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Abstract—Discovering episodes, frequent sets of events from
a sequence has been an active field in pattern mining. Tradi-
tionally, a level-wise approach is used to discover all frequent
episodes. While this technique is computationally feasible it
may result in a vast number of patterns, especially when low
thresholds are used.

In this paper we propose a new quality measure for episodes.
We say that an episode is significant if the average length
of its minimal windows deviates greatly when compared to
the expected length according to the independence model.
We can apply this measure as a post-pruning step to test
whether the discovered frequent episodes are truly interesting
and consequently to reduce the number of output.

As a main contribution we introduce a technique that allows
us to compute the distribution of lengths of minimal windows
using the independence model. Such a computation task is
surpisingly complex and in order to solve it we compute
the distribution iteratively starting from simple episodes and
progressively moving towards the more complex ones. In
our experiments we discover candidate episodes that have a
sufficient amount of minimal windows and test each candidate
for significance. The experimental results demonstrate that our
approach finds significant episodes while ignoring uninteresting
ones.

Keywords-episode mining; statistical test; independence
model; minimal window

I. INTRODUCTION

Discovering episodes, frequent patterns from an event
sequence has been a fruitful and active field in pattern
mining since their original introduction in [1]. Essentially
an episode is a set of events that should occur close to each
other with possibly some constraints on the order of the
occurrences.

The most common way of defining a quality measure
of an episode is the number of windows of fixed length
in which the episode can be found. Such a measure is
antimonotonic and hence all frequent episodes can be found
using APRIORI approach given in [1]. This quality measure
has two significant problems. First, the results will depend
greatly on the length of the window. If the window is too
small, then some interesting occurrences are ignored. On
the other hand, if the window is too large, the behavior of
occurrences in a single window is ignored.

Example 1. Consider a serial episode (a → b) and two
sequences ’abababababababab’ and ’abacbadbaxbagbab’. If
we fix the length of a window to be 6 (or larger), then the

number of windows covering the episode will be the same
for the both sequences. However, occurrences of the episode
in these sequences are different.

The second problem is that this measure has no way
of incorporating any background knowledge. For example,
assume that we know that event a happens relatively seldom,
then we are not surprised by the fact if we observe that
an episode containing a also occur seldom. Alternative
approaches to deal with either the first problem or the second
have been proposed and we discuss them in Section VIII.

In this paper we propose a new quality measure for
the episodes. Our approach tackles simultaneously both
aforementioned problems. To be more specific, given an
episode G, we consider the lengths of minimal windows
of G. To include background knowledge we assume that
for each symbol we have a probability of its occurrence in
the sequence. We then compute the expected length of the
minimal window based on a model in which the symbols
are independent of each other. We say that the episode is
significant if the observed minimal windows have abnormal
length, that is, the minimal windows are either too short or
too long.

Example 2. Assume that we have an alphabet of size 3,
Σ = {a, b, c}. Assume that the probabilities for having a
symbol are p(a) = 1/2, p(b) = 1/4, and p(c) = 1/4. Let G
be a serial episode a→ b. Then s is a minimal window for
G if and only if it has a form ac · · · cb. Hence the probability
of a random sequence s of length k to be a minimal window
for G is equal to

p(s is a minimal window of G, |s| = k) =
1
2
× 1

4
× 1

4k−2
.

We are interested in a probability of a minimal window
having length k. To get this we divide the joint probability
by the probability p(s is a minimal window of G) = 1/6.
Using this normalization we get that the probability of a
minimal window having length k is equal to

p(|s| = k | s is a minimal window of G) = 3/4× 1/4k−2,

for k ≥ 2, and 0 otherwise. In this case the distribution is
geometric and the expected length of a minimal window is
then 7/3 ≈ 2.3.

On the other hand, assume that we have a sequence s =
accbabacb. The minimal windows in s are s[1, 4], s[5, 6], and



s[7, 9]. Hence, the observed average length is (4+2+3)/3 =
3.

Computing the probability of the length for a minimal
window turns out to be a surprisingly complex problem. We
attack this problem in Section IV by introducing a certain
graph having episodes as the nodes. Then using this structure
we are able to compute the probabilities inductively, starting
from simple episodes and moving towards more complex
ones.

Our recipe for the mining process is as follows: Given
the sequence we first split the sequence in two. The first
sequence is used for discovering candidate episodes, in our
case episodes that have a large number of minimal windows
(see Section VI for more details). Luckily, this condition
is antimonotonic and we can mine these episodes using a
standard APRIORI method. We also compute the needed
probabilities for the events from the first sequence. Once
the candidate episodes are discovered and the model is
computed we compare the expected length of a minimal
window against the average length of the observed minimal
windows from the second sequence using a simple Z-test.
This step allows us to prune uninteresting episodes, that is,
the episodes that obey the independence model.

The rest of the paper is structured as follows. In Sec-
tions II–III we introduce the preliminary definitions and
notation. In Section IV we lay out our approach for comput-
ing the independence model. We introduce our method for
evaluating the difference between the observed windows and
the independence model in Section V. We discuss mining
candidate episodes in Section VI. Our experiments are given
in Section VII. We present the related work in Section VIII
and we conclude our work with discussion in Section IX.

II. PRELIMINARIES AND NOTATION

We begin by presenting preliminary concepts and nota-
tions that will be used throughout the rest of the paper. In
this section we will introduce the notions of sequence and
episodes.

A sequence s = (s1, . . . , sL) is a string of symbols
coming from a finite alphabet Σ, that is, we have si ∈ Σ.
Such sequences are generated from random sources, hence
we also treat s as a random variable in our analysis. Given
a sequence s and two indices i and j, such that i ≤ j, we
denote by s[i, j] = (si, . . . , sj) a sub-sequence of s.

An episode G is represented by an acyclic directed graph
with labeled nodes, that is G = (V,E, lab), where V =
(v1, . . . , vK) is the set of nodes, E is the set of directed
edges, and lab is the function lab : V → Σ, mapping each
node vi to its label.

Given a sequence s and an episode G we say that s covers
the episode if there is an injective map f mapping each node
vi to a valid index such that the node and the corresponding
sequence element have the same label, sf(vi) = lab(vi),

and that if there is an edge (vi, vj) ∈ E, then we must
have f(vi) < f(vj). In other words, the parents of the node
vi must occur in s before vi. We define a binary function
c(s;G) such that c(s;G) = 1 if and only if s covers G.
Traditional episode mining is based on searching episodes
that are covered by sufficiently many sub-windows of certain
fixed size.

An elementary theorem says that in directed acyclic graph
there exists a sink, a node with no outgoing edges. We denote
the set of sinks by sinks(G). Given an episode G and a node
v, we define G− v to be the sub-episode obtained from G
by removing v (and the incident edges).

Given a collection of episodes G we say that the collection
is downward closed, if for a given G ∈ G, each subgraph
H of G is included in G. Note that the empty episode
is included in G. Throughout the whole paper we will be
working with downward closed collections of episodes G.

III. MINIMAL WINDOWS OF EPISODES

Episode mining is based on finding episodes that occur
often enough in sliding window. We approach the problem
from a different angle. Given a sequence and a candidate
episode we first discover the set of all minimal windows
in which the given episode occurs. Once we have obtained
this set we will study the length of these windows. If their
distribution is abnormal, either the lengths are too short, or
too long, we consider that we have discovered an important
episode.

In order to make the preceding discussion more formal,
let G be an episode, and let s be a sequence. We say that s
is a minimal window for G if G is covered by s but not by
any proper sub-window of s. We define a function m(s;G)
returning a binary value. The function m(s;G) = 1 if and
only if s is a minimal window starting for G.

Let s be a random sequence of length L, and write t =
s[1, L − 1] and u = s[2, L]. Note that we can write the
probability of s being a minimal window as

p(m(s;G)) = p(c(s;G))− p(c(t;G) ∨ c(u;G))
= p(c(s;G))− p(c(t;G))− p(c(u;G))

+ p(c(t;G) , c(u;G)) .
(1)

Our main focus is the distribution of lengths of minimal
windows, that is, we are interested in

pG(k) = p(|s| = k | m(s;G) = 1) ,

where s is a random sequence. Note that this distribution
is defined for all k. In practice, we compute p(m(s;G))
for k = 1, . . . ,K, where K is some suitable predetermined
constant. Once these values are computed we normalize
them so that pG(k) becomes a proper distribution. This is
equivalent to saying that we are not interested in minimal
windows whose length exceeds K. From now on K will
always denote the maximal length of a minimal window.



We should point out that even though we limit ourselves
to windows of maximal size K this limitation is not as
severe as using windows of fixed size K. While we ignore
information of longer windows we still are able to detect
any deviation occurring with the length of minimal windows
shorter or equal than K. On the other hand, in the fixed
window approach the information of the length of minimal
window is discarded as long as it is short enough.

IV. COMPUTING THE MINIMAL WINDOWS FROM
INDEPENDENCE MODEL

We devote this section for computing the distribution
of lengths of minimal windows. That is we are given
probabilities p(a) for each symbol in an alphabet and a set
of episodes G and for each G ∈ G we wish to compute
pG(k), the probability of a minimal window of G being of
size k, according to the independence model.

Our approach for calculating minimal windows
is based on Eq. 1. According to this equation
we need to solve the probabilities p(c(s;G)) and
p(c(s[1, L− 1];G) , c(s[2, L];G)). We will achieve this by
building certain finite state machines where the states will
correspond to the episodes.

A. Episode Set as Finite State Machine

It will be fruitful to represent the given set of episodes
G as a certain finite state machine. To be more pre-
cise, we define a finite state machine as a DAG MG =
(V (MG), E(MG)). The states V (MG) are exactly the
episodes G. Let X,Y ∈ G be two episodes and let v and w
be the corresponding states. An edge e = (v, w) ∈ E(MG)
with a label a = lab(e) exists if and only if X = Y − n,
where n is a sink node of Y labeled as a. In other words,
there should be an edge between an episode and an episode
obtained by removing a sink node with a label a.

Example 3. We consider a downward set of closed episodes
G = {(a, b→ a), (b→ a), (a, b), (a), (b), (a, a), ∅}. The
machine MG is given in Figure 1.

Given a state v in MG we say that s covers v if there is
a sequence t = {si1 , . . . , siN

} such that v can be reached
when t is given as an input. In that case we set c(s; v) = 1,
and 0 otherwise. Similarly we define m(s; v), when s covers
v but s[2, L] and s[1, L− 1] does not cover v.

Comparing this to the definition of coverage for the
episode we see the immediate result.

Proposition 4. The sequence s covers an episode G ∈ G
if and only if s covers the corresponding v in MG . Conse-
quently, a minimal window of G is equivalent to the minimal
window of v.

Let M be a finite state machine and let v be a state in
M We say that v is monotonic if a sequence s covering
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Figure 1. The machine MG for the episodes G =
{(a, b→ a), (b→ a), (a, b), (a), (b), (a, a), ∅}. Each edge represents a
removed sink between the episode and the parent episode.

v also covers any parent state of v. If every state in M is
monotonic we say that M is monotonic.

A direct corollary of Proposition 4 states that MG is
monotonic.

Lemma 5. The machine MG induced from G is monotonic.

Proof: Let v a state in MG and let w be its parent state.
Let X be the episode represented by the state v and let Y be
the episode represented by the state w. If v covers s, then it
must cover X . Since Y is an episode obtained from X by
removing one sink, s also covers Y and thus cover w.

B. Computing Coverage for States of Simple Machines

In this section we will demonstrate how to compute the
probabilities p(c(s; v)) for the state v in M . We will make
some simplifying assumption concerning the structure of
M , and then in the next section we demonstrate how this
limitations can be removed.

We say that a machine M is simple if incoming edges for
each state v in M have unique labels. Generally, the episode
machine MG is not simple. However, if the episodes G have
only nodes with unique labels, then MG will be simple.

Our approach is to compute the coverage of a state v
based on the coverage of its parent state.

Proposition 6. Let M be simple and monotonic. Let v be
a state in M , and let s be a random sequence of length L
with independent symbols. Let t = s[1, L − 1] be the sub-
sequence of s without the last element. Define probability d
as p(c(s; v)) = d+ p(c(t; v)). Then

d =
∑

e=(w,v)∈E(M)

p(lab(e)) (p(c(t;w))− p(c(t; v))) .

Proof: By definition, we have d = p(c(s; v)) −
p(c(t; v)), that is, d is the probability of sequence s covering



v but t = s[1, L− 1] not covering it. Assume that s is such
sequence. This implies that there is an edge e = (w, v) with
lab(e) = sL. Fix sL = lab(e). Since M is simple the only
path to reach v must use the unique e. We also must have
that t covers w but not v. Note that this probability can be
written as

p(c(t;w))− p(c(t;w) , c(t; v)) = p(c(t;w))− p(c(t; v)),

where the equality follows from since M is monotonic.
The probability of sL being lab(e) is p(lab(e)). The result

follows by combining these probabilities.
Let us abuse the notation and write p(c(L; v)) to mean

the probability p(c(s; v)) where s is a random sequence
of length L. The proposition gives us means to compute
p(c(L; v)) in an iterative fashion from p(c(L− 1; v)) and
from the coverage of parent state. The algorithm for com-
puting the coverage is given in Algorithm 2.

Algorithm 1 Recursive sub-procedure COVERSTATE for
computing the coverage of state v.

1: for e = (w, v) ∈ E(M) do
2: if coverage for w is not computed then
3: COVERSTATE(w).
4: end if
5: end for
6: for k = 1, . . .K. do
7: d← 0.
8: for e = (w, v) ∈ E(M) do
9: x← p(c(k − 1;w))− p(c(k − 1; v)).

10: d← d+ p(lab(e))x.
11: end for
12: p(c(k; v))← d+ p(c(k − 1; v)).
13: end for

Algorithm 2 Algorithm COVER for computing the coverage
of state for a simple and monotonic machine M .

1: s← the source state of M .
2: p(c(k; s))← 1, for k = 0, . . . ,K.
3: for v sink state in M do
4: COVERSTATE(v).
5: end for

To analyze the computational complexity, we first note
that computing the coverage of state v requires O(KL)
steps where L is the number of incoming edges of v. Thus
computing the coverage of the complete graph will require
O(|E(M)|K) steps. However, in practice the process is
more complex. The computations are not numerically stable
due to rounding errors in floating-point numbers. To solve
this problem we have to resort to exact rational numbers.
Using such numbers implies that simple computations are no
longer unit operations making the computation times longer.

C. Transforming non-simple Machines

In order to use Algorithm 2 our state machine needs to
be simple and monotonic. The machine MG is monotonic
but not simple. Luckily, we can define a new simple and
monotonic machine from which we can compute the cov-
erage. Informally, if we reverse the direction of the edges
in MG , then making the machine simple is equal to making
the reversed non-deterministic machine deterministic.

In order to make this formal, let us first give some
definitions. Let V be a subset of states in M . Let a be
a label. We also define

sub(V ; a) = {w |e = (w, v) ∈ E(M), lab(e) = a, v ∈ V }

to be the set of parents of each v ∈ V connected with an
edge having a label a. We define

par(V ; a) = min(sub(V ; a) ∪ V ) ,

where min(X) results in minimal states of X with respect
to the parenthood in M . This guarantees that par(V ; a)
contains no state v, w such that v is an ancestor of w. We
also need to define

in(V ) = {lab(e) | e = (w, v) ∈ E(M), v ∈ V }

to be the set of labels of all incoming edges. We define the
closure of V inductively to be the collection of sets of states

cl(V ) = {V } ∪
⋃

a∈in(V )

cl(par(V ; a))

and cl(V ) = {V } if in(V ) is empty.
We are now ready to transform M into a simple machine,

which we denote by sm(M). The states of the machine
sm(M) are

V (sm(M)) =
⋃

v∈V (M)

cl({v}) .

Let V be a state in sm(M) and let a ∈ in(V ). Let W =
par(V ; a). Note that this state exists in sm(M). We define
an edge labeled as a from W to V . Let i be the initial state
in M . For MG it is the state corresponding to the empty
episode. Then {i} is the initial state for sm(M). From now
on {i} will always denote the initial state of sm(M).

Example 7. We continue Example 3. Note that MG is not
simple since v1 has two incoming edges with a label a. The
transformed machine sm(MG) is given in Figure 2. Note
that, in addition to the states already existing in MG is has
now two extra states, namely {v2, v3} and {v2, v4}. Also
note that sm(MG) is simple.

It is obvious that sm(M) is simple. The following propo-
sition reveals the expected relationship between M and
sm(M).
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Figure 2. The transformed machine sm(MG) of the machine MG given
in Figure 1.

Proposition 8. Let M be a monotonic machine. Let V =
{v1, . . . , vN} be the state in sm(M). Then a sequence s
covers V if and only if s covers at least one vi.

Proof: We will prove this by induction. Assume that
the proposition holds for all parent states of V .

Assume that s covers V . Let t be a sub-sequence of s
that leads sm(M) from the source state {i} to V . Let se

be the last symbol of s occurring in t. There is a parent
state W = {w1, . . . , wL} which s[1, e − 1] covers. By the
induction assumption at least one wk is covered by s[1, e−1].
If there is vj = wk, then vj is covered by s, otherwise there
is vj that has wk as a parent state. The edge connecting vj

and wk has a label se. Hence s covers vj also.
To prove the other direction assume that s covers vj . Let

t be a sub-sequence that leads M from the source state to
vj . Let se be the last symbol occurring in t. Let w be the
parent state of vj connected by an edge with a label se.
Since se ∈ in(V ), we must have W as a parent state of V
such that either w ∈ W or an ancestor state u of w is in
W . In the latter case, since M is monotonic, s covers u. In
either case, by the induction assumption s[1, e − 1] covers
W . Hence s covers V .

Corollary 9. Sequence s covers v in M if and only if s
covers {v} in sm(M).

Corollary 10. Let M be a monotonic machine, then sm(M)
is also monotonic.

Proof: Let V be a state in sm(M) and let s cover V .
Let W be a parent state of V . Let v ∈ V such that s covers
v. If v ∈W , then s covers W . Otherwise there is an ancestor
state w ∈ W of v. Since M is monotonic, s covers w and
thus W .

The corollaries give us means to compute the coverage of
states in MG by solving the coverage of the states sm(MG)
using Algorithm 2.

D. Computing Co-coverage

Our last challenge is to compute the term
p(c(t;G) , c(u;G)) in Eq. 1. In order to do that we

design a special finite state machine, denoted by co(M),
in which the coverage of certain states will correspond to
the last term in Eq. 1. The construction of this machine is
based on the previous machines M = MG and sm(M). To
avoid confusion we use v and w for the states in M , V
and W for the states in sm(M), and greek letters α, β, . . .
for the states in co(M). We proceed by constructing the
machine first and then prove that it gives us the desired
probabilities.

There are three different kinds of states in co(M). The
first group consists of one state, namely η = {i}, where {i}
is the initial state of sm(M). This state will be the initial
state of co(M).

The second group consists of certain pairs of states from
sm(M). Let V and W be states in sm(M) and write α =
(V,W ). The machine will be constructed in such manner
that s will cover α in co(M) if and only if s covers V and
s[2 : L] covers W in sm(M). In order to achieve this we
first define a closure

cl(α) = {α} ∪
⋃

a∈in(V )∪in(W )

cl((par(V ; a) , par(W ; a))) .

Let v be a state in M that is not the source state.
For each label a ∈ in({v}) we add the states from
cl(({v} , par({v} ; a))) into co(M). In addition, we add the
states from cl(({v} , {v})). We add an edge with a label a
to α = (V1, V2) from β = (W1,W2) if Wk = par(Vk; a)
for k = 1, 2 with one exception: if par(V1; a) = V2 = {i},
then instead if connecting α to ({i} , {i}) we connect α
to η = {i}. We also connect the state ({i} , {i}) to η
with an edge accepting any symbol from the alphabet. See
Example 11 for illustration.

We will now define our last group of states. For any
state v that is not a source in M we add a state α = v.
For each a ∈ in({v}), we add an edge with a label a
from ({v} , par({v} ; a)) to α. We also add an edge from
({v} , {v}) to α accepting any symbol outside in({v}).

Example 11. We continue the toy example given in Exam-
ple 7. A part of the machine co(MG) is given in Figure 3.
Namely we show the machine solving the co-coverage for
the episodes v2 = (b→ a) and v5 = (b).

Now that we have defined our machine we are ready to
prove that the coverage of the states of the last group actually
corresponds to the last term in Eq 1.

First, we need to point out a certain property of sm(M).

Lemma 12. Let M be a monotonic machine. Let s be a
sequence of length L covering a state V in sm(M). Then
s[1, L− 1] covers par(V ; sL).

Proof: If sL /∈ in(V ), then a sub-sequence t lead-
ing to V does not contain sL. Hence s[1, L − 1] covers
V = par(V ; sL). Assume that sL ∈ in(V ). Let W =
par(V ; sL). If s[1, L−1] covers V , then by the monotonicity
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Figure 3. A part of co(MG). Here we have only included states
corresponding to the episodes (b) and (b → a). The edge −a means
that the edge accepts any symbol but a.

of sm(M), s also covers W . If s[1, L − 1] does not cover
V , then t must have sL as a last symbol and since sm(M)
is simple, t must go through W Hence, s[1, L − 1] covers
W .

Our second step is to describe the coverage of the inter-
mediate states in co(M).

Proposition 13. Let s be a sequence of length L. Let α =
(V1, V2) be a state in co(M), then s covers α if and only if
s covers V1 and s[2, L] covers V2.

Proof: We will prove the result by induction. To prove
the first step assume that par(V1; a) = par(V2; a) = {i}.
If V2 = {i}, then V1 is connected to the state η = {i}
(in sm(M)) by an edge with a label a. Hence, s covering
α is equivalent to s covering V1. The result follows since
the state V2 = {i} is automatically covered. Assume now
that V2 6= {i}. In this case s[2, L] covering V2 implies that
s[2, L] (and hence also s) covers V1. Since α is connected
to ({i} , {i}), s covering α is equivalent that s[2, L] has a
symbol a. But this is equivalent for s[2, L] covering V2.

Assume now that the result holds for all parent states of
α. Assume that s covers α. There must be a symbol se and
a parent state β = (W1,W2) linked to α by an edge with a
label se such that s[1, e − 1] covers β. By the assumption
s[1, e−1] covers W1 and s[2, e−1] covers W2. Thus, s[1, e]
covers V1 and s[2, e] covers V2.

Assume now that s covers V1 and s[2, L] covers V2. Let
se be the last element in s such that se ∈ in(V1) or se ∈
in(V2). By Lemma 12 we must have that s[1, e− 1] covers
par(V1; se) = W1 and s[2, e− 1] covers par(V2; se) = W2.
Hence by the induction assumption s[1, e − 1] covers β =
(W1,W2) and consequently, since β is a parent state of α,
s[1, e] covers α.

Now we are ready to prove that the coverage of states in
the last group is exactly what we wish to have.

Proposition 14. Let α be a state in co(M) corresponding
to a state v in M . Then a sequence of length L covers α if
and only if s[1, L− 1] and s[2, L] cover v.

Proof: Assume that s covers α. Let t be a sub-sequence
of s that leads to α from the source state. Let se be a last

symbol of t. If se ∈ in({v}) then t travels through β =
({v} , par({v} ; se)). By Proposition 13, s[1, e − 1] covers
{v} and s[2, e − 1] covers par({v} ; se) and hence s[2, e]
covers v. If se /∈ in({v}), then t travels through ({v} , {v})
and result follows again from Proposition 13.

To prove the other direction assume now that s[1, L− 1]
and s[2, L] cover {v}. Assume that sL is not in in({v}). This
implies that s[2, L−1] covers {v}. Thus, by Proposition 13,
s[1, L− 1] covers ({v} , {v}) and consequently s covers α.
On the other hand, if sL ∈ in({v}), then Lemma 12 implies
that s[2, L− 1] covers par({v} ; sL) and hence must cover,
by Proposition 13, ({v} , par({v} ; sL)). Consequently s
covers α.

It is easy to see that co(M) is simple and monotonic, if
M is monotonic. Hence, we can compute the coverage of
co(MG) using Algorithm 2.

We can now compute the probability of s being a minimal
window using Eq. 1. First we solve the coverage using
sm(MG). Secondly, we compute the co-coverage using
co(MG). Once these are computed we can use Eq. 1.

Let us finish by discussing the relative sizes of the
machines. It can be shown that the number of states in
sm(MG) can be substantially larger than the number of
states MG . Consequently, in the worst case our method
is not polynomial. Such an explosion, however, requires a
specific episode with many nodes having the same label.
Such episodes are unlikely to be candidates if we are dealing
with sequences that have a large alphabet distributed more
or less evenly. Moreover, we demonstrate later that in our
experiments the size of sm(MG) is about the same as the
size of MG .

V. TESTING MINIMAL WINDOWS

In this section we will describe how we test whether the
discovered minimal windows obey the independence model.

We say that the episode is significant if the average length
of the minimal windows is abnormally small or large. In
order to measure the abnormality we will use a Z-test. In
order to perform this test we need to show that the average
length is asymptotically normal and compute the mean and
the variance according to the independence model. This is
not trivial since the minimal windows correlate within a
single sequence s. For example, assume that we are looking
for the parallel episode (a, a, a), and assume that we have
found a minimal window of size 3, that is, the window is
aaa. Then the next minimal window will have a higher
probability of being short, since we already have two as.
Thus the occurrences of minimal windows in s are not
independent even if s obeys the independence model.

Assume that we are given a long random sequence s of
length N and write Xi to be a boolean random variable
such that Xi = 1 if there is a minimal window starting at
ith symbol. Also let Yi be the length of that minimal window



and 0 if there is no window. Note that the estimator of the
average length is

M =
∑

i

Yi/
∑

i

Xi.

Let us first show that M is normally distributed. To see
that note that (Yi, Xi) and (Yi+K , Xi+K), where K is the
maximum length of a window, are independent. Hence,
(Xi, Yi) is a strongly mixing sequence which allows us to
use a Central Limit Theorem for dependent variables (given
in [2], for example) so that (

√
NXi,

√
NYi) is asymptoti-

cally normal as N approaches infinity. Let us denote by C
the covariance matrix of this limit distribution. Also write
p = E [X1] and q = E [Y1]. Using the same theorem we
know that the components of C are

C11 = E
[
(Y1 − q)2

]
+ 2

K∑
i=2

E [(Y1 − q)(Yi − q)]

C22 = E
[
(X1 − p)2

]
+ 2

K∑
i=2

E [(X1 − p)(Xi − p)]

C12 = E [(X1 − p)(Y1 − q)] +
K∑

i=2

E [(X1 − p)(Yi − q) + (Y1 − q)(Xi − p)] .

Let us define m = q/p which is the average length of the
minimal window. Since f(y, x) = y/x is continuous and
differentiable function at (q, p), we know from Theorem 3.1
in [3] that

√
Nf(

∑
Yi,
∑

iXi) is asymptotically normal
with mean m and variance σ2, where

σ2 = ∇fTC∇f =
1
p2

(
C22 − 2mC12 +m2C11

)
,

where ∇f = (1/p,−m/p) is the gradient of f at (q, p).
Thus in order to perform a statistical test for an episode

G given a sequence s, let W be the sum of lengths of
the discovered minimal windows. We consider the following
statistic

Z =
W −Nm√

Nσ
. (2)

Based on the above discussion if s truly comes from the
independence model, then Z is asymptotically distributed
as a standard normal distribution N(0, 1).

Our remaining task is to compute m and σ. Note that
since we know the probability of s being a minimal window,
we can compute p, q, m, and the first terms of C11, C12,
and C22. However the last terms of C cannot be computed
easily. We resolve this issue by simulating a sequence of
independence model and estimating these terms from that
sequence.

VI. MINING CANDIDATE EPISODES WITH
NON-OVERLAPPING MINIMAL WINDOWS

So far we have assumed that we already know what
episodes we wish to test. In this section we will focus on
mining candidate episodes.

In order to have a reliable Z-statistic (see Eq. 2), we need
to have a decent number of minimal windows. Hence, a
good criterion for a candidate episode is that the number of
minimal windows exceeds some given threshold. This is the
criterion used in MINEPI (see [1]). However, this condition is
not antimonotonic as demonstrated in the next toy example.

Example 15. Consider the sequence ’aba’. There are 2
minimal windows for the parallel episode (a, b), yet there
is only one minimal window for the episode (b).

We remedy this problem by making a stronger require-
ment. We search all the episodes whose number of non-
overlapping windows exceed some given threshold. It turns
out, that this condition is antimonotonic and we can search
the episodes in a level-wise fashion.

Since there are several ways of selecting non-overlapping
subcollection of minimal windows, we will give a more
precise definition. Let W be a sequence W of minimal
windows of an episode G in a sequence s. Assume that the
minimal windows in W are ordered by their occurrences in
s. We select the first window and remove any window that
overlaps with the selected window. We repeat this until the
W has no more windows. We define nm(G; s) to be the
minimal windows discovered in such fashion. We first show
that this approach produces the maximal number of samples.

Proposition 16. Let V be a collection of non-overlapping
minimal windows of an episode G in a sequence s. Then
|V | ≤ |nm(G; s)|.

Proof: Let W be the collection of possibly overlapping
minimal windows of G in s. We will prove that among
any sub-collection of W of non-overlapping windows, the
collection nm(G; s) has the maximal size. We will prove
this by induction over the size of W .

Let w ∈ W be the first window in W . Let X be the set
of windows that overlap with w (note that w ∈ X). By the
definition, we have w ∈ nm(G; s), and the next window
will be the first window outside X .

If V ∩X = ∅, then V ⊆ W −X , and the result follows
from the induction assumption. Assume that V ∩ X 6= ∅.
Any two windows x, y ∈ X must overlap, hence V can
contain exactly one member of X , say x. This means that
V −{x} ⊆W−X , and the result follows from the induction
assumption.

Corollary 17. The quantity |nm(G; s)| is antimonotonic.

Proof: Let H be a sub-episode of G. Then any minimal
window in nm(G; s) also contains a minimal window of



H . Let V be a collection of minimal windows of H con-
structed by taking one minimal window from each window
w ∈ nm(G; s). It is obvious that the windows in V do not
overlap and that |V | = nm(G; s). Proposition 16 implies
that |nm(H; s)| ≥ |V |.

In [4] the authors introduce a measure for the episodes
to be the maximal number of non-overlapping occurrences
of the episode s. Since each occurrence is either a minimal
window or contains a minimal window, Proposition 16 tells
us that nm(G; s) is exactly this measure.

VII. EXPERIMENTS

In this section we present our experiments with the quality
measure using synthetic and real-world text sequences.

A. Datasets

We conducted our experiments with several synthetic and
real-world sequences.

The first synthetic sequence, gen-ind consisted of 200000
digits drawn independently from the uniform model. The
purpose of this dataset is to show that our method finds very
few significant episodes. The second synthetic sequence,
gen-co also consisted of 200000 digits. The sequence was
generated as follows. First we choose, by a fair coin flip,
whether to generate a digit from 0 – 4 or 5 – 9. In the
former case the digit was selected from a uniform model.
In the latter case the probability of selecting the digit i was
proportional to 0.5x, where x is the distance between the
current location and the last location of the digit i−5. Thus
in this sequence, the digits i and i − 5 tend to be close to
each other.

Our third dataset, moby, was the novel Moby Dick by Her-
man Melville.1 Our fourth sequence, abstract consisted of
739 first NSF award abstracts from 1990.2 Our final dataset,
address, consisted of inaugural addresses of the presidents
of the United States.3 To avoid the historic concept drift we
entwined the speeches by first taking the odd ones and then
even ones. The sequences were processed using the Porter
Stemmer and the stop words were removed.

B. Experimental Setup

Our experimental setup mimics the framework setup in [5]
in which the data is divided into two parts, the first part is
used for discovering the patterns and the second part for
testing whether the discovered patterns were significant. We
divided each sequence into two parts of equivalent lengths.
We used the first sequence for discovering the candidate
episodes and training the independence model. Then the

1The book was taken from http://www.gutenberg.org/etext/15.
2The abstracts were taken from http://kdd.ics.uci.edu/databases/nsfabs/

nsfawards.html
3The addresses were taken from http://www.bartleby.com/124/pres68.

Sequence Size |Σ| N K

gen-ind 200000 10 4000 40
gen-co 200000 10 3500 35

moby 105719 10277 20 10
abstract 67828 6718 22 10
address 62066 5295 20 10

Table I
CHARACTERISTICS OF THE SEQUENCES AND THE THRESHOLD VALUES

USED FOR MINING CANDIDATE EPISODES. THE SECOND COLUMN IS THE
NUMBER OF SYMBOLS IN THE SEQUENCE. THE THIRD COLUMN IS THE

THRESHOLD FOR THE NUMBER OF MINIMAL WINDOWS AND THE
FOURTH COLUMN IS THE LARGEST MINIMAL WINDOW CONSIDERED.

discovered episodes were tested against the model using the
second sequence.

As candidate episodes we considered only those episodes
whose number of non-overlapping windows exceeded some
threshold N . When computing the independence model and
discovering minimal windows from the test data we only
considered the minimal windows of at most K. We used
K = 10 for the text sequences and K = 35, 40 for the
synthetic sequences. These thresholds are given in Table I.

Let G be the set of candidates. Since we compute the
samples from the test sequence, it is not guaranteed that an
episode G ∈ G will have enough minimal windows. Hence
we discard any episode whose number of minimal windows
in the test sequence does not exceed N . We also remove any
episodes having the variance 0 since for these episodes the
minimal window will always be of the same known size.
This set includes all singletons. Let us denote this set of
episodes by H. The sizes of these families along with the
sizes of the machines sm(MH) and co(MH) are given in
Table II.

For each episode H ∈ H we computed the Z-statistic
given in Eq. 2. This value is asymptotically distributed as
a standard normal distribution. We considered two different
P -values. First, we computed a one-sided P -value to we
examine whether Z is abnormally small, thus our test
will return small P -values if the minimal windows are
significantly smaller than expected. Secondly, we computed
a two sided P -value to test whether the average of lengths
of minimal windows is significantly smaller or larger. The
correlation between the minimal windows (see Section V)
was computed by simulating a sequence with 106 symbols.
The computation of P -values lasted about 5 minutes for
the generated sequences and less than a minute for text
sequences. The most expensive step was the computation
of the correlation terms explained in Section V.

C. Significant Episodes

In this section we will focus on the episodes discovered
by our approach.

From each candidate set we computed the significant
episodes based on their P -values. As a significance level



Sequence |G| |H| |sm(MG)| |co(MG)|

gen-ind 4882 4872 4889 28046
gen-co 3993 3982 4221 24035

moby 724 137 726 2382
abstract 14569 116 14985 106901
address 482 78 483 1551

Table II
SIZES OF DATA STRUCTURES IN EXPERIMENTS. THE FIRST COLUMN IS
THE NUMBER OF CANDIDATE EPISODES, THE SECOND COLUMN IS THE

NUMBER OF EPISODES ACTUALLY TESTED. THE THIRD COLUMN IS THE
NUMBER OF STATES IN sm(MG) AND THE FOURTH COLUMN IS THE

NUMBER OF STATES IN co(MG).

we used 0.05. We compared raw P -values and also adjusted
P -values. The adjustment was done using the Benjamini
Hochberg Procedure in order to control the FDR family-
wise error [6]. The results are given in Table III.

Raw Adjusted

Sequence one-s. two-s. one-s. two-s.

gen-ind 446 355 0 0
gen-co 237 101 242 90

moby 23 20 12 9
abstract 41 42 15 15
address 20 19 3 3

Table III
SIGNIFICANT EPISODES ACCORDING TO THEIR RAW AND ADJUSTED
P -VALUES. SIGNIFICANCE LEVEL IS 0.05. THE P -VALUES WERE

ADJUSTED WITH THE BENJAMINI HOCHBERG PROCEDURE METHOD IN
ORDER TO CONTROL THE FDR ERROR.

Let us first consider gen-ind. Since this sequence cor-
respond to the independence model there should be no
significant episodes. However, since we are accepting 5%
of false significant episodes we should expect about 240
significant episodes. The number of significant episodes
discovered is about 10%. The higher number for these tests
can be explained by the fact that the model we are using
is actually trained from the training data and hence contain
some error. Should we use the exact model, then the number
of significant episodes will drop to 5%. After adjusting the
raw P -values, no significant episode remained. Hence, our
method did not find any significant episode from gen-ind,
as expected.

Next we will consider the sequence gen-co. Here we
expect to find significant patterns, since the sequence does
not obey the independence model. We see from Table III
that this is the case. Even after the adjustment there is a
considerate amount of significant episodes. By studying the
results we found out that the significant episodes had either
the basic form of i→ i+ 5 or a combination of these. This
is an expected result since the sequence had i and i + 5
abnormally close to each other. An important observation
here is that the algorithm also discovers complex episodes

to be important. Namely, the P -value, our quality measure
is fair for simple and more complex episodes.

Our next sequence was moby. Since the alphabet in this
sequence is quite large, the number of candidate episodes
is rather small and a lot of these candidate episodes are in
fact singletons — in the end 137 episodes were given a
P -value. Out of these episodes about 15% were significant
based on raw P -value and about 10% when P -values
were adjusted. Some examples among the most significant
episodes based on one-sided test were (white → whale),
(sperm→ whale), (old→ man), along with their parallel
versions. Such episodes imply that these words occur ab-
normally close to each other. On the other hand, candidate
episodes such as (time,whale) or (ship,man) were not
considered significant. This means that even though these
combinations occur often, the episode can be explained by
the fact that their individual words are common. Similarly,
some of the significant episodes discovered in abstract were
(research → project) and (undergraduate, student).
Episodes discovered from address were (united→ states),
(united, states) and (fellow, citizen).

VIII. RELATED WORK

Our approach resembles the approach taken in [7], [8]
in which the authors considered episode to be significant
if the episode occurs too often or not often enough in a
fixed window. As a background model the authors used
independence model in [7] and markov-chain model in [8].
The main difference between our approach and theirs is that
we are studying the behavior of the minimal windows. As
we have discussed in the introduction we believe that using
the statistics based on minimal windows has an advantage
over the fixed window approach.

In [9], the author proposed a criterion for episodes by
requiring that the consecutive symbols in a sequence should
only within a specified bound. While this approach attacks
the problem of fixed windows, it is still a frequency-based
measure. This measure, however, is not antimonotonic as it
is pointed out in [10]. It would be useful to see whether we
can compute an expected value of this measure so that we
can compute a P -value based on some background model.

In a related work [11] the authors considered parallel
episodes significant if the smallest window containing each
occurrence of a symbol of an episode had a small value.
Their approach differ from ours since the smallest window
containing a fixed occurrence of a symbol is not necessarily
the minimal window. Also, they consider only parallel
episodes whereas we consider more general DAG episodes.
An interesting approach has been also taken in [12] where
the authors define a windowless frequency measure of an
itemset within a stream s to be the frequency starting from
a certain point. This point is selected so that the frequency is
maximal. However, this method is defined for itemsets and



it would be fruitful to see whether this idea can be extended
into episodes.

Finite state machines have been used in [13], [14] for
discovering episodes. However, their goal is different than
ours since the actual machine is built upon a sequence and
not the episode set and it is used for discovering episodes
and not computing the coverage.

IX. DISCUSSION AND CONCLUSIONS

In this paper we proposed a new quality measure for
the episodes. Our approach tackles simultaneously problems
with fixed windows but also allows us to incorporate back-
ground knowledge. The measure itself is a deviation of the
average length of the minimal windows when compared to
the expected length according to the independence model.

Our main technical contribution is the technique for
computing the distribution of lengths of minimal window. In
order to do that we create an elaborate finite state machine
and compute probabilities iteratively starting from simple
episodes and moving toward complex ones. Once the distri-
bution is computed we are able to perform a statistical test
on the discovered minimal windows from the test sequence.
Our experiments with the text data suggest that this measure
finds significant episodes while ignoring uninteresting ones.

The proposed method requires a parameter K, a limit to
the size of a minimal window. In this paper we simply
have assumed that this parameter is domain-specific and
is provided by the user. Setting this parameter high may
allow us to discover more interesting patterns. However,
when using large values for K, computing the model may
become computationally infeasible as we are forced to use
exact rational numbers in order to guarantee numerical
stability. This computational problems may be solved by
simulating the independence model instead of computing the
exact probabilities. In such case, more analysis is needed to
determine a proper number of steps in this simulation.

As a future work we also consider more elaborate models
such as Markov Chains. This has been done in [8] for
windows of fixed size and our goal is to extend this approach
for minimal windows.

Our experiments revealed an interesting behavior within
certain sets. Certain information tend to repeat in sev-
eral forms of episodes. For example, we found that both
(white, whale) and (white → whale) were significant.
This suggests that there is a need for pattern reduction
techniques. Such techniques are well studied in the setting
of itemsets but are not that well developed for episodes.
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