, of which again, it can be
seen that the overhead of its computation is negligible. On the basket dataset,
the methods behave somewhat differently. The high memory consumption is
due to an enormous amount of candidate 3-itemsets, and DFmem even outper-
forms DF by a few seconds because of the extra overhead by DF, which has to
delete all generated candidates in a separate recursive call, while this is done
immediately in DFmem.
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Fig. 2. Time comparison with brute force computation.

In the following experiments, we show that the presented upper bounds
also give very accurate results with respect to the number of candidate
patterns.

Upper bounds

—Figure 3 shows, after each level k, the computed upper bound KK and im-
proved upper bound KK ∗ for the number of candidate patterns of size k + 1,
as well as the actual number |Ck+1| it turned out to be. We omitted the
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Fig. 2. Time comparison with brute force computation.

Table II. Memory Consumption Comparison with Brute
Force Computation

Data Set KK ∗
total BF DF DFmem

T40I10D100K 27641 28984 43722 27641
mushroom 19663 27089 42066 19663
BMS-Webview-1 24163 34821 47215 24163
basket 58748 58778 61226 58778
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Fig. 3. Actual and estimated number of candidate patterns.

upper bound for k +1 = 2, since the upper bound on the number of candidate
patterns of size 2 is simply

(|L|
2

)
, with |L| the number of frequent items.

—Figure 4 shows the upper bounds on the total number of candidate patterns
that could still be generated, compared to the actual number of candidate
patterns, |Ctotal|, that were effectively generated. Again, we omitted the upper
bound for k = 1, since this number is simply 2|L|−|L|−1, with |L| the number
of frequent items.
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Fig. 3. Actual and estimated number of candidate patterns.

—Figure 5 shows the computed upper bounds µ and µ∗ on the maximal size of
a candidate pattern. Here we omitted the result for k = 1, since this number
is exactly the number of frequent items.

The results are pleasantly surprising:

—Note that the improvement of KK ∗ over KK, and of µ∗ over µ, anticipated by
our theoretical discussion, is indeed dramatic.

—Comparing the computed upper bounds with the actual numbers, we observe
the high accuracy of the estimations given by KK ∗. Indeed, the estimations

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



356 • F. Geerts et al.

Fig. 4. Actual and estimated total number of future candidate patterns.

of KK ∗
k+1 match almost exactly, the actual number of candidate patterns that

has been generated at level k + 1. Also note that the number of candidate
patterns in T40I10D100K is decreasing in the first four iterations and then
increases again. This perfectly illustrates that the heuristic used for Apriori-
Hybrid, as explained in the related work section, would not work on this data
set. Indeed, any algorithm that exploits the fact that the current number of
candidate patterns is small enough and there were fewer candidate patterns
in the current iteration than in the previous iteration, would falsely interpret
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Fig. 4. Actual and estimated total number of future candidate patterns.

these observations, since the number of candidate patterns in the next iter-
ations increases again. The presented upper bounds perfectly predict this
increase.

—The upper bounds on the total number of candidate patterns are still very
large when estimated in the first few passes, which is not surprising because
at these initial stages, there is not much information yet. For the mushroom
and the artificial data sets, the upper bound is almost exact when the fre-
quent patterns of size 3 are known. For the basket data set, this result is
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Fig. 5. Estimated size of the largest possible candidate pattern.

obtained when the frequent patterns of size 4 are known and size 6 for the
BMS-Webview-1 data set.

—We also performed experiments for varying minimal support thresholds.
The results obtained from these experiments were entirely similar to those
presented above.

Combining iterations. As discussed in the Introduction, the proposed upper
bound can be used to protect several improvements of the Apriori algorithm

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



Tight Upper Bounds on the Number of Candidate Patterns • 359

Fig. 5. Estimated size of the largest possible candidate pattern.

from generating too many candidate patterns. One such improvement tries to
combine as many iterations as possible in the end, when only few candidate
patterns can still be generated. We have incorporated this technique within
our implementation of the Apriori algorithm.

We performed several experiments on each data set. Figure 6 illustrates the
time spent by the adapted Apriori algorithm, when all iterations are combined
after the iteration shown on the x-axis. More specifically, the x-axis shows the
total number of iterations in which the algorithm completed, and the y-axis
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Fig. 6. Combining iterations.

shows the total time the algorithm needed to complete. As can be seen, for all
datasets, the algorithm can already combine all remaining iterations into one,
very early in the algorithm. For example, if the maximum number of candidate
pattern that is allowed to be generated is set to, for example, 5000000, then
the BMS-Webview-1 dataset, which normally performs 15 iterations, would be
reduced to 6 iterations (see Figure 4) and result in an optimal performance. If
the algorithm already would have generated all remaining candidate patterns
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Fig. 6. Combining iterations.

in the fifth iteration, the number of candidate patterns that turned out to be
infrequent was too large, such that the gain of reducing iterations has been con-
sumed by the time needed to count all these candidate patterns. Nevertheless,
it is still more effective than not combining any passes at all. If the generation
of all candidate patterns occurs in even earlier iterations, although the upper
bound predicted a too large number of candidate patterns, this number became
indeed too large keep in main memory.
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9. CONCLUSION

Motivated by several heuristics to reduce the number of database scans in the
context of frequent pattern mining, we provide a hard and tight combinatorial
upper bound on the number of candidate patterns and on the size of the largest
possible candidate pattern, given a set of frequent patterns. Our findings are
not restricted to a single algorithm, but can be applied to any frequent pat-
tern mining algorithm which is based on the levelwise generation of candidate
patterns. For example, using the standard Apriori algorithm, on which most
frequent pattern mining algorithms are based, our experiments showed that
these upper bounds can be used to considerably reduce the number of iterations
of candidate generation, without taking the risk of a combinatorial explosion
in the number of candidate patterns.
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