
XQuery Streaming à la Carte

Mary Fernández
AT&T Research

mff@research.att.com

Philippe Michiels
Universitat Antwerpen
philippe.michiels@ua.ac.be

Jérôme Siméon
IBM Research

simeon@us.ibm.com

Michael Stark
TU Darmstadt

stark@mis.tu-darmstadt.de

Abstract

Existing work on XML query evaluation has either fo-
cused on algebraic optimization techniques suitable for
XML databases, or on algorithms to efficiently process
XML messages represented as a stream of parsing events.
In practice, complex applications often must handle both.
In this paper, we develop a physical algebra that com-
bines streaming operators with other standard relational
and XML operators. Our physical model includes marked
XML streams, which permit efficient XPath evaluation, but
can only be consumed once. This constraint restricts the
use of streaming operators to fragments of a query plan
that only access data using depth-first traversal. We de-
velop static analysis techniques to decide which fragment of
a plan can be streamed. Our experiments demonstrate the
benefits of blending streaming with other evaluation tech-
niques.

1 Introduction
XQuery 1.0 [5] is increasingly used in diverse applica-

tion environments from querying persistent XML reposito-
ries, to processing XML messages in Web-service applica-
tions, to integrating data from multiple XML sources. Com-
plex applications often have to query both long-lived and
transient XML data sources. Existing XML query evalua-
tion techniques, however, draw from two fixed menus: al-
gebraic optimization techniques [4, 23, 25, 26] with algo-
rithms for persistent data, or streaming1 algorithms [3, 9,
13, 19, 20] for transient data. In this paper, we develop a
physical algebra for XQuery in which streaming algorithms
and traditional optimization techniques can be used à la
carte based on application needs.

The bidding Web service in Figure 1 illustrates the char-
acteristics of queries in applications that must handle di-
verse XML data sources. In this example, there are two
data sources: A persistent data store in pdb.xml contains
the profiles of auction bidders, and a Web data source, de-
noted by the variable $bids, continuously produces bid

1Streaming means here query-evaluation techniques that are applied to
sequences of XML tokens, similar to those produced by a SAX parser.

...
<bid>
 <auction id="open_auction0"/>
 <date>06/13/2001</date>
 <time>13:16:15</time>
 <bidder uid="person0"/>
 <increase>18.00</increase>
</bid>
...

Q1

Bidders
Database

Network

Network

Bidder

Bidder

Bidder

Bidder

Auction
Service

Bidding
Service for $b in $bids//bidder

let $uid := $b/@uid
let $person :=
 (for $p in doc("pdb.xml")//person
 where $p/@id = $uid
 return $p)
return
 <bid person="{ $uid }">{
 $person/profile
 }</bid>

Figure 1. Auction Web Service

events. For each input bid event, the query Q1 produces a
new bid event that includes the bidder’s profile and that is
sent for further processing to the main auction service.

In essence, query Q1 expresses a join between a stream-
ing source and a local repository. Figure 2 depicts the
physical plan we would like to obtain. The fragments of
the plan that operate over XML-token streams are in gray
boxes, whereas the other fragments operate over material-
ized XML. On the fragments’ boundaries, the Load and Ex-
port operators convert between those two representations.
When accessing the input bid events, the plan uses a stream-
ing path-expression algorithm that avoids materialization of
the bid events and that can initiate query evaluation as soon
as the bid events arrive. When accessing the bidders’ pro-
files in the persistent store, the plan uses a tree pattern algo-
rithm [8, 14, 18, 24], that efficiently evaluates path expres-
sions on indexed documents. To handle the nested query,
query decorrelation techniques [23, 26] are used to produce
a join between the two sources. Because the query result
is sent to another Web service, it should be generated as an
XML-token stream, avoiding unnecessary creation of XML
trees in memory or on disk. The physical algebra and com-
pilation techniques proposed in this paper produce a query
plan that achieves these goals.

Most of the work on XML streaming focuses on algo-

Parse($bids)

Serialize Streamed

Streamed

Sequence

Export

Attribute[person]

MapToItem
 { Element[bid] }

Export

IN#uid

LOuterJoin_Hash
 { IN#uid = IN#pid }

MapIndex[i]

MapFromItem{[dot: IN]}

Open("pdb.xml")

Load

Map{[uid:]}

IN#dot

TreePattern_TwigJoin
 [.//person{p}/@id{pid}]

GroupBy
 [i][person]{IN#p} TreePattern_TwigJoin[./profile]

MapFromItem{[dot: IN]}

IN#person

TreeProject_Token[.//bidder/@uid]

TreeJoin_Token[.//bidder]

TreeJoin_Token[./@uid]

Figure 2. Physical query plan for Q1
rithms for restricted languages [3, 19, 20], which are diffi-
cult to use in an algebraic compiler. More recent work on
the XQRL [13], SPEX [9] and XStream [16] systems sup-
port streaming techniques for larger fragments of XQuery,
but use an evaluation model that is difficult to integrate in a
traditional algebraic compiler. Fegaras [6, 12] and Ruden-
steiner’s [27] approaches incorporate stream operators in
an algebra. The latter is restricted to a navigational sub-
set of XQuery and uses buffering pushdown automaton on
streams. The originality of our approach is that it com-
bines streaming algorithms with other traditional evaluation
techniques, like index-based access, and join and query-
unnesting optimizations. Our approach relies on a physical
data model that includes tuples and materialized-tree and
streamed representations of XML, and on a physical alge-
bra that combines operators on both XML representations
and supports conversion between them. When referring to
the streamed representation, we use the terms XML-token
stream and XML-token cursors interchangeably.

Our physical algebra is designed to meet the following
requirements. First, it can serve as the physical layer for an
existing logical algebra [26]. For that reason, it requires few
changes to early phases of compilation and should be appli-
cable in other XQuery algebraic compilers [10, 17, 23]. We
refer the reader to the substantial work on logical compila-
tion [10, 17, 21, 23, 24, 26]. Here, we focus on the defini-
tion of a suitable physical data model and physical algebra
for an existing algebra [24, 26].

A second requirement is for streaming operators to sup-
port pipelined evaluation, following the evaluation model of
modern relational engines. We satisfy this requirement by

defining a small set of micro-operators on mutable cursors,
the majority of which are non-buffering. Non-buffering op-
erators can be evaluated in constant space and time linear in
the size of their input. We define our streaming algebra in
terms of these micro-operators, for which correctness and
complexity properties are easily defined. These operators,
however, destructively modify their cursor inputs, which
means cursors can be consumed in a plan at most once. The
mutability of cursors supports efficient access to data, but
complicates meeting our last requirement.

Our last requirement is that every physical plan produced
by code selection is correct, that is, it implements the logical
semantics of the corresponding logical plan. In Section 4,
we give a formal definition of plan correctness and present
whole-plan analyses that identify the fragment of a plan that
may be safely implemented by streaming operators. In par-
ticular, these analyses guarantee that every XML-token cur-
sor used in a plan is consumed exactly once.

We implemented our physical algebra and static analy-
ses in the Galax XQuery engine and applied a simple code-
selection heuristic to “stream as long as possible”. In Sec-
tion 5, we present an experimental evaluation of the stream-
ing fragment of our physical algebra and show that stream-
ing is effective on a variety of benchmark queries. In par-
ticular, we present micro-benchmarks that verify the linear
scalability of streaming operators in both query and data
size, and we measure the impact of streaming on the XMark
benchmark suite and on our motivating query Q1.

2 Preliminaries
We begin by defining a model for cursors, then define our

physical data model that supports materialized and streamed
XML. A cursor (list) is a mutable (immutable), ordered se-
quence of homogeneous values. A cursor is destructive in
that accessing the next token also removes it from the cur-
sor. This property means that cursors can be used for both
relational operators and XML streaming operators and that
they only use constant space. As a result, they may be con-
sumed only once in sequential order.

C(α) denotes a cursor containing values of type α. Ta-
ble 1 gives the signatures for micro operators on C(α). The
fromList operator takes a list of values and constructs a cur-
sor over the same values. The next operator is destructive:
It takes a cursor, removes the first value from the cursor, and
returns it. next is undefined on the empty cursor. The peek
operator is non-destructive: It takes a cursor and returns the
current value from the cursor. peek returns empty on the
empty cursor. The other operators in Table 1 are defined
later in the paper.

2.1 Physical Data Model
Our physical data model is based on the logical data

model described in [26] and is given in Table 2. A phys-
ical value is either a physical XML value or a physical

Table 1. Cursor and token-cursor operators

Section 2 fromList : L(α)→ C(α)
next : C(α)→ α
peek : C(α)→ α | empty
load : C(Tok)→ L(Tree)
export : L(Tree)→ C(Tok)
unfold : C(Tok)→ C(Tok)
parse : () → C(Tok)
serialize : C(Tok)→ ()

Section 3.1 concat : C1(α)× C2(α)→ C(α)
compose : C(Tok)× C(Tok)→ C(Tok)
unmark : C(Tok)→ C(Tok)

Section 3.2 nav[step] : C(Tok)→ C(Tok)
markmap : (C(Tok)→ C(Tok))× C(Tok)

→ C(Tok)
prune : C(Tok)→ C(Tok)

Section 3.3 map[x] : (α → β)× C(α)→ C(β)
split : C(Tok)→ C(C(Tok))

Table 2. Physical data model

Value ::= Xml | Table
Xml ::= C(Tok) | L(Tree)
Table ::= C(τ) | L(τ)
τ ::= [q1: Xml, . . . , qn: Xml]
Tok ::= startElem(q,M?) | endElem

| text(String) | atomic(a) | hole

table. A physical XML value, Xml, is either a cursor of
XML tokens, C(Tok), or a list of tree values, L(Tree),
which provide the abstract interface defined on nodes and
atomic values in the XQuery Data Model. A physical table,
Table, is either a cursor of tuples, C(τ), or a list of tuples,
L(τ). A physical tuple, τ , is a record with fields contain-
ing physical XML values. Physical tuples are denoted by
[q1:Xml;. . .;qn:Xml], where qi are field names.

An XML token, Tok, is a parsing event like that pro-
duced by a SAX parser. A startElem token denotes the
beginning on an element and includes the element’s quali-
fied name q and an optional mark M. An endElem denotes
the end of an element. A text token denotes a text node and
takes a string value, and the atomic token takes an atomic
value.2 Lastly, the hole token denotes a location in a token
cursor at which another token cursor may be injected.

2.2 Marked Token Cursors
Token marks and holes support efficient implementa-

tion of navigation and constructor operators, respectively.
In particular, a sequence of tokens delimited by a marked
startElem and its corresponding endElem denotes an
output tree, which may be the result of parsing or an axis
step. Marked startElem tokens may be nested as a re-
sult of axis steps that yield multiple nodes in an ancestor-
descendant relationship. For example, the token cursor
in the middle of Figure 3 contains nested, marked to-
kens, possibly resulting from a descendant-or-self step like
//section. The tokens and their corresponding end

2For space reasons, we omit attributes, comments, and processing in-
structions from the presentation.

section

/section

/section

This starts...

section

This follows...

section

/section

/section

This starts...

section

This follows...

/section

section

This follows...

materialized tree

section

This starts...

section

This follow...

serialize

load

XML
<section>

 This starts...

 <section>

 This follows...

 </section>

</section>

<section>

 This follows...

</section>

export

parse

unfold

 token cursor
 (unnested marks)

 token cursor
 (nested marks)

Figure 3. Physical representations

tokens delimit two output trees. In our framework, the
boolean mark is sufficient, but if we were to employ more
sophisticated streaming operators, marks could be general-
ized to integer stream levels [12].

2.3 Representation Conversion
Next, we describe the micro-operators that convert be-

tween token cursors with and without nested marks, and
later, give the actual algorithms for navigation over marked
token cursors. We focus on load and unfold, which are the
only micro-operators whose space complexity is not con-
stant and whose time complexity may not be linear.

Figure 3 depicts the load, export, unfold, parse, and
serialize micro-operators. Marked tokens are highlighted.
The load operator takes a marked token cursor and yields
a materialized tree. In Figure 3, the nested section el-
ements are marked. After materialization, the highlighted
section elements, corresponding to marked section
tokens, are returned by load. The load materializes a tree
bottom-up, therefore it blocks pipelining in a plan. More-
over, its space and time complexity are both linear in the
number of input tokens.

The unfold operator takes a marked token cursor, possi-
bly with nested marks, and yields a token cursor in which
all marks are at the top-level by copying marked sub-
sequences. If marked tokens are not nested, unfold simply
copies its input to its output. When a nested mark is first
observed, the token sequence delimited by the marked to-
ken and the corresponding endElem is copied into a buffer,
and the buffer offsets of all marked startElems within the
copied sub-sequence are recorded. For example, in Fig-
ure 3, the marked token sequence for <section>This
follows...</section> is buffered during unfolding.
Once the top-most token sequence containing one or more
marked subsequences has been emitted, all the marked
sub-sequences are emitted in document order. In our ex-
ample, the buffered token sequence <section>This
follows...</section> is emitted after the marked
token sequence that contains it is emitted.

Although unfold may be pipelined, its worst-case time
complexity is quadratic in the size of its input and occurs
when every startElem is marked. In particular, if the input
is a tree with n nodes and maximal height h = n, then
unfold produces n streams of length n.

The export operator takes a list of tree nodes and in a
depth-first, pre-order traversal of the materialized nodes,
generates a token cursor. The serialize and parse oper-
ators convert unfolded token cursors to/from XML. These
and the remaining micro-operators all have constant mem-
ory complexity and can be fully pipelined.

3 Physical Algebra
In this section, we present a physical algebra for the log-

ical algebra proposed in [26]. Since all those operators have
a standard or straightforward implementation over materi-
alized XML, we focus here on the definitions of operators
that produce and consume token cursors.

A physical algebraic operator is written:

POp[s1,...,si]{POp1,...,POpi}(POp1,...,POpk)

where POp is the operator name; si’s are static parameters
of the operator; POpi’s are dependent sub-operators; and
the POpk’s are input (or independent) operators. A sub-
operator is dependent (independent) with respect to a given
operator POp, if its evaluation does (does not) depend on
the evaluation of other sub-operators of POp. For depen-
dent operators, IN denotes the input XML value or tuple.
For example, MapFromItem[i]{[x:i]}((0,1)) yields
the table ([x:0],[x:1]). The tuple-constructor opera-
tor [x:i] is dependent since its evaluation depends on the
independent input of MapFromItem.

Table 3 lists all the physical operators over streams, giv-
ing their signatures and definitions. Many operators are
polymorphic in their input types. For example, Select takes
tuples containing XML-token cursor or tree representations
of XML values. The signatures and implementations for
those operators are based on standard relational algorithms,
except for MapFromItem.

An operator’s signature includes the physical types of its
sub-operators and of its output. For example, Parse takes
a URI and returns an XML-token cursor that results from
parsing the document denoted by the given URI. Load takes
an XML-token cursor and returns the corresponding phys-
ical tree representation. Parse, Serialize, Load, and Ex-
port are defined in terms of the micro-operators described
in Section 2. Type operators Validate and TypeMatches
are included in Table 3 for completeness. Our system im-
plements these operators on type-annotated token streams,
similar to those proposed in [13]. Limited space prevents
us from giving the corresponding algorithms. In the rest of
this section, we give detailed definitions for the constructor
and navigation operators.

hole

name

/name

person

/person

hole

hole

hole

address

/address

"John Smith"

"Smithtown"

person

name

"John Smith"

/name

address

/address

"Smithtown"

/person

token−cursor composition final token cursor

Figure 4. Token-cursor composition
3.1 Constructors

The Sequence operator is defined simply in terms of the
concat micro-operator, which consumes two cursors of the
same type and returns a new cursor containing the values in
the first cursor followed by the values in the second.

The Element operator is more interesting. It is defined
in terms of the compose operator, which takes one token
cursor with i holes (i ≥ 1) and a second token cursor with
j holes. It yields all the tokens in its first argument up to
the first hole, at which point it yields all tokens in its second
argument, “filling” in the hole. After consuming its second
argument, compose yields the remaining tokens in its first
argument, producing a token cursor with i + j − 1 holes.
This definition permits constructors to be fully pipelined in
a plan containing other token-cursor operators. To illustrate,
the nested constructor expression:

<person>
<name>{"John Smith"}</name>
<address>{"Smithtown"}</address>

</person>

is implemented by the following plan of micro-operators:

compose(
fromList([startElem(person,M), hole, endElem]),

unmark(unfold(concat(
compose(fromList([startElem(name,M),

hole, endElem]),
unmark(unfold(fromList([text("John Smith")])))),

compose(fromList([startElem(address,M),
hole, endElem]),
unmark(unfold(fromList([text("Smithtown")]))))))))

Figure 4 depicts the above composition. Note that newly
constructed elements are themselves marked, but that their
content is unfolded and unmarked. Unfolding enforces the
logical constraint that a newly constructed element copies
its argument. Marking the newly constructed element per-
mits the resulting token cursor to be pipelined into other
operators, e.g., navigation.

3.2 Navigation operators

Our physical algebra has two navigation operators de-
fined on marked-token cursors: TreeProject and TreeJoin.
Logically, tree projection takes a tree and a set of path ex-
pressions and returns a conservative projection of evaluat-
ing those path expressions on the tree, i.e., every path in
the projected tree may match at least one path expression in
the set. The path expressions applied by TreeProject are

Table 3. Physical algebra.
Physical operators Implementation

I/O Parse(x:URI) : C(Tok) = parse(x)
Serialize(x:URI ,y:C(Tok)) : () = serialize(x,unfold(y))

Conversion Load(x:C(Tok)) : L(Tree) = load(x)
Export(x:L(Tree)) : C(Tok) = export(x)

Construction
Sequence(x:C(Tok), y:C(Tok)) : C(Tok) = concat(x,y)

Element[q](x:C(Tok)) : C(Tok) = compose(fromList([startElem(q,M), hole, endElem]),
unmark(unfold(x)))

Text(x:C(Tok)) : C(Tok) = fromList([text(x)])
Atomic Scalar[a]() : a = Streaming agnostic

Cast[a0](x:a) : a0 = Streaming agnostic
Type Validate[Type](x:C(Tok)) : C(Tok) = Streaming validation

TypeMatches[Type](x:C(Tok)) : boolean = Streaming type matching
NavigationTreeJoin[Step](x:C(Tok)) : C(Tok) = prune(markmap(nav[Step],x))

TreeProject[pathpattern](C(Tok)) : C(Tok) = Streaming projection based on [22]
Functional Var[q]() : Xml = Polymorphic over XML types

Call[q](Xml, ...Xmln) : Xml = Polymorphic over XML types
Cond{Xml, Xml}(boolean) : Xml = Polymorphic over XML types

Tuple MapFromItem{x:τ}(y:C(Tok)) : C(τ) = map(x,split(unfold(y)))
CreateTuple, AccessTuple, ++, Select,

Map, MapToItem, MapConcat, MapIndex,
Join, GroupBy, OrderBy = Polymorphic over tuple field types C(Tok) and L(Tree).

section

This starts...

section

/section

/section

This follows...

title/

title/

figure/

This ends...

section

This starts...

section

/section

/section

This follows...

title/

title/

figure/

This ends...

title/

title/

desc−or−self::section child::title

Figure 5. Applying steps to marked tokens

computed by a whole-plan path analysis described in previ-
ous work [22]. TreeProject is injected after Parse (See the
plan in Figure 2), to reduce the size of the input to a plan.
Since this operator was presented in previous work, we do
not discuss it further here.

The TreeJoin implements the formal semantics of step
expressions [11]. TreeJoin is a bulk navigation operator
that takes a node sequence in document order (represented
by a marked token cursor), and returns a node sequence in
document order with no duplicates (also represented by a
marked token cursor). A strictly-forward path expression
can be implemented by the composition of TreeJoin oper-
ators, where a strictly-forward path only contains the self,
child, descendant, descendant-or-self, and attribute axes
with any node test but with no predicates. 3

We first describe TreeJoin through an example, then
give its definition in terms of micro-operators. Consider the
expression:

3In practice, strictly-forward paths include predicates over attributes.

doc(URI)/descendant-or-self::section/child::title

which is compiled into the physical plan:

TreeJoin[child::title](
TreeJoin[descendant-or-self::section](Parse(URI)))

Figure 5 depicts the result of applying the above plan to an
input document. The Parse operator yields the document’s
root element, represented by a token cursor with the top-
most token marked. The descendant-or-self::section step
copies its input tokens to its output, erasing existing marks,
and setting the mark on each startElem(section) token.
The child::title step simply copies all startElem(title) to-
kens, their descendants, and corresponding endElem to-
ken, observed at depth d = 1 relative to any marked token
in its input and discards all other tokens. The resulting se-
quence of marked tokens is always in document order and
contains no duplicates.

Note that some steps may produce token cursors with
nested marks, e.g., descendant-or-self, denoting
sub-trees that logically are copied to the output. Copy-
ing of nested sub-sequences is deferred as long as possi-
ble in a plan and depends on the semantics of subsequent
operators. Most operators, including many built-in func-
tions like fn:count, are defined on token cursors with
nested marks. Three operators, Element, Serialize, and
MapFromItem require that their inputs be unfolded.

In Table 3, TreeJoin is defined in terms of three micro-
operators. The markmap operator logically applies its
function argument f to each item in a sequence, which in

the physical data model, corresponds to applying f inde-
pendently to each sub-sequence s1, . . . , sn delimited by a
marked startElem and the corresponding endElem. Be-
cause marked tokens may be nested, the sub-sequences
s1, . . . , sn may overlap. The output of markmap is the su-
perposition of all applications of f . In our framework, f is
restricted to functions that copy all input tokens, possibly
altering their marks. The results f(s1), . . . , f(sn) are com-
bined as follows: Whenever a token t is marked in at least
one f(si), t is marked in the output. The markmap opera-
tor applies the micro-operator nav[step] as described above;
nav[step] simply outputs the marked token cursor that re-
sults from applying the specified step to its input.

Lastly, the prune operator discards tokens that do not
have any marked ancestors. Note that prune is destructive:
It irretrievably discards tokens that are not contained within
a matched tree node, thus matches are detached from their
parents and siblings, as are the title elements in Figure
5. We choose to discard a match’s context in favour of min-
imizing intermediate result sizes. However, this choice re-
quires that subsequent operators in a plan do not depend on
a node’s context. Section 4 presents the analyses that en-
force this constraint.

3.3 Tuple operators

All the tuple operators are polymorphic in their tuple
field types, with the exception of MapFromItem, which
converts a value in the tree fragment of the algebra to a
value in the tuple fragment. MapFromItem takes an item
sequence as input and yields one tuple for each item in the
input. MapFromItem has two implementations: One for
lists of trees and one for token cursors. The latter defini-
tion is in Table 3 and relies on the split and map micro-
operators. The operator map is polymorphic and takes a
function that maps an α value to a β value, a cursor of α
values, applies the function to each α and returns a cursor
of β values. In the definition of MapFromItem, the map
takes a function, which constructs a tuple (x) and a cursor
of dependent token cursors produced by the split operator.
The split operator takes a token cursor C and splits it into
distinguished sub-sequences of tokens, each sub-sequence
corresponding to one tree node. It wraps each sub-sequence
in its own token cursor Ci, and returns a cursor that yields
each of these token cursors in turn. Clearly, two such token
cursors Ci and Cj are dependent because both draw tokens
from C.

Dependent cursors permit efficient pipelining of token-
cursor values through tuple operators without requiring ma-
terialization, but they complicate the analysis that guaran-
tees a plan is correct with respect to the construction and
consumption of cursors. We address plan correctness and
the analyses that guarantee it next.

4 Code Selection and Stream Analysis
Next, we describe how physical plans with streaming

operators are selected and how to ensure the correctness
of those plans. Given multiple physical representations of
XML, the search space for selecting the physical operator
for each logical operator in a plan becomes large. How
to explore that search space and the development of corre-
sponding cost models is future work. Our main focus here
is on simple, yet efficient, code selection that ensures the
correctness of physical plans.

4.1 Code selection

In this section, Op denotes a plan in the logical algebra
from [26], and POp is a physical plan in the physical al-
gebra described in Section 3. Code selection is a mapping
from a logical plan to a physical plan: CS(Op) → POp.
For a given logical plan, CS is defined on every sub-plan,
i.e., it defines a mapping for every logical operator.

We denote by [[Op]] the result of evaluating the logical
operator Op in the logical data model. [[POp]]p is defined
similarly on the physical data model. Let ∆ be a mapping
from physical values to logical values as in Section 2, and
let ∼= denote deep-equality over XML trees. Given these
functions, correctness of physical plans is defined as:

Definition 4.1: CS(Op) = POp is a correct physical plan
for Op iff for each Opi a subplan of Op:

∆([[CS(Opi)]]p) ∼= ∆([[Load(CS(Opi))]]p) ∼= [[Opi]]

Intuitively, a physical plan is correct if each of its sub-
plans yields the same logical value as the value produced
by the sub-plan followed by materialization. We use deep
equality to compare values, because the result of a stream-
ing plan yields a tree without its parental or sibling context.

We now define the stream-safety property, which is suf-
ficient to ensure the correctness of a physical plan and can
be inferred through static analysis.

Definition 4.2:[Stream Safety] A logical (sub-)plan Op is
stream safe with respect to a whole plan Op0 iff it satisfies
the following conditions:

1. In Op0, navigational access on the XML values re-
turned by Op is strictly forward.

2. In Op0, the tuples returned by Op are consumed in the
same order in which they were created.

3. In Op0, the fields of tuples returned by Op are accessed
at most once.

The first condition is checked using an existing path
analysis [22], which computes an approximation of all paths

that access data in a query. The second condition is always
true under the assumption that all algebraic operators that
reorder tuples materialize the contents of their tuple fields.
This constraint seems strong, but most pipelining operators
process tuples in input order. This constraint need only be
enforced on the blocking operators: OrderBy, GroupBy,
and the right-hand side of hash and sort joins. To check
the third condition, Section 4.2 presents a data-flow analy-
sis that for each tuple field, computes a worst-case estimate
of the number of times it is accessed during plan evaluation.

Our code-selection heuristics are based on the following
assumptions: (1) Conversion between physical representa-
tions is expensive; (2) When accessing streamed sources,
streaming operators are more efficient than materialization
followed by operators on the materialized representation;
(3) Copying whole subtrees is expensive and should be
avoided. Based on these assumptions, code selection ap-
plies the following rules to each sub-plan Op of a whole
plan Op0, bottom-up:

1. If (a) the selected physical operators for the input(s) of
Op are streamed, (b) a streaming operator POp exists
for Op, and (c) Op is stream safe in Op0, then CS(Op)
selects POp. Otherwise, CS(Op) uses a materialized
operator.

2. If Op is a constructor operator, CS(Op) uses a stream-
ing operator.

We always use the streaming variant of constructors be-
cause copying trees is strictly more expensive than produc-
ing a lazy stream. Recall from Figure 2 that streaming oper-
ators are applied to the source $bids up to the point where
data from this source is bound to a tuple field (uid) that is
accessed more than once in the rest of the plan, and stream-
ing operators are used in the part of the plan that constructs
the result and serializes it.

Theorem 1 (Code Selection Correctness) Physical plans
generated through the above code selection algorithm are
correct streaming plans.

Due to limited space, we give the intuition for the proof.
The key part of the proof is to show that stream safety is suf-
ficient to ensure correctness. The proof proceeds by induc-
tion over the operators in an algebraic plan. The first part
of the proof relates stream safety to correctness. Stream-
safety condition 1 ensures that a node’s parent and sibling
context is discarded only if that context is not required by
later operators in the plan. Stream-safety condition 2 forces
dependent cursors to be consumed without violating the de-
pendencies among them, and is always true, because they
are only fed to pipelined operators. Lastly, stream-safety
condition 3 is a consequence of the fact that cursors are mu-
table. The second part of the proof checks that the use-count

analysis in Section 4.2 correctly infers an upper bound of
the actual usage count, ensuring that condition 3 is always
satisfied through code selection.

4.2 Use Count Analysis

We define a data-flow analysis [1] that computes the
tuple-field use counts of a plan by combining the use-counts
computed for sub-plans. The main difference from stan-
dard data-flow analysis is that the analysis must account
for the implementation semantics of each physical operator.
In particular, simply counting all occurrences of operators
that access tuple fields (e.g., AccessTuple[q]) is not suf-
ficient, because implementations of some operators make
copies of input tuples. For example, the MapConcat oper-
ator, which is a dependent product, makes (virtual) copies
of tuples from its independent input. As a result, subsequent
access to the tuple fields processed in a MapConcat must
be counted multiple times. Our analysis, therefore, tracks
the provenance of tuple fields.

The analysis is specified using inference rules. Let Q be
the set of all tuple field names; RF ⊆ Q; CF ⊆ Q; an
environment Env = (EnvCF ⊆ Q,EnvRF ⊆ Q); and
UF ⊆ (Q × {0, 1,∞}). The following judgment holds iff
operator Op uses the fields UF and returns the fields RF
under the environment Env:

Env ` Op ⇒ (UF, CF, C) returns RF

The environment keeps track of tuple fields’ usage when
tuples are passed to dependent operators in a plan. C ∈
{1,∞, NoTable} is a conservative estimate of the number
of tuples produced by Op. Tuple operators produce 1 or
∞, and tree operators produce NoTable. CF is a set of
candidate fields for which any subsequent access means an
effective iterated access.

Table 4 contains the inference rules for selected tuple op-
erators with a focus on operators that have implicit iteration.
The three rules in the first column are straightforward. The
first rule returns the usage count for the input tuple (IN)
from the environment. In the second rule, creating a tuple
with one field q returns q and passes on the use counts of its
input Op. In the third rule, if field q is already a candidate
field, we count multiple accesses, otherwise just one.

The second column contains the rules for Map and Map-
Concat. The Map operator is implemented by the poly-
morphic map operator applied to tuple cursors. For each
tuple returned by Op1, it binds IN to the given tuple, and
evaluates its dependent branch Op2. Thus, the environment
Env′ for inferring Op2’s usage counts depends on the can-
didate and return fields obtained by analyzing Op1. The
use counts for Map depend on both Op1 and Op2, and their
fields are merged to produce the analysis result. The follow-
ing table defines] for merging individual use counts. We
informally extend] over sets of use counts, merging pairs
with matching field names.

Table 4. Use-count inference rules for selected tuple operators

Env = (CF, RF)

Env ` IN ⇒ (∅, CF, 1) returns RF

Env ` Op ⇒ (UF, CF, C) returns RF

Env ` CreateTuple[q](Op) ⇒
(UF, CF, 1) returns {q}

Env = (CF, RF)
UF = if (q ∈ CF) then {(q,∞)}

else {(q, 1)}
Env ` AccessTuple[q] ⇒

(UF, ∅, NoTable) returns ∅

Env ` Op1⇒ (UF1, CF1, C1) returns RF1
Env′ = (CF1, RF1)

Env′ ` Op2⇒ (UF2, CF2, C2) returns RF2

Env ` Map{Op2}(Op1) ⇒
(UF1] UF2, CF1 ∪ CF2, max(C1, C2))

returns RF2

Env ` Op1⇒ (UF1, CF1, C1) returns RF1
Env′ = (CF1, RF1)

Env′ ` Op2⇒ (UF2, CF2, C2) returns RF2
CF3 = if (C2 > 1) then RF1 else ∅

Env ` MapConcat{Op2}(Op1) ⇒
(UF1] UF2, CF1 ∪ CF2 ∪CF3, max(C1, C2))

returns RF1 ∪ RF2

Env ` Op1⇒
(UF1, CF1, C1) returns RF1

Env ` Op2⇒
(UF2, CF2, C2) returns RF2

CF ′
1 = if (C2 > 1) then RF1 else ∅

CF ′
2 = if (C1 > 1) then RF2 else ∅
CF = CF1 ∪CF2 ∪CF′

1 ∪CF′
2

Env′ = (CF, RF1 ∪ RF2)
Env′ ` Op3⇒

(UF3, CF3, C3) returns RF3
UF = {(rf, 1) | rf ∈ RF2}]

UF1] UF2] UF3

Env ` Join{Op3}(Op1, Op2) ⇒
(UF, CF, max(C1, C2))
returns RF1 ∪ RF2

x y x] y x y x] y

(q, 0) (q, 0) (q, 0) (q, 1) (q, 1) (q,∞)
(q, 0) (q, 1) (q, 1) (q,∞) (q, u) (q,∞)
(q, 1) (q, 0) (q, 1) (q, u) (q,∞) (q,∞)

The rule for MapConcat is identical to that of Map ex-
cept for the highlighted (last) premise. MapConcat com-
putes a dependent product of the tuples produced by its
branches. Logically, the tuples in the independent branch
Op1 are copied as many times as there are tuples returned
in the dependent branch Op2. To account for this potential
iteration, we propagate Op1’s returned fields as candidate
fields to subsequent operators only if the cardinality esti-
mate of C2 is > 1. If the cardinality estimate of C2 is ≤ 1,
then each of Op1’s tuples is accessed at most once.

The rule in the third column defines use counts for a
nested-loop join. We propagate the returned fields of the
two independent branches Op1 and Op2 (RF1 and RF2) as
candidates fields to the dependent branch Op3 for the same
reason as we did in MapConcat. The last premise in this
rule reveals a tricky detail. A nested-loop join materializes
the right-hand side input (Op2) in order to avoid repeated
evaluation, so we have to count a single access to each field
in the right-hand side tuple, because materializing a token
cursor to a tree consumes that cursor.

The rule for hash join is identical to that of nested-loop
join except for the highlighted (fifth) premise. In the rule
for hash join, we do not need to propagate CF ′

1 or CF ′
2

as candidates to the dependent branch, because all accesses
inside the join predicate Op3 are guaranteed to be evaluated
only once, either when constructing the hash table from the
right-hand branch or when probing the hash table from the
left-hand branch. The candidate fields CF ′

1 and CF ′
2 are

propagated to CF in the conclusion, as they are in the rule
for nested-loop join.

5 Experimental Evaluation

Next, we assess the impact of streaming operators on
plans that can be partially or completely streamed. First,
we verify that for queries that can be completely streamed,

performance scales linearly with both query size and data
size. Second, we evaluate the impact of streaming on the
XMark benchmarks and our motivating query in Figure 1.
All experiments were run on one machine: an Intel(R) Pen-
tium(R) 4 CPU 2.00GHz, with 0.5GB RAM, running Linux
version 2.6.12. The physical algebra and algorithms are im-
plemented in Galax development version 0.6.6.

We ran the sets of queries in Figure 6 on documents
of increasing size to show that the token-cursor operators
scale linearly with both query and data size. We used the
XCheck [15] performance-evaluation platform, which runs
each experiment four times and averages the last three (hot)
runs. The reported times include document loading, query
compilation and query execution but exclude document se-
rialization, which may not scale linearly when unfold is ap-
plied to nested marked tokens. Although query compilation
does not scale linearly, its absolute overhead was trivial. We
report loading time, because we assume that in applications
that consume streamed XML input, the opportunity to pre-
load a document will not exist, therefore loading time can-
not be amortized over multiple queries.

The Q1k set of queries verifies the scalability of simple
path expressions. For strictly-forward path expressions, no
unfolding occurs, so we expect linear scalability for both
data and query sizes. We use five MemBeR [2] documents
containing 1 M to 5 M nodes, corresponding to document
sizes of 22 MB to 114 MB. Figure 8 plots the execution

Figure 7. MemBeR documents

Q1k doc()/descendant-or-self::node() Q31 for $x in $input/descendant::t01 return $x/descendant::t02
with step repeated k times, for 1 ≤ k ≤ 8 Q32 for $y in (for $x in $input/descendant::t01

Q2k for $x in Pk return $x/descendant::node() return $x/descendant::t02)
where Pk is Q1k, for 1 ≤ k ≤ 8 return $y/descendant::t03

Q3k Increase nesting in Q32 for 3 ≤ k ≤ 8
Q41 element a {doc()/descendant-or-self::node()}
Q42 element a { element b { doc()/descendant-or-self::node()/descendant-or-self::node() }}
Q4k Increase number of constructors plus steps in Q42 for 3 ≤ k ≤ 8

Figure 6. Queries to verify scalability

time for increasing query sizes and input sizes for Q1k. As
expected, execution time scales linearly in both parameters.

Due to space constraints, we do not present graphs for
the following experiments, but we report that they scale lin-
early in both query and document sizes, as expected. The
Q2K set of queries yields plans with tuple Map opera-
tors interleaved with TreeJoin. These queries verify that
streaming tuple Map’s have no impact on the combined
scalability of nested operators.

When Map’s are used to retrieve descendant nodes and
when the input nodes in turn have ancestor-descendant re-
lationships among them, unfolding is required for proper
evaluation. Unfolding, however, is a buffering and poten-
tially quadratic-time operator that can jeopardize the value
of a streaming map operator. However, when the queried
fragment of the input document does not contain recur-
sive elements, unfolding is the identity function, and linear
query and data scalability should be preserved. We verify
this property by running Q3k over documents from 25 MB
to 125 MB for which the selected part contains no recursive
elements. Figure 7 depicts the shape of these documents.
The number of siblings s varies from 10 to 50. The leaf
trees contain 100,000 nodes with recursively nested tags,
different from the tags t01 . . . t08.

The query set Q4k verifies that composed constructors
scale linearly in output size. Constructors do not necessar-
ily scale linearly with input size, because they unfold their
contents. If a constructor’s contents does not contain nested
marked tokens, then they indeed scale linearly with input

 10
 20
 30
 40
 50
 60
 70
 80
 90

Plot 3D, galax-sax, Total execution time (sec), Experiment: streaming-mb-06

87654321

Query Size

 114

 91

 68

 45

 22
Document Size (MB)

 10

 20

 30

 40

 50

 60

 70

 80

 90

Time (sec)

Figure 8. Results for query set Q1k

 0

 1

 2

 3

 4

 5

 6

 7

Q20Q15Q10Q05Q01

S
p
e
e
d
u
p
 =

 (
m

a
t.
 e

x
e
c
u
ti
o
n
/s

tr
e
a
m

e
d
 e

x
e
c
u
ti
o
n
)

Query

Galax Streaming Speedups, Document: XMark 0.2 (22.43 MB)

speedup

Figure 9. Speedup of XMark execution times

size. We verified this property on five MemBeR generated
documents of depth 7, with 10 tags uniformly distributed
over the tree, varying in size from 14MB to 22MB.

We also ran the XMark benchmark suite, comparing
streaming plans to fully materialized plans. The results of
running the queries, excluding serialization time are shown
in Table 5 and Figure 9. All queries, with the exception of
Queries 8 to 12 and Query 20, show a substantial improve-
ment. The queries that are fully streamable (2, 6 and 15)
typically have significant speedups, and eliminating unnec-
essary materialization in fragments of queries also yields
measurable improvements (1, 4, 5, 7, 14 and 16–19).

The XMark queries that express joins (Queries 8–12) do
not benefit much from streaming, due in part to their self-
join semantics, which requires materialization of large parts
of the input document, and also due to Galax’s inability to
select the best join plan for these specific queries. A similar
problem arises in Query 20 in which a function call limited
the use of a streaming evaluation approach.

To demonstrate the potential of the streaming approach
on complex queries, we ran the query Q1 in Figure 1, which
joins two separate XMark-based files, and allows one of
the inputs (bids.xml) to be streamed. The join is com-
puted using a hash-join algorithm, where persons.xml

was 11 MB in size and bids.xml ranged from 6.5 MB to

Table 5. Absolute execution times (secs) for
XMark streaming plans on a 22 MB document
Q1 9.44 Q6 6.07 Q11 1532.90 Q16 6.25
Q2 5.85 Q7 26.06 Q12 1536.93 Q17 6.78
Q3 9.62 Q8 21.29 Q13 5.67 Q18 5.79
Q4 14.4 Q9 69.06 Q14 8.59 Q19 30.71
Q5 6.36 Q10 31.91 Q15 5.46 Q20 22.74

100 MB. We observed that the streaming approach scales
much better with the input size and has a much smaller
memory footprint. As a result, the streaming plan handled
inputs greater than 100 MB, whereas the materialized plan
failed for input sizes greater than 20 MB.

6 Conclusion
We presented a physical algebra for XQuery that allows

the generation of evaluation plans that blend streaming tech-
niques with evaluation and optimization techniques over in-
dexed XML documents. The originality of our approach is
its ability to use XML streaming evaluation by almost di-
rectly relying on traditional relational pipelining, offering
important benefits for a reduced development cost. We be-
lieve this work is an important first step in bridging the gap
between streaming evaluation [3, 9, 13, 19, 20] and more
traditional evaluation techniques [4, 23, 25, 26] for XML.
In the future, we are interested in extending our approach to
cover more advanced streaming techniques [9, 12, 19, 16],
which notably include stream buffers and the ability to con-
sume the same stream multiple times.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Priciples, Tech-
niques and Tools. Addison Wesley, 1986.

[2] L. Afanasiev, I. Manolescu, and P. Michiels. MemBer: A
micro-benchmark repository for XQuery. In XSym 2005, v.
3671 of LNCS, pp 144–161. Springer, 2005.

[3] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fon-
toura, and V. Josifovski. Streaming XPath processing with
forward and backward axes. In ICDE, pp 455–466, 2003.

[4] K. Beyer, R. J. Cochrane, V. Josifovski, et al. System RX:
one part relational, one part XML. In SIGMOD, pp 347–358,
2005.

[5] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Simeon. XQuery 1.0: An XML query lan-
guage. Candidate Recommendation, June 2006.

[6] S. Bose, L. Fegaras, D. Levine, and V. Chaluvadi. A query
algebra for fragmented XML stream data. In DBPL, pp 195–
215, 2003.

[7] M. Branter, S. Elmer, C.-C. Kanne, and G. Moerkotte. Full-
fledged algebraic XPath processing in Natix. In ICDE, 2005.

[8] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal XML pattern matching. In SIGMOD, pp 310–321,
2002.

[9] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, and
M. Spannagel. The XML stream query processor SPEX. In
ICDE, pp 1120–1121, 2005.

[10] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT
logical framework for XQuery. In VLDB, pp 168–179, 2004.

[11] D. Draper, P. Fankhauser, M. Fernandez, et al. XQuery 1.0
and XPath 2.0 formal semantics, W3C working draft. Can-
didate Recommendation, June 2006.

[12] L. Fegaras, R. Dash, and Y. Wang. A fully pipelined XQuery
processor. XQuery Implementation, Experience and Per-
spectives (XIME-P) Workshop, 2006.

[13] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL streaming XQuery processor. In VLDB, pp
997–1008, 2003.

[14] M. Fontoura, V. Josifovski, E. Shekita, and B. Yang. Opti-
mizing cursor movement in holistic twig joins. In CIKM, pp
784–791, 2005.

[15] M. Franceschet, E. Zimuel, L. Afanasiev, and M. Marx.
XCheck, a platform for benchmarking XQuery processors,
2006. http://ilps.science.uva.nl/Resources/XCheck.

[16] A. Frisch and K. Nakano. Streaming XML transformations
using term rewritings. Draft Manuscript, July, 2006.

[17] T. Grust and J. Teubner. Relational algebra: Mother tongue
— XQuery: Fluent. In Proc of the 1st Data Management
Workshop on XML Databases, 2004.

[18] T. Grust, M. van Keulen, and J. Teubner. Staircase join:
Teach a relational DBMS to watch its axis steps. In VLDB,
pp 524–535, Berlin, Germany, Sept. 2003.

[19] A. K. Gupta and D. Suciu. Stream processing of XPath
queries with predicates. In SIGMOD, pp 419–430, 2003.

[20] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based scheduling of event processors and buffer
minimization for queries on structured data streams. In
VLDB, pp 228–239, 2004.

[21] I. Manolescu and Y. Papakonstantinou. XQuery midflight:
Emerging database-oriented paradigms and a classification
of research advances. In ICDE, page 1143, 2005.

[22] A. Marian and J. Simeon. Projecting XML documents. In
VLDB, pp 213–224, 2003.

[23] N. May, S. Helmer, and G. Moerkotte. Nested queries and
quantifiers in an ordered context. In ICDE, pp 239–250,
2004.

[24] P. Michiels, G. Mihaila, and J. Siméon. Put a Tree Pattern in
your Tuple Algebra In ICDE, to appear, 2007.

[25] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree logical classes for efficient evaluation of
XQuery. In SIGMOD, pp 71–82, 2004.

[26] C. Re, J. Simeon, and M. Fernandez. A complete and effi-
cient algebraic compiler for XQuery. In ICDE, 2006.

[27] M. Wei, M. Li, E. Rundensteiner, M. Mani. Processing
Recursive XQuery over XML Streams: The Raindrop Ap-
proach. In XSDM, pp 89–98, 2006.

