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Abstract

Anytime approximation algorithms that compute the
probabilities of queries over probabilistic databases can
be of great use to statistical learning tasks. Those ap-
proaches have been based so far on either (i) sampling
or (ii) branch-and-bound with model-based bounds. We
present here a more general branch-and-bound frame-
work that extends the possible bounds by using “disso-
ciation,” which yields tighter bounds.

Introduction
Since calculating the exact probability of a query over proba-
bilistic databases (PDBs) is #P-hard in general, probabilistic
inference is a major bottleneck in several related applica-
tions, such as statistical relational learning (Raedt and Ker-
sting 2017), and fast approximation methods are needed.
Anytime approximation methods give approximate answers
fast, yet allow the user to refine the answer by using addi-
tional time and resources. The current state of the art in any-
time approximation for PDBs are either based on (i) sam-
pling (Ré, Dalvi, and Suciu 2007) or on (ii) the model-based
branch-and-bound approach by (Fink, Huang, and Olteanu
2013) implemented in the SPROUT system, where the lat-
ter outperforms the former. See (Van den Broeck and Suciu
2017) for a recent survey.

We propose here to improve the branch-and-bound
approach by replacing model-based bounds with novel
dissociation-based bounds, which were shown to dominate
model-based bounds (Gatterbauer and Suciu 2014). The
technique of dissociation is related to the variable splitting
framework by (Choi and Darwiche 2010), and has so far
only been applied at the first-order (query) level for upper
bounds (Gatterbauer and Suciu 2017). One reason is that for
conjunctive queries, these dissociation-based upper bounds
are uniquely defined and proven to be better than any model-
based bounds. In contrast, a whole spectrum of optimal
oblivious lower bounds exists, which includes the model-
based bounds as special cases. Important ingredients of
our approach are strategies for quickly choosing good lower
bounds, as well as a novel heuristic for the “branch” part of
the algorithm based on influence or sensitivity (Kanagal, Li,
and Deshpande 2011).

Background
The problem. We consider the evaluation of Boolean con-
junctive queries (CQs) and illustrate our problem and ap-
proach with the following query Q over PDB D:

Q :−R(X), S(X,Y ), T (Y )

D

R X p
r1 a 0.5
r2 b 0.6

S X Y p
s1 a c 0.3
s2 a d 0.4
s3 b d 0.5

T Y p
t1 c 0.4
t2 d 0.8

Grounding Q over D leads to a propositional formula ϕ that
is called the “lineage of Q over D” in which each vari-
able represents a tuple in the database. In our example,
ϕ = r1(s1t1 ∨ s2t2) ∨ r2s3t2. Computing its probability
P(ϕ) is equivalent to computing the probability P(Q), i.e.
the probability that the query Q is true over PDB D. In gen-
eral, calculating this probability is #P-hard in the number of
variables in the lineage, and thus in the number of tuples in
the database. We are interested in developing an approxima-
tion scheme that allows us to trade-off available time with
required accuracy of approximation.

State of the art. The algorithm underlying SPROUT
(Fink, Huang, and Olteanu 2013) approximates P(ϕ) by us-
ing lineage decompositions based on independence and de-
terminism. When the smaller lineages obtained are read-
once (i.e. have no multiple occurrences of the same variable)
their probabilities are computed exactly in PTIME, other-
wise they are approximated by model-based bounds: for
each variable, all except one of its occurrences are set to true
or 1 (resp. false or 0) while the remaining occurrence is as-
signed the original probability to get an upper (resp. lower)
bound. SPROUT randomly selects these occurrences. The
bounds are propagated back up, based on the decomposition,
to obtain an approximation of P(ϕ). If this approximation is
not accurate enough, Shannon expansion (SE) is applied on
the decomposed lineages: a variable x is selected and, based
on ϕ ≡ (x∧ϕ|x=1)∨ (¬x∧ϕ|x=0), the decomposition and
approximation process continues on ϕ|x=1 and ϕ|x=0 until
the desired accuracy is obtained. SPROUT selects the most
frequent variable (the one with the highest number of occur-
rences, ties broken randomly) for SE. Clearly, the challenge
is to limit the number of SEs, as these can double the size of
the formulas, resulting in higher computation cost.
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Our approach
The branch-and-bound approach just described is generic:
any technique for approximating the probability of lineages
can be plugged in during decomposition, and similarly, any
variable selection procedure for SE can be used.

We propose to use dissociation to obtain approximations.
Dissociation replaces multiple occurrences of a variable
with independent copies. Our example lineage ϕ becomes
ϕ′ = r1(s1t1 ∨ s2t

′
2) ∨ r2s3t

′′
2 . By carefully assigning

new probabilities pU and pL to both copies t′2 and t′′2 of t2,
PpU

(ϕ′) is guaranteed to be an upper, and PpL
(ϕ′) to be

a lower bound for P(ϕ). What makes dissociations particu-
larly attractive for our framework is that dissociation bounds
generalize model-based bounds, and that they can be calcu-
lated efficiently. As a consequence, we obtain better approx-
imations in each step, hereby possibly reducing the number
of SEs needed to obtain a desired accuracy. For SE, we pro-
pose a method based on influence. We next detail some as-
pects of our approach and highlight some of its advantages.

1. Better bounds. Following Theorem 4.8 in (Gatter-
bauer and Suciu 2014), the two green shaded areas in Fig.
1a show all possible assignments of probabilities to the oc-
currences t′2 and t′′2 in our lineage ϕ′ that guarantee to up-
per or lower bound the true probability P(ϕ) = 0.384. For
upper bounds, the two model-based bounds provide an ap-
proximation of 0.419 and 0.441. By contrast, assigning the
original probability p(t2) = 0.8 to both t′2 and t′′2 results in
the unique and optimal upper dissociation bound of 0.393.

For the lower bounds, the shaded area on the lower left
shows all possible lower bound assignments, and all assign-
ments on the curved border are possible optima. Here, the
two model-based bounds are just a few of the possible op-
tions, achieving approximations of 0.201 and 0.286 respec-
tively. The symmetric lower dissociation bound assigns both
occurrences an equal share by setting pL(t

′
2) = pL(t

′′
2) =

1 − 2
√

1− p(t2) which gives 0.297 as lower bound. The
best assignment lies slightly to the left and gives 0.302.

Part of our approach are gradient-descent methods that
aim to find this optimal assignment. Computation of the gra-
dient is closely related to the notion of influence, which can
be computed in PTIME for read-once formulas (Kanagal,
Li, and Deshpande 2011), as well as for dissociated formu-
las. While gradient-descent methods generally take longer
to find the best lower bound than randomly assigning model-
based bounds, the quality of the bound is often much better,
thus justifying these additional computations.

2. Better variable selection. The state-of-the-art heuris-
tic for choosing a variable for SE in SPROUT is selecting
the most frequent variable. We instead select the variable for
SE that has the highest sum of influences of each of its oc-
currences, as if they were independent. This ensures PTIME
computation and turns out to be a better choice. Moreover,
we can re-use the computed influences from our gradient-
based optimization methods, thus avoiding re-computation.

3. Optimization trade-off. We have a “knob” to con-
trol how much time to spend on finding a good lower bound
using gradient descent, before moving on to a next Shan-
non expansion. Recall that model-based bounds are fast to
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Figure 1: a) Green shaded areas show all possible assignments
for upper and lower dissociation bounds for our running exam-
ple. Green values show resulting approximations. b) Our new
methods (PBD and HB) achieve better accuracy-time tradeoffs
than prior methods (MB and SD) on the Yago3 dataset.

compute; they are randomly selected, in one step. In con-
trast, descent methods perform multiple steps, and this extra
computation pays off only when considerably better lower
bounds are obtained, and further SEs can be avoided.

Experiments
We experimented with several approximation methods on
the Yago3 dataset (Mahdisoltani, Biega, and Suchanek
2015). We obtained 380 lineages from 4 different queries
by assigning different input probabilities to the data, using
different join-orders to factorize the lineages, and by inject-
ing different constants into the queries. Figure 1b shows the
average approximation error over time for four different in-
stantiations of our approach.
MB is the existing Model-based approach from SPROUT

and performs slightly worse than SD, which uses Symmetric
Dissociations for both upper and lower bounds. Both meth-
ods work best with the frequency heuristic for SE. Our new
methods PGD (Projected Gradient Descent) and HB (Hybrid
method) vastly outperform both approaches. Both meth-
ods use the optimal symmetric upper bounds and apply 10
gradient descent steps before using SE. But whereas PGD
searches for the true best lower bounds, HB searches for the
best possible model-based lower bound, by moving in a gra-
dient direction. This makes the optimization faster, but pro-
duces slightly worse bounds than PGD. These methods work
best with the influence heuristic for SE, but outperform the
others even with the frequency heuristic.

Conclusion
We introduced an anytime approximation framework for
probabilistic query evaluation. Our framework leverages
novel dissociation bounds that generalize and improve upon
model-based bounds. Our experimental results show notable
improvements over the current state of the art, and we be-
lieve that the approach also has applications beyond PDBs
in the broader area of statistical-relational learning (SRL).
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