
The Long and the Short of It:
Summarising Event Sequences with Serial Episodes

Nikolaj Tatti Jilles Vreeken

Department of Mathematics and Computer Science
Universiteit Antwerpen

{firstname.lastname}@ua.ac.be

ABSTRACT
An ideal outcome of pattern mining is a small set of informative
patterns, containing no redundancy or noise, that identifies the key
structure of the data at hand. Standard frequent pattern miners do
not achieve this goal, as due to the pattern explosion typically very
large numbers of highly redundant patterns are returned.

We pursue the ideal for sequential data, by employing a pattern set
mining approach—an approach where, instead of ranking patterns
individually, we consider results as a whole. Pattern set mining
has been successfully applied to transactional data, but has been
surprisingly understudied for sequential data.

In this paper, we employ the MDL principle to identify the set of
sequential patterns that summarises the data best. In particular, we
formalise how to encode sequential data using sets of serial episodes,
and use the encoded length as a quality score. As search strategy, we
propose two approaches: the first algorithm selects a good pattern
set from a large candidate set, while the second is a parameter-
free any-time algorithm that mines pattern sets directly from the
data. Experimentation on synthetic and real data demonstrates we
efficiently discover small sets of informative patterns.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications–Data mining

General Terms
Theory, Algorithms, Experimentation

Keywords
serial episodes, event sequence, pattern mining, pattern set mining

1. INTRODUCTION
Suppose we are analysing an event sequence database, and are

interested in its most important patterns. Traditionally, we would
apply a frequent pattern miner, and mine all patterns that occur
at least so-many times. However, due to the well-known pattern
explosion we would then quickly be buried in huge amounts of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

highly redundant patterns, such that analysing the patterns becomes
the problem, as opposed to the solution.

In this paper we therefore adopt a different approach. Instead
of considering patterns individually, which is where the explosion
stems from, we are after the set of patterns that summarises the data
best. Desired properties of such a summary include that it should be
small, generalise the data well, and be non-redundant. To this end,
we employ the Minimum Description Length principle [5], which
identifies the best set of patterns as that set by which we can describe
the data most succinctly.

This approach has been shown to be highly successful for sum-
marising transaction data [23], where the discovered patterns provide
insight, as well as high performance in a wide range of data mining
tasks, including clustering, missing value estimation, and anomaly
detection [17, 22, 23]. Sequence data, however, poses additional
challenges compared to itemsets. For starters, the order of events
is important, and we have to take gaps in patterns into account. As
such, encoding the data given a cover, finding a good cover given
a set of patterns, as well as finding good sets of patterns, is much
more complicated for sequences than for itemsets.

We are not the first to consider summarising sequential data.
Existing methods, however, are different in that they require a single
pattern to generate a full sequence [12], do not consider gaps [2,12],
or do not punish gaps in patterns [9]. In short, none of these methods
take the full expressiveness of episodes into account.

As we identify the best model by best lossless compression, and
we consider strings as data, standard compression algorithms such
as Lempel-Ziv and Huffman coding are related [16]. While general
purpose compressors can provide top-notch compression, they do
not result interpretable models. In our case, compression is not the
goal, but a means: in order to summarise the data well, we are after
those serial episodes that describe it most succinctly. We discuss
related work in closer detail in Section 5.

In this paper, we introduce a statistically well-founded approach
for succinctly summarising event sequences, or SQS for short—
pronounced as ‘squeeze’. We formalise how to encode a sequence
dataset given a set of episodes, and using MDL identify the best
set as the set that describes the data most succinctly. To optimise
this score, we give an efficient heuristic to determine which pattern
best describes what part of your data. To find good sets of patterns,
we introduce two heuristics: SQS-CANDIDATES filters a given can-
didate collection, and SQS-SEARCH is a parameter-free any-time
algorithm that efficiently mines models directly from data.

Experiments on real and synthetic data show SQS efficiently dis-
covers high-quality models that summarise the data well, correctly
identify key patterns. The number of returned patterns stays small,
up to a few hundred— most importantly, though, the returned mod-

els do not show redundancy, and none of the patterns are polluted
by frequent, yet unrelated, events.

Altogether, the long and the short of it is that SQS mines small sets
of the most important, non-redundant, serial episodes that together
succinctly describe the data at hand.

2. MDL FOR EVENT SEQUENCES
In this section we formally introduce the problem we consider.

2.1 Preliminaries and Notation
As data type we consider event sequences. A sequence database

D over an event alphabet Ω consists of |D| sequences S ∈ D. Every
S ∈ D is a sequence of |S| events e ∈ Ω, i.e. S ∈ Ω|S|. We write
S[i] to mean the ith event in S and S[i, j] to mean a subsequence
S[i] · · ·S[j]. We denote by ||D|| the sum of the lengths of all
Si ∈ D, i.e. ||D|| =

∑
Si∈D |Si|. In this work, we do not explicitly

consider time stamps, however we can extend our framework to time
stamped events.

The support of an event e in a sequence S is simply the number
of occurrences of e in S, i.e. supp(e | S) = |{i ∈ S|i = e}|.
The support of e in a database D is defined as supp(e | D) =∑

S∈D supp(e | S).
As patterns we consider serial episodes. A serial episode X is

a sequence of events and we say that a sequence S contains X if
there is a subsequence in S equal to X . Note that we are allowing
gap events between the events of X . A singleton pattern is a single
event e ∈ Ω.

All logarithms in this paper are to base 2, and we employ the
usual convention of 0 log 0 = 0.

2.2 MDL, a brief introduction
The Minimum Description Length principle (MDL) [5] is a prac-

tical version of Kolmogorov Complexity [11]. Both embrace the
slogan Induction by Compression. For MDL, this can be roughly
described as follows.

Given a set of modelsM, the best model M ∈M is the one that
minimises L(M) +L(D |M), in which L(M) is the length in bits
of the description of M , and L(D | M) is the length of the data
when encoded with model M .

This is called two-part MDL, or crude MDL—as opposed to
refined MDL, where model and data are encoded together [5]. We
use two-part MDL because we are specifically interested in the
model: the patterns that give the best description. Further, although
refined MDL has stronger theoretical foundations, it cannot be
computed except for some special cases. Note that MDL requires
the compression to be lossless in order to allow for fair comparison
between different M ∈ M, and that we are only concerned with
code lengths, not actual code words.

To use MDL, we have to define what our modelsM are, how a
M ∈M describes a database, and how we encode these in bits.

2.3 MDL for Event Sequences
As models we consider code tables. A code table is essentially a

look-up table, or dictionary, between patterns and associated codes.
A code table has four columns, of which the first column contains
patterns, the second column consists of codes for identifying these
patterns, and the two right-most columns contain pattern-dependent
codes for identifying gaps or the absence thereof within an embed-
ding of a pattern. To ensure any sequence over Ω can be encoded by
a code table, we require that all the singleton events in the alphabet,
X ∈ Ω, are included in a code table CT .

To refer to the different codes in CT , we write codep(X | CT)
when we refer to the code corresponding to a pattern X , as stored

in the second column of a code table CT . Similarly, we write
codeg(X | CT) and coden(X | CT) to resp. refer to the codes
stored in the third and fourth column, which indicate whether or
not the next symbol is part of a gap in the usage of pattern X . For
readability, we do not write CT wherever clear from context.

Our next step is to explain our encoding scheme. As we will see
later, there are typically very many ways of encoding a database,
apart from using only singletons. Hence, for clarity, we will first
explain our encoding scheme by considering how to decode an
already encoded database, and postpone finding a good encoding, or
cover, as well as how to find a good code table to Sections 3 and 4.

Decoding a Database
An encoded database consists of two code streams, Cp and Cg , that
follow from the cover C chosen to encode the database. The first
code stream, the pattern-stream, denoted by Cp, is a list of |Cp|
codes, codep(·), for patterns X ∈ CT corresponding to those pat-
terns chosen by ‘cover’ algorithm. For example, codep(a)codep(b)
codep(c) encodes the sequence ‘abc’.

Serial episodes are not simple subsequences, however, as they
allow for gaps. That is, a pattern de specifies that event d, after
possibly some other events, is followed by event e. As such, this
pattern occurs both in sequence ‘de’ as well as in sequence ‘dfe’. In
the former there is no gap between the two events, and in the latter
there is a gap of length one, in which event f occurs.

As such, only when we read the code for a singleton pattern X
we can directly unambiguously append X to the sequence Sk we
are decoding—there can be no gap in a singleton pattern. When X
is a non-singleton pattern, on the other hand, we may only append
the first symbol x1 of X to Sk; before appending event x2 to Sk,
we first need to know whether there is a gap between the two events
in this usage of X , and if so, what event(s) occur in the gap. This
is what the second code stream is for. This stream, the gap-stream,
denoted by Cg , is a list of codes from the third and fourth column
of CT , indicating whether gaps occur when decoding patterns.

Given the gap-stream, we can determine whether the next event
of Sk may be read from the current pattern X , or we have to read a
singleton pattern to fill the gap. Starting with an empty sequence for
Sk, and assuming that we know its final length, we read the code for
the first pattern X , codep(X), from Cp, and append the first event
x1 of X to the sequence we are decoding. If X is a non-singleton
pattern, we read from Cg whether the next event is a gap-event, or
not. If we read the gap-code codeg(X) from Cg there is indeed a
gap, after which we read from Cp the code(Y) for the (singleton)
event Y ∈ CT associated with this gap—and append it to Sk. We
then read again from Cg whether there is another gap, etc, until we
encounter the no-gap code coden(X) in Cg indicating we should
append the next symbol xj of X to Sk. Whenever we are finished
decoding pattern X , we read the code for the next pattern X from
Cp, until we have read as many events as Sk should be long, after
which we continue decoding Sk+1 ∈ D until Cp is depleted and all
S ∈ D are reconstructed.

Consider the toy example given as Fig. 1. One possible encoding
would be to use only singletons, meaning that gap stream is empty.
Another encoding is to use patterns. For example, to encode ‘abdc’,
we first give the code for abc in the pattern stream, then a no-gap
code (white) in Cg to indicate b, then a gap code (black) in Cg , next
the code for d in Cp, and we finish with a no-gap code in Cg .

Calculating Encoded Lengths
Given the above decoding scheme we know what codes we can
expect to read where and when, and hence can now formalise how to

Data D: a b d c a d b a a b c

Encoding 1: using only singletons
Cp a b d c a d b a a b c

Encoding 2: using patterns
Cp p d a q b p

Cg

alignment
a b d c a d b a a b c
p q p

gap gap

CT 1: a a

b b

c c

d d

CT 2: a a

b b

c c

d d

abc p

da q

ga
ps

no
n-g

ap
s

Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is − log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y ∈ Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT) = − log

(
usage(X)∑

Y ∈CT usage(Y)

)
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X| − 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT) = − log

(
gaps(X)

gaps(X) + fills(X)

)
,

L(coden(X) | CT) = − log

(
fills(X)

gaps(X) + fills(X)

)
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT) =
∑

X∈CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT) =
∑

X∈CT
|X|>1

(
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
)

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT) = LN(|D|) +
∑
S∈D

LN(|S|) +

L(Cp | CT) + L(Cg | CT) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S ∈ D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n ≥ 1, is defined as

LN(n) = log∗(n) + log(c0) ,

where log∗ is defined as log∗(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

∑
J≥1 2−LN(j) ≈ 2.865064

such that the Kraft inequality is satisfied.
Next we discuss how to calculate L(CT), the encoded size of

a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |Ω|, and the number of non-
singleton entries, |CT \ Ω|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y) | ST) = − log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |Ω| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

(||D||−1
|Ω|−1

)
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

(
m−1
n−1

)
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
∑
xi∈X

L(code(xi) | ST) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ Ω.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .

This leaves us the gap-codes for the non-singleton entries of CT .
For reconstructing these, we need to know gaps(X), which we
encode using LN. The number of non-gaps then follows from the
length of a pattern X and its usage. As such, we can determine
codeg(X) and coden(X) exactly.

Putting this all together, we have L(CT | C , D), the encoded
size in bits of a code table CT for a cover C of a database D, as

L(CT | C) =LN(|Ω|) + LU (||D||, |Ω|)+
LN(|P|+ 1) + LN(usage(P) + 1)+

LU (usage(P), |P|) +
∑
X∈P

L(X,CT) ,

whereL(X,CT), the number of bits for encoding the events, length,
and the number of gaps of patterns X in CT , is

L(X,CT)

= LN(|X|) + LN(gaps(X) + 1) +
∑
x∈X

L(codep(x | ST)) .

By MDL, we can then define the optimal set of serial episodes
for a given sequence database as the set for which the optimal cover
and associated optimal code table minimises the total encoded size

L(CT , D) = L(CT | C) + L(D | CT) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let Ω be a set of events and let
D be a sequence database over Ω, find the minimal set of serial
episodes P such that for the optimal cover C of D using P and
Ω, the total encoded cost L(CT , D) is minimal, where CT is the
code-optimal code table for C .

Clearly, this problem entails a rather large search space. First of
all, given a set of patterns, there are many different ways to cover
a database. Second, there are very many sets of serial episodes P
we can consider, namely all possible subsets of the collection of
serial episodes that occur in D. However, neither the full problem,
or these sub-problems, exhibit trivial structure that we can exploit
for fast search, e.g. (weak) monotonicity.

We hence break the Minimal Code Table Problem into two sub-
problems. First, in the next section we discuss how to optimise the
cover of a sequence given a set of episodes. Then, in Section 4, we
will discuss how to mine high quality code tables.

3. COVERING A STRING
Encoding, or covering, a sequence is more difficult than decoding

one. The reason is simple: when decoding there is no ambiguity,
while when encoding there are many choices, i.e. what pattern to
encode a symbol with. In other words, given a set of episodes, there
are many valid ways to cover a sequence, where by our problem
definition we are after the cover C that minimises L(CT , D).

Due to lack of space, we provide the proofs in Appendix A.

3.1 Minimal windows
Assume we are decoding a sequence Sk ∈ D. Assume we

decode the beginning of a patternX at Sk[i] and that the last symbol
belonging to this instance of X is, say, Sk[j]. We say that Sk[i, j] is
an active window for X . Let P be the set of non-singleton patterns
used by the encoding. We define an alignment A to be the set of all
active windows for all non-singleton patterns X ∈ P as

A = {(i, j,X, k) | Sk[i, j] is an active window for X,Sk ∈ D} .

An alignment corresponding to the second encoding given in Fig-
ure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the cover of
the sequence, as it does not take into account how the intermediate
symbols (if any) within the active windows of a pattern X are
encoded. However, an alignment A for a sequence database D
does define an equivalence class over covers of the same encoded
length. In fact, given a sequence database D and an alignment A,
we can determine the number of bits our encoding scheme would
require for such a cover. To see this, let X be a pattern and let
W = {(i, j,X, k) ∈ A}, then

usage(X) = |W | and gaps(X) = gaps(W) , (1)

where

gaps(W) =
∑

(i,j,X,k)∈W

j − i− |X| − 1 . (2)

The remaining symbols are encoded as singleton patterns. Hence,
the usage of a singleton is equal to

usage(s) = supp(s | D)−
∑
s∈X

usage(X) . (3)

Given an alignment A for D, we can trivially construct a valid
cover C for D, simply by following A and greedily covering Sk

with pattern symbols if possible, and singletons otherwise. That is,
if for a symbol Sk[i] we have, by A, the choice for covering it as a
gap or non-gap of a pattern X , we choose non-gap.

Then, from either C , or directly from A, we can derive the as-
sociated code-optimal code table CT . Given an alignment A, let
us write CT (A) for this code table. Wherever clear from context,
we will write L(D | A) to mean L(D | CT (A)), and similarly
L(D,A) as shorthand for L(D,CT (A)).

Our next step is to show what kind of windows can occur in the
optimal alignment. We say that W = S[i, j] is a minimal window
of a pattern X if W contains X but no other proper sub-windows
of W contain X . For example, in Figure 1 S[6, 8] is a minimal
window for da but S[6, 9] is not.

PROPOSITION 1. Let A be an alignment producing an optimal
encoded length. Then all active windows in A are minimal windows.

Proposition 1 says that we need to only study minimal windows.
Let F be a set of episodes and let X ∈ F . Since an event Sk[i]
can be a starting point to only one minimal window of X , there are
only ‖D‖ minimal windows of X in D, at most. Consequently, the
number of minimal windows we need to investigate is bounded by
‖D‖ |F|. Moreover, we can use FINDWINDOWS in [20] to discover
all the minimal windows for a pattern X in O(|X| ‖D‖) time.

3.2 Finding optimal alignment
Discovering an optimal alignment is non-trivial due to the com-

plex relation between code lengths and the alignment. However,
if we fix the alignment, Eqs. 1–3 give us the codes optimising
L(D | A). In this section we will show the converse, that if we fix
the codes, we can easily find the alignment optimising L(D | A).
In order to do that let w = (i, j,X, k) be a minimal window for a
pattern X . We define the gain to be

gain(w) =− L(codep(X))− (j − i− |X|)L(codeg(X))

− (|X| − 1)L(coden(X)) +
∑
x∈X

L(codep(x)) .

PROPOSITION 2. Let D be a dataset and A be an alignment.
Then the length of encoding D is equal to

L(D | A) = const −
∑
w∈A

gain(w) ,

where const does not depend on A.

This proposition suggests that if we fix the code lengths we need
to maximise the total gain. In order for an alignment to be valid, the
windows must be disjoint. Hence, given a set of W , consisting of
all minimal windows of the given patterns, we need to find a subset
O ⊆W of disjoint windows maximising the gain.

Assume that W is ordered by the first index of each window.
For a window w, define next(w) to be the next disjoint window
in W . Let o(w) be the optimal total gain of w and its subsequent
windows. Let v be the next window of w, then the optimal total
gain is o(w) = min(o(v), gain(w) + o(next(w)). This gives us a
simple dynamic program, ALIGN, given as Algorithm 1.

Algorithm 1: ALIGN(W)

input :minimal windows W sorted by the first event
output :mutually disjoint subset of W having the optimal gain

1 o(N + 1)← 0; opt(N + 1)← none;
2 foreach i = N, . . . , 1 do
3 c← 0;
4 if next(i) then c← o(next(i));
5 if gain(wi) + c > o(i+ 1) then
6 o(i)← gain(wi) + c; opt(i)← i;

7 else
8 o(i)← o(i+ 1); opt(i)← opt(i+ 1);

9 O ← optimal alignment (obtained by iterating opt and next);
10 return O;

We can now use ALIGN iteratively. Given the codes we find the
optimal alignment and derive the optimal codes given the new align-
ment. We repeat this until convergence, which gives us a heuristic
approximation to the optimal alignment A∗ for D using patterns P .
As initial values, we use the number of minimal windows as usage
and set gap code length to be 1 bit. The pseudo code of SQS, which
stands for Summarising event seQuenceS, is given as Algorithm 2.

Algorithm 2: SQS(D,P). Summarising event seQuenceS
input :Database of sequences D, set of patterns P
output :Alignment A

1 foreach s ∈ Ω do usage(s)← supp(s | D);
2 foreach X ∈ P, |X| > 1 do
3 WX ← FINDWINDOWS(X,D);
4 usage(X)← |WX |; gaps(X)← |X| − 1;

5 W ← merge sort {WX}X∈F based on first event;
6 while changes do
7 compute gain for each w ∈W ;
8 A← ALIGN(W);
9 recompute usage and gaps from A (Eqs. 1–3);

10 return A;

The computational complexity of single iteration comes down to
the computational complexity of ALIGN(W), which is O(|W |) ⊆
O(|P| ‖D‖). Also note that next is precomputed before calling
ALIGN and this can be also computed with a single scan, taking

O(|W |) steps. Note that the encoded length improves at every
iteration, and as there are only finite number of alignments, SQS will
converge to a local optimum in finite time. In practice, the number
of iterations is small—in the experiments typically less than 10.

4. MINING CODE TABLES
With the above, we both know how to score the quality of a

pattern set, as well as how to heuristically optimise the alignment of
a pattern set. This leaves us with the problem of finding good sets
of patterns. In this section we give two algorithms to do so.

4.1 Filtering Candidates
Our first algorithm, SQS-CANDIDATES, assumes that we have a

(large) set of candidate patterns F . In practice, we assume the user
obtains this set of patterns using a frequent pattern miner, although
any set of patterns over Ω will do. From this set F we then select
that set of patterns P ⊆ F such that the optimal alignment A and
associated code table CT minimises L(D,CT).

For notational brevity, we simply write L(D,P) as shorthand
for the total encoded size L(D,CT) obtained by the code table
CT containing a set of patterns P and singletons Ω, and being
code-optimal to the alignment A as found by SQS.

We begin by sorting the candidates X ∈ F by L(D, {X}) from
lowest to highest. After sorting, we iteratively greedily test each
pattern X ∈ F . If adding X to P improves the score, i.e. fewer bits
are needed, we keep X in P , otherwise it is permanently removed.
The pseudo-code for SQS-CANDIDATES is given as Algorithm 3.

Algorithm 3: SQS-CANDIDATES(F , D)

input : candidate patterns F
output : set of non-singleton patterns P that heuristically

minimise the Minimal Code Table Problem
1 order patterns X ∈ F based on L(D, {X});
2 P ← ∅;
3 foreach X ∈ F in order do
4 if L(D,P ∪X) < L(D,P) then
5 P ← PRUNE(P ∪X,D, false);

6 P ← PRUNE(P, D, true);
7 order patterns X ∈ G by L(D,P)− L(D,P \X);
8 return P;

During the search we iteratively update the code table Hence, it
may be that over time, previously included patterns start to harm
compression once their role in covering the sequence is taken over
by new, more specific, patterns. As such, they become redundant,
and should be removed from P .

To this end, we prune redundant patterns (see Algorithm 4) after
each successful addition. During pruning, we iteratively consider
each pattern Y ∈ P in order of insertion. If P \X improves the
total encoded size, we removeX fromP . As testing every pattern in
P at every successful addition may become rather time-consuming,
we use a simple heuristic: if the total gain of the windows of X is
higher than the cost of X in the code table we do not test X .

After SQS-CANDIDATES considered every pattern of F , we run
one final round of pruning without this heuristic. Finally, we order
the patterns inP by L(D,P)−L(D,P\X). That is, by the impact
on the total encoded length when removing X from P . This order
tells us which patterns in P are most important.

Let us consider the execution time needed by SQS-CANDIDATES.
Ordering patterns can be done in O(|F| ‖D‖) time. Computing
L(D,P ∪ X) can be done in O(|P| ‖D‖) ⊆ O(|F| ‖D‖) time.

Algorithm 4: PRUNE(P, D, full)

input :pattern set P , database D, boolean variable full ,
false for heuristic scan, true for complete scan

output :pruned pattern set P;
1 foreach X ∈ P do
2 CT ← code table corresponding to SQS(D,F);
3 CT ′ ← code table obtained from CT by deleting X;
4 g ←

∑
w=(i,j,X,k)∈A gain(w);

5 if full or g < L(CT)− L(CT ′) then
6 if L(D,P \X) < L(D,P) then P ← P \X;

7 return P;

Pruning can be done in O(|P|2 ‖D‖) ⊆ O(|F|2 ‖D‖). Combined,
this gives us a total time complexity of O(|F|3 ‖D‖). In practice,
the algorithm is much faster, however, as first, due to MDL the code
tables remain small, and hence |P| � |F|, second, the execution
time of SQS is typically faster than O(|P| ‖D‖), and third, the
pruning heuristic further reduces the computational burden.

4.2 Directly Mining Good Code Tables
The SQS-CANDIDATES algorithm requires a collection of candi-

date patterns to be materialised, which in practice can be trouble-
some; the well-known pattern explosion may prevent patterns to be
mined at as low thresholds as desired. In this section we propose an
alternative strategy for discovering good code tables directly from
data. Instead of filtering a pre-mined candidate set, we now discover
candidates on the fly, considering only patterns that we expect to
optimise the score given the current alignment.

To illustrate the general idea, consider that we have a current
set of patterns P . We iteratively find patterns of form XY , where
X,Y ∈ P ∪ Ω producing the lowest L(D,P ∪ {XY }). We add
XY to P and continue until no gain is possible. Unfortunately, as
testing each combination takesO((|P|+ |Ω|)2(|P|+1) ‖D‖) time,
we cannot do this exhaustively and exactly within reasonable time.

Hence, we resort to heuristics.
To guarantee the fast discovery of good candidates, we design a

heuristic algorithm that, given a pattern P , will find a pattern PQ
of high expected gain in only O(|P|+ |Ω|+ ‖D‖) time.

Our first step is to demonstrate that if we take N active windows
of P , and N active windows of Q, and convert them into N active
windows of PQ, the difference in total encoded length can be
computed in constant time.

PROPOSITION 3. Fix a database D and an alignment A. Let
P and Q be two patterns. Let V = {v1, . . . , vN} and W =
{w1, . . . , wN} be two set of candidate windows for P and Q, re-
spectively. Assume that either P (Q) is a singleton or each vi (wi)
occurs in A. Assume that vi and wi occur in the same sequence and
write vi = (ai, bi, P, ki) and wi = (ci, di, Q, ki). Assume that
bi < ci. Write R = PQ and let

U = {(a1, d1, R, k1), . . . , (aN , dN , R, kN)} .

Assume that U has no overlapping windows and has no overlapping
windows with A \ (V ∪W). Then the difference

L(D,A ∪ U \ (V ∪W))− L(D,A)

depends only N , gaps(V), gaps(W), and gaps(U) and can be
computed in constant time from these values.

The conditions given in Proposition 3 are needed so thatA\ (V ∪
W) is a proper alignment. We denote the aforementioned difference

by diff (V,W,U ;A,D). Note that this difference partly depends
on A and D. However, since we keep these fixed in the proposition
they only contribute constant terms. Further note that U should not
overlap with A \ (V ∪W). We will address this limitation later. We
should point out that in practice we do not keep lists of U , V , and
W , but instead exploit the gap counts and number of windows, as
this is sufficient for computing the difference.

Now that we have a way of computing the gain of using windows
for PQ, we need to know which windows to use in the alignment.
The following proposition suggest that we should pick the windows
with the shortest length.

PROPOSITION 4. Let D be a database and A be an alignment.
Let v = (i, j,X, k) ∈ A. Assume that there exists a window Sl[a, b]
containing X such that w = (a, b,X, l) does not overlap with any
window inA and b−a < j− i. ThenA is not an optimal alignment.

This proposition gives us an outline of the heuristic. We start
enumerating minimal windows of PQ from shortest to largest. At
each step we compute the score using Proposition 3, and among
these scores we the pick optimal one.

We cannot guarantee linear time if we consider each Q individu-
ally. Instead, we scan for all candidates simultaneously. In addition,
to guarantee linear time we consider only active windows of P and
Q, and do not consider singletons occurring in the gaps. The scan
starts by finding all the active windows (ignoring singletons in gaps)
of P . We then continue by scanning the patterns occurring after
each P . We interleave the scans in such a way that the new minimal
windows are ordered, from shortest to longest. We stop the scan
after we find next occurrence of P or the end of the sequence.

There are two constraints that we need to take into account. When
enumerating minimal windows of PQ we need to make sure that
we can add them to the alignment. That is, a new minimal window
cannot intersect with other new minimal windows, and the only
windows it may intersect in the alignment are the two windows
from which it was constructed. The first constraint can only happen
when Q = P , in which case we simply check if the adjacent scans
have already used these two instances of P for creating a minimal
window for pattern PP . To guarantee the second constraint, we need
to delete the intersecting windows from the alignment. We estimate
the effect of deleting w by adding gain(w) (computed from the
current alignment) to the score. The pseudo-code for calculating
this estimate is given as Algorithm 5.

PROPOSITION 5. ESTIMATE(P, ∅, D) returns a pattern with
optimal score.

Next, let us consider the computational complexity of this ap-
proach. The initialisation in ESTIMATE can be done in O(|Ω| +
|P|+ ‖D‖), where P are the current non-singleton patterns. After
selecting the next window, each step in the main loop can be done in
constant time. The only non-trivial step is picking the next smallest
window. However, since the window lengths are integers smaller or
equal than ‖D‖, we can store the candidates into an array of lists,
say Nd, where Nd contains the windows of length d. Finding the
next window may take more than a constant time since we need to
find the next non-empty list Nd but such search may only contribute
‖D‖ checks in total. Since we stop after encountering P , every
event is visited only twice at maximum, hence the running time for
ESTIMATE is O(|Ω|+ |P|+ ‖D‖).

The actual search algorithm, SQS-SEARCH, calls ESTIMATE for
each pattern P . The algorithm, given as Algorithm 6, continues
by sorting the obtained patterns based on their estimated scores
and attempts to add them into encoding in the same fashion as in

Algorithm 5: ESTIMATE(P,A,D). Heuristic for finding a pat-
tern X used by the current encoding with a low L(D,A ∪ PX)

input :database D, current alignment A, pattern P ∈ CT
output :pattern PX with X ∈ CT and a low L(D,A ∪ PX)

1 foreach X ∈ CT do VX ← ∅; WX ← ∅; UX ← ∅; dX ← 0;
2 T ← ∅;
3 foreach occurrence v of P in the encoding (ignoring gaps) do
4 (a, b, P, k)← v;
5 d← the end index of the active window following v;
6 t ← (v, d, 0); l(t)← d− a;
7 add t into T ;

8 while T is not empty do
9 t← arg minu∈T l(u);

10 (v, d, s)← t; a← first index of v;
11 w = (c, d,X, k)← active window of a pattern ending at d;
12 if X = P and (event at a or d is marked) then
13 delete t from T ;
14 continue;

15 if Sk[a, d] is a minimal window of PX then
16 add v into VX ;
17 add w into WX ;
18 add (a, d,PX , k) into UX ;
19 dX ← min(diff (V,W,U ;A) + s, dX);
20 if |X| > 1 then s← s+ gain(w);
21 if X = P then
22 mark the events at a and d;
23 delete t from T ;
24 continue;

25 if w is the last window in the sequence then
26 delete t from T ;

27 else
28 d← the end index of the active window following w;
29 update t to (v, d, s) and l(t) to d− a;

30 return PX with the lowest dX ;

SQS-CANDIDATES. After each successful addition of patternX , we
scan for the gap events occurring in the active windows of X , and
test patterns obtained from X by adding a gap event as intermediate
event. The scan can be done in O(‖D‖) time, and in theory we may
end up testing |Ω| (|X| − 1) patterns. In practice, the number is
much smaller since accepted patterns typically have small gaps. If
any of these patterns in successfully added we repeat this procedure
in a recursive fashion. In practice, testing X is relatively fast, and
the total computational complexity is dominated by ESTIMATE.

5. RELATED WORK
Discovering frequent sequential patterns is an active research

topic. Unlike for itemsets, there are several definitions for frequent
sequential patterns. The first approach counts the number of se-
quences containing a pattern [24]. In such setup, having one long
sequence do not make sense. In the second approach we count
multiple occurrences within a sequence. This can be done by sliding
a window [13] or counting disjoint minimal windows [10].

Mining general episodes, patterns where the order of events are
specified by a DAG is surprisingly hard. For example, testing
whether a sequence contains a pattern is NP-complete [19]. Con-
sequently, research has focused on mining subclasses of episodes,
such as, episodes with unique labels [1, 14], and strict episodes [20].

Algorithm 6: SQS-SEARCH(D)

input :database D
output : significant patterns P

1 P ← ∅; A← SQS(D, ∅);
2 while changes do
3 F ← ∅;
4 foreach P ∈ CT do add ESTIMATE(P,A,D) to F ;
5 foreach X ∈ F ordered by the estimate do
6 if L(D,P ∪X) < L(D,P) then
7 P ← PRUNE(P ∪X,D, false);

8 if X is added then test recursively X augmented with
events occurring in the gaps;

9 P ← PRUNE(P, D, true);
10 order patterns X ∈ G by L(D,P)− L(D,P \X);
11 return P;

Discovering statistically significant sequential patterns is a sur-
prisingly understudied topic. One reason is that unlike for itemsets,
computing an expected frequency under a null-hypothesis is very
complex. Using independence assumption as a null-hypothesis
has been suggested in [7, 18] and a Markov-chain model has been
suggested in [6]. In [1] the authors use information theory-based
measure to determine which edges to include in a general episode.

Summarising sequences using segmentation is a well-studied
topic. The goal in segmentation is to divide the sequence in large
segments of homogenous regions whereas our goal is to find a set
of compact patterns that occur significantly often. For an overview
in segmentation, see [4], and for a segmentation tool see [8].

Mannila and Meek [12] regard general episodes, as generative
models for sequences. Their model generates short sequences by
selecting a subset of events from an episode and select a random
order compatible with the episode. They do not allow gaps and only
one pattern is responsible for generating a single sequence. This is
not feasible for our setup, where we may have long sequences and
many patterns occurring in one sequence.

SQS draws inspiration from the KRIMP [23] and SLIM [17] al-
gorithms. KRIMP pioneered the use of MDL for identifying good
pattern sets; specifically, mining sets of itemsets that describe a
transaction database well. As serial episodes are much more expres-
sive than itemsets, we here need a much more elaborate encoding
scheme, and in particular, a non-trivial approach for covering the
data. For mining the patterns, SQS-CANDIDATES shares the greedy
selection over an ordered set of candidates.

Smets and Vreeken recently gave the SLIM algorithm [17] for
directly mining KRIMP code tables from data. With SQS-SEARCH
we adopt a strategy that resembles SLIM, by considering joins XY
of X,Y ∈ CT , and estimating the gain of adding XY to CT .
Whereas SLIM iteratively searches for the best addition, for effi-
ciency, SQS-SEARCH adopts a batch-wise strategy.

Lam et al. introduced GOKRIMP [9] for mining sets of serial
episodes. As opposed to the MDL principle, they use fixed length
codes, and do not punish gaps within patterns—by which their goal
is essentially to cover the sequence with as few patterns as possible,
which is different from our goal of finding patterns that succinctly
summarise the data. Bathoorn et al. [2] also cover greedily, and do
not consider gaps at all.

6. EXPERIMENTS
We implemented our algorithms in C++, and provide the source

code for research purposes, together with the considered datasets, as

well as the generator for the synthetic data.1 As candidates for SQS-
CANDIDATES, we mined frequent serial episodes [10, 20] using
disjoint minimal windows of maximal length 15, with minimal
support thresholds as low as feasible—i.e. at the point where the
number of patterns starts to explode. All experiments were executed
single-threaded on a six-core Intel Xeon machine with 12GB of
memory, running Linux.

In our experiments we consider both synthetic and real data.
Table 1 shows the base statistics per dataset, i.e. number of distinct
events, number of sequences, total number of events per database,
and the total encoded length by the most simple code table ST .

Synthetic Data. First, we consider the synthetic Indep, Plants-
10, and Plants-50 datasets. Each consists of a single sequence of
10 000 events over an alphabet of 1 000. In the former, all events are
independent, whereas in the latter two we planted resp. 10 and 50
patterns of 5 events 10 times each, with 10% probability of having
a gap between consecutive events, but are independent otherwise.

Table 1 shows the results given by SQS-CANDIDATES and SQS-
SEARCH. For the Indep dataset, while over 9 000 episodes occur
at least 2 times, both methods correctly identify the data does not
contain significant structure. Similar for Plants-10 both methods
correctly return the 10 planted patterns. Plants-50 has a very high
density of pattern symbols (25%), and hence poses a harder chal-
lenge. SQS-CANDIDATES and SQS-SEARCH identify resp. 47 and
46 patterns exactly, the remainder consisting of fragments of cor-
rect patterns. The imperfections are due to patterns being partly
overwritten during the generation of the data.

Real Data. For the experiments on real data, in order to interpret
the patterns, we consider text data. The events are the stemmed
words from the text, with stop words removed. Addresses contains
speeches of American presidents, JMLR consists of abstracts of
papers from the Journal of Machine Learning Research website,2

whereas Moby contains the novel ‘Moby Dick’ by Herman Melville.
Let us first consider the number of returned patterns, as shown in

Table 1. We see that for all datasets small numbers of patterns are
returned, in the order of 100s, two orders of magnitude less than the
number of frequent patterns SQS-CANDIDATES considers.

When we consider the gains in compressed size, i.e. ∆L =
L(D,ST)− L(D,CT), we see these few patterns in fact describe
a lot of structure of the data; recall that 1 bit of gain corresponds to
an increase of factor 2 in likelihood. We note SQS-SEARCH slightly
outperforms SQS-CANDIDATES, which is due to the former being
able to consider candidates of lower support without suffering from
the pattern explosion.

The largest ∆L is recorded for JMLR, with almost 30k bits. This
is not surprising, as the type of text, abstracts of machine learning
papers, has a relatively small vocabulary—the use of which is quite
structured, with many key phrases and combinations of words.

Table 2 depicts the top-10 most compressing patterns for JMLR,
as found by SQS-SEARCH. Here, as ∆L we give the increase in
bits the pattern would be removed from CT . Clearly, key machine
learning concepts are identified, and importantly, the patterns are
neither redundant, nor polluted with common words. In fact, in none
of the CT s patterns incorrectly combine frequent events.

Further examples of patterns reported for JMLR include ‘non neg
matrix factor’, ‘isotrop log concav distribut’, and ‘reproduc[ing]
kernel Hilbert space’. For the presidential Addresses, we unsur-
prisingly see ‘unit[ed] stat[es]’ and ‘fellow citizen[s]’ as the top-2
patterns. An example of a pattern with many gaps (5.2 gap events,
on average), we find the rather current ‘economi[c] public expendi-

1http://adrem.ua.ac.be/sqs/
2http://jmlr.csail.mit.edu/

Table 2: JMLR data. Top-10 patterns by SQS-SEARCH

patterns ∆L patterns ∆L

1. supp. vector machine 850 6. large scale 329
2. machine learning 646 7. nearest neighbor 322
3. state [of the] art 480 8. decision tree 293
4. data set 446 9. neural network 289
5. Bayesian network 374 10. cross validation 279

5 25 50 100

1 800

2 500

3 200

3 900

4 600

5 300

support threshold σ

∆
L

(b
its

)

5 35 65 95 125 155

1 100

1 800

2 500

3 200

3 900

4 600

5 300

iteration

∆
L

(b
its

)

SQS-SRCH

SQS-CND

Figure 2: Addresses dataset, gain in compression. (left) vary-
ing support thresholds for SQS-CANDIDATES. (right) SQS-
CANDIDATES and SQS-SEARCH per accepted candidate.

tur[e]’. From the Moby Dick novel we find the main antagonist’s
species, ‘sperm whale’, and name, ‘moby dick’, as well as the phrase
‘seven hundr[ed] seventy seventh’ which occurs 6 times.

Next, we investigate our search strategies. First, in the left-hand
plot of Fig. 2, for SQS-CANDIDATES on the Moby data, we show the
gain in compression for different support thresholds. It shows that
lower thresholds, i.e richer candidate sets, allow for (much) better
models—though by the pattern explosion, mining candidates at low
σ can be infeasible.

Second, in the right-hand plot, we compare SQS-CANDIDATES
and SQS-SEARCH, showing the gain in bits over ST per candidate
accepted into CT . It shows both search processes are efficient,
considering patterns that strongly aid compression first. The slight
dip of SQS-SEARCH around iteration 100 is due to its batch-wise
search. At the expense of extra computation, an iterative search for
the best estimated addition, like SLIM [17] may find better models.

In these experiments, using these support thresholds, mining the
candidates took up to 4 minutes, after which SQS-CANDIDATES
took up to 15 minutes to order and filter the candidates. SQS-
SEARCH resp. took 10, 18, and 91 minutes. As Moby has a large
alphabet and is one long sequence, SQS-SEARCH has to consider
many possible pattern co-occurrences.

7. DISCUSSION
The experiments show both SQS-CANDIDATES and SQS-SEARCH

return high-quality models. By using synthetic data we showed that
SQS reveals the true patterns without redundancy, while further
not picking up on spurious structure. Analysis of the results on
the text data experiments show that key phrases are identified—
combinations of words that may be interspersed with ‘random’
words in the data. Importantly, for all of the datasets, no noisy
or redundant patterns are returned. As expected, the more structure
a dataset exhibits, the better the attained compression.

With SQS-CANDIDATES we allow the user the freedom to provide
a set of candidate serial episodes. In general, lower thresholds
correspond to more candidates, more candidates correspond to a
larger search space, and hence better models. SQS-SEARCH on the
other hand, besides an any-time algorithm, is parameter-free, as it
generates and tests patterns that are estimated to improve the score.

Table 1: Basic statistics and results per dataset
SQS-CANDIDATES SQS-SEARCH

Dataset |Ω| |D| ‖D‖ L(D,ST) σ |F| |G| L(D,CT) |G| L(D,CT)

Indep 1 000 1 10 000 103 630 2 9 094 0 103 630 0 103 630
Plants-10 1 000 1 10 000 103 340 2 11 957 10 100 629 10 100 629
Plants-50 1 000 1 10 000 102 630 2 25 484 50 91 706 52 91 707

Addresses 5 295 56 62 066 685 593 5 15 506 138 680 287 155 680 236
JMLR 3 846 788 75 646 772 112 5 40 879 563 742 966 580 742 953
Moby 10 277 1 105 719 1 250 149 5 22 559 215 1 240 667 231 1 240 566

Both algorithms are fast, our prototype implementations taking
only few minutes on the data here considered. The algorithms have
many opportunities for parallelisation: candidates can be estimated
or evaluated individually, as can the scanning for minimal windows.

MDL does not provide a free lunch. First of all, although highly
desirable, it is not trivial to bound the score. While for Kolmogorov
complexity we know this is incomputable, for our models we have
no proof one way or another. Furthermore, although MDL gives a
principled way to construct an encoding, this involves many choices
that determine what structure is rewarded. As such, we do not claim
our encoding is suited for all goals, nor that it cannot be improved.

Future work includes the extension of SQS for parallel and gen-
eral episodes—which surpass serial episodes in expressiveness. Al-
though seemingly opposed to MDL (why describe the same thing
twice?) allowing patterns to overlap may provide more succinct
summarisations. Last, but not least, we are interested in applying
the SQS code tables for clustering and anomaly detection.

8. CONCLUSION
In this paper we employed the MDL principle to mine sets of

sequential patterns that summarise the data well. In particular, we
formalised how to encode sequential data using set of patterns, and
use the encoded length as a quality measure. As search strategy
for good models, we adopt two approaches. The first algorithm,
SQS-CANDIDATES, selects a good pattern set from a large candidate
set, while SQS-SEARCH is a parameter-free any-time algorithm that
discovers good pattern sets directly from the data. Experimenta-
tion on synthetic and real data showed both methods to efficiently
discover small, non-redundant sets of informative patterns.

And that’s the long and the short of it.

Acknowledgements
Nikolaj Tatti and Jilles Vreeken are supported by Post-Doctoral
Fellowships of the Research Foundation – Flanders (FWO).

9. REFERENCES
[1] A. Achar, S. Laxman, R. Viswanathan, and P. S. Sastry.

Discovering injective episodes with general partial orders.
Data Min. Knowl. Disc., 2011.

[2] R. Bathoorn, A. Koopman, and A. Siebes. Reducing the
frequent pattern set. In ICDM-Workshop, pages 1–5, 2006.

[3] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience New York, 2006.

[4] S. Dzeroski, B. Goethals, and P. Panov, editors. Inductive
Databases and Constraint-Based Data Mining. Springer,
2010.

[5] P. Grünwald. The Minimum Description Length Principle.
MIT Press, 2007.

[6] R. Gwadera, M. J. Atallah, and W. Szpankowski. Markov
models for identification of significant episodes. In SDM,
pages 404–414, 2005.

[7] R. Gwadera, M. J. Atallah, and W. Szpankowski. Reliable
detection of episodes in event sequences. Knowl. Inf. Sys.,
7(4):415–437, 2005.

[8] J. Kiernan and E. Terzi. EventSummarizer: a tool for
summarizing large event sequences. In EDBT, pages
1136–1139, 2009.

[9] H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders. Mining
compressing sequential patterns. In SDM, 2012.

[10] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. A fast
algorithm for finding frequent episodes in event streams. In
KDD, pages 410–419, 2007.

[11] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and its Applications. Springer, 1993.

[12] H. Mannila and C. Meek. Global partial orders from
sequential data. In KDD, pages 161–168, 2000.

[13] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of
frequent episodes in event sequences. Data Min. Knowl. Disc.,
1(3):259–289, 1997.

[14] J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. S. Yu.
Discovering frequent closed partial orders from strings. IEEE
TKDE, 18(11):1467–1481, 2006.

[15] J. Rissanen. Modeling by shortest data description. Annals
Stat., 11(2):416–431, 1983.

[16] D. Salomon and G. Motta. Handbook of Data Compression.
Springer, 2009.

[17] K. Smets and J. Vreeken. SLIM: Directly mining descriptive
patterns. In SDM, pages 1–12. SIAM, 2012.

[18] N. Tatti. Significance of episodes based on minimal windows.
In ICDM, pages 513–522, 2009.

[19] N. Tatti and B. Cule. Mining closed episodes with
simultaneous events. In KDD, pages 1172–1180, 2011.

[20] N. Tatti and B. Cule. Mining closed strict episodes. Data Min.
Knowl. Disc., 2011.

[21] N. Vereshchagin and P. Vitanyi. Kolmogorov’s structure
functions and model selection. IEEE TIT, 50(12):3265– 3290,
2004.

[22] J. Vreeken and A. Siebes. Filling in the blanks: Krimp
minimisation for missing data. In ICDM, pages 1067–1072,
2008.

[23] J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining
itemsets that compress. Data Min. Knowl. Disc.,
23(1):169–214, 2011.

[24] J. Wang and J. Han. Bide: Efficient mining of frequent closed
sequences. ICDE, 0:79, 2004.

APPENDIX
A. PROOFS

PROOF OF PROPOSITION 1. Assume opposite: there is a win-
dow (i, j,X, k) ∈ A such that W = Sk[i, j] is not an minimal
window for X . Let Sk[a, b] be a minimal window of X in W . Let
A′ be an alignment in which we replace (i, j,X, k) with (a, b,X, k).
Note that usage(Y) remains constant for any pattern Y . In addi-
tion, gaps(Y) remains also constant for any pattern Y 6= X . Since
b − a < j − i, we see that gaps(X) < gaps(Y). A straightfor-
ward computation shows that L(CT , D) is a monotonic function
of gaps(X). Hence, the encoding length of A′ is lower than of A,
which contradicts the optimality of A.

PROOF OF PROPOSITION 2. Let

const =

LN(|D|) +
∑
S∈D

LN(|S|) +
∑
s∈Σ

supp(s | D)L(codep(s)) .

The first term in the definition of gain will introduce the correct
number of usages of non-singleton patterns. The second and the
third terms correspond to the length of the gap stream. Finally, since
for s ∈ Ω,

usage(s) = supp(s | D)−
∑
s∈X

usage(X)

= supp(s | D)−
∑
s∈X

|{(i, j,X, k) ∈ A}| ,

the fourth term will correctly reduce the singleton usages.

PROOF OF PROPOSITION 3. We will assume that P 6= Q, the
treatment for the case P = Q is almost equivalent. Let A′ =
A ∪A \ (V ∪W). The usages in A′ remain the same except for P ,
Q, and R: Usages for P and Q are reduced by N and usage of R
is increased by N . In addition, the total usage usage(CT (A′)) =
usage(CT (A))−N is reduced by N .

To compute the difference in the pattern stream Cp we first com-
pute the difference between the code lengths for patterns P , Q, and
R using new usages but old total usage. We have usage(CT (A′))
with incorrect total usage. To compensate the difference in total
usage we add

usage(CT (A′))(log usage(CT (A′))− log usage(CT (A))) .

The gaps gaps(P) and gaps(Q) are decreased by gaps(V) and
gaps(W) under the new encoding. Also, gaps(R) is increased by
gaps(U). The remaining gaps remain the same. Consequently we
can compute the difference in the gap stream Cg in constant time.
Hence, we can compute the difference L(D | A′)− L(D | A) in
constant time.

Encoding the code table will change since it depends on total
usage of non-singleton patterns. In addition, we may delete P or
Q from the code table if their usage counts go to zero (or add R it
its usage count was 0). We see from the definition of L(CT) that
in total 6 terms may change. Consequently, we can compute the
difference L(CT (A′))− L(CT (A)) in constant time.

PROOF OF PROPOSITION 4. Let A′ = A ∪ {w} \ {v}. The us-
age counts in A and in A′ are the same. Thus L(Cp | CT (A′)) =
L(Cp | CT (A)). The gaps also remain constant except for X , in
which case, the gaps(X) is reduced by i− j − (b− a). A straight-
forward calculation implies that L(Cp | CT (A′)) < L(Cp |
CT (A)) and L(X,CT (A′)) < L(X,CT (A)). This implies that
L(D,A′) < L(D,A).

PROOF OF PROPOSITION 5. Let PX be the optimal pattern. Since
alignment is empty, we do not need to compensate for overlapping
windows and the encoding lengths we are computing are accurate.
The algorithm enumerates windows from smallest to largest. We
can use Proposition 4 to see that there will be a point where UX

will contain the optimal alignment, yielding a correct optimal dX .
Consequently, ESTIMATE will return PX .

