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Abstract—Mining frequent patterns is plagued by the prob-
lem of pattern explosion making pattern reduction techniques
a key challenge in pattern mining. In this paper we propose a
novel theoretical framework for pattern reduction. We do this
by measuring the robustness of a property of an itemset such
as closedness or non-derivability. The robustness of a property
is the probability that this property holds on random subsets of
the original data. We study four properties: closed, free, non-
derivable and totally shattered itemsets, demonstrating how
we can compute the robustness analytically without actually
sampling the data. Our concept of robustness has many
advantages: Unlike statistical approaches for reducing patterns,
we do not assume a null hypothesis or any noise model and
the patterns reported are simply a subset of all patterns with
this property as opposed to approximate patterns for which
the property does not really hold. If the underlying property
is monotonic, then the measure is also monotonic, allowing
us to efficiently mine robust itemsets. We further derive a
parameter-free technique for ranking itemsets that can be
used for top-k approaches. Our experiments demonstrate that
we can successfully use the robustness measure to reduce the
number of patterns and that ranking yields interesting itemsets.

Keywords-pattern reduction; robust itemsets; closed itemsets;
free itemsets; non-derivable itemsets; totally shattered itemsets

I. INTRODUCTION

Frequent itemset mining was first introduced in the con-
text of market basket analysis [1] and has been used since
to address many data mining problems such as frequent pat-
tern mining, association rule generation [2], clustering [3],
classification [4], temporal data mining [5] and outlier
detection [6]. The mining of itemsets is a core step in these
methods that often dominates the overall complexity of the
problem. The number of frequent itemsets can be extremely
large even for moderately sized datasets complicating a
manual analysis or further automated processing steps.

Researchers have proposed many solutions to reduce the
number of patterns reported depending on the context in
which the patterns are used or the process in which the
data was generated, for example closed itemsets [7] to
avoid redundant association rules, constrained itemsets [8] to
incorporate prior knowledge, condensed representations [9]
to answer frequency queries with limited memory, margin-
closed itemsets [5] for exploratory analysis, and surprising

itemsets [10], [11] or top-k patterns [12] for itemset ranking.
Many of reduction techniques have a drawback of being

fragile. For example, given a non-closed itemset X , adding
a single transaction to dataset containing only X will make
X closed. In this paper we introduce a novel theoretical
framework that uses this drawback to its advantage. Given
a property of an itemset (closedness or non-derivability,
for example) we can measure robustness of this property.
A property of X is robust if it holds for many datasets
subsampled from the original data. We demonstrate that we
can compute this measure analytically for several important
classes of itemsets: closed [7], free [13], non-derivable
[14], and totally shattered itemsets [15]. Computing robust
itemsets under subsampling turns out to be practical for
free, non-derivable, and totally shattered itemsets, for closed
itemsets the test for robustness is prohibitively expensive.

A possible drawback of our approach is that it depends on
a parameter α, the probability of including a transaction in a
subsample. In addition to providing reasonable guidelines to
choose α we introduce a technique making us independent
of α. We show that there is a neighborhood near 1 in which
the ranking of itemsets does not depend on α. We further
demonstrate how we can compute this ranking without
actually discovering the exact neighborhood or computing
the measure for the itemsets. We give exact solutions for free
and totally shattered itemsets and provide practical heuristics
for closed and non-derivable itemsets.

In the remainder of this paper we describe related work
and motivate our approach in Section II. Itemsets robust
under subsampling and algorithms to find them are described
in Section III. Section V demonstrates how the subsam-
pling approach can reduce the number of reported itemsets
significantly. The results are discussed in comparison with
approximate itemsets in Sections VI.

II. RELATED WORK AND MOTIVATION

The design goal of condensed representations [9] of
frequent itemsets is to be able to answer all possible fre-
quency queries (approximately). For example, non-derivable
itemsets [14] exclude any itemset whose support that can be
derived from others in the condensed representation using
logical rules exactly or approximately.



This is useful to support further mining tasks such as
generation of association rules where the frequencies of all
subsets of a (closed) itemset are needed to determine the
confidence of all possible rules. For other tasks knowing the
frequency of all frequent itemsets is less useful because there
is a large redundancy in the set of frequent itemsets. All
frequent itemsets can be grouped into equivalence classes
where all itemsets in a class are observed in the same set of
transactions. The maximal element of each equivalence class
is a closed itemset [7]. No more items can be added to this
set without losing some transactions. The minimal elements
of the equivalence class are free itemsets [13] or generators.
No items can be taken out without adding transactions.

However, even the number of closed and free itemsets can
still be very large for low minimum support thresholds. It
can be further reduced by clustering itemsets representing
similar sets of transactions [16], enforcing itemsets to have
a minimum margin of difference in support [5], or ranking
itemsets by significance [10], [11], [17], [18].

The above approaches have in common that the complete
dataset is considered and no assumption on potential noise
are made. In fault tolerant approaches the strict definition of
support, requiring all items of an itemset to be present in
a transaction is relaxed, see [19]–[22], assuming that items
can present or absent at random in the transactions.

These approaches can reveal important structures in noisy
data that might otherwise get lost in a huge amount of
fragmented patterns. One needs to be aware though that they
report approximate support values and possibly list itemsets
that are not observed as such in the collection at all or
with much smaller support. Also the design goal is not to
reduce the number of reported patterns, only [23] considers
closedness in combination with fault tolerance.

Unlike the approaches based on significance [10], [11],
[17], [18], we do not assume a statistical null hypothesis.
We also do not assume any noise model, such as flipping
the values of a matrix independently. Instead our goal is to
study robustness of a given property based on subsampling
transactions.

III. ROBUST ITEMSETS

A. Notation and definitions
In this section we review the preliminaries and introduce

the notation used in the paper.
A binary dataset D is a multiset of transactions, binary

vectors of length K. The ith element of a transaction
represents by an item ai, a Bernoulli random variable. We
denote the collection of all items by A = {a1, . . . , aK}.

An itemset X is a subset of A. Given a transaction t and
an itemset X , we define tX to be the binary vector obtained
by keeping only the items occurring in X .

Given an itemset X = (x1, . . . , xN ) and a binary vector
v of length N , we define the support

sp(X = v;D) = |{t ∈ D | tX = v}|

to be the number of transactions in D, where items in X
obtain values of v. We often omit D from notation, when
it is clear from the context. In addition, if v contains only
1s, we simply write sp(X). Note that sp(X) coincides with
the traditional definition of a support for X . Discovering
frequent itemsets, that is, itemsets whose support exceeds
some given threshold is a well-studied problem.

EXAMPLE 1 Throughout the paper we will use the following
toy dataset

D =

 0 0 0 0 1
0 1 0 1 1
1 1 1 1 1
0 1 0 1 1
1 1 1 1 1
1 0 0 0 0


containing 5 items, a, b, c, d, and e, and 6 transactions as
a running example. As an example, for this dataset we have
sp(ab) = 2, sp(ab = [1, 0]) = 1.

We say that a function f mapping an itemset X to a
real number f(X) is monotonically decreasing if for each
Y ⊆ X we have f(Y ) ≥ f(X).

Closed Itemsets: An itemset X is closed, if there is no
Y ) X such that sp(X) = sp(Y ), i.e., they are maximal
among the itemsets having the same support. We define a
predicate

σc(X;D) =

{
1 if X is closed in D,
0 otherwise .

Free Itemsets: An itemset X said to be free if there is
no Y ( X such that sp(X) = sp(Y ), i.e., free itemsets are
minimal among the itemsets having the same support. We
define a predicate

σf (X;D) =

{
1 if X is free in D,
0 otherwise .

A vital property of free itemsets is that they constitute a
downward closed collection allowing efficient mining with
an Apriori-style algorithm (see Theorem 1 in [24]).

EXAMPLE 2 Closed itemsets in our running example are a,
e, bde, and abcde. On the other hand, itemsets a, b, c, d, e,
ab, ad, and ae are free.

Non-derivable Itemsets: An itemset X is said to be
derivable, if we can derive its support from the supports
of proper subsets of X , otherwise an itemset is called non-
derivable. We define a predicate

σn(X;D) =

{
1 if X is non-derivable in D,
0 otherwise .

PROPOSITION 3 An itemset X is derivable if and only if
there are two vectors v and w with v having odd number
of 0s and w having even number of 0s and sp(X = v) =
sp(X = w) = 0.



Proof: To verify whether an itemset is derivable, we
compute bounds for the frequency by using the inclusion-
exclusion principle. An itemset is derivable if and only if
the upper and lower bounds are equal. We can show that
the upper bound is equal to u = sp(X) +minv sp(X = v),
where v has odd number of 0s. Similarly, the lower bound
is equal to l = sp(X) − minw sp(X = w), where w has
even number of 0s (see [14]). Itemset is derivable if and
only 0 = u− l = minv sp(X = v) + minw sp(X = w).
Corollary 3.4 in [14] states that non-derivable itemsets are
downward closed, hence we can mine them using an Apriori-
style approach.

We say that an itemset X is totally shattered if
sp(X = v) > 0 for all possible binary vectors v. In other
words, every possible combination of values for X occur in
D. Again, we define a predicate

σs(X;D) =

{
1 if X is totally shattered in D,
0 otherwise .

Totally shattered itemsets are related to VC-
dimension [15],and we can show that a totally shattered
itemset is always free and non-derivable (but not vice
versa).

EXAMPLE 4 Itemset ab in the running example is totally
shattered. Itemset ac is non-derivable but not totally shat-
tered because sp(ac = [0, 1]) = 0.

It is easy to see from the definition that totally shattered
itemsets constitute a downward collection, hence they are
easy to mine using an Apriori-style approach.

B. Measuring robustness

In this section we propose a measure of robustness for
itemsets with a predicate σ. Intuitively we consider an
itemset robust if the predicate is true for many subsets of
the database.

In order to define the measure formally, we first define a
probability for a subset of D.

DEFINITION 5 Given a binary dataset D, and a real number
α, 0 ≤ α ≤ 1, we define a random dataset Dα obtained
from D by keeping each transaction with probability α, or
otherwise discarding it.

Let S be a subset of D. The probability of Dα = S is
equal to

p(Dα = S) = α|S|(1− α)|D|−|S| . (1)

DEFINITION 6 Given a binary dataset D, a real number α,
and an itemset predicate σ, we define the robustness to be
the probability that σ(X;Dα) = 1, that is,

r(X;σ,D, α) = p(σ(X;Dα) = 1) =
∑

σ(X;S)=1

p(Dα = S) .

For notational clarity, we will omit D and α when they are
clear from the context.

EXAMPLE 7 Consider itemset ab in our running example.
Let α = 1/3. Note that sp(ab = [0, 0]) = sp(ab = [1, 0]) =
1 and sp(ab = [0, 1]) = sp(ab = [1, 1]) = 2. In order for ab
to still be totally shattered on a subset each of these supports
needs to stay greater than zero. The probability of this event
is equal to

1/3× 1/3× (1− 2/3× 2/3)× (1− 2/3× 2/3) = 25/729,

because for the first two cases we need to sample the single
transaction upholding the property and for the other two
cases we need to make sure we do not skip both of the two
transactions we need to uphold the property.

Our main goal is to mine itemsets for which the robustness
measure exceed some given threshold, that is, find all
itemsets for which r(X;σ,D, α) ≥ ρ.

Let us first consider the effect of α. If we set α = 1, then
r(X;σ,D, α) = σ(X;D). Naturally, we expect that when
we lower α then the robustness would decrease. This holds
for predicates that satisfy a specific property.

DEFINITION 8 We say that a predicate σ is monotonic w.r.t.
deletion if for each itemset X , each dataset D, and each
transaction t ∈ D it holds that if σ(X;D) = 0, then
σ(X;D − t) = 0.

PROPOSITION 9 Let σ be a predicate monotonic w.r.t. dele-
tion. Then r(X;σ,D, α) ≤ r(X;σ,D, β), for α ≤ β.

Proof: We will prove the proposition by induction over
|D|. Proposition holds trivially for |D| = 0. Assume that
theorem holds |D| = N and let D be a dataset with |D| =
N + 1.

Fix t ∈ D and define a new predicate σt(X;S) =
σ(X;S ∪ {t}), where S is a dataset. σt is monotonic w.r.t
deletion. Otherwise, if there is a dataset S, a transaction
u ∈ S an itemset Y violating the monotonicity, then S∪{t},
the same transaction u and the itemset Y will violate the
monotonicity for σ.

Moreover, since σ is monotonic w.r.t deletion, it holds
that σ(X;S) ≤ σt(X;S). This in turns implies that

r(X;σ, S, α) ≤ r(X;σt, S, α) . (2)

Let us write D′ = D − {t}. Then we have,

r(X;σ,D, α) = (1− α)r(X;σ,D′, α) + αr(X;σt, D
′, α)

≤ (1− β)r(X;σ,D′, α) + βr(X;σt, D
′, α)

≤ (1− β)r(X;σ,D′, β) + βr(X;σt, D
′, β)

= r(X;σ,D, β) ,

where the first inequality holds because of Equation 2 and
the second inequality holds because of induction assumption.
This proves the proposition.



It turns out that all the predicates we considered in
Section III-A are monotonic w.r.t. deletion.

PROPOSITION 10 Predicates σc , σf , σn , and σs are mono-
tonic w.r.t. deletion.

Proof: An itemset is not totally shattered if there is
a binary vector v such that sp(X = v;D) = 0. This
immediately implies that sp(X = v;D − {t}) = 0. Thus σs
is monotonic w.r.t. deletion. Similarly, Proposition 3 implies
that σn is monotonic w.r.t. deletion.

An itemset X is not free, if there is x ∈ X such that
there is no transaction u ∈ D for which ux = 0 and uy = 1
for all y ∈ X − {x}. If this holds in D, then it holds for
D−{t}. This makes σf monotonic w.r.t. deletion. Similarly,
an itemset X is not closed, if there is x /∈ X such that there
is no transaction u ∈ D for which ux = 0 and uy = 1 for
all y ∈ X . If this holds in D, then it holds for D − {t}.
This makes σc monotonic w.r.t. deletion.

EXAMPLE 11 The itemset bd is not closed because its
superset bde is always observed when bd is observed. No
matter which transaction we delete (one with or without bde)
this will not change. Note, however, that bde can become
non-closed if transactions 2 and 4 are deleted because then
abcde will have the same support of 2.

In order to mine all significant patterns we need to show
that the robustness measure is monotonically decreasing.
This is indeed the case if the underlying predicate is mono-
tonically decreasing.

PROPOSITION 12 Let σ be a monotonically decreasing
predicate. Then r(X;σ,D, α) is also monotonically de-
creasing.

Proof: Let Y and X be itemsets such that Y ⊂ X .
Then r(X;σ,D, α) is∑
σ(X;S)=1

p(Dα = S) ≤
∑

σ(Y ;S)=1

p(Dα = S) = r(Y ;σ,D, α) ,

which proves the proposition.

C. Computing the measure

In this section we demonstrate how to compute the ro-
bustness measure for the predicates. Computing the measure
directly from the definition is impractical since there are 2|D|

number of subsets of D. It turns out that computing free,
non-derivable, and totally shattered itemsets has practical
formulas while the robustness measure for closed itemsets
has no practical formulation (see Table I).

To facilitate the analysis we introduce the following
function: Given an itemset X and a set of binary vectors
V ⊆ {0, 1}|X| we define

o(X,V, α) =
∏
v∈V

1− (1− α)sp(X=v) .

Table I
COMPUTATIONAL COMPLEXITY OF ROBUSTNESS AND ORDERS.

COMPUTING MEASURES IS EXPLAINED IN SECTION III-C. COMPUTING
ORDERS IS EXPLAINED IN SECTION IV. K IS THE NUMBER OF ITEMS,

|C| IS THE NUMBER OF FREQUENT CLOSED ITEMSETS.

predicate measure order order estimate

free O(|X|) O(|X|) –
totally shattered O(2|X|) O(2|X|) –
closed O(2K−|X|) O(2K−|X|) O(

∣∣C2∣∣)
non-derivable O(2|X|) O(22

|X|
) O(4|X|)

PROPOSITION 13 Given an itemset X , let V be the set of
|X| vectors having |X| − 1 ones and one 0. The robustness
of a free itemset is r(X;σf , α) = o(X,V, α).

Proof: Given an item x ∈ X , define a random variable
Tx = sp(X − {x} ;Dα) > sp(X;Dα). X is still free in
Dα if Tx is true for all x ∈ X . Tx is true if and only if
Dα contains a transaction t with tx = 0 and ty = 1 for
y ∈ X − {x}. There are sp(X = v;D) such transactions,
where v ∈ V is the vector for which vx = 0. p(Tx) is the
probability of not removing all these transactions, thus

p(Tx) = 1− (1− α)sp(X=v;D) .

Since each of these transaction is missing only one x ∈ X ,
there is no common transactions between different events
Tx, making them independent. Thus, we can conclude
r(X;σf , α) =

∏
x∈X p(Tx) = o(X,V, α).

PROPOSITION 14 Given an itemset X , let V be the set of
all binary vectors of length |X|. The robustness of a totally
shattered itemset is r(X;σs , α) = o(X,V, α).

Proof: Given a binary vector v ∈ V , define a random
variable Tv = sp(X = v;Dα) > 0. X is still totally
shattered in Dα if Tv is true for all v ∈ V . p(Tv) is
the probability of not removing all these transactions, thus
p(Tv) = 1 − (1 − α)sp(X=v;D). Again, since no transac-
tion can contribute to different Tv being true, the random
variables are independent and we obtain r(X;σs , α) =∏
v∈V p(Tv) = o(X,V, α).
Note that this formula in this proposition corresponds

directly to Example 7.
We will now consider closed itemsets. Unlike with

free/totally shattered itemsets, there is an exponential num-
ber of terms. The key problem is that closure depends on the
items outside the itemset whereas other predicates consider
only the items inside the itemset.

PROPOSITION 15 The robustness of a closed itemset is

r(X;σc , α) =
∑
Y⊇X

(−1)|Y |−|X|(1− α)sp(X)−sp(Y ) .

Proof: Given an item y /∈ X , define a random variable
Ty = sp(X ∪ {y} ;Dα) = sp(X;Dα). X is still closed in



Dα if all Ty are false, thus r(X;σc , α) is equal to

1− p
( ∨
y/∈X

Ty
)
=

∑
Y ∩Z=∅

(−1)|Z|p
( ∧
y∈Z

Ty
)
,

where the equality follows from the inclusion-exclusion
principle. Through this transformation we now need to
determine the probability of all Ty being true. For this all
sp(X) − sp(Y ∪X) transactions containing X but not Z
must have been excluded from Dα, hence

p
( ∧
y∈Z

Ty
)
= (1− α)sp(X)−sp(Z∪X) .

Substituting this above and writing Y = X ∪Z leads to the
proposition.

EXAMPLE 16 In our running example, we have sp(bde) =
4. This itemset has 3 superitemsets having the supports
sp(abde) = sp(bcde) = sp(abcde) = 2. Hence, the measure
r(bde;σc , α) is equal to

1− (1−α)4−2 − (1−α)4−2 + (1−α)4−2 = 1− (1−α)2,

where itemsets bde, abde, bcde, and abcde correspond to the
terms on the left side in the given order.

PROPOSITION 17 Given an itemset X , write V to be the
set of binary vectors of length |X| having odd number of
ones. Similarly let W be the set of binary vectors of length
|X| having even number of ones. The robustness of a non-
derivable itemset is

r(X;σn , α) = 1− (1− o(X,α, V ))(1− o(X,α,W )) .

Proof: Let us define an event TV to be the lack of
v ∈ V such that sp(X = v) = 0. Similarly, let TW be
an event corresponding to the lack of w ∈ W such that
sp(X = w) = 0. According to Proposition 3, an itemset X
is derivable if TV and TW are both false.

Using the same argument as with Proposition 14, we see
that p(TV ) = o(X,α, V ). Similarly, p(TW ) = o(X,α,W ).
Since V ∩W = ∅, events A and B are independent. Hence,
r(X;σn , α) is equal to

1− p(¬TV ∧ ¬TW ) = 1− (1− p(TV )(1− p(TW )) .

This completes the proof.

IV. ORDERING PATTERNS

The robustness measure depends on the parameter α. In
this section we propose a parameter-free approach. The idea
is to study how measure is behaving when α is close to 1.
We can show that there is a (small) neighborhood close to
1, where the ranking of itemsets does not depend on α. We
can compute a ranking that can use to select top-k itemsets
by robustness without actually computing the measure or
determining the neighborhood.

We will first introduce the general idea and then demon-
strate how can we compute the ranking for free and totally

shattered itemsets and how can we estimate the ranking
for closed and non-derivable itemsets. For computational
complexity see Table I.

A. Measuring robustness when α approaches 1

When α = 1 then Dα = D with probability 1 and the
measure is equivalent to the underlying predicate, providing
only a crude ranking: itemsets that satisfy the predicate
vs. itemsets that do not. If we make α slightly smaller
the measure will decrease a little bit for each itemset. The
amount of this change will vary from one itemset to another
based on how likely removing only very few transactions
will break the predicate for this itemset. We can use the
magnitude of this change to obtain a more fine-grained
ranking by robustness. The key result for this is that there
is a small neighborhood below 1 in which the ranking of
itemsets based on the measure does not depend on α.

PROPOSITION 18 Given a predicate σ and a dataset D,
there exists a number β < 1 such that

r(X;σ,D, α) ≤ r(Y ;σ,D, α) if and only if

r(X;σ,D, α′) ≤ r(Y ;σ,D, α′) ,

for any itemset X and Y and β ≤ α ≤ 1, β ≤ α′ ≤ 1.

Proof: Fix X and Y and consider

f(α) = r(X;σ,D, α)− r(Y ;σ,D, α) .

Since the measure is a finite sum of probabilities that are,
according to Eq. 1, polynomials of α, the function f is a
polynomial. This implies that f can have only finite number
of 0s. Consequently there is a neighborhood N = [β, 1]
such that either f(α) ≥ 0 for any α ∈ N , or f(α) ≤ 0 for
α ∈ N . Since there are only finite number of itemsets, we
can take the maximum of all βs to prove the theorem.

Proposition 18 allows us to define an order for itemsets
based on the measure for α ≈ 1.

DEFINITION 19 Given a predicate σ, and a dataset D, we
say that X �σ Y , where X and Y are itemsets, if there
is β < 1 such that r(X;σ,D, α) ≤ r(Y ;σ,D, α) for any
α such that β ≤ α ≤ 1. Moreover, if r(X;σ,D, α) <
r(Y ;σ,D, α) for some α ≥ β, then we write X ≺σ Y .

Note that Proposition 18 implies that for any X and Y ,
either X �σ Y or Y �σ X . That is, we can use this relation
to order itemsets.

B. Free and totally shattered itemsets

In this section we will demonstrate that we can compute
the order for free and totally shattered itemsets without
finding an appropriate α. We will do this by analyzing the
coefficients of the measure viewed as a polynomial of α.

The key step is the following lemma that can be proven
by elementary real analysis.



LEMMA 20 Let f(x) =
∑N
i=0 aix

i be a non-zero polyno-
mial. Let k be the first index such that ak 6= 0 If ak > 0,
then there is a β > 0 such that 0 ≤ x ≤ β implies f(x) ≥ 0.
Similarly, if ak < 0, then there is a β > 0 such that
0 ≤ x ≤ β implies f(x) ≤ 0.

We cannot use Lemma 20 directly with Proposition 13
and Proposition 14 because both polynomials contain an
exponential number of terms. However, the polynomials are
regular enough so that we can compute the order without
expanding the polynomials. In order to that we need the
following definition for ordering sequences.

DEFINITION 21 Given two non-decreasing sequences s =
s1, . . . , sK and t = t1, . . . , tN , we write s ≺ t if either there
is sn < tn and si = ti for all i < n or s is a proper prefix
sequence of t, that is, si = ti for i ≤ K < N . We write
s � t, if s = t or s ≺ t.

The following proposition will allow us to order itemsets
without expanding the polynomials in Propositions 13–14.

PROPOSITION 22 Assume two polynomials

f(α) =

K∏
i=1

(1− (1− α)si) and g(α) =
N∏
i=1

(1− (1− α)ti),

where s = s1, . . . , sK and t = t1, . . . , tN are non-
decreasing sequences of integers, si, ti ≥ 0. If t � s, then
there is a β < 1 such that β ≤ α ≤ 1 implies f(α) ≥ g(α).

Proof: The case s = t is trivial. Hence we assume that
s 6= t. If s1 = 0 or t1 = 0, then f(α) = 0 or g(α) = 0, and
the result follows, hence we will assume that si, ti > 0.

Let {ai} and {bi} be coefficients such that

f(1− x) =
∑
i

aix
i and g(1− x) =

∑
i

bix
i .

Let In be the collection of all subsequences of s that sum
to n. Similarly, let Jn be the collection of all subsequences
of t that sum to n. Then, it follows that

an =
∑
I∈In

(−1)|I| and bn =
∑
J∈Jn

(−1)|J| .

Assume that t ≺ s. If s is a prefix sequence of t, then

g(α) = f(α)

N∏
i=K+1

(1− (1− α)ti) ≤ f(α),

which proves the proposition. Let n be as given in Defi-
nition 21. For every i < sn, the subsequences in Ii and
Ji contain entries from s and t with indices smaller than
n. Since s and t are identical up to n, then it follows that
Ii = Ji and consequently ai = bi. Let I ∈ Isn . Assume that
|I| > 1. Since, we assume that si > 0, I is a subsequence
of s1, . . . , sn−1. This means that we will find the same
subsequence in Jn. Let A be the number of singleton sets
in Isn and let B be the number of singleton sets in Jsn .

These singleton sets correspond to the entries in s and t
having the same value as sn. By definition, B > A. We
have now an − bn = B − A > 0. Lemma 20 now implies
that f(1 − x) ≥ g(1 − x), when x is close to 0. Write
α = 1− x to complete the proof.

The polynomials in Propositions 13–14 have the form
used in Proposition 22. Consequently, we can use the
proposition to order itemsets. In order to do that we need
the following definitions.

DEFINITION 23 Given a dataset D and an itemset X , we
define a free margin vector mv(X;D,σf ) to be the sequence
of |X| integers sp(X = v;D), where v is a binary vector
having |X| − 1 ones, ordered in the increasing order.

Similarly, we define a totally shattered margin vec-
tor mv(X;D,σs) to be a sequence of 2|X| integers
sp(X = v;D) ordered in the increasing order.

COROLLARY 24 Given itemsets X and Y and a dataset D,
X �σf

Y if and only if mv(X;D,σf ) � mv(Y ;D,σf ).

COROLLARY 25 Given itemsets X and Y and a dataset D,
X �σs Y if and only if mv(X;D,σf ) � mv(Y ;D,σs).

EXAMPLE 26 In our running example, sp(ab = [1, 0]) =
1 and sp(ab = [0, 1]) = 2, hence the free margin vec-
tor is equal to mv(ab;σf ) = [1, 2]. Similarly, we have
sp(ae = [1, 0]) = 1 and sp(ae = [0, 1]) = 3, hence the free
margin vector is equal to mv(ae;σf ) = [1, 3]. Hence, we
conclude that ab ≺σf

ae.

C. Closed itemsets

In this section we will introduce a technique for estimating
the ranking for closed itemsets. As the measure for closed
itemsets has a different form than for free or totally shattered
itemsets we are forced to seek for alternative approaches.

Let us consider Proposition 15. Let ak be the coefficient
for the kth term of the polynomial for r(X;σc , α) given in
Proposition 15. If we can compute these numbers efficiently,
we can use Lemma 20 to find the ranking.

We will do this by first expressing ak using closed
itemsets. In order to do that let cl(X) be the closure of
an itemset X . Let us define

e(Y,X) =
∑
Z⊇X,

cl(Z)=Y

(−1)|Z|+|X|

to be the alternating sum over all itemsets containing X and
having Y as their closure. Since all the itemsets having the
same closure will have the same support we can write the
coefficients ak using e(Y,X),

ak =
∑
Y⊇X,

sp(X)−sp(Y )=k

(−1)|Y |+|X| =
∑

Y⊇X,Y =cl(Y )
sp(X)−sp(Y )=k

e(Y,X) . (3)



To compute e(Y,X), first note that e(X,X) = 1. If Y 6=
X , then using the following identity∑

Y⊇Y ′⊇X

Y ′=cl(Y ′)

e(Y ′, X) =
∑
Z⊇X

(−1)|Z|+|X| = 0

we arrive to

e(Y,X) = −
∑

Y )Y ′⊇X

Y ′=cl(Y ′)

e(Y ′, X) . (4)

Thus, we can compute e(Y,X) from e(Y ′, X), where Y ′

is a closed subset of Y . This is convenient, because when
computing e(Y,X), say for ak, we have already computed
all the subsets of Y for previous coefficients.

EXAMPLE 27 Consider itemset e in our running example.
There are two closed supersets of e, namely bde and abcde,
having the supports 4 and 2, respectively. Using the update
equations, we see that e(e, e) = 1, e(bde, e) = −1, and
e(abcde, e) = 0. As sp(e) = 5, we see that the non-zero
coefficients ai are a0 = 1 and a1 = −1.

The problem with this approach is that we can still have an
exponential number of closed itemsets. Hence, we chose to
estimate the ranking by only using frequent closed itemsets
and estimate the remaining itemsets to have a support of 0.

This estimation is achieved by removing all closed non-
frequent itemsets from the sums of Eqs. 3 and 4 and adding
an itemset containing all the items and having the support
0. The code for this estimation is given in Algorithm 1.

Algorithm 1: Algorithm for estimating coefficients of
the polynomial given in Proposition 15.

input : X an itemset, C, frequent closed itemsets
output: {ak}, coefficients of the polynomial

1 if A /∈ C then add A to C with sp(A) = 0;
2 C ← {Y ∈ C | X ⊆ Y } ;
3 L ← sets in C ordered by the subset relation;
4 e(X,X)← 1;
5 for Y ∈ L do
6 e(Y,X)← −

∑
Z∈C,Z(Y e(Z,X);

7 k ← sp(X)− sp(Y );
8 ak ← ak + e(Y,X);

Algorithm 1 takes O(|C|2) time. In practice, this is much
faster because an average itemset does not have that many
supersets.

Now that we have a way of estimating ak from frequent
closed itemsets, we can, given two itemsets X and Y , search
the smallest k for which the coefficients differ in order to
apply Lemma 20. Note that if the index of the differing
coefficient, say k, is such that sp(X)−k is larger or equal to
the support threshold, then ak is correctly computed by our
estimation, and our approximation yields a correct ranking.

D. Non-derivable itemsets

In this section we will discuss how to estimate the ranking
non-derivable itemsets. The ranking for non-derivable is
particularly difficult because we cannot use Proposition 22
to avoid expanding the polynomial given in Proposition 17.
We cannot expand the polynomial since it has O(22

|X|
)

terms. Moreover, we cannot use the estimation trick done
with closed itemsets because the problem is the exponential
number of combinations of subsets of |X|. Hence, we resort
to a simple heuristic.

First note that we can rewrite the measure as

o(X,α, V ) + o(X,α,W )− o(X,α, V )o(X,α,W ),

where V and W are as defined in Proposition 17. This for-
mulation implies that any term of form (1− α)

∑
v sp(X=v),

where v sums either over a subset of V or a subset of W , is
canceled out. On the other hand, the terms having the form
(1−α)sp(X=v)+sp(X=w), where v ∈ V and w ∈W , will be
among the smallest ones. Hence, we propose the following
margin vector to use as a heuristic.

DEFINITION 28 Given a dataset D and an itemset X , we
define a non-derivable margin vector mv(X;D,σn) to be a
sequence of 4|X|−1 integers sp(X = v;D)+sp(X = w;D),
where v is a binary vector having odd number of ones and
w is a binary vector having even number of ones, ordered
in the increasing order.

We will rank itemsets by comparing their margin vectors.
We should stress that this is heuristic since, unlike with free
and totally shattered itemsets, we have no guarantee that
terms containing more than two supports will cancel out
and not disrupt the ranking. Nevertheless, this ranking makes
sense in the light of Proposition 3: an itemset is derivable
if and only if one the entries in the margin vector is 0. If
the entries in the margin vector are large, then the itemset
is ‘far away’ of being derivable.

EXAMPLE 29 Consider itemset ac in our running example.
We have sp(ac = [0, 0]) = 3, sp(ac) = 2, sp(ac = [1, 0]) =
1, and sp(ac = [0, 1]) = 0. Thus the margin vector is equal
to [0 + 2, 0 + 3, 1 + 2, 1 + 3] = [2, 3, 3, 4].

V. EXPERIMENTS

In this section we present our experiments.1

A. Datasets

We used datasets from three repositories. The 10
FIMI [25] datasets include large transaction datasets derived
from traffic data, census data, and retail data. Two datasets
are synthetically generated to simulate market basket data.
The datasets from the UCI Machine Learning Reposi-
tory [26] represent classification problems from a wide

1The implementation of our algorithms is given at http://adrem.ua.ac.be/
implementations/



variety of domains. We used the itemset representations of
29 datasets from the LUCS repository [27]. Finally we used
18 text datasets shipped with the Cluto clustering toolkit [28]
but converted to itemsets using a binary representation of
words in documents discarding the term frequencies.

B. Reducing the number of patterns
The goal of the first experiment is to show that this new

constraint for itemsets can significantly reduce the number
of itemsets reported in the results by removing itemsets that
are spurious in the sense that they are unlikely to be observed
on many subsamples. Throughout this section we will use
σ to indicate the threshold for the support.

A first question is how the parameters should be chosen.
The smaller we set α, the stricter the filtering will be.
α should not be very close 1, because otherwise brittle
itemsets that could lose their predicate by removing only
a few transactions still have a high likelihood of being
found. This implies that robustness values are packed close
to 1 when α is large, and this might lead to problems due
to floating point arithmetics. So a small α is important
to emphasize the quantitative difference between itemsets
of various robustness, however, too small α will skew
the distribution towards 0 too much, which can lead to
computational issues. The larger the minimum robustness,
the stricter the filtering will be. The robustness threshold
is more application dependent but it should not be close to
zero, otherwise no reduction will be observed.

We did a parameter study for the itemset version of the
Zoo dataset that describes 101 animals with 42 boolean
attributes. The number of itemsets reported is shown in
Figure 1. One can see how smaller α and larger robustness
thresholds reduce the numbers of free itemsets by almost 2
orders or magnitude. The transition is very smooth, show-
ing that the parameters can be chosen without unexpected
effects. The results for non-derivable and totally shattered
itemsets and other datasets were very similar.

Min. Probability

Al
ph

a

 

 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00 2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Figure 1. Log of the number of free itemsets on Zoo (σ = 0.01) dataset
using thresholds for the subsample size (α) and the minimum robustness.

Based on this study we chose α = 0.5 and a minimum
robustness of 0.1 to drill deeper into the robustness of the

reported itemsets. Excluding singleton itemsets we plotted
histograms with the empirical distribution of robustness
values associated with the reported itemsets. Figure 2(a)
shows that for the Zoo dataset there are many free itemsets
with very different robustness showing a rich structure
that can be exploited to rank and reduce the number of
itemsets. Similar results were observed for many of the
UCI datasets. Figure 2(a) shows a representative example
for the text datasets. While the distribution is much more
skewed, a large robustness threshold would also reduce
the number of itemsets by about 50%. Finally, Figure 2(c)
shows an example for a large transactional dataset with 88k
transactions. Using α = 0.5 generated a distribution where
all values were close to one so we needed to set α = 0.01
to better show the quantitative difference of the itemsets.

This shows that the more transactions a dataset con-
tains, the more skewed the distribution for a fixed α
will be. For experiments with all datasets we set α =
max(0.1,min(0.5, 1000/|D|)), that is we use samples of
1000 transactions but for small datasets we use 50% and for
very large datasets we use 10%. Using this parameter we
computed all robust itemsets with a robustness ≥ 0.1 and
computed the median robustness of the reported itemsets
to summarize the distributions. Figure 3 plots the median
robustness against the order of magnitude that the itemsets
can be reduced when using a robustness threshold of 0.9. For
many datasets a significant reduction is observed. For some
datasets with a median close to or equal to 1 the reduction
is small, indicating that most itemsets found are quite robust
in this data.
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Figure 3. Median of the itemset robustness vs. order of magnitude in
numerosity reduction (log10 scale) using robustness threshold 0.9.

C. Ranking without α

Our next experiment was to compare parameter-free rank-
ings described in Section IV against the rankings based on
robustness. We expect that rankings are similar for high α
values and increase when we lower α. For comparison we
used Kendall’s τ distance, that is the number of discordant
pairs, normalized such that the distance ranges between
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Figure 2. Distribution of robustness for free itemsets and minimum robustness 0.1.

0 and 1. Values close to 0 means that rankings are in
agreement. Since the values are typically very small we
represent the values on a log-scale. A typical example is
given in Table II for Mushroom and Zoo datasets.

In general, the distance values are small, suggesting that
the rankings are similar. The values increase as we lower α
which is expected since the parameter-free approach is based
on large α values. Rankings for non-derivable itemsets tend
to be higher, which is also expected, since the ranking for
non-derivable itemsets is a heuristic.

Table II
log10(KENDALL’S TAU DISTANCE) FOR Mushroom AND Zoo DATASETS.

Mushroom (σ = 0.05) Zoo (σ = 0.01)

α free ts ndi free ts ndi

0.1 -2.55 -2.13 -2.21 -0.81 -1.14 -1.07
0.2 -3.17 -2.65 -2.54 -0.99 -1.06 -1.22
0.3 -3.91 -3.08 -2.8 -1.22 -1.27 -1.33
0.4 -4.98 -3.46 -2.92 -1.54 -1.56 -1.36
0.5 -6.72 -3.79 -3.07 -1.95 -1.88 -1.44
0.6 -7.58 -4.06 -3.11 -2.49 -2.24 -1.5
0.7 −∞ -4.98 -3.63 -3.76 -2.7 -1.55
0.8 −∞ -4.99 -4.11 −∞ −∞ -1.6
0.9 −∞ −∞ -5.07 −∞ −∞ -1.64

D. Top-k closed itemsets
Closed itemsets are often used for tasks requiring in-

terpretation of the itemsets, because a maximum elements
of an equivalence class they offer the most detailed de-
scription. We studied the highest ranked closed itemsets
for text datasets that are easily understood without domain
knowledge. As an illustrative example, we used the re0
news dataset from which we mine 2493 closed itemsets
with minimum support σ = 0.05. We ordered these itemsets
using the estimation technique given in Section IV-C and
list the top 45 itemsets in Table III. The ranking is different
from one using support, less frequent (but more robust)
itemsets are commonly ranked higher that frequent itemset.
For example, ’bank pct rate’ occurs before much more
frequent itemset ’bank pct’.

Table III
TOP-45 CLOSED ITEMSETS FROM re0 (σ = 0.05) DATASET.

1. pct 792 16. week 310 31. canada 117
2. bank 702 17. pct earlier 127 32. pct month 261
3. trade 485 18. japan 318 33. econom 295
4. billion 552 19. trade current 126 34. billion dlr mln 116
5. market 554 20. dlr 472 35. told bank 116
6. billion dlr 346 21. bank pct rate 287 36. told nation 116
7. offici 342 22. dollar 336 37. pct japan 115
8. mln 420 23. statem 122 38. pct adjust 115
9. nation 323 24. committe 121 39. billion current 115

10. rate 566 25. nation month 121 40. european 114
11. bank market 369 26. ministri 120 41. month japan 114
12. foreign 331 27. pct rise 269 42. bank ad market 114
13. pct figur 132 28. bank pct 407 43. action 114
14. pct rate 418 29. pct rate feb 119 44. trade world 114
15. month 391 30. lead 118 45. nation japan 114

VI. DISCUSSION

The experiments have shown that the number of itemsets
can be largely reduced on many datasets when requiring a
certain robustness. The fact that the results vary by dataset
are another indication of the well known fact that itemset
data with different structures (dense vs. sparse, many items
vs. many transactions) behave very differently in mining
tasks.

We believe that robust itemsets can be beneficial for post-
processing techniques such as [29] or [30] that use itemsets
as their input and remove redundancy in the pattern set.
Robust itemsets can be used as an alternative input reducing
their runtime without sacrificing performance. Also, robust
itemsets could be used instead of closed-itemsets as seeds
to the AC-Close algorithm for approximate itemset mining
[23] improving its efficiency that was criticized in [19].

The ranking of itemsets by robustness presents a new
interestingness measure that can be used to choose the top-k
itemsets for interpretation or other data mining tasks. The
intuition of robustness should be easy to understand for
analysts but which ranking is better for specific data mining
tasks remains to be studied.



VII. SUMMARY

We have shown how robustness under subsampling for
common classes of itemsets can be computed efficiently
without actually sampling the data. The experimental results
show that the number of reported itemsets can be largely
reduced on many datasets, in other words spurious itemsets
that would not have been found in many subsets of the
data are removed. The approach can further be used to rank
itemsets for top-k mining by robustness. Future work will
investigate the effect of using robust itemsets on data mining
tasks such as clustering, classification, and rule generation
using itemsets.
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