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The evaluation of SPARQL algebra queries on various kinds of annotated RDF graphs can be seen as a
particular case of the evaluation of these queries on RDF graphs annotated with elements of so-called
spm-semirings. Spm-semirings extend semirings, used for representing the provenance of positive relational
algebra queries on annotated relational data, with a new operator to capture the semantics of the non-
monotone SPARQL operators. Furthermore, spm-semiring-based annotations ensure that desired SPARQL
query equivalences hold when querying annotated RDF. In this work, in addition to introducing spm-
semirings, we study their properties and provide an alternative characterization of these structures in terms
of semirings with an embedded boolean algebra (or seba-structure for short). This characterization allows
us to construct spm-semirings and identify a universal object in the class of spm-semirings. Finally, we show
that this universal object provides a provenance representation of poly-sized overhead and can be used to
evaluate SPARQL queries on arbitrary spm-semiring-annotated RDF graphs.
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1. INTRODUCTION

The W3C Linked Data Initiative has boosted the publication and interlinkage of mas-
sive amounts of scientific, corporate, governmental, and crowd-sourced datasets on the
emerging Data Web. These data are commonly published in the form of RDF data
[Manola et al. 2004] and queried with the SPARQL query language [Prud’hommeaux
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and Seaborne 2008]. In such settings where RDF data are freely exchanged, integrated,
and materialized in distributed repositories, it is crucial to be able to assess the quality
of replicated and possibly incomplete or uncertain data.

Toward this end, several models for annotated RDF data have been proposed [Carroll
et al. 2005; Mazzieri and Dragoni 2008; Hartig 2009; Dividino et al. 2009; Huang
and Liu 2009; Zimmermann et al. 2012; Straccia 2013] in an attempt to represent
various dimensions of data quality such as trust, truth of imprecise information, or
the probability of the validity of the data. In all these cases, when annotated data are
transformed through SPARQL queries, one needs to compute appropriate annotations
for the query results. For instance, in the case of trust assessment [Hartig 2008, 2009;
Dividino et al. 2009], the trustworthiness of query results is determined based on
the trustworthiness of source datasets from which they were derived. Similarly, for
uncertain and fuzzy datasets, the degrees of truth of query results are derived based
on the degrees of truth associated with the original data [Dividino et al. 2009; Huang
and Liu 2009; Zimmermann et al. 2012; Straccia 2013].

If we are only interested in one kind of annotations, and source annotations are
static and common for all users as well as available at query evaluation time, such
computations can be performed during query evaluation [Hartig 2008, 2009; Dividino
et al. 2009; Huang and Liu 2009; Zimmermann et al. 2012; Straccia 2013].

In general however, various different scenarios may present themselves: Different
applications may require computing different kinds of annotations over the same source
data and queries; for a single kind of annotation (especially in data integration and
warehouse settings) data may be collected from various RDF sources that change
over time; different users may have different beliefs about aspects of the data and
these beliefs may not be available at query evaluation time or may change over time;
different users may only be interested in computing annotations for a small subset of
the results of a query, and the like.

As a consequence, we may end up with redundant query evaluations. The same
query may have to be evaluated repeatedly over the same source data for each kind
of annotation. Even if source annotations representing the beliefs of each user are
available at query evaluation time, the same query may have to be evaluated separately
for each one of these sets of source annotations despite the fact that the relationship of
query results with the source data is the same for all users. Because we do not know
in advance which query results will be derived, or which subset of the source data is
involved in their derivation, annotations for all results of each query may need to be
computed during query evaluation.

For these reasons, abstract provenance models [Green et al. 2007] have been intro-
duced: They use abstract tokens to represent tuple annotations and abstract operators
to capture the relationship between the query operators that combine source data
to derive query results. Conceptually, the resulting abstract provenance expressions
encode for each query result its relationship to source data and query operators, as
implied by the structure of the query, independently of any specific kind of annotations
or particular source data annotation values. Such expressions can then be computed
once during query evaluation, and annotations for various applications or users with
different beliefs or specific query results can be computed from them, without requiring
redundant re-evaluation(s) of each query over all source data.

In the relational setting, provenance models that are capable of abstracting the
query evaluation on annotated relational data have been put forward for the positive
fragment of the relational algebra [Cheney et al. 2009]. In particular, the modeling
of annotations by means of semirings has shown great promise [Green et al. 2007],
both as a platform for theoretical study and as a representation employed in systems
that record provenance information when data are imported in the hosting repository
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[Karvounarakis et al. 2013] and use it to compute appropriate annotations for different
applications and users at a later time [Karvounarakis et al. 2010].

For annotated RDF data and positive SPARQL queries (those that use only the AND
and UNION operators), one can verify, similarly to the positive relational case, that
semirings suffice as the annotation structure [Theoharis et al. 2011]. However, when
the non-monotone SPARQL operator OPTIONAL is brought into the picture, it can easily
be verified that extensions of semirings have to be considered. Indeed, the SPARQL 1.0
algebra semantics [Pérez et al. 2009] of OPTIONAL is defined in terms of a left-outer join
that involves a non-monotone difference algebraic operator. More specifically, for any
two RDF data sets G1 and G2, (G1 OPTIONAL G2) can be written as (G1 AND G2) UNION
(G1 DIFFERENCE G2) [Pérez et al. 2009]. Although DIFFERENCE is—strictly speaking—not
part of the SPARQL 1.0 specification, we add it for convenience.1

However, as explained in Section 2, the semantics of DIFFERENCE and OPTIONAL are
not the same as those of relational difference and (left-)outer join, respectively. Thus,
extensions to the semiring framework intended to cope with the latter [Geerts and
Poggi 2010; Amsterdamer et al. 2011a, 2011b; Glavic and Alonso 2009] cannot be
applied directly to capture the provenance of SPARQL queries. Recent work [Damásio
et al. 2012] suggests that it may be possible to express the SPARQL difference in
terms of relational operators to leverage the structure of m-semirings, an extension of
semirings for relational queries involving difference [Geerts and Poggi 2010]. However,
whereas a provenance model based on the so-called universal m-semiring exists, this
model does not allow for a concise and simple representation of its expressions [Geerts
and Poggi 2010] and, thus, its practical usability as a provenance model is rather
limited.

For these reasons, we propose a new algebraic structure for capturing the semantics
of SPARQL DIFFERENCE (and thus also OPTIONAL) in this article. More specifically, we
identify a set of SPARQL query equivalences that involve DIFFERENCE and hold under
both bag and set semantics, and we show that these equivalences also hold when
evaluating SPARQL queries on a wide variety of annotated RDF data. Then, we define
so-called spm-semirings, an extension of semirings with a new operation �, based
on identities derived from the aforementioned SPARQL equivalences. Furthermore,
we show that spm-semirings do have a universal structure that provides a concise
representation of the provenance of RDF data and SPARQL queries involved.

The underlying techniques rely on a characterization of spm-semirings in terms of
semirings with an embedded boolean algebra, or seba-structure for short. This char-
acterization is nontrivial and may be of interest in its own right. Furthermore, the
spm-semiring-based provenance expressions can indeed be used to compute appropri-
ate annotations in a wide variety of application domains. We thus provide a complete
picture of SPARQL query evaluation on annotated RDF and propose an abstract prove-
nance model that incorporates non-monotone SPARQL operators. We note that the
relational analogue is still open for relational queries with difference.

In summary, we make the following contributions:

(1) We illustrate that the semantics of SPARQL on various notions of annotated RDF
have a great commonality (Section 2). Based on this, we generalize the semantics
of SPARQL algebra expressions to RDF data annotated with values from some
arbitrary annotation domain K, or K-annotated RDF for short (Section 3). For this
purpose, K is equipped with binary operations ⊕, ⊗, and �, and constants 0 and 1
that accommodate all SPARQL algebra operators.

1The algebra described in the SPARQL 1.1 specification [Harris and Seaborne 2013] also contains a similar
operator called MINUS. We discuss SPARQL 1.1 in Section 8.
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(2) We identify a set of SPARQL algebra equivalences (some involving DIFFERENCE)
that are desirable to hold on K-annotated RDF (Section 4). We show that for these
equivalences to hold, (K,⊕,⊗,�, 0, 1) must be an spm-semiring and vice versa. A
minimal set of identities defining spm-semirings is provided.

(3) An alternative characterization of spm-semirings is given in Section 5, based on
semirings with an embedded boolean algebra (seba-structures). We prove the cor-
rectness of this characterization and show how it can be used to construct spm-
semirings based on semirings commonly used in practice.

(4) We identify a universal object in the class of spm-semirings (Section 6), leveraging
the characterization in terms of seba-structures, and show that the evaluation of
SPARQL queries on spm-semiring annotated RDF factors through the evaluation
of RDF annotated with elements in the universal object. The universal object is
therefore proposed in Section 7 as a provenance model for annotated RDF and
SPARQL. Furthermore, we explain how newly introduced non-monotone operators
in SPARQL 1.1 fit into our algebraic framework in Section 8. Finally, we compare
spm-semirings with related work in the relational and semantic Web contexts in
Section 9 and conclude with directions for future work in Section 10.

This article is a considerable expansion of the 12-page conference paper [Geerts et al.
2013]. Apart from providing all definitions and proofs, we have included ample ex-
amples illustrating key concepts. Furthermore, we have corrected several mistakes,
especially those concerning the construction of the universal objects.

2. QUERYING ANNOTATED RDF

In this section, we provide examples of the evaluation of SPARQL queries on annotated
RDF data. We first recall RDF [Manola et al. 2004] and SPARQL [Prud’hommeaux and
Seaborne 2008] with the standard bag semantics in which we represent multiplicities
as annotations. We then observe that, similar to the relational case, the semantics of
SPARQL on various forms of annotated RDF have a great commonality.

2.1. RDF and SPARQL in a Nutshell

RDF is the standard model for representing semantic Web data as sets of triples of
the form (subject, predicate, object). Intuitively, for each triple, the predicate describes
the relationship between subject and object. For instance, Table (a) of Figure 1 shows
an example of an RDF triple set, denoted by G, where the columns stand for the
corresponding components of each triple (S for subject, P for predicate, and O for
object). SPARQL is the standard language used to query RDF data. We present the
SPARQL semantics based on the algebra of Pérez et al. [2009]. The operators of this
algebra manipulate bags of mappings (i.e., valuations of variables to constants in G)
and include unary operators σ and π that correspond to the SPARQL constructs FILTER
and SELECT, respectively, and binary operators ∪, �, and � for the SPARQL constructs
UNION, AND, and OPTIONAL, respectively. The operator � can be defined in terms of ∪,
�, and \, the algebraic counterpart of DIFFERENCE [Pérez et al. 2009]. The following
example illustrates the standard bag semantics of SPARQL queries.

Example 2.1 (bags). In Figure 1 we start by considering the simplest SPARQL query
(?x, ?y, ?z) over the RDF triple set G depicted in Table (a). Such a query is referred to
as a triple pattern where ?x, ?y, and ?z denote variables. Intuitively, the evaluation of
the triple pattern (?x, ?y, ?z) consists of a bag of mappings. Each mapping corresponds
to the selection of a triple from the RDF triple set G by bounding the variables to
constants in triples in G. Table (b) shows the resulting mapping bag �. We employ
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Fig. 1. Example of RDF graph and evaluation of SPARQL algebra operators (bag/trust/fuzzy semantics).

symbol μi to identify individual mappings. The formal definition of triple patterns and
general SPARQL queries is provided at the beginning of Section 3.

To simplify the presentation, we use the tabular representation of the mapping bags
shown in Table (b) in Figure 1, where the first three columns correspond to variables
in the mappings and the fourth column (#) represents the multiplicity of the mapping.
The last two columns (trust and fuzzy ) can be ignored for now, as can the gray shaded
entries in Tables (h) and (i).

Tables (c–e) illustrate the evaluation of the operators σ and π . The output mapping
bags are denoted by �1, �2, and �3. For instance, mapping μ11 of �3 has two derivations
originating from mappings in �; namely, one by projecting μ4 and another one by
projecting μ5. The multiplicity of μ11 is obtained by adding the multiplicities of μ4 and
μ5.

Table (f) shows the result of �4 = �2 ∪ �3, where �2 and �3 are shown in Tables
(d) and (e), respectively. In �4, the mapping μ13 has two derivations, both of them
originating from �3, whereas the two derivations of μ12 originate from �2 (μ8) and �3
(μ10). The multiplicity of μ12 is obtained by adding the multiplicities of μ8 and μ10.

Table (g) depicts the result of �4 � �1. For instance, mapping μ16 is derived by joining
μ13 ∈ �4 and μ6 ∈ �1. Mappings can be joined only if they are compatible [Pérez et al.
2009]. In our example, μ6 and μ13 are compatible because they agree on their common
variable (i.e., they both bind ?y to b). The multiplicity of μ16 is computed as the product
of the multiplicities of the two input mappings (1 × 2 = 2).

Table (h) illustrates an example of the difference operator (i.e., �4 \ �1). Note that
neither μ12 nor μ13 in �4 are in the result—recall that we ignore the gray-shaded entries
for now—because �1 contains a mapping (μ6) that is compatible with the mappings
μ12 and μ13 in �4 as explained earlier. On the other hand, there is no mapping in
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�1 that is compatible with μ14. As a consequence, μ14 appears in the result as μ19 in
Table (h). Note that the difference operator can be applied on bags of mappings defined
on different variables since only the common variables of the mappings are considered.
This is also true for the SPARQL union.

Finally, Table (i) depicts the result of �4 � �1, which contains all mappings from
Tables (g) and (h). Indeed, �4 � �1 = (�4 � �1) ∪ (�4 \ �1). The symbol “−” denotes
that ?x is not bound to a constant in the mappings μ22, μ23 and μ24.

The previous example shows that the multiplicities of mappings in the result of σ , π ,
∪, and � SPARQL algebra operators are computed in a similar way as when evaluating
the corresponding operators of the relational algebra under bag semantics [Green et al.
2007]. In particular, in the case of alternative derivations (e.g., for π or ∪) of a mapping,
its multiplicity equals the sum of the multiplicities of the different derivations. In the
case of �, the multiplicity of the result mapping equals the product of the multiplicities
of the two input mappings that were combined.

However, the multiplicities of the result mappings of the \ operator are computed
differently from the corresponding case of the difference operator (\ra) in the rela-
tional algebra under bag semantics. Indeed, let R and S be two relations and de-
note by R(t) and S(t) the multiplicity of a tuple t in R and S, respectively. Then,
(R \ra S)(t) := max(0, R(t) − S(t)) in the bag semantics of the relational algebra [Green
et al. 2007]. In contrast, the SPARQL difference (\) is defined in terms of compatibility,
not equality [Schmidt et al. 2010]. Indeed, Table (h) shows that when considering the
SPARQL difference �4 \�1, a mapping (tuple) t in �4 is in the output as long as there is
no mapping in �1 that is compatible with it. That is, (�4 \�1)(t) = �4(t) −bag �t′∼t�1(t′),
where for any two natural number n and m, n −bag m = n in case that m = 0, and
n −bag m = 0 otherwise. Thus, SPARQL follows the standard relational bag semantics
for its positive operators but uses a different semantics for \. Similarly, relational left-
outer join, which is defined as a union between a join and a relational difference, also
uses a different semantics than SPARQL OPTIONAL.

Example 2.2 (bags cont’d). Consider Tables (c), (f), and (h) of Figure 1. Observe that
although μ12 and μ13 both have multiplicity 2 in �4 (Table (f)), and the compatible
mappings μ6 and μ7 in �1 have multiplicity 1 (Table (c)), neither μ12 nor μ13 is present
in �4 \ �1. As another example, consider π?y(�1) consisting of mappings μ′

6 and μ′
7

obtained as the projection on the variable ?y of μ6 and μ7 in �1, respectively. These
mappings both have multiplicity 1. Furthermore, consider π?y(�4) consisting of map-
pings μ′

12+13 and μ′
14 obtained as the projection on the variable ?y of μ12 and μ13, and

μ14 in �4, respectively. The mapping μ′
12+13 has multiplicity 4 and the mapping μ′

14 has
multiplicity 1. As before, when considering π?y(�4) \ π?y(�1), the mapping μ′

12+13 will
not be present in the result despite the fact that μ′

12+13 has a higher multiplicity than
μ′

6. Since the mapping bags π?y(�1) and π?y(�4) are defined over the same schema (with
“attribute” ?y), we can also consider

(
π?y(�4)

) \ra
(
π?y(�1)

)
. In this case, μ′

12+13 would
be in the result with multiplicity 3, as given by max(0, 4 − 1).

2.2. SPARQL on Annotated RDF

We next consider the semantics of SPARQL when RDF is adorned with trust informa-
tion [Hartig 2008, 2009; Dividino et al. 2009]. In this setting, for a given SPARQL query,
the goal is to find which result mappings are trusted based on the trustworthiness of
the input mappings. More specifically, in case of mappings with multiple derivations,
a single trusted derivation suffices to infer that the result mapping is trusted. When
two mappings are combined in a derivation, both of them should be trusted in order
for the result mapping to be trusted. Based on this semantics, which has also been
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studied in the relational context [Karvounarakis et al. 2013; Green et al. 2007], one
can compute the trusted result mappings by answering the query over the subset of
the input consisting of trusted triples only. This semantics also coincides with the set
semantics of SPARQL [Pérez et al. 2009] in which a trusted mapping belongs to the
output mapping set and an untrusted mapping does not.

Example 2.3 (trust, set). Consider Figure 1 where, instead of the # column, we now
focus on the annotations in the trust column. For example, each triple in Table (b)
comes with a boolean trust value (τi) that is true if the triple is trusted and false
otherwise. It is readily verified that the desired trust semantics is obtained for the
example SPARQL queries in Figure 1 by combining trust values through disjunction
(∨) and conjunction (∧), instead of addition and multiplication, respectively, used to
compute multiplicities in Example 2.1. For example, μ11 in Table (e) is trusted only if
one of the mappings μ4 or μ5 is trusted. Similarly, μ16 in Table (g) is trusted if μ1 is
trusted and either μ4 or μ5 is trusted. To deal with \, we consider boolean negation
(denoted by τ̄ for a trust variable τ ). Indeed, consider the gray-shaded entry μ18 in
Table (h). This mapping is trusted only if μ1 is untrusted and either μ4 or μ5 is trusted.
This is expressed by (τ4 ∨ τ5) ∧ τ̄1 and denoted by (τ4 ∨ τ5) −trust τ1 in Table (h). Hence,
the gray-shaded mappings can be part of the result depending on the trust information
of the source mappings. In general, if ϕ and ψ are two propositional formulas over
boolean variables, then their difference is defined as ϕ −trustψ := ϕ ∧ ψ̄ . Note that this
is similar to the notion of difference given in the bag semantics (cf. Example 2.1): ϕ ∧ ψ̄
equals ϕ if ψ is false, and equals false otherwise.

We conclude this section by considering SPARQL on fuzzy RDF data [Zimmermann
et al. 2012; Straccia 2013]. In this setting, every mapping is annotated with a real
number in the range [0, 1], where the annotation denotes the degree of truth that the
mapping exists in the particular mapping set. Mappings annotated with 0 certainly do
not exist in the mapping set, whereas those annotated with 1 certainly exist. In the
case of mappings with alternative derivations, the degree of truth of the mapping is
that of the derivation with the highest degree of truth while the degree of truth of a
composite derivation equals the minimum of the degrees of truth over the two input
mappings.

Example 2.4 (fuzzy). Consider Figure 1 where instead of the # column, we now focus
on the fuzzy column. For example, each triple in Table (b) comes with a degree of truth
(pi) that is a real number in [0, 1]. It is readily verified that the desired fuzzy semantics
is obtained for the example SPARQL queries in Figure 1 if we take the maximum (max)
and minimum (min) instead of addition and multiplication, respectively, as used for
bag semantics (cf. Example 2.1). To deal with \, we need to consider an additional
operator −fuzzy on degrees of truth that is defined as p −fuzzy q := p in case that q =
0, and p −fuzzy q := 0 otherwise. This definition is in line with the treatment of the
OPTIONAL operator in the fuzzy RDF setting [Zimmermann et al. 2012; Straccia 2013].
For example, the gray-shaded entry μ18 in Table (h) appears with degree of truth
max(p4, p5)−fuzzy p1. That is, if μ1 has non-zero degree of truth, then μ18 will not appear
in the query result. Similarly, if both p4 and p5 have zero degree of truth, then μ18 is
not part of the output. In all other cases, μ18 is a result mapping with degree of truth
max(p4, p5). Note again the similarity between −fuzzy, −bag and −trust.

We remark that Dividino et al. [2009] define p −fuzzy q as min(p, 1 − q). Although
this definition collapses to −trust when p and q can only be 0 or 1, it is not compatible
with the standard bag semantics. Instead, we aim to provide a general treatment that
covers the SPARQL semantics in the setting of sets and bags and beyond. Furthermore,

Journal of the ACM, Vol. 63, No. 1, Article 7, Publication date: February 2016.



7:8 F. Geerts et al.

defining p −fuzzy q as in Dividino et al. [2009] does lead to a semantics of SPARQL for
which desired query equivalences (introduced in the next section) are not satisfied. We
therefore adopt the fuzzy semantics given by Zimmermann et al. [2012] and Straccia
[2013].

2.3. Summary and Lookahead

The previous examples suggest a commonality between the different semantics of
SPARQL on annotated RDF. Similar to the semiring-based approach for annotated
relational data, we unify the semantics of SPARQL for a wide range of annotations as
follows: First, we extend mappings to annotated mappings that take values in some
abstract set K of annotations. Second, we enrich K with operations for capturing the
semantics of the query language operators. More specifically, we enrich K with the
following three binary operations:

—A binary operator ⊕ for modeling +, ∨, and max, among others, for the operators π
and ∪;

—A binary operator ⊗ for modeling ×, ∧, and min, among others, for the operators �

and �; and
—A binary operator � for modeling −bag, −trust, and −fuzzy, among others, for the

operators \ and �.

Finally, based on SPARQL query equivalences that are known to hold in the bag,
trust (set), and fuzzy setting, among others, we identify a set of additional properties
that the algebraic structure consisting of K, ⊕, ⊗, and � must have, and we provide
a characterization of these structures. We provide additional examples of annotated
RDF commonly used in practice in Section 5 and show that these are all unified by our
approach.

3. SEMANTICS OF SPARQL ON ANNOTATED RDF

In this section, we formalize the semantics of SPARQL on annotated RDF. We start
by defining a general notion of annotated RDF and then extend the semantics of
SPARQL correspondingly. In this section, we consider SPARQL 1.0 [Prud’hommeaux
and Seaborne 2008] and discuss SPARQL 1.1 in Section 8.

We would like to emphasize that we do not consider the deductive process of obtaining
implicitly entailed triples. We follow the official W3C SPARQL specification in which
the semantics of SPARQL disregards the issue of RDFS reasoning. This means that
SPARQL operates on the RDF graph as is, without inferring new triples. Whenever
reasoning is desired, it is assumed to be carried out by a separate, underlying layer.
This decision, which keeps the SPARQL query language independent from the reason-
ing process, brings several advantages: It results in a clean and compact semantics
for SPARQL that does not interfere with reasoning rules, makes the SPARQL query
language resistant to possible changes in the RDF(S) reasoning process, and allows the
use of SPARQL without modifications on top of other reasoning mechanisms.

Let I, B, and L be pairwise disjoint infinite sets of Internationalized Resource Iden-
tifiers (IRIs), blank nodes, and literals, respectively. A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪
B ∪ L) is called an RDF triple. As mentioned earlier, s is the subject, p the predicate,
and o the object. An RDF graph is a finite set of RDF triples.

Definition 3.1. Let K be a set of annotations, disjoint from I, B, and L. A K-annotated
RDF triple is of the form (s, p, o) �→ k where (s, p, o) is an RDF triple and k is an
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annotation taken from K. A finite set of annotated RDF triples is called a K-annotated
RDF graph if every triple (s, p, o) has a single annotation in K.2

Similarly to Pérez et al. [2009], we consider a fragment of SPARQL consisting of
graph pattern expressions, which are defined inductively as follows. Let V be a set of
variables, disjoint from I, B and L.

(1) A triple from (I ∪ V ) × (I ∪ V ) × (I ∪ L∪ V ) is a graph pattern, referred to as a triple
pattern.

(2) If P1 and P2 are graph patterns, then (P1 UNION P2), (P1 AND P2), and (P1 OPT P2)
are also graph patterns, referred to as a union, conjunction, and optional graph
pattern, respectively.

(3) If P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R)
is a graph pattern, referred to as a filter graph pattern.

(4) If P is a graph pattern and S ⊆ V , then SELECTS(P) is a graph pattern, referred
to as a projection graph pattern.

Here, a SPARQL built-in condition is constructed using elements of the set I ∪ L ∪ V
and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, �, �, >), the equal-
ity symbol (=), unary predicates like bound, isBlank, and isIRI, plus other features
(see Harris and Seaborne [2013] for a complete list of built-in conditions).

We next extend the semantics of SPARQL from RDF graphs to K-annotated RDF
graphs, hereby closely following the presentation of the standard semantics of SPARQL
given in Pérez et al. [2009]. That is, in the standard, unannotated setting, the semantics
of SPARQL graph patterns on RDF graphs can be defined in terms of SPARQL algebra
operations on mapping sets. Later, we first generalize mapping sets to K-annotated
mapping sets, define the semantics of the SPARQL algebra operators on such mapping
sets, and then extend the semantics of SPARQL in terms of the SPARQL algebra
operators. The algebra operators consist of union (∪), join (�), difference (\), left outer
join ( �), projection (π ), and selection (σ ). We note that the difference operator is not a
SPARQL operator; it was introduced by Pérez et al. [2009] to specify the semantics of
the left outer join operator [Harris and Seaborne 2013].

Let var (t) denote the set of variables from V that appear in a triple pattern t and
denote I ∪ B ∪ L by T . A mapping μ from V to T is a partial function μ : V → T .
The domain of μ, denoted by dom (μ), is the subset of V on which μ is defined. We
say that two mappings μ1 and μ2 are compatible if for all v ∈ dom (μ1) ∩ dom (μ2) we
have μ1(v) = μ2(v). We denote this by μ1 ∼ μ2. It is readily verified that if μ1 ∼ μ2,
then μ1 ∪ μ2 is also a mapping from V → T . We denote by M the set of all mappings
from V to T . Note that empty mappings (mappings with empty domains) are always
compatible.

Definition 3.2. Let K be a set of annotations and let 0 denote a distinguished element
from K. A K-annotated mapping set on M is a total function � : M → K such that its
support {μ ∈ M | �(μ) �= 0} is finite.

Intuitively, we interpret a mapping in M with its annotation set to 0 by � as not
being part of the mapping set �. Definition 3.2 can thus be interpreted as saying that
mapping sets � consist of a finite number of mappings (i.e., only a finite number of
mappings have a non-zero annotation).

2Although the definition implies that a triple is associated with a single annotation, no generality is lost.
Indeed, in application scenarios where triples may have multiple annotations from the same domain, it is
common practice to combine these annotations [Zimmermann et al. 2012]. More specifically, (s, p, o) → k1
and (s, p, o) → k2 is represented by (s, p, o) → k1 ⊕ k2.
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To generalize the SPARQL algebra operators to K-annotated mapping sets, we re-
quire K to be equipped with binary operations ⊕, ⊗, and �; to contain two distinguished
constants 0 and 1; and—for reasons that will be clear shortly—we assume that ⊕ and
⊗ are commutative. The definitions below are inspired by the bag, trust (set), and fuzzy
semantics of SPARQL, as illustrated in Section 2. The algebra operations on mapping
sets are defined as follows. Let � be a K-annotated mapping set on M, S ⊆ V and let R
be a SPARQL built-in condition. Then, for all μ ∈ M and ν ∈ M such that dom (ν) ⊆ S:

(σR(�))(μ) := �(μ) ⊗ FR(μ)

(πS(�))(ν) :=
⊕

μ∈M,∃μ′∈M
μ=ν∪μ′&dom (μ′)∩S=∅

�(μ),

where, for all μ ∈ M, FR(μ) = 1, if μ satisfies the built-in condition R and FR(μ) = 0
otherwise. We refer to Pérez et al. [2009] for the definition of when a mapping satisfies
a built-in condition. Let �1 and �2 be two K-annotated mapping sets. Then, for all
μ ∈ M:

(�1 ∪ �2)(μ) := �1(μ) ⊕ �2(μ)

(�1 � �2)(μ) :=
⊕

μ1,μ2∈M
μ=μ1∪μ2

�1(μ1) ⊗ �2(μ2)

(�1 \ �2)(μ) := �1(μ) � ( ⊕
μ′∈M,μ∼μ′

�2(μ′)
)

(�1 � �2)(μ) := ((�1 � �2) ∪ (�1 \ �2))(μ).

We refer to this as the SPARQL K-annotated algebra. The algebra operations on
K-annotated mapping sets are well-defined (i.e., they are independent of the order in
which mappings in M are considered). Indeed, the annotations associated with the
operations πS, �, \, and � involve the summation (using ⊕) and products (using ⊗) of
values in K corresponding to sets of compatible mappings. The resulting annotations
are independent of the order in which these compatible mappings are considered. This
is a direct consequence of our assumption that ⊕ and ⊗ are commutative.

The semantics of our fragment of SPARQL on K-annotated RDF graphs is now
defined inductively, following the definition of graph patterns, in terms of the SPARQL
K-annotated algebra. That is, we first define the evaluation of a triple pattern t on a
K-annotated RDF graph Ga as the following K-annotated mapping set. For all μ ∈ M:

[[t]]Ga(μ) :=
{

k if dom (μ) = var (t), μ(t) �→ k ∈ Ga
0 otherwise.

Here, for a triple pattern t, we denote by μ(t) the triple obtained by replacing the
variables in t according to μ. Note that this is indeed a K-annotated mapping set:
(i) it defines a function because RDF triples in Ga have a single annotation, and (ii) it
has finite support since RDF graphs are finite objects. The semantics of the remaining
SPARQL graph patterns is defined as follows: Let P1 and P2 be graph patterns, R a
built-in condition, and S ⊆ V . Then,

[[P1 FILTER R]]Ga := σR
(
[[P1]]Ga

)
[[SELECTS P1]]Ga := πS

(
[[P1]]Ga

)
[[P1 UNION P2]]Ga := [[P1]]Ga ∪ [[P2]]Ga

[[P1 AND P2]]Ga := [[P1]]Ga � [[P2]]Ga

[[P1 OPT P2]]Ga := [[P1]]Ga � [[P2]]Ga .
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For convenience, we also consider a SPARQL graph pattern for the difference:

[[P1 DIFFERENCE P2]]Ga := [[P1]]Ga \ [[P2]]Ga .

This graph pattern is not part of the SPARQL syntax, but, from the relationship
between the SPARQL algebra operators � and \, it follows that

[[P1 OPT P2]]Ga = [[(P1 AND P2) UNION (P1 DIFFERENCE P2)]]Ga .

Apart from the commutativity of ⊕ and ⊗, we did not specify any other conditions
on the set K and its operations. We need to impose additional conditions, however,
to ensure that the SPARQL graph patterns return K-annotated mapping sets. For
instance, suppose that ⊕ is chosen such that 0 ⊕ 0 = 1. Then, the union of two empty
RDF graphs would result in a total function on M whose support is infinite. This
contradicts the definition of K-annotated mapping sets, which demands finite support.

We identify such additional conditions on the operations in the next sec-
tion. It can already be verified, however, that the preceding semantics does
make sense for the following choices of (K,⊕,⊗,�, 0, 1): For (N,+,×,−bag, 0, 1),
({true, false},∨,∧,−trust, false, true), and ([0, 1], max, min,−fuzzy, 0, 1), this semantics co-
incides with the bag, trust (set), and fuzzy semantics of SPARQL, respectively (cf.
Section 2).

4. SPARQL ANNOTATION STRUCTURE

We next identify a set of SPARQL equivalences that are expected to hold in the general
K-annotated setting and show that these equivalences enforce a specific structure on
the underlying set K of annotations.

4.1. SPARQL Equivalences and Identities on (K, ⊕,⊗, �, 0, 1)

Similar to the relational case [Abiteboul et al. 1995], SPARQL optimization techniques
rely on SPARQL algebra equivalences. For the standard bag semantics of SPARQL, an
extensive list of such equivalences is identified in Schmidt et al. [2010]. For example,
the equivalence �1 ∪ �2 ≡ �2 ∪ �1 holds for all mapping bags �1 and �2. On the other
hand, identities are commonly used to express conditions on algebraic structures such
as (K,⊕,⊗,�, 0, 1). For example, the identity x1 ⊕ x2 = x2 ⊕ x1 expresses that ⊕ is
commutative. In other words, for all values k1, k2 ∈ K, k1 ⊕ k2 = k2 ⊕ k1. In this case, K
is said to satisfy the identity x1 ⊕ x2 = x2 ⊕ x1. Algebraic structures that satisfy a set
of identities are commonly known as equational varieties [Burris and Sankappanavar
1981]. Equivalences and identities are always assumed to be universally quantified;
we omit this quantification.

We next establish a connection between SPARQL equivalences on K-annotated RDF
graphs and identities on the set K of annotations. More precisely, we show that a
SPARQL K-annotated algebra equivalence e1 ≡ e2 can be translated into an identity
i1 = i2 on the underlying annotation structure K.

In the following, we only consider restricted SPARQL K-annotated algebra equiv-
alences because these suffice for our purpose. The left- and right-hand side of such
restricted equivalences are SPARQL algebra terms built up from variables Pi, denot-
ing arbitrary K-annotated mapping sets and ∅, denoting the empty mapping set and
closed under union, join, difference, and selections of the form σ?x=?x for some variable
x in V . That is, we only consider selections that originate from filter expressions in
which the built-in condition vacuously holds (such as ?x =?x). Furthermore, restricted
equivalences contain neither left-outer joins ( �) nor projections (π ) because these do
not have a direct counterpart in (K,⊕,⊗,�, 0, 1).

Similarly, the left- and right-hand side of identities are terms in (K,⊕,⊗,�, 0, 1)
built up from xi, denoting arbitrary values in K, 0 and 1, two distinguished elements
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Table I. Translation from SPARQL Algebra
Terms to Annotation Terms

by Means of the Mapping s-to-a

SPARQL s-to-a Annotation
Pi → xi
∅ → 0
e1 ∪ e2 → s-to-a(e1) ⊕ s-to-a(e2)
e1 � e2 → s-to-a(e1) ⊗ s-to-a(e2)
e1 \ e2 → s-to-a(e1) � s-to-a(e2)
σ?x=?x(e1) → s-to-a(e1) ⊗ 1
In this table, Pi is a variable represent-
ing a graph pattern, and e1 and e2 are
SPARQL algebra terms. Similarly, xi is
a variable representing values in K.

in K, and closed under ⊕, ⊗, �. Table I shows the inductive definition of the mapping
s-to-a from SPARQL terms to annotation terms.

LEMMA 4.1. If e1 ≡ e2 is a restricted SPARQL K-annotated algebra equivalence, then
s-to-a(e1) = s-to-a(e2) is an identity that holds on (K,⊕,⊗,�, 0, 1).

PROOF. Let e1 ≡ e2 be a SPARQL K-annotated algebra equivalence. For simplic-
ity and without loss of generality, assume that e1 and e2 are SPARQL terms over
the variables P1, . . . , Pn. Consider the K-annotated RDF graph Ga consisting of n
triples (ai, b, c) �→ ki such that a1, . . . , an are n distinct constants, b and c are ar-
bitrary constants, and k1, . . . , kn are arbitrary values taken from K. Furthermore,
let Qi := π?y,?z(σ?x=ai (?x, ?y, ?z)) for i ∈ [1, n]. We denote by e1[[[Q1]]Ga

, . . . , [[Qn]]Ga
]

the SPARQL graph pattern obtained by substituting each occurrence of the vari-
able Pi with the K-annotated mapping set [[Qi]]Ga

, for i ∈ [1, n], and, similarly, for
e2[[[Q1]]Ga

, . . . , [[Qn]]Ga
]. Along the same lines, for an annotation term t over variables

x1, . . . , xn, we denote by t[k1, . . . , kn] the element in K obtained by substituting occur-
rences of xi by the value ki, for i ∈ [1, n].

Observe the following. It is readily verified that [[Qi]]Ga
= {(b, c) �→ ki} for i ∈ [1, n].

Furthermore, for i, j ∈ [1, n], we have that (i) [[Qi ∪ Qj]]Ga
= {(b, c) �→ ki ⊕ kj};

(ii) [[Qi � Qj]]Ga
= {(b, c) �→ ki ⊗ kj}; (iii) [[Qi \ Qj]]Ga

= {(b, c) �→ ki � kj}; and
(iv) [[σ?w=?w(Qi)]]Ga

= {(b, c) �→ ki ⊗ 1}, for w ∈ {y, z}. From this, and by induction
on the structure of the terms e1 and e2, we can conclude that

ei[[[Q1]]Ga
, . . . , [[Qn]]Ga

] = {(b, c) �→ s-to-a(ei)[k1, . . . , kn]},
for i = 1, 2. Hence, e1 ≡ e2 implies that s-to-a(e1)[k1, . . . , kn] = s-to-a(e2)[k1, . . . , kn] and
this for arbitrary choices of k1, . . . , kn. In other words, s-to-a(e1) = s-to-a(e2) is an identity
on K.

The choice of annotation structure thus entirely depends on the SPARQL equiva-
lences that one would like to be satisfied when evaluating SPARQL on K-annotated
RDF graphs.

We next propose a set of equivalences that are desired to hold when evaluating
SPARQL on K-annotated RDF graphs.

4.2. SPARQL Equivalences for the Positive Fragment

Consider first the positive fragment of the SPARQL algebra (i.e., the fragment that
does not include \ and �). It has been noted [Schmidt et al. 2010] that the following
SPARQL algebra equivalences hold in the case of set and bag semantics and thus are
natural to impose in the general K-annotated setting: For any K-annotated mapping
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Fig. 2. Axiomatization A of spm-semirings.

sets �1, �2, and �3, we have that

E1 =
{

σ?x=?x(�1) ≡ �1 �1 � ∅ ≡ ∅ �1 ∪ ∅ ≡ �1 �1 ∪ �2 ≡ �2 ∪ �1
�1 � �2 ≡ �2 � �1 �1 ∪ (�2 ∪ �3) ≡ (�1 ∪ �2) ∪ �3
�1 � (�2 � �3) ≡ (�1 � �2) � �3 �1 � (�2 ∪ �3) ≡ (�1 � �2) ∪ (�1 � �3)

}
.

The following proposition is a direct consequence of Lemma 4.1. Indeed, the SPARQL
equivalences in E1 precisely correspond to the set of identities shown as id1–id8 in
Figure 2. These identities define algebraic structures better known as semirings.

PROPOSITION 4.2. If the positive fragment of the SPARQL K-annotated algebra is
required to satisfy the equivalences in E1, then (K,⊕,⊗, 0, 1) must be a semiring. Fur-
thermore, if (K,⊕,⊗, 0, 1) is a semiring, then the positive SPARQL algebra operators
preserve the finiteness of support. In particular, for any positive SPARQL graph pattern
P and K-annotated RDF graph Ga, [[P]]Ga has a finite support.

PROOF. Lemma 4.1 implies that the equivalences in E1 correspond to the semiring
identities id1–id8 shown in Figure 2. We next show that the positive algebra operators
preserve the finiteness of support. That is, if �, �1, and �2 are K-annotated mapping
sets, then σR(�), πS(�), �1 ∪ �2, and �1 � �2 are K-annotated mapping sets as well
(i.e., they have finite support). For σR(�), it is readily verified that σR(�) is contained
in the support of �. Indeed, this follows from the fact that k ⊗ 1 = k and k ⊗ 0 = 0
hold in semirings. Let μ and ν be mappings in M such that dom (ν) ⊆ S ⊆ V . Then,
(πS(�))(ν) �= 0 iff there exists a μ′ ∈ M such that μ = ν ∪ μ′, dom (μ′) ∩ S = ∅ and,
furthermore, �(μ) �= 0. Indeed, suppose that for all such mapping μ ∈ M, �(μ) = 0,
then (πS(�))(ν) = 0 ⊕ · · · ⊕ 0 = 0 since 0 ⊕ 0 = 0 holds in semirings. Hence, since �
has finite support so does πS(�). Similarly, (�1 ∪ �2)(μ) �= 0 if and only if �1(μ) �= 0
or �2(μ) �= 0. Finally, (�1 � �2)(μ) �= 0 if and only if there exist μ1, μ2 ∈ M such
that μ = μ1 ∪ μ2 and �1(μ1) �= 0 and �2(μ2) �= 0. Indeed, this follows again from the
fact that k ⊗ 0 = 0 holds in semirings. Hence, since �1 and �2 have finite support
so do �1 ∪ �2 and �1 � �2. To show that [[P]]Ga has finite support for any positive
SPARQL graph pattern P and K-annotated RDF graph Ga, it suffices to observe that
(i) the support of [[t]]Ga for a triple pattern t is finite since Ga consists of finitely many
triples, and (ii) [[P]]Ga is defined inductively in terms of the positive algebra operators
and triple patterns. Given that these operators preserve the finiteness of support, we
may conclude that [[P]]Ga has finite support, as desired.
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4.3. SPARQL Equivalences Involving Difference

We next turn our attention to the full SPARQL fragment including the optional oper-
ator. More specifically, in view of the relationship between � and \, we focus on the \
operator.

The examples given in Section 2 suggest that the � operator corresponding to \ is to
satisfy

k1 � k2 =
{

k1 if k2 = 0; and
0 otherwise.

(†)

Unfortunately, if we want to stay within the setting of algebraic structures defined by
identities (i.e., equational varieties), then � cannot be defined as in (†).

PROPOSITION 4.3. The class of algebraic structures of the form (K,⊕,⊗,�, 0, 1) that
satisfy that for any k1, k2 ∈ K, k1 � k2 = k1 in case k2 = 0, and k1 � k2 = 0 otherwise, is
not an equational variety.

PROOF. This is an immediate consequence of Birkhoff ’s Theorem (see, e.g., The-
orem 11.9 in Burris and Sankappanavar [1981]), which says that classes of alge-
braic structures defined by identities (i.e., equational varieties) are precisely those
which are closed under taking homomorphisms, subalgebras, and products. Suppose,
for the sake of contradiction, that identities exist that define the desired �, and denote
by V the corresponding variety. Let (K,⊕K,⊗K,�K, 0K, 1K) and (L,⊕L,⊗L,�L, 0L, 1L)
be two algebraic structures in V. Consider the canonical �K,L operator on the prod-
uct K × L defined as (k1, 
1) �K,L (k2, 
2) = (k1 �K k2, 
1 �L 
2). The operations
⊕K,L, ⊗K,L, and constants 0K,L and 1K,L are defined similarly. Then, by assump-
tion, V is a variety, and Birkhoff ’s Theorem implies that V must be closed under
taking products. Hence, (K × L,⊕K,L,⊗K,L,�K,L, 0K,L, 1K,L) must be a structure in
V and thus (1K, 1L) �K,L (0K, 1L) should be equal to 0K,L. However, observe that
(1K, 1L) �K,L (0K, 1L) = (1K, 0L) �= (0K, 0L) = 0K,L, by the definition of �K,L. This shows
that V is not closed under taking products, a contradiction. Hence, no set of identities
exists that defines the desired �.

In view of Proposition 4.3, we cannot use SPARQL equivalences to precisely capture
the intended semantics of � as given by (†). Not all is lost, however. In the following, we
define an equational variety of so-called spm-semirings (K,⊕,⊗,�, 0, 1) that (i) extends
the class of semirings and (ii) encompasses spm-semirings in which � satisfies (†). Note
that Proposition 4.3 implies that there must be spm-semirings for which � does not
satisfy (†). However, we will see later that (†) holds in most practical cases.

To define spm-semirings, we leverage Lemma 4.1. That is, we gain inspiration from
known SPARQL algebra equivalences that involve \ and then translate those into iden-
tities involving �. More specifically, we consider the following SPARQL equivalences
that involve \ and that hold under the set and bag semantics [Schmidt et al. 2010]. For
any K-annotated mapping sets �1, �2, and �3:

E2 =
{

�1 \ �1 ≡ ∅ �1 \ (�2 ∪ �3) ≡ (�1 \ �2) \ �3
�1 � (�2 \ �3) ≡ (�1 � �2) \ �3 (cond)

}
.

The last equivalence is not given in Schmidt et al. [2010] and does not hold in general.
It does hold, however, under mild conditions (denoted by cond) on the mapping sets
involved. For instance, the equivalence holds when cond requires that any mapping in
�3 that is compatible with a mapping in �2 is also compatible with a mapping in �1. It
is easy to see that Lemma 4.1 still applies to such equivalences since the proof of that
lemma uses mapping sets that satisfy this condition.
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We further identify the following equivalence: For any K-annotated mapping set �1
and �2, we have that

E3 = {(�1 \ (�1 \ �2)) ∪ (�1 \ �2) ≡ �1}.
This equivalence also holds in all settings we have considered so far. By imposing
E1, E2, and E3 on the SPARQL K-annotated algebra, we obtain a generalization of
Proposition 4.2 that accommodates for the difference (\) and optional operator ( �).
The proof again relies on Lemma 4.1.

PROPOSITION 4.4. If the SPARQL K-annotated algebra is required to satisfy the equiv-
alences in E1, E2, and E3, then (K,⊕,⊗,�, 0, 1) is an algebraic structure satisfying the
identities shown in Figure 2. Furthermore, in this case, the SPARQL algebra operators
preserve the finiteness of support. In particular, for any SPARQL graph pattern P and
K-annotated RDF graph Ga, [[P]]Ga has a finite support.

PROOF. This is verified in precisely the same way as in the proof of Proposition 4.2
by using E1, E2, and E3 instead of E1 and by using id1–id12 as shown in Figure 2 rather
than only id1–id8. To show that the algebra operators preserve the finiteness of support,
it suffices to show that if �1 and �2 are K-annotated mapping sets, then so is �1\�2.
Indeed, we already established that the positive operators preserve the finiteness of
support in Proposition 4.2, and �1 � �2 is defined in terms of ∪, �, and \. Let μ be
a mapping in M. Observe that (�1 \ �2)(μ) can be different from 0 only if �1(μ) �= 0.
Indeed, this follows from the fact that 0 � k = 0 holds in spm-semirings:

0 � k = (0 ⊗ 1) � k (by id1)

= 0 ⊗ (1 � k) (by id11)

= 0. (by id2)

Finally, in precisely the same way as in Proposition 4.2, one can verify that [[P]]Ga has
a finite support for any SPARQL expression P and K-annotated RDF graph Ga.

Definition 4.5. An spm-semiring is an algebraic structure (K,⊕,⊗,�, 0, 1) that
satisfies the identities id1–id12 given in Figure 2. Here, “spm” stands for “SPARQL
minus.” The class of spm-semirings thus forms an equational variety.

Proposition 4.4 thus implies that spm-semirings are a good candidate annota-
tion structure when considering SPARQL on annotated RDF. It can be readily
verified that (N,+,×,−bag, 0, 1), ({true, false},∨,∧,−trust, false, true), and ([0, 1], max,
min,−fuzzy, 0, 1) are spm-semirings. We will see more examples of spm-semirings in
the next section.

4.4. Minimality

We next address the minimality of the set of identities that define spm-semirings. Let
I be a set of identities and K an algebraic structure. We say that K satisfies I, denoted
by K |= I, if K satisfies all identities in I. Let e be an identity. Then e is implied by
I, denoted by I |= e, if for all structures K such that K |= I we have K |= e. Two sets
of identities I1 and I2 are said to be equivalent if all identities in I2 are implied by I1
and vice versa. A set I of identities is said to be minimal if for all e ∈ I, (I \ e) �|= e. Let
A be the set of spm-semiring identities shown in Figure 2.

PROPOSITION 4.6. The sets of identities A and A \ {id2, id3} are equivalent and, further-
more, A \ {id2, id3} is minimal. In other words, A \ {id2, id3} is a minimal set of identities
defining the class of spm-semirings.
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PROOF. Let A′ = A \ {id2, id3}. We first show minimality. It suffices to verify that for
each identity id in A′ there exists a structure that satisfies all identities in A′ \ {id} but
violates id. The list of these structures is deferred to the appendix. For the equivalence
of A and A′, it suffices to verify A′ |= {id2, id3} since A′ ⊂ A. We first show that A′
implies that for any k1 ∈ K, 0 ⊕ (k1 � 0) = k1.

k1 = (
k1 � (k1 � k2)

)⊕ (k1 � k2) (by id12)

= (
k1 � (k1 � k1)

)⊕ (k1 � k1) (for k2 = k1)

= (k1 � 0) ⊕ 0 (by id9)
= 0 ⊕ (k1 � 0). (by id4)

In particular, 0 = 0 ⊕ (0 � 0), which in turn is equal to 0 ⊕ 0 by id9. From this, it follows
that A′ |= id3:

k1 = 0 ⊕ (k1 � 0) (by the above identity)
= (0 ⊕ 0) ⊕ (k1 � 0) (by 0 = 0 ⊕ 0)
= 0 ⊕ (0 ⊕ (k1 � 0)) (by id6)
= 0 ⊕ k1 (by the above identity)
= k1 ⊕ 0. (by id4)

We can thus safely use id3 to show that A′ |= id2:

k1 ⊗ 0 = k1 ⊗ (k1 � k1) (by id9)
= k1 ⊗ (k1 � (k1 ⊗ 1)) (by id1)
= k1 ⊗ (k1 � (k1 ⊗ (1 ⊕ 0))) (by id2)
= k1 ⊗ (k1 � ((k1 ⊗ 1) ⊕ (k1 ⊗ 0))) (by id8)
= k1 ⊗ (k1 � (k1 ⊕ (k1 ⊗ 0))) (by id1)
= k1 ⊗ ((k1 � k1) � (k1 ⊗ 0)) (by id10)
= k1 ⊗ (0 � (k1 ⊗ 0)) (by id9)
= (k1 ⊗ 0) � (k1 ⊗ 0) (by id11)
= 0. (by id9)

In other words, A′ |= {id2, id3}.
5. CHARACTERIZATION OF SPM-SEMIRINGS

With the definition of spm-semirings at hand, an obvious question is how to construct
spm-semirings from algebraic objects that we already know. In this section, we char-
acterize the class of spm-semirings in terms of a combination of semirings and boolean
algebras, two standard algebraic structures (Theorem 5.3). Not only does this charac-
terization allow us to show that certain structures are spm-semirings, it also opens the
way for identifying a universal object in the class of spm-semirings, as will be shown
in the next section.

5.1. Seba-Structures: Semirings with an Embedded Boolean Algebra

Recall from Section 4 that we would have preferred � to satisfy (†); that is, for any
k1, k2 ∈ K, k1 � k2 = 0 if k2 �= 0, and k1 � k2 = k1 otherwise. Or, in other words, the value
of k1 � k2 is determined by k1 and whether or not k2 is equal to 0.

To get some inspiration on how to obtain an operator � that satisfies (†) by combining
semirings with boolean algebras, we consider a semiring K and the two-element boolean
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algebra B2 = ({⊥,�},∨,∧, ¯,⊥,�). Observe the following: Assume that we have some
way of mapping elements k in K to elements in B2 such that k is mapped to � if k is
different from 0 and to ⊥ if k is equal to 0. Let us denote such mapping from K to B2 by
d. Furthermore, assume that we can embed the boolean values � and ⊥ to 1 and 0 in K,
respectively. Denote such an embedding from B2 to K by ı. Define k1 �k2 := k1 ⊗ ı(d(k2)),
where d(k2) is the complement of d(k2). Then clearly, k1 � k2 satisfies (†).

We next identify some properties that these mappings d and ı should have. Clearly,
d(1) = � and d(0) = ⊥ must hold for d. Similarly, the mapping ı must satisfy ı(⊥) = 0
and ı(�) = 1. These conditions pose some additional restrictions on how the operations
in K interact with the operations in B2. Indeed, one would be tempted to require
that for elements k1, k2 ∈ K and b1, b2 ∈ B2 we have that d(k1 ⊕ k2) = d(k1) ∨ d(k2),
d(k1 ⊗ k2) = d(k1) ∧ d(k2), ı(b1 ∨ b2) = ı(b1) ⊕ ı(b2), and ı(b1 ∧ b2) = ı(b1) ⊗ ı(b2); that is,
d and ı are proper embeddings of K in B2 and vice versa, respectively. Some of these
requirements, however, are too restrictive and limit the kind of semirings that we can
consider.

For example, ı(b1 ∨ b2) = ı(b1) ⊕ ı(b2) implies that 1 = ı(�) = ı(� ∨ �) = ı(�) ⊕ ı(�) =
1 ⊕ 1, which is a property that does not hold for general semirings K. Instead, we want
that ı(� ∨ �) = ı(�), ı(� ∨ ⊥) = ı(�) and ı(⊥ ∨ ⊥) = ı(⊥). This can be achieved, for
instance, by defining ı(b1 ∨ b2) = ı(b1) ⊕ (ı(b1) ⊗ ı(b2)) for elements b1, b2 ∈ B2. Indeed,
observe that ı(� ∨ �) = ı(�) ⊕ (ı(⊥) ⊗ ı(�)) = ı(�), as desired.

As another example, consider a semiring K with zero divisors; that is, there exist
k1, k2 ∈ K such that k1 �= 0, k2 �= 0 but k1 ⊗ k2 = 0. Then, ⊥ = d(k1 ⊗ k2) = d(k1) ∧ d(k2) =
� ∧ � = � does not hold. Nevertheless, we know that ⊥ = d(k ⊗ 0) = d(k) ∧ ⊥ and,
similarly, d(k) = d(k ⊗ 1) = d(k) ∧ � for any k ∈ K. We therefore only require that
d(k ⊗ ı(b)) = d(k) ∧ b for k ∈ K and b ∈ B2.

As we show later, d(k1 ⊕ k2) = d(k1) ∨ d(k2), d(k ⊗ ı(b)) = d(k) ∧ b, ı(b1 ∨ b2) = ı(b1) ⊕
(ı(b1) ⊗ ı(b2)), and ı(b1 ∧ b2) = ı(b1) ⊗ ı(b2) allow us to define k1 � k2 := k1 ⊗ ı(d(k2)) in
general, provided that we add one more condition involving complementation in B2. In
particular, since we want that k � k = 0, we assume that k ⊗ ı(d(k)) = 0 holds for d
and ı.

In the following definitions, we generalize these observations by means of a so-called
seba-structure that consists of a semiring K together with an embedded boolean algebra
B, linked together with mappings d : K → B and ı : B → K.

Definition 5.1. A seba-structure is of the form (K, B, d, ı) where K is a commutative
semiring (K,⊕,⊗, 0, 1), B a boolean algebra (B,∨,∧, ,⊥,�), and d : K → B and
ı : B → K are mappings such that

sb1: d(0) = ⊥ and d(1) = � sb2: ı(⊥) = 0 and ı(�) = 1
sb3: d(k1 ⊕ k2) = d(k1) ∨ d(k2) sb4: ı(b1 ∨ b2) = ı(b1) ⊕ (

ı(b̄1) ⊗ ı(b2)
)

sb5 : d(k ⊗ ı(b)) = d(k) ∧ b sb6: ı(b1 ∧ b2) = ı(b1) ⊗ ı(b2)
sb7: k ⊗ ı(d(k)) = 0.

Given this, we next show how � can be defined in terms of a seba-structure following
our earlier observation.

Definition 5.2. We say that an algebraic structure (L,⊕,⊗,�, 0, 1) is derived from
a seba-structure (K, B, d, ı) if (L,⊕,⊗, 0, 1) and (K,⊕,⊗, 0, 1) coincide and for any
k, 
 ∈ L, k � 
 = k ⊗ ı(d(
)).

The main result of this section is that spm-semirings and seba-structures are closely
related.
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Table II. Spm-Semirings and Their Applications

Spm-semiring Application
({true, false}, ∨,∧, −trust, false, true) Trust/Set Semantics

(N∞, min, +,−rtrust, ∞, 0) Ranked Trust
(C, min, max, −acc, 0, P) Access control
(P(E), ∪,∩, −prob, ∅, E) Event Tables

(N,+, ×, −bag, 0, 1) Bags
([0, 1], max, min, −fuzzy, 0, 1) Fuzzy

THEOREM 5.3. Every spm-semiring is derived from some seba-structure, and, vice
versa, every structure derived from a seba-structure is an spm-semiring.

The proof of this theorem is deferred to the appendix.

5.2. Seba-Structures and Derived Spm-Semirings: Examples

We next provide some examples of seba-structures and their derived spm-semirings.
Table II summarizes some of the spm-semirings and their application domains.

Example 5.4 (Trust, Set). Consider the relational trust semiring T =
({true, false},∨,∧, false, true) [Green et al. 2007]. The semiring T is readily extended to
a boolean algebra Tb by incorporating complementation . Consider Tb together with
the mappings d : T → Tb and ı : Tb → T , both of which are the identity mappings. It is
readily verified that (T , Tb, d, ı) is a seba-structure. The derived spm-semiring consists
of T together with the additional operator b1 �b2 := b1 ∧b2. Note that � coincides with
−trust (cf. Example 2.3).

Example 5.5 (Boolean Algebras). The previous example generalizes to any semiring
K that can be extended to a boolean algebra Kb. As in the previous example, (K, Kb, d, ı)
with d and ı, the identity mapping then forms a seba-structure. The derived spm-
semiring in this case is given by K extended with k1 � k2 := k1 ∧ k2. In other words,
� coincides with the standard notion of difference in boolean algebras. For example,
consider the relational probability semiring [Green et al. 2007] (P(E),∪,∩,∅, E) for
a set E of events. Clearly, this semiring can be equipped with complementation and
is thus part of a boolean algebra. As a consequence, the � operator in the derived
spm-semiring is given by E1 ∩ Ec

2, where Ec denotes the complement of E.

The previous example shows that the � operator in spm-semirings does not always
satisfy k1 � k2 = k1 in case k2 = 0 and k1 � k2 = 0 otherwise. Indeed, consider the two
subsets A = {a, b} and B = {c, d} of X = {a, b, c, d}. Then, A∩ Bc = A despite the fact
that B �= ∅. Here, complementation is taken relative to X. In view of Proposition 4.3,
this is not unexpected, however. We will see later that the probability semiring can
be extended to an spm-semiring in another way such that the operator � behaves as
intended.

Example 5.6 (Bags, Fuzzy). Let B2 = ({0, 1},∨,∧, ¯, 0, 1) be the two-element boolean
algebra and let (N,+,×, 0, 1) be the semiring of natural numbers. Define d : N → {0, 1}
as d(x) = 0 if x = 0 and d(x) = 1 if x �= 0. Let ı : {0, 1} → N be the identity mapping.
Then, clearly, d(0) = 0, d(1) = 1, ı(0) = 0 and ı(1) = 1. Furthermore, it is readily verified
that for any x, y ∈ N and b, b1, b2 ∈ {0, 1}, d(x + y) = d(x) ∨ d(y), d(x × ı(b)) = d(x) ∧ b,
ı(b1 ∨ b2) = ı(b1) + (ı(b1) × ı(b2)) = b1 + (b1 × b2), and ı(b1 ∧ b2) = ı(b1) × ı(b2) = b1 × b2.
We also have that x × ı(d(x)) = 0. Hence, (N, B2, d, ı) is a seba-structure. We can thus
extend N with � derived from (N, B2, d, ı) by letting x � y = x × d(y), for any x, y ∈ N.
That is, x� y = 0 if y �= 0 and x� y = x otherwise. Note that � coincides with −bag when
SPARQL is evaluated on RDF under—the default—bag semantics (cf. Example 2.1).
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Along the same lines, the fuzzy semiring F = ([0, 1], max, min, 0, 1) can be extended
with � derived from (F, B2, d, ı) with d and ı, as above. Note that, in this case, p � q =
min{p, d(q)} is equal to 0 if q �= 0, and is p otherwise; that is, � coincides with −fuzzy,
as desired (cf. Example 2.4).

Example 5.7 (Zero-Sum Free Semirings). The previous example can be generalized
to arbitrary zero-sum free semirings. Recall that a semiring K is zero-sum free if for
any k, 
 ∈ K we have that k ⊕ 
 = 0 implies that both k and 
 are 0. It is readily
verified that for such K, (K, B2, d, ı) is a seba-structure, where d(k) = 0 if k = 0 and
d(k) = 1 if k �= 0, and ı(0) = 0K and ı(1) = 1K. The � operator in the derived structure
is consequently defined as k � 
 := k ⊗ ı(d(
)).

The restriction to zero-sum free semirings in the previous example is necessary.
Indeed, let (K, B, d, ı) be a seba-structure and assume that k ⊕ 
 = 0. Then also
d(k ⊕ 
) = ⊥ = d(k)∨d(
) and hence both d(k) = ⊥ and d(
) = ⊥. We claim that d(k) = ⊥
if and only if k = 0. Suppose, for the sake of contradiction, that d(k) = ⊥ for k �= 0.
Then, from 0 �= k = k ⊗ ı(d(k)) = 0 we obtain a contradiction. Similarly, for d(
) = ⊥.

Example 5.8 (Probability). Let us reconsider the probability semiring (P(E),∪,
∩,∅, E). Clearly, this semiring is zero-sum free, and the previous example tells us that
a seba-structure can be obtained as follows: For any event Ei ⊆ E, d(Ei) = 1 if Ei �= ∅
and d(Ei) = 0 otherwise, and ı(0) = ∅ and ı(1) = E. In other words, we map events in
P(E) to the two-element boolean algebra B2 such that the empty event is mapped to 0
and all non-empty events are mapped to 1. As a consequence, the operator Ei � Ej on
P(E) in the derived spm-semiring is defined by Ei ∩ ı(d(Ej)) and results in Ei when Ej is
empty and in ∅ otherwise. To relate the semantics of Ei � Ej with the standard possible
world semantics of probabilistic RDF and the certain answer interpretation of SPARQL
(see, e.g., Kementsietsidis et al. [2014]) observe the following. If the probability p(Ej)
of Ej is zero, then there is no possible world in which Ej appears, and thus Ei should
be returned in every possible world. The certain answers thus would be Ei, consistent
with Ei � Ej . In contrast, if p(Ej) > 0, then there is at least one world in which Ej is
returned, and, on this world, an empty result should be returned. As a consequence,
the certain answer would be empty as well, consistent with Ei � Ej . We also denote �
by −prob.

Example 5.9 (Ranked Trust, Access Policy). Consider the tropical semiring (N∞, min,
+,∞, 0) [Green et al. 2007], where N

∞ is short for N ∪ {∞}. This semiring has been
used to model ranked trust for relational queries [Karvounarakis et al. 2010] and can
be regarded as a generalization of the boolean trust semiring. In the case of RDF
data, triples that are completely untrusted and should be disregarded have ∞ as
their rank, whereas completely trusted triples have rank 0. Clearly, this is a zero-
sum-free semiring, and, similarly to the previous examples, one can extend it to an
spm-semiring such that m −rtrust n = ∞ in case n �= ∞, and m −rtrust n = m otherwise.
Along the same lines, one can extend the semiring (C, min, max, 0, P) [Foster et al.
2008], with C = {P(ublic), C(onfidential), S(ecret), T (op Secret), 0}, used in the context
of confidentiality policies, to an spm-semiring. Here, the order between the levels of
access is specified as P < C < S < T < 0, and the operators min and max are
defined relative to this order. It is readily verified that, in the resulting spm-semiring,
v −accw = v if w is 0 and can thus be ignored, and v −accw = 0 otherwise.

6. UNIVERSAL SPM-SEMIRING

The importance of the universal “most general” object in a class of algebraic structures
has already been emphasized in the relational context [Green et al. 2007]. Indeed, in
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that setting, semirings are the appropriate annotation structure and the semiring of
polynomials (N[X],+, ·, 0, 1) is known to be universal. It has been shown that the evalu-
ation of positive relational algebra expressions on semiring-annotated relations factors
through the evaluation on relations that take their annotations from (N[X],+, ·, 0, 1)
[Green et al. 2007]. This implies, among other things, that it suffices to extend positive
relational algebra evaluation algorithms to relations that are annotated with values
in the universal object from which the query results on specific annotation structures
(semirings) can then easily be obtained. In this section, we first identify a universal
object in the class of seba-structures for which we then show that the derived structure
is a universal spm-semiring. In Section 7, we establish a factorization property for
SPARQL evaluation by leveraging this universal spm-semiring.

6.1. Universal Seba-Structure

We first define the notion of universal seba-structure. Let (K1,⊕1,⊗1, 01, 11) and
(K2,⊕2,⊗2, 02, 12) be two semirings; (B1,∨1,∧1,

1,⊥1,�1) and (B2,∨2,∧2,
2,⊥2,�2)

be two boolean algebras; and d1 : K1 → B1, d2 : K2 → B2, ı1 : B1 → K1 and ı2 : B2 → K2
be mappings such that (K1, B1, d1, ı1) and (K2, B2, d2, ı2) are seba-structures. We say
that a mapping (h, β) : (K1, B1) → (K2, B2) is a seba-homomorphism if the following
conditions are satisfied:

—The mapping h is a semiring homomorphism from K1 to K2. That is, for any k, k′ ∈ K1,
h(k ⊕1 k′) = h(k) ⊕2 h(k′), and h(k ⊗1 k′) = h(k) ⊗2 h(k′). Furthermore, h(01) = 02 and
h(11) = 12.

—The mapping β is a boolean algebra homomorphism from B1 to B2. That is, for any

b, b′ ∈ B1, β(b∨1 b′) = β(b)∨2 β(b′), β(b∧1 b′) = β(b)∧2 β(b′), β(b)
2 = β(b

1
), β(⊥1) = ⊥2,

β(�1) = �2; and finally,
—β(d1(k)) = d2(h(k)) and h(ı1(b)) = ı2(β(b)).

Let X = {x1, . . . , xn} be a finite set of variables. A semiring (K,⊕,⊗, 0, 1) is said to be
finitely generated by X if it is the smallest semiring such that X ⊆ K. A seba-structure
(K, B, d, ı) is finitely generated by X if its semiring is finitely generated by X. We say
that (K, B, d, ı) is freely generated by X if it is generated by X, and, in addition, for
every seba-structure (K1, B1, d1, ı1) and any valuation ν : X → K1, we can uniquely
extend ν to a seba-homomorphism (h, β) from (K, B, d, ı) to (K1, B1, d1, ı1) such that h
coincides with ν on X. In this case, we call (K, B, d, ı) a universal object in the class of
seba-structures relative to the generator set X. It can be shown that such a universal
object is unique up to isomorphism (using seba-isomorphisms). We refer to Burris and
Sankappanavar [1981] for the general theory of universal objects.

A few comments are in order here:
(1) It may seem surprising that no explicit set of generators for the boolean algebra B
is provided. The reason is that the generators for B are determined by X as well. To see
this, observe that in a seba-structure (K, B, d, ı), it is always the case that B = d(K).
Indeed, for any element b ∈ B, ı(b) ∈ K and d(ı(b)) = d(1 ⊗ ı(b)) = d(1) ∧ b = � ∧ b = b.
If K is finitely generated by X, then we have that X ⊆ K and, consequently, K contains
all terms built up from elements in X, 0, 1 and using the semiring operations ⊕ and ⊗.
Clearly, Bmust contain d(0) and d(1). Furthermore, sb3 tells us that d is compatible with
⊕, and thus elements in B are determined by d(μ), where μ belongs to the set mon(X)
of monomials over X. For example, if X = {x1, x2} then mon(X) = {x⊗m

1 ⊗ x⊗n
2 | m, n � 0}

where x⊗m
1 = x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸

m-times

, similarly for x⊗n
2 . For ease of notation, we often use the

empty notation instead of ⊗ and simply write xm
1 , xn

2 , and xm
1 xn

2 instead of x⊗m
1 , x⊗n

2 and
x⊗m

1 ⊗ x⊗n
2 , respectively. For instance, for X = {x1, x2}, we write mon(X) = {1 = x0

1 x0
2 ,
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x1, x2, x2
1 , x1x2, x2

2 , x3
1 , . . .}. We thus have that B can be regarded as the smallest boolean

algebra that contains d(0), d(1), and d(μ) for μ ∈ mon(X). The generators of B are thus
implicitly determined by 0, 1, X, and the mapping d : K → B.
(2) For a mapping (h, β) : (K1, B1) → (K2, B2) to be a seba-homomorphism, it
suffices that h is a semiring homomorphism, β is compatible with complementa-
tion, and β(d1(k)) = d2(h(k)) and h(ı1(b)) = ı2(β(b)) hold. To see this, observe that

β(b ∨1 b′) = β(b
1 ∧1 b′1

1

) = β(b
1 ∧1 b′1)

2

. Furthermore, β(b
1 ∧1 b′1) = β(d1(ı1(b

1
) ⊗1

ı1(b′1))) = d2(h(ı1(b
1
)) ⊗2 h(ı2(b′1))), which in turn is equal to d2(ı2(β(b)

2
) ⊗2 ı2(β(b′)

2
)) =

β(b)
2 ∧2 β(b′)

2
. Hence, β(b ∨1 b′) = β(b) ∨2 β(b′). In a similar way, one can verify that

β(b ∧1 b′) = β(b) ∧2 β(b′). Finally, β(�1) = β(d1(11)) = d2(h(11)) = d2(12) = �2 and
similarly, β(⊥1) = ⊥2.

In the following, we construct a universal seba-structure by extending polynomials
with boolean variables. More specifically, we first define a semiring of so-called booly-
nomials. Second, we show that this semiring has a boolean algebra embedded in it.
The elements of this algebra correspond to polynomials consisting of boolean variables
only. Finally, we define the mappings d and ı between the semiring and boolean algebra
and show that, all combined, these form a seba-structure.

6.2. Semiring of Boolynomials

Let X = {x1, . . . , xn} be a set of variables and mon(X) be the set of monomials over X.
We define two other sets of variables, denoted by BX and B̄X, that are disjoint from X,
as follows: BX = {bμ | μ ∈ mon(X)} and B̄X = {b̄μ | μ ∈ mon(X)}. To simplify notation, we
denote the set of variables X ∪ BX ∪ B̄X by XB.

Let N[XB] be the set of polynomials with coefficients in N over the variables XB. The
semiring of boolynomials is then defined as follows:

First, we define a congruence relation θ on the semiring of polynomials
(N[XB],+, ·, 0, 1) indicating when two polynomials are considered to be equivalent.
Recall that θ is a congruence relation on N[XB] if it is an equivalence relation satis-
fying the additional conditions that if (p[XB], q[XB]) ∈ θ and (p′[XB], q′[XB]) ∈ θ, then
(p[XB] + p′[XB], q[XB] + q′[XB]) ∈ θ and (p[XB] · p′[XB], q[XB] · q′[XB]) ∈ θ .

Second, we consider the quotient semiring of N[XB] with respect to θ . This semiring
has as elements the equivalence classes [p[XB]] consisting of all polynomials that are
congruent to p[XB], operations [p[XB]] + [q[XB]] = [p[XB] + q[XB]], [p[XB]] · [q[XB]] =
[p[XB] · q[XB]], and constants [0] and [1].

Definition 6.1. The semiring of boolynomials is the quotient semiring of
(N[XB],+, ·, 0, 1) with respect to θ . We denote this semiring by (Nθ [XB],+, ·, 0, 1)3.

It remains to define the congruence relation θ . Intuitively, this relation is to capture
that the variables in BX and B̄X represent booleans such that bμ indicates that the
monomial μ is considered being evaluated to a non-zero element, whereas b̄μ indicates
the opposite. We define θ as the smallest congruence relation on N[XB] such that it
contains the following pairs (equivalences). For all monomials μ ∈ mon(X):

(i) (bμ · b̄μ, 0) ∈ θ and (bμ + b̄μ, 1) ∈ θ , indicating that bμ and b̄μ are complements.
(ii) (bμ+bμ, bμ) ∈ θ and (b̄μ+b̄μ, b̄μ) ∈ θ , to indicate that “+” is idempotent for variables

in BX and B̄X.
(iii) (b̄μ ·μ, 0) ∈ θ indicating that the presence of b̄μ implies that μ should be evaluated

to zero.

3We abuse notation and use +, ·, 0, and 1 for the operations and constants in Nθ [XB], respectively.
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(iv) (bμ · bν, bμ) ∈ θ whenever μ = ν · ν ′ for some monomial ν ′, indicating that whenever
μ evaluates to non-zero, then any more general monomial ν evaluates to non-zero
as well. Here, ν is more general than μ if μ = ν · ν ′ for some monomial ν ′.

Note that (i) and (ii) imply that [bμ] = [bμ] · ([bμ] + [b̄μ]) = [bμ] · [bμ] and [b̄μ] = [b̄μ] ·
([bμ]+[b̄μ]) = [b̄μ]·[b̄μ]. In other words, also “·” is idempotent for variables in BX and B̄X.
Furthermore, (i) and (iii) imply that [μ] = ([bμ]+[b̄μ])·[μ] = [bμ]·[μ]+[b̄μ]·[μ] = [bμ]·[μ].
That is, the presence of μ implies the presence of bμ. In addition, from (i) and (iv) it
follows that [b̄ν] = ([bμ] + [b̄μ]) · [b̄ν] = [bμ] · [b̄ν] + [b̄μ] · [b̄ν] = [bμ] · [bν] · [b̄ν] + [b̄μ] · [b̄ν] =
[b̄μ] · [b̄ν] whenever μ = ν · ν ′. That is, whenever ν evaluates to zero then so does
every more specific monomial μ. Here, μ is more specific than ν if μ = ν · ν ′ for some
monomial ν ′. Also observe that [1] = [b1] and [0] = [b̄1] where b1 corresponds to the
constant monomial 1 = x0

1 ⊗ · · · ⊗ x0
n.

To gain some insight in the semiring of boolynomials, we next provide a procedure
for deciding whether [p[XB]] = [q[XB]] for p[XB] and q[XB] in N[XB]. In a nutshell, with
each polynomial p[XB] in N[XB], we first associate a special representative pe[XB] in
its equivalence class [p[XB]], called the expanded version of p[XB]. Then, we show that
[p[XB]] = [q[XB]] if and only if pe[XB] is “almost the same” as qe[XB]. We make this
more precise later. The expanded versions are also shown to be useful for identifying
representatives in the sum and product of equivalence classes.

6.2.1. The Expanded Version of a Polynomial. Intuitively, the expanded version of a poly-
nomial p[XB] corresponds to an equivalent representation of p[XB] in terms of a set of
basic, elementary polynomials in N[XB]. To define these basic elements, we first intro-
duce some notation. We denote by PN the set of all pairs (P, N) where P = {μ1, . . . , μk}
and N = {ν1, . . . , ν
} are two multisets with elements from mon(X). Furthermore, given
(P, N) ∈ PN we denote by bP,N the expression

bμ1 · bμ2 · · · bμk · b̄ν1 · b̄ν2 · · · b̄ν

.

Example 6.2. Let X = {x1, x2} and consider P = {x2
1 , x2} and N = {x1, x2, x1x3

2}. Then,
we have that bP,N = bx2

1
bx2 b̄x1 b̄x2 b̄x1x3

2
. Similarly, for P ′ = {x2

1 , x2, x2} and N′ = {x1, x1x3
2},

the corresponding polynomial is given by bP ′,N′ = bx2
1
b2

x2
b̄x1 b̄x1x3

2
. As another example,

consider P ′′ = {x2
1 , x2} and N′′ = {x1, x1x3

2}. In this case, bP ′′,N′′ = bx2
1
bx2 b̄x1 b̄x1x3

2
. Finally,

for P ′′′ = {x1, x2
1 , x2} and N′′′ = {x1x3

2} we have that bP ′′′,N′′′ = bx1bx2
1
bx2 b̄x1x3

2
.

When considering equivalence classes [bP,N], we recall that “·” is idempotent for
variables in BX and B̄X. In other words, [bP,N] = [bs(P),s(N)] where s(P) and s(N) are
the “set versions” of the multisets P and N, obtained by ignoring multiplicities of the
monomials.

Example 6.3. Observe that P ′ = {x2
1 , x2, x2} is the only proper multiset in the previous

example. Clearly, [bP ′,N′ ] = [bx2
1
bx2 b̄x1 b̄x1x3

2
] = [bs(P ′),s(N′)].

Furthermore, since for any monomial μ, [bμ · b̄μ] = [0], we may conclude that [bP,N] =
[0] whenever P ∩ N �= ∅.

Example 6.4. Since P ∩ N = {x2} in Example 6.2, we have that [bP,N] = [0].

This motivates the following definition.

Definition 6.5. Let S be a set of monomials. We say that (P, N) ∈ PN represents
an S-complete monomial bP,N if the following conditions are satisfied: (a) P and N are
sets, (b) S = P ∪ N, and (c) P ∩ N = ∅.
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Intuitively, when (P, N) ∈ PN represents an S-complete monomial, then every mono-
mial μ ∈ S occurs once in bP,N either as bμ or b̄μ.

Example 6.6. The pairs (P ′′, N′′) and (P ′′′, N′′′) in Example 6.2 represent the S-
complete monomials bP ′′,N′′ = bx2

1
bx2 b̄x1 b̄x1x3

2
and bP ′′′,N′′′ = bx1bx2

1
bx2 b̄x1x3

2
, respectively, for

S = {x1, x2
1 , x2, x1x3

2}.
Finally, we denote by C(S) the set of pairs (P, N) that represent non-zero S-complete

monomials (i.e., S-complete monomials for which [bP,N] �= [0]). Note that it follows
from rules (i) and (iv) that (P, N) ∈ C(S) if and only if (P, N) represents an S-complete
monomial, and, moreover, for every μ ∈ P there does not exist a ν ∈ N such that
μ = ν · ν ′ for some monomial ν ′.

Example 6.7. Continuing with the previous example, we have that (P ′′, N′′) �∈ C(S).
Indeed, note that x2

1 ∈ P ′′, x1 ∈ N′′ and x2
1 = x1 ·x1. From this, it follows that [bx2

1
b̄x1 ] = [0]

and thus [bP ′′,N′′ ] = [0]. By contrast, (P ′′′, N′′′) ∈ C(S).

The polynomials bP,N for (P, N) ∈ C(S) will play the role of the basic elements used
to define the expanded versions of polynomials in N[XB].

These elements exhibit the following useful properties, as shown in Lemma 6.8. The
lemma is easily verified from the properties of the equivalence relation θ defined earlier,
and its proof is deferred to the appendix.

LEMMA 6.8. For any (P, N) ∈ C(S) and (P ′, N′) whose monomials belong to S, we have
that

[bP,N] · [bP ′,N′ ] =
{

[bP,N] if s(P ′) ⊆ P and s(N′) ⊆ N
[0] otherwise.

(1)

⎡
⎣ ∑

(P,N)∈C(S)

bP,N

⎤
⎦ = [1], (2)

where s(P ′) and s(N′) denote the “set versions” of P ′ and N′, respectively. In particular,
if (P ′, N′) also belongs to C(S), then [bP,N] · [bP ′,N′ ] = [bP,N] if P = P ′ and N = N′; and
[bP,N] · [bP ′,N′] = [0] otherwise.

Given a polynomial p[XB] in N[XB], we next identify the set Sp[XB] of monomials that
are relevant for obtaining the expanded version of p[XB]. More precisely, the expanded
version will be constructed in terms of Sp[XB]-complete monomials.

Definition 6.9. Let p[XB] be a polynomial in N[XB]. If p[XB] = a for some constant
a ∈ N, then we define Sp[XB] := {1} where 1 is the constant monomial x0

1 · · · x0
n. Otherwise,

if p[XB] is not constant, then we define Sp[XB] as the set of all nonconstant monomials
μ ∈ mon(X) that appear in p[XB], either as μ, bμ, or b̄μ. We will often abbreviate Sp[XB]
and simply write Sp instead.

Example 6.10. For p[XB] = b̄x1x2 x1 + bx1 b̄x1 x2
2 + 4b̄x1b

4
x2

x1x2 + b̄x1x2 x2, Sp =
{x1, x2, x2

2 , x1x2}, for q[XB] = x2 +3, Sq = {x2}, for r[XB] = x2, Sr = {x2} and for t[XB] = 5,
St = {1}.

We are now ready to define and construct the expanded version, denoted by pe[XB],
of a polynomial p[XB]. We first illustrate this construction by means of an example.
The general treatment is part of the proof of Proposition 6.14, where in addition the
uniqueness of the resulting polynomial pe[XB] will be established.
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Example 6.11. Let X = {x1, x2} and consider p[XB] = b̄x1x2 x1 +bx1 b̄x1 x2
2 +4b̄x1b

4
x2

x1x2 +
b̄x1x2 x2. We saw in the previous example that Sp = {x1, x2, x2

2 , x1x2}. We rewrite p[XB]
as an equivalent polynomial in terms of Sp-complete polynomials. Observe that C(Sp)
corresponds to the following bP,N ’s:

bx1bx2bx2
2
bx1x2 , bx1bx2 b̄x2

2
bx1x2 , bx1bx2bx2

2
b̄x1x2 , bx1bx2 b̄x2

2
b̄x1x2 , bx1 b̄x2 b̄x2

2
b̄x1x2 ,

b̄x1bx2bx2
2
b̄x1x2 , b̄x1bx2 b̄x2

2
b̄x1x2 , b̄x1 b̄x2 b̄x2

2
b̄x1x2 .

Step 1. We first multiply p[XB] with
∑

(P,N)∈C(Sp) bP,N. Observe that this results in an
equivalent polynomial by Property (2) in Lemma 6.8. Using Property (1) in Lemma 6.8,
we then eliminate all terms that are equivalent to 0 and further simplify each term
such that every term consists of a basic element bP,N and a polynomial in N[X]. It is
easily verified that the resulting equivalent polynomial is given by

p1[XB] = bx1bx2bx2
2
bx1x2 · 0 + bx1bx2 b̄x2

2
bx1x2 · 0 + bx1bx2bx2

2
b̄x1x2 (x1 + x2)

+ bx1bx2 b̄x2
2
b̄x1x2 (x1 + x2) + bx1 b̄x2 b̄x2

2
b̄x1x2 (x1 + x2) + b̄x1bx2bx2

2
b̄x1x2 (x1 + x2 + 4x1x2)

+ b̄x1bx2 b̄x2
2
b̄x1x2 (x1 + x2 + 4x1x2) + b̄x1 b̄x2 b̄x2

2
b̄x1x2 (x1 + x2),

where we grouped terms according to their preceding basic element bP,N. We in-
cluded the first two terms to illustrate that not all elements in C(Sp), when multi-
plied with p[XB], result in a non-zero term. For example, for the first term, we have
P = {x1, x2, x2

2 , x1x2} and N = ∅, whereas each of the terms in p[XB] contains an ele-
ment of the form b̄μ for μ ∈ Sp. Hence, by Property (1) in Lemma 6.8, bP,N · p[XB] is
equivalent to 0 for P = {x1, x2, x2

2 , x1x2} and N = ∅. Similarly for the second zero term
in p1[XB].

Step 2. Although we have already eliminated some zero terms in p1[XB] due to
Property (1) in Lemma 6.8, we can further simplify p1[XB] by removing from each
term those monomials μ that appear together with b̄μ. Note that, by construction, each
monomial μ either appears together with bμ or b̄μ. The resulting equivalent polynomial
is the expanded version pe[XB] of p[XB] and is given by

pe[XB] = bx1bx2bx2
2
b̄x1x2 (x1 + x2) + bx1bx2 b̄x2

2
b̄x1x2 (x1 + x2) + bx1 b̄x2 b̄x2

2
b̄x1x2 x1

+ b̄x1bx2bx2
2
b̄x1x2 x2 + b̄x1bx2 b̄x2

2
b̄x1x2 x2 + b̄x1 b̄x2 b̄x2

2
b̄x1x2 · 0,

where we included the last zero term to illustrate that b̄x1 b̄x2 b̄x2
2
b̄x1x2 (x1 + x2) is elim-

inated from p1[XB]. Also note that some terms have been simplified. For example,
b̄x1bx2 b̄x2

2
b̄x1x2 (x1 + x2 + 4x1x2) in p1[XB] has become b̄x1bx2 b̄x2

2
b̄x1x2 x2. The set of remaining

Sp-complete monomials bP,N that occur in pe[XB] together with a non-zero polynomial
in N[X] is referred to as the Sp-support of p[XB].

The support of a polynomial in terms of S-complete monomials, for arbitrary sets S
of monomials, is formally defined as follows.

Definition 6.12. Let p[XB] be a polynomial in N[XB] and let S be a subset of mon(X).
The S-support of p[XB] is the set

S-supp(p[XB]) := {(P, N) ∈ C(S) | [bP,N · p[XB]] �= [0]}.
Observe that two equivalent polynomials p[XB] and q[XB] have the same S-support.

Indeed, [p[XB]] = [q[XB]] implies that [bP,N·p[XB]] = [bP,N·q[XB]] for any (P, N) ∈ C(S).
Hence, [bP,N · p[XB]] = [0] if and only if [bP,N · q[XB]] = [0].

Journal of the ACM, Vol. 63, No. 1, Article 7, Publication date: February 2016.



Algebraic Structures for Capturing the Provenance of SPARQL Queries 7:25

Example 6.13. Continuing with the previous example, the Sp-support of p[XB] is
thus given by {(P1, N1), (P2, N2), (P3, N3), (P4, N4), (P5, N5)} with P1 = {x1, x2, x2

2 }, N1 =
{x1x2}, P2 = {x1, x2}, N2 = {x2

2 , x1x2}, P3 = {x1}, N3 = {x2, x2
2 , x1x2}, P4 = {x2, x2

2 },
N4 = {x1, x1x2}, P5 = {x2}, and N5 = {x1, x2

2 , x1x2}. Consider pe[XB] in the previous
example and denote the polynomials in N[X] accompanying the bP,N ’s by rP1,N1 [X] =
rP2,N2 [X] = x1 + x2, rP3,N3 [X] = x1, and rP4,N4 [X] = rP5,N5 [X] = x2, respectively. Then,
pe[XB] is equal to

pe[XB] =
∑

(P,N)∈Sp-supp(p[XB])

bP,N · rP,N[X],

where each rP,N[X] ∈ N[X] is non-zero and such that none of its monomials appears in
N.

The intuition and examples just described lead to the following proposition whose
statement contains the formal definition of expanded version.

PROPOSITION 6.14. Let p[XB] be a polynomial in N[XB]. Then, [p[XB]] = [pe[XB]],
where

pe[XB] =
∑

(P,N)∈Sp-supp(p[XB])

bP,N · rP,N[X], (‡)

for some non-zero rP,N[X] ∈ N[X] none of whose monomials appears in N. Furthermore,
pe[XB] is uniquely determined by p[XB].

Definition 6.15. The expanded version of p[XB] is the polynomial pe[XB] given in (‡)
in the statement of Proposition 6.14.

Observe that the expanded version can be of exponential size in the number of
variables in Sp. The proof of Proposition 6.14 closely follows the construction given in
Example 6.11 and is deferred to the appendix.

6.2.2. Testing Equivalence of Polynomials. The expanded versions are particularly useful
when testing for equivalence. One may think that [p[XB]] = [q[XB]] if and only if
they have identical expanded versions pe[XB] = qe[XB]. This is not the case, however,
simply because Sp can be different from Sq, and therefore pe and qe are expressed in
terms of different complete monomials: Sp-complete monomials for pe and Sq-complete
monomials for qe. Nevertheless, one can test equivalence of two polynomials by using
expanded versions built from (Sp ∪ Sq)-complete monomials. Indeed, in both of these
expansions, the (Sp∪Sq)-complete monomials must carry identical polynomials in N[X].
The following proposition provides a necessary and sufficient condition for testing the
equivalence of two polynomials in N[XB].

PROPOSITION 6.16. Let p[XB] and q[XB] be two polynomials in N[XB] and let pe[XB] =∑
(P,N)∈Sp-supp(p[XB]) bP,N · rP,N[X] and qe[XB] = ∑

(P,N)∈Sq-supp(q[XB]) bP,N · sP,N[X] be the
expanded versions of p[XB] and q[XB], respectively. Then, [p[XB]] = [q[XB]] if and only if
for every (P, N) in (Sp ∪ Sq)-supp(p[XB]), we have that rP|Sp ,N|Sp

[X] = sP|Sq ,N|Sq
[X], where

P|Sp ,N|Sp, P|Sq and N|Sq denote the restriction of P and N to Sp and Sq, respectively.

We defer the proof of the proposition to the appendix. The use of the proposition is
illustrated in the following example.

Example 6.17. Let X = {x1, x2} and consider the polynomial p[XB] from the previous
example, and the polynomial q[XB] = b̄x1x2 (x1 + x2). Note that Sq = {x1, x2, x1x2}. It
is readily verified that qe[XB] = bx1bx2 b̄x1x2 (x1 + x2) + bx1 b̄x2 b̄x1x2 x1 + b̄x1bx2 b̄x1x2 x2 and
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that the Sq-support of q[XB] is given by {(P ′
1, N′

1), (P ′
2, N′

2), (P ′
3, N′

3)} with P ′
1 = {x1, x2},

N′
1 = {x1x2}, P ′

2 = {x1}, N′
2 = {x2, x1x2}, P ′

3 = {x2} and N′
3 = {x1, x1x2}. Let sP ′

1,N′
1
[X] =

x1+x2, sP ′
2,N′

2
[X] = x1 and sP ′

3,N′
3
[X] = x2. Then, qe[XB] = bP ′

1,N′
1
sP ′

1,N′
1
[X]+bP ′

2,N′
2
sP ′

2,N′
2
[X]+

bP ′
3,N′

3
sP ′

3,N′
3
[X]. To check whether p[XB] and q[XB] are equivalent, we verify the condition

stated in the previous proposition. Note that Sp ∪ Sq = Sp in this example. Hence, we
have to further expand the Sq-complete monomials to Sp-complete monomials. It is
easily verified that qe[XB] is equivalent to

bx1bx2bx2
2
b̄x1x2sP ′

1,N′
1
[X] + bx1bx2 b̄x2

2
b̄x1x2sP ′

1,N′
1
[X] + bx1 b̄x2 b̄x2

2
b̄x1x2sP ′

2,N′
2
[X]

+ b̄x1bx2bx2
2
b̄x1x2sP ′

3,N′
3
[X] + b̄x1bx2 b̄x2

2
b̄x1x2sP ′

3,N′
3
[X].

Recall that pe[XB] is equal to

bx1bx2bx2
2
b̄x1x2 (x1 + x2) + bx1bx2 b̄x2

2
b̄x1x2 (x1 + x2) + bx1 b̄x2 b̄x2

2
b̄x1x2 x1

+ b̄x1bx2bx2
2
b̄x1x2 x2 + b̄x1bx2 b̄x2

2
b̄x1x2 x2.

We have thus obtained precisely the same polynomials, which are clearly equivalent.
For completeness, we formally verify the conditions stated in Proposition 6.16. Recall
the formulation pe[XB] = ∑

(P,N)∈Sp-supp(p[XB]) bP,N ·rP,N[X] of pe[XB] from Example 6.13.
Observe that P1|Sq = P2|Sq = P ′

1, N1|Sq = N2|Sq = N′
1, P3|Sq = P ′

2, N3|Sq = N′
2, P4|Sq =

P5|Sq = P3,
′ and N4|Sq = N5|Sq = N′

3. Then, p[XB] and q[XB] are indeed equivalent
since rP1,N1 [X] = rP2,N2 = sP ′

1,N′
1
[X] = x1 + x2, rP3,N3 [X] = sP ′

2,N′
2
[X] = x1, and rP4,N4 [X] =

rP5,N5 [X] = sP ′
3,N′

3
[X] = x2.

As another example, consider p[XB] = b̄x1x2 x1 and q[XB] = x2. We have that Sp =
{x1, x1x2} and Sq = {x1, x2}. Furthermore, pe[XB] = bx1 b̄x1x2 x1 and qe[XB] = bx1bx2 x2 +
b̄x1bx2 x2. Let P1 = {x1}, N1 = {x1x2}, P ′

1 = {x1, x2}, N′
1 = ∅, P ′

2 = {x2}, N′
2 = {x1},

rP1,N1 [X] = x1, sP ′
1,N′

1
[X] = sP ′

2,N′
2
[X] = x2. Let S = Sp ∪ S1 = {x1, x2, x1x2}. We have that

pe[XB] is equivalent to

bx1bx2 b̄x1x2rP1,N1 [X] + bx1 b̄x2 b̄x1x2rP1,N1 [X],

and qe[XB] is equivalent to

bx1bx2bx1x2sP ′
1,N′

1
[X] + bx1bx2 b̄x1x2sP ′

1,N′
1
[X] + b̄x1bx2 b̄x1x2sP ′

2,N′
2
[X].

Consider P = {x1, x2, x1x2} and N = ∅. Then, P|Sp = {x1, x1x2}, N|Sp = ∅, P|Sq =
{x1, x2} = P ′

1, and N|Sq = ∅ = N′
1. Since pe[XB] does not have a term corresponding to

({x1, x1x2},∅) (in other words, r({x1,x1x2},∅) = 0), whereas qe[XB] has a term, rP ′
1,N′

1
[X] = x2,

corresponding to ({x1, x2},∅), we may conclude that p[XB] and q[XB] are not equivalent.

One may wonder what the complexity is of deciding whether two polynomials are
equivalent. The following proposition indicates that it is intractable, in general. The
proof of the proposition is deferred to the appendix.

PROPOSITION 6.18. Given two polynomials p[XB] and q[XB] in N[XB], deciding whether
[p[XB]] = [q[XB]] holds is coNP-complete.

6.2.3. Computing with Boolynomials. We conclude this section on boolynomials by show-
ing that the expanded versions can also be used to compute representatives of sums
and products of equivalence classes. The proof is omitted because it consists of a simple
verification in which the expanded version of the sum and product of expanded versions
are analyzed. Intuitively, when summing two boolynomials p[XB] and q[XB], one can
simply sum their expanded versions, provided that one considers S-complete monomi-
als where S = Sp ∪ Sq. Moreover, the S-complete monomials of interest belong to the
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union of the S-supports of p[XB] and q[XB]. Similarly, multiplication can be expressed
in terms of the product of the expanded version and the relevant S-monomials now
belong to the intersection of the S-supports of p and q.

LEMMA 6.19. Let p[XB] and q[XB] in N[XB] and let pe[XB] and qe[XB] be their expanded
versions. Let S = Sp ∪ Sq. The expanded version of p[XB] + q[XB] is equal to∑

(P,N)∈S-supp(p[XB])∪S-supp(q[XB])

bP,N · (rP|Sp ,N|Sp
[X] + sP|Sq ,N|Sq

[X]
)
,

and the expanded version of p[XB] · q[XB] can be computed from∑
(P,N)∈S-supp(p[XB])∩S-supp(q[XB])

bP,N · (rP|Sp ,N|Sp
[X] · sP|Sq ,N|Sq

[X]
)
,

by (i) eliminating all monomials μ in rP|Sp ,N|Sp
[X] · sP|Sq ,N|Sq

[X] that occur in N, and
(ii) removing all (P, N) ∈ S-supp(p[XB]) ∩ S-supp(q[XB]) for which the previous step
completely eliminated rP|Sp ,N|Sp

[X] · sP|Sq ,N|Sq
[X].

We remark that it is not true in general that S-supp(p[XB] ·q[XB]) = S-supp(p[XB])∩
S-supp(q[XB]), as is illustrated by the following example.

Example 6.20. Let X = {x1, x2} and consider p[XB] = b̄x1x2 x1 and q[XB] = x2
from the previous example. We established there that for S = {x1, x2, x1x2},
S-supp(p[XB]) corresponds to {bx1bx2 b̄x1x2 , bx1 b̄x2 b̄x1x2} and S-supp(q[XB]) corresponds to
{bx1bx2bx1x2 , bx1bx2 b̄x1x2 , b̄x1bx2 b̄x1x2}. From the previous lemma, we may thus conclude that
bx1bx2bx1x2 x2 + bx1bx2 b̄x1x2 (x1 + x2) + bx1 b̄x2 b̄x1x2 x1 + b̄x1bx2 b̄x1x2 x2 is the expanded version of
p[XB] + q[XB] and S-supp(p[XB] + q[XB]) = S-supp(p[XB]) ∪ S-supp(q[XB]). Consider
S-supp(p[XB]) ∩ S-supp(q[XB]) = {bx1bx2 b̄x1x2}. From the previous lemma, it follows that
the expanded version of p[XB] · q[XB] can be computed by considering (i) bx1bx2 b̄x1x2 x1x2
and (ii) reducing this expression by eliminating all monomials μ that also appear as
b̄μ. In this case, bx1bx2 b̄x1x2 x1x2 is reduced to 0. Note that S-supp(p[XB] · q[XB]) is empty,
different from the intersection of the S-supports of p[XB] and q[XB].

6.3. Boolean Algebra

We next identify a boolean algebra that can be embedded in the semiring of boolyno-
mials Nθ [XB]. Intuitively, the elements in the boolean algebra represent the support
of boolynomials (cf. Definition 6.12). Let T ⊆ C(S) for some S ⊂ mon(X). That is, T
represents a set of non-zero S-complete monomials. We call S the carrier set of T . Note
that, given such a T , we can derive its carrier set S by simply collecting all monomials
that appear in the elements (P, N) ∈ T . With each such T we associate the polynomial

pT =
∑

(P,N)∈T

bP,N,

and define

BX := {[pT ] | T ⊆ C(S), S ⊂ mon(X)} ⊂ Nθ [XB].

We next define disjunction, conjunction, and complementation for the elements in BX.
Let [pT ] and [pT ′] be elements in BX. Then,

[pT ] ∨b [pT ′ ] := [pT + pT ′ ] = [pT ] + [pT ′]
[pT ] ∧b [pT ′ ] := [pT · pT ′] = [pT ] · [pT ′]

[pT ]
b

:= [pC(S)\T ],
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where S is the carrier set of T . In addition, we define ⊥b and �b as [0] and [1],
respectively. It will sometimes be convenient to interpret [0] = [b̄1] and [1] = [b1],
which correspond to the constant polynomials pT = 0 with T = (P = ∅, N = {1}) and
pT = 1 with T = (P = {1}, N = ∅), respectively.

In the appendix, we verify that we indeed obtain a boolean algebra:

PROPOSITION 6.21. The operations ∨b, ∧b and b are well-defined and the structure
(BX,∨b,∧b,

b,⊥b,�b) is a boolean algebra.

6.4. Universal Seba-Structure

With the semiring of boolynomials (Nθ [XB],+, ·, 0, 1) and boolean algebra (BX,∨b,
∧b,

b,⊥b,�b) at hand, we next link them together by means of mappings ıb : BX →
Nθ [XB] and db : Nθ [XB] → BX. For ıb, we simply take the identity mapping. That is, for
[pT ] ∈ BX we define

ıb([pT ]) := [pT ].

The mapping db is defined as follows. Let p[XB] be a polynomial in N[XB]. We define

db([p[XB]]) := [
pSp-supp(p[XB])

]
,

where Sp is as defined in Definition 6.9. Note that db([0]) = [p{x1}-supp(0)] = [p∅] = [0]
and db([n]) = [p{x1}-supp(n)] = [pC({x1})] = [1].

The mapping db is well-defined. Indeed, given [p[XB]] = [q[XB]], we saw that
S-supp(p[XB]) = S-supp(q[XB]) for any S ⊆ mon(X). Moreover, it is easily verified
that, for Sp ⊆ S ⊆ S′, [pS-supp(p[XB])] = [pS′-supp(p[XB])]. Hence, db([p[XB]]) is equal to[

pSp-supp(p[XB])
] = [

p(Sp ∪ Sq)-supp(p[XB])
] = [

p(Sp ∪ Sq)-supp(q[XB])
] = [

pSq-supp(q[XB])
]
,

which equals db([q[XB]]).
We conclude this section by showing that (Nθ [XB], BX, db, ıb) is indeed a seba-structure

and that it is universal.

THEOREM 6.22. The structure (Nθ [XB], BX, db, ıb) is a seba-structure that is universal
in the class of all seba-structures, relative to the generator set X.

PROOF. We defer the proof that (Nθ [XB], BX, db, ıb) is a seba-structure to the appendix
and focus here on the universality of (Nθ [XB], BX, db, ıb).

Let (K, B, d, ı) be a seba-structure consisting of a semiring (K,⊕K,⊗K, 0K, 1K),
boolean algebra (B,∨,∧, ,⊥,�), and mappings d:K → B and ı:B → K. Let X =
{x1, . . . , xn} be a set of variables and denote by [X] the set of equivalence classes [xi],
for xi ∈ X. Let ν : [X] → K be a valuation that assigns values in K to the equivalence
classes of variables in X.

We establish the universality of (Nθ [XB], BX, db, ıb) in the standard way; that is, we
assume that we have a seba-homomorphism (h, β) from (Nb[XB], BX, db, ıb) to (K, B, d, ı)
and then show that it is uniquely determined by the given mapping ν : [X] → K.

Let p[XB] ∈ N[XB]. We may assume that p[XB] = ∑
(P,N)∈T bP,N · pP,N[X] for some T ⊆

PN and pP,N[X] = ∑
μ aP,N,μ · μ, where μ ∈ mon(X) and aP,N,μ ∈ N. Since equivalence

classes are compatible with addition and multiplication, we can write

[p[XB]] =
∑

(P,N)∈T

[bP,N] · [pP,N[X]].
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Furthermore, [bP,N] = ∏
μ∈P[bμ] ·∏μ∈N[b̄μ] and [pP,N[X]] = ∑

μ[aP,N,μ] · [μ]. Since h is
assumed to be a semiring-homomorphism, we must have that

h([p[XB]]) =
∑

(P,N)∈T

∏
μ∈P

h([bμ]) ·
∏
μ∈N

h([b̄μ]) ·
(∑

μ

h([aP,N,μ]) · h([μ])

)
.

Let us consider first h([aP,N,μ]). Denote by ([N],+, ·, [0], [1]) the semiring obtained as
the quotient of (N,+, ·, 0, 1) over the congruence relation θ . It is readily verified that
if h, when restricted to elements in [N], is a semiring homomorphism from [N] to K,
then h must coincide with κ : [N] → K, the canonical semiring morphism defined as
κ([0]) = 0K, κ([1]) = 1K and for m > 1, κ([m]) = 1K ⊕ · · · ⊕ 1K︸ ︷︷ ︸

m times

.

Consider next the expression h([μ]) for μ = xi1
1 · xi2

2 · · · xin
n with i j ∈ N for j ∈ [1, n]. The

requirement that h is a semiring homomorphism and must coincide with ν : [X] → K
implies that

h([μ]) = h
([

xi1
1

])⊗ · · · ⊗ h
([

xin
n

])
= h([x1]i1 ) ⊗ · · · ⊗ h([xn]in)

= (h([x1]))i1 ⊗ · · · ⊗ (h([xn]))in

= (ν([x1]))i1 ⊗ · · · ⊗ (ν([xn]))in.

Hence, h([μ]) is fully determined by ν : [X] → K.
It remains to identify h([bμ]) and h([b̄μ]). Observe that [bμ] = ıb([bμ]) = ıb(db([μ]))

and [b̄μ] = ıb([b̄μ]) = ıb(db([μ])
b
). Since (h, β) must be a seba-homomorphism, we

have that h([bμ]) = h(ıb(db([μ]))) = ı(β(db([μ]))) = ı(d(h([μ]))) which, as just shown,

is fully determined by ν : [X] → K. Similarly, h([b̄μ]) = h(ıb(db([μ])
b
)) = ı(β(db([μ])

b
)) =

ı(β(db([μ]))
b
) = ı(d(h([μ]))), which is again fully determined by ν : [X] → K. Here, we

use that β is compatible with complementation.
In other words, h([p[XB]]) is uniquely determined by ν and the requirement that

(h, β) is a seba-homomorphism. Indeed, we have shown that h([p[XB]]) is given by

⊕
(P,N)∈T

⎛
⎝⊗

μ∈P

ı(d(ν([μ]))) ⊗
⊗
μ∈N

ı(d(ν([μ])))

⎞
⎠⊗

(⊕
μ

κ([aP,N,μ]) ⊗ ν([μ])

)
,

where κ : [N] → K is the homomorphism previously introduced and ν([μ]) = (ν([x1]))i1 ⊗
· · · ⊗ (ν([xn]))in for μ = xi1

1 · xi2
2 · · · xin

n with i j ∈ N for j ∈ [1, n].
Observe that we did not yet define β([pT ]). A similar reasoning as for h shows that,

for an element [pT ] = [
∑

(P,N)∈T bP,N],

β([pT ]) =
∨

(P,N)∈T

∧
μ∈P

d(h([μ])) ∧
∧
μ∈N

d(h([μ])).

To conclude the proof, we show in the appendix that (h, β) is well-defined (i.e., it does
not depend on the chosen representative of the equivalence classes). Furthermore, it
is easy to verify that (h, β) is a seba-homomorphism. Indeed, this can be verified by
showing that h is a semiring homomorphism, that β commutes with complementation,
and, in addition, β(db(k)) = d(h(k)) and h(ıb(b)) = ı(β(b)) holds. We verify these latter
two commutation conditions in the appendix.
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6.5. Universal Spm-Semiring

Having a universal seba-structure at our disposal, we next describe the corresponding
universal spm-semiring. The following lemma relates seba-homomorphisms and spm-
semiring homomorphisms.

Let (K,⊕K,⊗K,�K, 0K, 1K) and (L,⊕L,⊗L,�L, 0L, 1L) be two spm-semirings. A homo-
morphism between these structures is a mapping h : K → L such that h(0K) = 0L and
h(1K) = 1L, h(x⊕K y) = h(x)⊕Lh(y), h(x⊗K y) = h(x)⊗Lh(y), and h(x�K y) = h(x)�Lh(y).

LEMMA 6.23. A seba-homomorphism between two seba-structures induces a homo-
morphism between their derived spm-semirings.

PROOF. Let (h, β) be a seba-homomorphism from (K1, B1, d1, ı1) to (K2, B2, d2, ı2).

We extend K1 and K2 with the derived minus operators k �1 
 = k ⊗1 ı1(d1(
)
1
) and

k′ �2 
′ = k′ ⊗2 ı2(d2(
′)
2
), for k, 
 ∈ K1 and k′, 
′ ∈ K2. We show that h(k �1 
) =

h(k)�2h(
). Observe that h(k�1
) = h(k⊗1ı1(d1(
)
1
)) = h(k1)⊗2h(ı1(d1(
)

1
)). Furthermore,

h(ı1(d1(
)
1
)) = ı2(β(d1(
)

1
)) = ı2(β(d1(
))

2
) = ı2(d2(h(
))

2
). It follows that h(k �1 
) =

h(k ⊗1 ı1(d1(
)
1
)) = h(k) ⊗2 ı2(d2(h(
))

2
) = h(k) �2 h(
).

We are now finally ready to define the universal spm-semiring. An spm-semiring
(K,⊕K,⊗K,�K, 0K, 1K) is universal in the class of all spm-semirings, relative to a set
of generators X = {x1, . . . , xn}, if for any spm-semiring (L,⊕L,⊗L,�L, 0L, 1L) and any
valuation ν : X → L that assigns values from L to variables in X, we can uniquely
extend ν to an spm-semiring homomorphism h : K → L such that h coincides with ν on
X.

We next introduce the spm-semiring derived from the universal seba-structure
(Nθ [XB], BX, db, ıb).

Definition 6.24. We define the spm-semiring (Nθ [XB],+, ·,−, 0, 1) as the semiring of
boolynomials (Nθ [XB],+, ·, 0, 1) equipped with

[p[XB]] − [q[XB]] := [p[XB]] · [pC(Sq)\Sq ],

where Sq is the support of q[XB].

PROPOSITION 6.25. The spm-semiring (Nθ [XB],+, ·,−, 0, 1) is universal in the class of
spm-semirings.

PROOF. Consider an spm-semiring (K,⊕,⊗,�, 0, 1) and valuation ν : [X] → K. We
define the spm-semiring homomorphism hs from (Nθ [XB],+, ·,−, 0, 1) to K in terms of
the unique seba-homomorphism (h, β) from the seba-structure (Nθ [XB], BX, db, ıb) to the
seba-structure (K, B, d, ı) from which (K,⊕,⊗,�, 0, 1) is derived as constructed in the
proof of Theorem 5.3. In particular, we define hs := h. Lemma 6.23 implies that hs
is indeed an spm-homomorphism. Furthermore, Theorem 6.22 tells us that hs is fully
determined by the valuation ν. It remains to show that the definition of hs is indepen-
dent of the choice of seba-structure from which (K,⊕,⊗,�, 0, 1) is derived. Indeed, let
(K, B1, d1, ı1) and (K, B2, d2, ı2) be two seba-structures from which (K,⊕,⊗,�, 0, 1) is
derived. That is, for any k, 
 ∈ K,

k � 
 = k ⊗ ı1(d1(
)
1
) = k ⊗ ı2(d2(
)

2
).

In particular, for k = 1, this implies that ı1(d1(
)
1
) = ı2(d2(
)

2
) for any 
 ∈ K. Let (h1, β1)

and (h2, β2) be the two seba-homomorphisms from (Nθ [XB], BX, db, ıb) to (K, B1, d1, ı1)
and (K, B2, d2, ı2), respectively, both of which extend the valuation ν : [X] → K as given
in the proof of Theorem 6.22.
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Fig. 3. Example of RDF graph and evaluation of positive SPARQL algebra operators with annotations in
the universal spm-semiring.

Observe that the proof of Theorem 6.22 reveals that we only need to verify whether
for each μ ∈ mon(X), h1([bμ]) = h2([bμ]) and h1([b̄μ]) = h2([b̄μ]). To see this, observe

that h1([b̄μ]) = h1(ıb(db([μ])
b
)) = ı1(β(db([μ])

b
)) = ı1(β(db([μ]))

1
) = ı1(d1(h1([μ]))

1
) =

ı2(d2(h1([μ]))
2
) and that h1([μ]) = h2([μ]) because these are fully determined by ν. Hence,

ı2(d2(h1([μ]))
2
) = ı2(d2(h2([μ]))

2
) and thus h1([b̄μ]) = h2([b̄μ]). A similar argument, using

that [bμ] = ıb(db([μ])
b

b

), shows that h1([bμ]) = h2([bμ]).
Hence, hs is a well-defined spm-homomorphism that is fully determined by the valu-

ation ν : [X] → K. Hence, (Nθ [XB],+, ·,−, 0, 1) is indeed a universal spm-semiring.

7. PROVENANCE AND FACTORIZATION PROPERTY

We next show how the universal spm-semiring (Nθ [XB],+, ·,−, 0, 1) can be used
to model the how-provenance of SPARQL query results. Similar to the relational
case [Green et al. 2007], we start by introducing the abstractly tagged version of an
RDF graph.

Definition 7.1. Let G be an RDF graph and let [X] = {[x1], . . . , [xn]} be a set of
equivalence classes, one for each triple in G. The abstractly tagged version of G, denoted
by G/X, is the (Nθ [XB],+, ·,−, 0, 1)-annotated RDF graph in which each triple (s, p, o)
in G is annotated with its corresponding equivalence class in [X].

Given G/X, we now illustrate how (Nθ [XB],+, ·,−, 0, 1)-annotated mapping sets cor-
responding to the results of positive SPARQL algebra expressions can be computed
using the propagation rules given in Section 3.

Example 7.2. Figure 3(b) shows the (Nθ [XB],+, ·,−, 0, 1)-annotated mapping set
� = [[(?x, ?y, ?z)]]G/X for the abstractly tagged version of the RDF graph given in Fig-
ure 3(a). Here, X = {x1, . . . , x5}, and each triple is annotated with a unique equivalence
class [xi]. Recall the positive SPARQL algebra expressions described in Example 2.1
and shown in Figure 1. Figures 3(c)–(g) depict the corresponding (Nθ [XB],+, ·,−, 0, 1)-
annotated mapping sets �i, for i ∈ [1, 5], respectively. In addition, Figure 3(h) shows
the (Nθ [XB],+, ·,−, 0, 1)-annotated mapping set �6 corresponding to π?x(�5). The an-
notations in these mapping sets are computed as defined in Section 3, in which the

Journal of the ACM, Vol. 63, No. 1, Article 7, Publication date: February 2016.



7:32 F. Geerts et al.

Fig. 4. Example of RDF graph and evaluation of non-monotone SPARQL algebra operators with annotations
in the universal spm-semiring. Gray-shaded entries are not part of the support of the mapping sets because
their boolynomials are equivalent to [0].

abstract operators ⊕ and ⊗ are replaced by the corresponding operators “+” and “·”
in (Nθ [XB],+, ·,−, 0, 1), respectively. It is readily verified that when positive SPARQL
queries are concerned, one can simply compute the provenance by means of equiva-
lence classes [p[X]] of standard polynomials p[X] in N[X]. Indeed, this follows from the
properties of equivalence classes: For any pair of polynomials p[X] and q[X] in N[X],
[p[X] + q[X]] = [p[X]] + [q[X]] and [p[X] · q[X]] = [p[X]] · [q[X]].

The previous example shows that when the positive algebra is concerned, the anno-
tations in (Nθ [XB],+, ·,−, 0, 1) can be interpreted in precisely the same way as in the
relational case: “+” corresponds to union and “·” corresponds to join. For example, μ16
in �5 is obtained by joining the triple with id [x1] with the union of the two triples with
id’s [x4] and [x5]. We next consider the non-monotone operators \ and �.

Example 7.3. Consider the SPARQL algebra expressions �4\�1, (�4\�1)\�6,
�4 � �1, and �4\(�1 ∪ �6). Figures 4(a), (b), (c), and (d) show the correspond-
ing (Nθ [XB],+, ·,−, 0, 1)-annotated mapping sets, computed as defined in Section 3
in which the operator � is now replaced by the corresponding “−” operator in
(Nθ [XB],+, ·,−, 0, 1). Also in this case, the elements in (Nθ [XB],+, ·,−, 0, 1) represent
the how-provenance of mappings. For example, [x4 + x5] − [x1] indicates that μ18 is
obtained from the union of the triples with id’s [x4] and [x5], from which the triple
with id [x1] is “subtracted”. In other words, the mappings μ4 and μ5 determine the
provenance of μ18 as long as μ1 is not present. The mapping μ18 is thus conditionally
present in �4 \ �1. In some cases, however, we can eliminate certain mappings uncon-
ditionally. Let us consider the annotation [2x1] − [x1] of the mapping μ17 in �4 \ �1.
One could simply leave this annotation as it is, or one could benefit from the fact that
[2x1]−[x1] is an element in the spm-semiring (Nθ [XB],+, ·,−, 0, 1). Indeed, from id11, we
have that 2([x1] − [x1]) represents the same element as [2x1] − [x1], and id9 implies that
2([x1] − [x1]) = 2[0] = [0]. In other words, μ17 is not part of the support of �4 \ �1 and
can thus be eliminated. Similarly, μ22 is not part of the support of �4 � �1. We showed
in Proposition 4.4 that the identity 0 � k = 0 holds in spm-semirings K for any k ∈ K.
Hence, the annotation ([2x1] − [x1]) − [2x2

1 + x1(x4 + x5)] of μ26 is equal to [0] and hence,
μ26 can be eliminated from (�4 \ �1) \ �6 as well. Finally, id10 implies that μ29 is equal
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to 0. Indeed, [2x1] − [x1 + 2x2
1 + x1(x4 + x5)] is equal to ([2x1] − [x1]) − [2x2

1 + x1(x4 + x5)],
which we have just shown to be [0].

Identifying the support of (Nθ [XB],+, ·,−, 0, 1)-annotated mapping sets, as illus-
trated in the previous example, comes at a cost. Indeed, we recall from Proposition 6.18
that deciding equivalence in (Nθ [XB],+, ·,−, 0, 1) is coNP-complete. A similar argument
as given in the proof of Proposition 6.18 shows that determining whether a mapping
belongs to the support is NP-complete. Indeed, this requires checking whether a given
element in (Nθ [XB],+, ·,−, 0, 1) is not equivalent to [0], which can be shown to be
NP-complete. As a note aside, a similar situation occurs when negation is recorded
in provenance models by means of propositional logic expressions [Geerts and Poggi
2010; Dividino et al. 2009]. Identifying the support in those settings also incurs the
cost of testing the satisfiability of propositional logic expressions, which is known to be
NP-complete [Garey and Johnson 1979].

In our more general setting, and as the previous example shows, one way of determin-
ing the support is by relying on the identities of spm-semirings (as shown in Figure 2).
A more procedural way is by relying on the definition of “−” in (Nθ [XB],+, ·,−, 0, 1) as
given in Definition 6.24 and verifying whether or not the expanded version in the equiv-
alence classes is equal to 0 (cf. Proposition 6.16). We illustrate this with the following
example.

Example 7.4. Consider again the annotation [2x1] − [x1] of μ17 in �4 \ �1. By def-
inition, this annotation is equivalent to [2b̄x1 x1]. Since [b̄μμ] = [0], this implies that
the expanded version of [2b̄x1 x1] is equal to [0]. As another example, consider the an-
notation ([x4 + x5] − [x1]) − [2x2

1 + x1(x4 + x5)] of μ27. Definition 6.24 tells us that this is
equivalent to

([x4 + x5][b̄x1 ])[pC(S)\T ],

where S = {x1, x2
1 , x4, x5} and T is the S-support of 2x2

1 + x1(x4 + x5). We previously
illustrated that T is computed by first enumerating all S-complete monomials in C(S)
and then verifying when their product with 2x2

1 + x1(x4 + x5) returns non-zero. In
this example, C(S) consists of 12 monomials, which we next list together with their
corresponding term in 2x2

1 + x1(x4 + x5):

bx1bx2
1
bx4bx5 2x2

1 + x1(x4 + x5) bx1 b̄x2
1
bx4 b̄x5 x1x4

bx1 b̄x2
1
bx4bx5 x1(x4 + x5) bx1bx2

1
b̄x4 b̄x5 2x2

1
bx1bx2

1
b̄x4bx5 2x2

1 + x1x5 b̄x1 b̄x2
1
b̄x4bx5 0

bx1bx2
1
bx4 b̄x5 2x2

1 + x1x4 b̄x1 b̄x2
1
bx4 b̄x5 0

b̄x1 b̄x2
1
bx4bx5 0 bx1 b̄x2

1
b̄x4 b̄x5 0

bx1 b̄x2
1
b̄x4bx5 x1x5 b̄x1 b̄x2

1
b̄x4 b̄x5 0

Hence, pC(S)\T corresponds to the boolynomial

[b̄x1 b̄x2
1
bx4bx5 + b̄x1 b̄x2

1
b̄x4bx5 + b̄x1 b̄x2

1
bx4 b̄x5 + bx1 b̄x2

1
b̄x4 b̄x5 + b̄x1 b̄x2

1
b̄x4 b̄x5 ].

When multiplied with b̄x1 (x4 + x5) we obtain the non-zero expanded form of ([x4 + x5] −
[x1]) − [2x2

1 + x1(x4 + x5)]:

[(b̄x1 b̄x2
1
bx4bx5 + b̄x1 b̄x2

1
b̄x4bx5 + b̄x1 b̄x2

1
bx4 b̄x5 + b̄x1 b̄x2

1
b̄x4 b̄x5 ) · (x4 + x5)].

From Proposition 6.16, we may thus conclude that μ27 carries an annotation different
from [0] and thus belongs to the support of (�4 \ �1) \ �6.
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We also remark that the use of an spm-semiring as annotation structure has the
additional benefit that mappings generated by equivalent SPARQL algebra expressions
carry the same element in the spm-semiring. Proposition 6.18 tells us that the process
of identifying equivalent expressions is coNP-complete, however.

Example 7.5. We know from Section 4 that (�4\�1)\�6 ≡ �4\(�1∪�6) and that spm-
semirings satisfy the corresponding identity id10. Using this identity, we may conclude
that annotations for mappings μ26 and μ29 are the same (we previously showed these
to be [0]). Similarly for μ27 and μ30, and μ28 and μ31. We may again rely on either
identities in spm-semirings or Proposition 6.16 to detect when two expressions are
equivalent.

Despite the fact that deciding the support of (Nθ [XB],+, ·,−, 0, 1)-annotated mapping
sets and deciding equivalence of (Nθ [XB],+, ·,−, 0, 1)-annotations is intractable, we em-
phasize that the incorporation of (Nθ [XB],+, ·,−, 0, 1)-annotations during the SPARQL
querying process has poly-size overhead compared to the unannotated setting, a de-
sirable property of annotation models [Amsterdamer et al. 2011b]. This may seem
counterintuitive since the expanded version of an expression in (Nθ [XB],+, ·,−, 0, 1)
may result in an exponential blowup in the size of the provenance expressions. How-
ever, when provenance is concerned, there is no need to consider the expanded versions.
Instead, one simply stays within the realm of the spm-semiring (Nθ [XB],+, ·,−, 0, 1)
by propagating the annotations along with the SPARQL operators as described in Sec-
tion 3. It can easily be verified by induction on the structure of the SPARQL graph
pattern P and by using the propagation rules from Section 3 that the representation
size of [[P]]Ga , including annotations, is indeed polynomial in the number of triples in
Ga and the maximal length 
 of annotation in Ga. Of course, this only holds when
the graph pattern P is assumed to be fixed and thus the size of P is constant—in
other words, when data complexity is concerned [Vardi 1982]. Note that when com-
bined complexity [Vardi 1982] is concerned, even deciding whether a mapping is in the
result of a SPARQL query (in the standard unannotated setting) is already PSPACE-
complete [Pérez et al. 2009], and the issue of having poly-size overhead is less of a
concern.

If the expanded versions are not needed when provenance is concerned, one may won-
der at this point why we do not define (Nθ [XB],+, ·,−, 0, 1) simply as the spm-semiring
obtained by (i) taking the symbolic expressions built up from variables in X, constants
in N, and operations +, ·, and −; and by (ii) considering equivalence classes determined
by the spm-semiring identities as given in Figure 2. This is the standard construc-
tion for universal structures in equational varieties [Burris and Sankappanavar 1981].
Such an approach, however, does not provide a proper semantics of the equivalence
classes. One would have to solely rely on the identities to determine equivalence of
expressions or membership in the support. Furthermore, it is not clear at all how
canonical representatives in the equivalence classes can be obtained. In our approach,
the expanded versions of elements in (Nθ [XB],+, ·,−, 0, 1) are crucial to achieve all of
this, whenever needed.

The intractability related to working with expanded versions does not mean that
they are without merit in the context of provenance, in a similar way as propositional
logic is used in many practical settings. We next illustrate this with two examples.
First, we show how expanded versions can help to minimize provenance expressions
in (Nθ [XB],+, ·,−, 0, 1).

Example 7.6. Proposition 6.14 tells us that expanded versions provide a canonical
representative of the equivalence classes in (Nθ [XB],+, ·,−, 0, 1). One can often further
simplify these expressions by applying rules similar to those used in boolean function
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minimization. For instance, we saw in Example 7.4 that ([x4 + x5] − [x1]) − [2x2
1 +

x1(x4 + x5)] can be expressed equivalently as [(b̄x1 b̄x2
1
bx4bx5 + b̄x1 b̄x2

1
b̄x4bx5 + b̄x1 b̄x2

1
bx4 b̄x5 +

b̄x1 b̄x2
1
b̄x4 b̄x5 ) · (x4 + x5)]. We can further simplify this expression by repeatedly using

[bμ + b̄μ] = [1] for monomials μ to eliminate variables in BX and B̄X and obtain the
equivalent expression [b̄x1 b̄x2

1
(x4 + x5)]. Since [b̄ν] = [b̄ν][b̄μ] whenever μ = ν · ν ′ for some

monomials ν, ν ′ and μ, we may conclude that

([x4 + x5] − [x1]) − [2x2
1 + x1(x4 + x5)] = [b̄x1 (x4 + x5)].

Note that one can always replace elements from BX and B̄X by using the recipe that b̄μ is
equivalent to (1−μ) and bμ is equivalent to (1−(1−μ)). In other words, [b̄x1 (x4 +x5)] can
also be interpreted as [x4 + x5] − [x1]. Although the latter expression does not precisely
represent the how-provenance of μ27, it provides a more succinct, albeit equivalent,
representation of the provenance of μ27.

A second use of expanded versions consists of finding a normal form of expressions
in (Nθ [XB],+, ·,−, 0, 1).

Example 7.7. When we have determined the expanded version

pe[XB] =
∑

(P,N)∈Sp-supp(p[XB])

bP,N · rP,N[X]

of p[XB], we can obtain an expression without bP,N = ∏
μ∈P bμ ·∏μ∈N b̄μ by replacing

it by
∏

μ∈P(1 − (1 − μ)) ·∏μ∈N(1 − μ). This expression in (Nθ [XB],+, ·,−, 0, 1) does not
necessarily reflect the provenance but can be regarded as a normal form of elements
in (Nθ [XB],+, ·,−, 0, 1). For instance, consider the annotation [x3] − [2x2

1 + x1(x4 + x5)]
of μ28. One can show that this expression is equivalent to b̄x1 x3 + bx1 b̄x2

1
b̄x4 b̄x5 x3. By

replacing b̄μ with (1 − μ) and bμ with (1 − (1 − μ)), the annotation of μ28 can be written
equivalently as

(1 − x1)x3 + (1 − (1 − x1))
(
1 − x2

1

)
(1 − x4)(1 − x5)x3.

Not surprisingly, moving to these normal forms may result in an exponential increase in
the size of the annotations, similarly to the conversion of propositional logic expression
into their disjunctive (or conjunctive) normal forms.

7.1. Factorization of SPARQL Query Evaluations

Let K and L be two spm-semirings. An spm-homomorphism h : K → L is said to
commute with a SPARQL graph pattern P if, for any K-annotated RDF graph Ga,

[[P]]h(Ga) = h([[P]]Ga),

where h(Ga) is the L-annotated RDF graph obtained from Ga by replacing (s, p, o) �→ k
by (s, p, o) �→ h(k), for each K-annotated RDF triple (s, p, o) �→ k in Ga, and h([[P]]Ga) is
the L-annotated mapping set defined by (h([[P]]Ga))(μ) = h([[P]]Ga(μ)) for μ ∈ M.

A crucial ingredient for obtaining the factorization property is the following lemma.

LEMMA 7.8. Let K and L be two spm-semirings. If h : K → L is an spm-semiring
homomorphism, then h commutes with all SPARQL expressions.

We omit the details of the proof because the lemma can easily be shown by induction
on the structure of SPARQL graph patterns and by leveraging the properties of spm-
semiring homomorphisms.
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Let K be an spm-semiring and consider a valuation ν:[X] → K, where [X] =
{[x1], . . . , [xn]} is the set of equivalences corresponding to the variables in X in
the universal spm-semiring. Denote by Evalν the unique homomorphism from
(Nθ [XB],+, ·,−, 0, 1) to K that coincides with ν on [X]. Recall that such a homomor-
phism exists by the universality of (Nθ [XB],+, ·,−, 0, 1) (cf. Proposition 6.25). It is an
immediate consequence of Lemma 7.8 that the evaluation of SPARQL queries factors
through the universal spm-semiring:

PROPOSITION 7.9. Let K be an spm-semiring and P be a SPARQL graph pattern. For
any K-annotated RDF graph Ga, we have that

[[P]]Ga = Evalν([[P]]G/X)),

where G/X is the abstractly tagged version of Ga and ν : [X] → K is the function that
associates with each equivalence class [xi] the unique annotation of the triple in Ga
tagged with [xi].

Proposition 7.9 says that one can deduce the right annotations for any spm-semiring
K and any SPARQL expression P, given [[P]]G/X and a valuation ν : [X] → K. We
illustrate this for the bag, trust (set), and fuzzy settings.

Example 7.10. Consider the mapping μ18 in Figure 4(a). It has [x4 + x5] − [x1] as
annotation in the universal spm-semiring. In the bag semantics of Example 2.1, we
consider (N,+,×,−bag, 0, 1) as spm-semiring and let νb : [xi] → 1 for all xi. Then,

Evalνb([x4 + x5] − [x1]) = Evalνb([x4 + x5]) −bagEvalνb([x1])
= (Evalνb([x4]) + Evalνb([x5])) −bagEvalνb([x1])
= (νb([x4]) + νb([x5])) −bagνb([x1])
= 2 −bag 1 = 0.

Similarly, for the trust semantics in Example 2.1, we consider ({true, false},∨,∧,
−trust, true, false) as spm-semiring and let νt : [xi] → τi for all xi. We obtain that

Evalνb([x4 + x5] − [x1]) = (νt([x4]) ∨ νt([x5])) −trustνt([x1])
= (τ4 ∨ τ5) ∧ τ̄1,

as desired. The fuzzy semantics is verified similarly using the spm-semiring ([0, 1],
min, max,−fuzzy, 0, 1) given in Example 5.6.

8. SPARQL 1.1

So far, we considered the query language SPARQL 1.0 [Prud’hommeaux and Seaborne
2008]. As previously described, the SPARQL 1.0 algebra only uses the difference (\)
operator as an internal operator that is used to define the semantics of the operator
OPTIONAL. In SPARQL 1.1 [Harris and Seaborne 2013], however, two non-monotone
operators, MINUS and NOT EXISTS, are explicitly introduced.

The MINUS operator is closely related to the DIFFERENCE operator and can be defined
in terms of an algebra operator on K-annotated mapping sets, as follows:

[[P1 MINUS P2]]Ga := [[P1]]Ga \1.1 [[P2]]Ga

where for K-annotated mapping sets �1 and �2 and mapping μ ∈ M:

(�1 \1.1 �2)(μ) := �1(μ) � ( ⊕
μ′∈M,μ∼μ′,dom (μ)∩dom (μ′)�=∅

�2(μ′)
)
.

In other words, \1.1 only differs from \ in that only compatible mappings are consid-
ered for which dom (μ)∩dom (μ′) �= ∅ holds. Recall that \ only required the compatibility
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constraint. We claim that spm-semirings still provide the right annotation structure
when dealing with \1.1. Indeed, to ensure that our framework carries over, we only
need to verify whether we can enforce � to satisfy the identities of spm-semirings.
More specifically, following the proof of Proposition 4.4, it suffices to verify that the
following SPARQL equivalences hold:{

�1 \1.1 �1 ≡ ∅ �1 \1.1 (�2 ∪ �3) ≡ (�1 \1.1 �2) \1.1 �3
�1 � (�2 \1.1 �3) ≡ (�1 � �2) \1.1 �3(cond)

(�1 \1.1 (�1 \1.1 �2)) ∪ (�1 \1.1 �2) ≡ �1

}
.

It is easily verified that all of these equivalences remain valid. We may thus conclude
that one may add \1.1 to the K-annotated SPARQL algebra while still considering
spm-semirings K.

Alternatively, it has been shown that \1.1. can be expressed in terms of �, � and a
filter condition that tests the boundedness of variables [Angles and Gutierrez 2008]. In
this way, one obtains provenance expressions for \1.1 expressed in terms of an equivalent
SPARQL K-algebra expression without \1.1 but with \. A similar approach has been
put forward in Damásio et al. [2012]. Since we can forget about \1.1 in this approach
and just work with the SPARQL K-algebra as defined in Section 3, spm-semirings still
suffice as annotation structure.

A second form of negation in SPARQL 1.1 is introduced through the operator NOT
EXISTS that is part of the FILTER construct. Intuitively, FILTER NOT EXISTS filters out
certain mappings based on the nonexistence of compatible mappings in some subquery.
To translate this operator in terms of K-annotated mapping sets, we generalize the \
operator as follows: Let �1 be a K-annotated mapping set and let ���2 = {�2,1, . . . , �2,k}
be a collection of K-annotated mapping sets. Let ω : �1 → ���2 be a function that assigns
to each μ ∈ M such that �1(μ) �= 0, a mapping set in ���2. We define the following
operator:

(�1 �→ω ���2)(μ) :=
⊕

μ′∈M,μ∼μ′
ω(μ)(μ′).

In other words, this operator extracts for each element μ in the support of �1 the com-
patible mappings in the mapping set ω(μ) ∈ ���2. We generalize the difference operator
such that, for a given mapping μ in �1, only mappings �1 �→ω ���2 are subtracted. More
specifically,

�1 \ω ���2(μ) := �1(μ) � (�1 �→ω���2)(μ).

Note that \ω indeed generalizes \. To see this, it suffices to let ���2 consist of a single
mapping set �2 and let ω(μ) = �2 for each μ in �1. It is easily verified that, for these
choices, �1 \ω ���2 coincides with �1 \ �2.

We next define the operator FILTER NOT EXISTS in terms of the \ω operation on
K-annotated mapping sets. Given two graph patterns P1 and P2 and a K-annotated
mapping set [[P1]]Ga we consider a set of mapping sets

[[P2]]Ga,[[P1]]Ga
= {[[μ(P2)]]Ga | μ ∈ [[P1]]Ga}

that will play the role of ���2, and define ω(μ) = [[μ(P2)]]Ga ∈ [[P2]]Ga,[[P1]]Ga
. Here, μ(P2) is

the graph pattern formed by replacing every occurrence of a variable ?x in P2 by μ(?x),
for each ?x ∈ dom(μ). Finally, we define

[[P1 FILTER NOT EXISTS P2]]Ga := [[P1]]Ga \ω [[P2]]Ga,[[P1]]Ga
.

To our knowledge, FILTER NOT EXISTS has only been given a set semantics interpreta-
tion in Harris and Seaborne [2013]. When K is ({true, false},∨,∧,−trust, false, true), one
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can easily verify that the previous definition returns

{μ ∈ [[P1]]Ga | not exists a compatible μ′ ∈ [[μ(P2)]]Ga},
as given by the standard set semantics.

We saw earlier that \ω generalizes \ when ���2 is restricted to be a single mapping set
�2 and ω maps every mapping in �1 to �2. Hence, following the same argument as for
MINUS, we can infer that the � operator still satisfies the identities that define spm-
semirings. We may thus conclude that \ω can be added to the K-annotated SPARQL
algebra while still considering spm-semirings K.

9. RELATED WORK

The work presented in this article is inspired by the algebraic approach to modeling
data provenance initiated by Green et al. [2007]. In that work, various forms of anno-
tated relational data and their transformations by means of positive relational queries
are considered. It is shown that the standard positive relational algebra equivalences
hold on annotated relational data if and only if the annotations have the structure of
a (commutative) semiring [Green et al. 2007]. Furthermore, they propose the semir-
ing of polynomials—the universal semiring—as a provenance model that generalizes
many forms of annotations and previously proposed provenance models [Green et al.
2007; Green 2011]. Furthermore, due to its universality, all annotation computations
are shown to factor through the semiring of polynomials. This work has been extended
to the semistructured setting in which transformations are expressed in a subset of
XQuery [Foster et al. 2008], for which the authors showed that semirings are still
an appropriate annotation structure. Similarly, semirings are sufficient for positive
SPARQL queries on annotated RDF data, as described in Proposition 4.2 (Section 4)
and as previously observed in Theoharis et al. [2011] and in Dividino et al. [2009]
for idempotent semirings. We showed in this article that all key results of Green
et al. [2007] carry over when spm-semirings are considered in the context of RDF and
SPARQL.

The situation becomes more challenging when non-monotone query operators are
taken into account [Geerts and Poggi 2010; Amsterdamer et al. 2011a, 2011b; Theoharis
et al. 2011; Glavic and Alonso 2009]. In the relational setting, Geerts and Poggi [2010]
extended semirings with a monus operation that captures the semantics of relational
difference and proposed a universal monus-semiring, or m-semiring for short, as a
provenance model. However, this universal m-semiring does not allow for a simple
representation of its elements. Indeed, it is built up from formal terms that require
the arbitrary nesting of expressions of the form p[X] −m q[X], where p[X] and q[X]
are terms that are built up from variables in X, +, × and the monus −m. By contrast,
elements in an spm-semiring do have a normal form (using the expanded version) as
shown in Example 7.7. Note, however, that these normal forms can be exponential in
the size of the number of triples in G, and the structure of the SPARQL query gets lost
in the normal form.

A study of the properties of m-semirings can be found in Amsterdamer et al. [2011a].
More specifically, a set of identities Em is identified that characterizes m-semirings.
Since the relational difference satisfies two sets of incompatible equivalences, Es and
Eb, in the set and bag semantics, respectively, Em only considers the common identities
in these sets. As a consequence, certain intuitive equivalences of the relational algebra,
such as R � (S \ T ) = (R � S) \ (R � T ), are not necessarily satisfied on m-semiring
annotated relational data [Amsterdamer et al. 2011a].

The classes of m-semirings and spm-semirings are incomparable. Indeed, there are
identities that hold for m-semirings but not for spm-semirings and vice versa. For
example, spm-semirings satisfy id11 : k1 ⊗ (k2 �k3) = (k1 ⊗k2)�k3, whereas m-semirings
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satisfy k1 ⊗ (k2 � k3) = (k1 ⊗ k2) � (k1 ⊗ k3) (identity a13 in Amsterdamer et al. [2011a]).
One can verify that id11 implies a13 but not vice versa. Conversely, k1 ⊕ (k2 � k1) =
k2 ⊕ (k1 � k2) (identity a11 in Amsterdamer et al. [2011a]) holds for m-semirings but is
not satisfied by spm-semirings.

Amsterdamer et al. [2011b] obtained an alternative semantics for relational differ-
ence based on their semantics for queries with aggregation on annotated relations
through an encoding of difference using aggregation. Interestingly, the semantics of
the difference defined in this manner is similar to the semantics of SPARQL difference.
However, the resulting annotations reflect the encoding of difference through aggre-
gation and thus do not provide a very intuitive description of the actual operations in
the original query. By contrast, when spm-semiring annotations are just propagated
through the query operations, they do provide a compact and actual representation of
the structure of the query (see the discussion in Section 7). Furthermore, Amsterdamer
et al. [2011b] do not propose a universal object that could be used as the provenance
model for queries with difference under these semantics. Similarly to SPARQL dif-
ference, aggregation-based difference fails to satisfy a11 that holds for m-semirings.
However, it satisfies a13, which is not satisfied by all spm-semirings. This implies that
even if semirings equipped with the aggregate-based difference are spm-semirings,
the resulting class of algebraic structures must necessarily be a strict subset of spm-
semirings.

The Perm system [Glavic and Alonso 2009] employs a provenance model that cap-
tures relational difference and outer join under set and bag semantics. However, it
cannot capture SPARQL DIFFERENCE and OPTIONAL directly since their semantics dif-
fers from that of the corresponding relational operators, as explained in Section 2.
Moreover, the provenance model of Perm, which is akin to why-provenance extended
with ∧¬ for difference, is less informative than spm-semirings and does not suffice for
computing annotations such as ranked trust or multiplicities for bag semantics.

In the semantic Web community, work has also been done on using algebraic struc-
tures to model and unify annotations for RDFS reasoning and SPARQL query answer-
ing [Damásio et al. 2012; Dividino et al. 2009; Zimmermann et al. 2012; Straccia 2013;
Udrea et al. 2010; Buneman and Kostylev 2011].

Damásio et al. [2012] employ m-semirings to capture the semantics of SPARQL query
answering over annotated RDF. More precisely, they use (m, δ)-semirings, which are m-
semirings extended with a duplicate elimination operator δ, as introduced in Geerts and
Poggi [2010]. Then, they encode SPARQL difference through a complex relational ex-
pression involving joins, relational set difference, and duplicate elimination. However,
(m, δ)-semirings have the same deficiency as m-semirings: Their universal structure
does not allow for a simple representation of its elements and is completely symbolic
and not amenable to algebraic manipulation. For this reason, it is not as well-suited to
be used as a provenance model as the structure we propose in Section 6. Indeed, in or-
der to use the resulting expressions to compute (e.g., trust annotations), Damásio et al.
[2012] resort to a simpler model by fixing the duplicate elimination function δ, thereby
disregarding all (m, δ)-semirings with a more complex δ. Furthermore, similar to the
approach taken in Amsterdamer et al. [2011b], the resulting expressions do not reflect
the structure of operators in the original SPARQL query. As previously mentioned,
when the universal spm-semiring is used as provenance structure without involving
the expanded versions in the corresponding seba-structure, we obtain a compact and
intuitive recording of the query’s provenance.

Dividino et al. [2009] study both reasoning and SPARQL query answering on RDF+
graphs. An RDF+ graph is a K-annotated RDF graph where K is a boolean algebra.
The corresponding, most general, provenance model is when K consists of boolean
propositional logic formulas, up to equivalence. The presence of negation in K allows
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Dividino et al. [2009] to generalize the semantics of OPTIONAL in terms of ∧¬, similar
to our definition when trust and set semantics are concerned. We do not require ⊕ and
⊗ to be idempotent, and therefore they are not restricted to boolean algebras.

Zimmermann et al. [2012] also consider both reasoning and SPARQL query answer-
ing. They propose AnQL, an extension of SPARQL such that queries can also explicitly
manipulate both data and annotations. In contrast, we only consider implicit prove-
nance [Buneman et al. 2008], in which annotations are simply carried along when the
data are queried using standard SPARQL queries. They provide a generalized seman-
tics of SPARQL on K-annotated RDF graphs, where K is assumed to be an idempotent
and �-annihilating semiring. As previously mentioned, we do not require ⊕ and ⊗ to
be idempotent. In fact, our work indicates that these restrictions are not required when
SPARQL query answering is concerned. Furthermore, Zimmermann et al. [2012] do
not follow an axiomatic approach based on query equivalences and do not identify a
universal, most general, annotation domain either.

Udrea et al. [2010] consider reasoning and query answering on ARDF, an exten-
sion of RDF in which triples are annotated by a partially ordered set. They consider
explicit manipulation of annotations and extend the semantics of a limited fragment
of SPARQL that does not include the UNION, FILTER, and OPTIONAL (or DIFFERENCE)
operators, in contrast to our work.

Finally, Buneman and Kostylev [2011] propose the use of idempotent and
�-annihilating semirings for generalizing the process of RDFS reasoning. Query
answering is not considered in Buneman and Kostylev paper and is thus orthogonal
to the focus of our work.

10. CONCLUSION AND FUTURE WORK

We presented spm-semirings, an extension of semirings to capture the semantics of
SPARQL queries, involving the non-monotone operator OPTIONAL, on annotated RDF
data. Moreover, we showed that spm-semirings have a universal structure that provides
a concise representation of the provenance of RDF data and SPARQL queries with the
OPTIONAL operator.

Furthermore, we showed how to construct spm-semirings by means of seba-
structures by establishing that any spm-semiring can be derived from a seba-structure.
We believe that this characterization is interesting in its own right.

Finally, we showed that, just as in the relational case [Green et al. 2007], provenance
expressions from the universal spm-semiring can be recorded during query-answering
and later be evaluated in appropriate spm-semirings in order to compute different
forms of annotations for a variety of applications. In other words, we have unified
the semantics of SPARQL on various RDF data models that are used in different
application scenarios.

Some of these applications may not require the full expressiveness of the universal
spm-semiring. For such applications, it may be desirable to record provenance expres-
sions from a less informative model instead (e.g., if such expressions are more efficient
to store and to evaluate than those of more informative provenance models). This raises
the question of whether one can identify a clean hierarchy of provenance models, all
residing within the class of spm-semirings, with the intent to capturing provenance
at various levels of granularity. Furthermore, an interesting question is to formally
study the relationship between spm-semirings, on the one hand, and the algebraic ap-
proaches [Damásio et al. 2012; Amsterdamer et al. 2011b], on the other hand. Finally,
from a practical point of view, one would like to know the overhead caused by main-
taining annotations in the universal spm-semiring during SPARQL query evaluation.
We leave these issues as part of our future work.
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APPENDIX

Proof of Proposition 4.6

We show that A′ = A \ {id2, id3} is minimal by providing for each idi in A′ an alge-
braic structure that satisfies A′ \ {idi} but does not satisfy idi. The structures here are
obtained by the program Mace4 [McCune 2010] that searches for finite models and
counterexamples for equational logic. They have been manually verified, however.

Consider the identity id1: For all k ∈ K, k ⊗ 1 = k. Consider (K = {0, 1},⊕1,⊗1,
�1, 0, 1) with

⊕1 0 1
0 0 1
1 1 1

⊗1 0 1
0 0 0
1 0 0

�1 0 1
0 0 0
1 1 0

Clearly, 1 ⊗1 1 = 0 contradicts id1. It is readily verified that (K,⊕1,⊗1,�1, 0, 1) |=
A′ \ {id1} by exhaustively verifying the identities in A′ \ {id1}.

Consider the identity id4: For all k1, k2 ∈ K, k1 ⊕ k2 = k2 ⊕ k1. Consider (K =
{0, 1, 2},⊕4,⊗4,�4, 0, 1) with

⊕4 0 1 2
0 0 1 2
1 1 1 1
2 2 2 2

⊗4 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

�4 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

Clearly, 1 ⊕4 2 = 1 �= 2 ⊕4 1 = 2 contradicts id4. It is readily verified that
(K,⊕4,⊗4,�4, 0, 1) |= A′ \ {id4}.

Consider the identity id5: For all k1, k2 ∈ K, k1 ⊗ k2 = k2 ⊗ k1. Consider (K =
{0, 1, 2},⊕5,⊗5,�5, 0, 1) with

⊕5 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

⊗5 0 1 2
0 0 0 2
1 0 1 2
2 0 2 2

�5 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

Clearly, 0 ⊗5 2 = 2 �= 2 ⊗5 0 = 0 contradicts id5. It is readily verified that (K,⊕5,
⊗5,�5, 0, 1) |= A′ \ {id5}.

Consider the identity id6: For all k1, k2, k3 ∈ K, k1 ⊕ (k2 ⊕ k3) = (k1 ⊕ k2) ⊕ k3. Consider
(K = {0, 1, 2, 3},⊕6,⊗6,�6, 0, 1) with

⊕6 0 1 2 3
0 0 1 2 3
1 1 1 3 1
2 2 3 2 3
3 3 1 3 3

⊗6 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

�6 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 0 0 0

Clearly, 1 ⊕6 (1 ⊕6 2) = 1 �= (1 ⊕6 1) ⊕6 2 = 3 contradicts id6. It is readily verified that
(K,⊕6,⊗6,�6, 0, 1) |= A′ \ {id6}.

Consider the identity id7: For all k1, k2, k3 ∈ K, k1 ⊗ (k2 ⊗ k3) = (k1 ⊗ k2) ⊗ k3. Consider
(K = {0, 1, 2, 3},⊕7,⊗7,�7, 0, 1) with
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⊕7 0 1 2 3
0 0 1 2 3
1 1 1 1 3
2 2 1 2 3
3 3 3 3 3

⊗7 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 1
3 0 3 1 3

�7 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 0 0 0

Clearly, 2 ⊗7 (2 ⊗7 3) = 2 �= (2 ⊗7 2) ⊗7 3 = 0 contradicts id7. It is readily verified that
(K,⊕7,⊗7,�7, 0, 1) |= A′ \ {id7}.

Consider the identity id8: For all k1, k2, k3 ∈ K, k1 ⊗ (k2 ⊕ k3) = (k1 ⊗ k2) ⊕ (k1 ⊗ k3).
Consider (K = {0, 1},⊕8,⊗8,�8, 0, 1) with

⊕8 0 1
0 0 1
1 1 0

⊗8 0 1
0 1 0
1 0 1

�8 0 1
0 0 1
1 1 0

Clearly, 0⊗8 (0⊕8 0) = 1 �= (0⊗8 0)⊕8 (0⊗8 0) = 0 contradicts id8. It is readily verified
that (K,⊕8,⊗8,�8, 0, 1) |= A′ \ {id8}.

Consider the identity id9: For all k1 ∈ K, k1 � k1 = 0. Consider (K =
{0, 1},⊕9,⊗9,�9, 0, 1) with

⊕9 0 1
0 0 0
1 0 1

⊗9 0 1
0 0 0
1 0 1

�9 0 1
0 0 0
1 1 1

Clearly, 1 �9 1 = 1 contradicts id9. It is readily verified that (K,⊕9,⊗9,�9, 0, 1) |=
A′ \ {id9}.

Consider the identity id10: For all k1, k2, k3 ∈ K, k1 � (k2 ⊕k3) = (k1 �k2)�k3. Consider
(K = {0, 1},⊕10,⊗10,�10, 0, 1) with

⊕10 0 1
0 0 1
1 1 0

⊗10 0 1
0 0 0
1 0 1

�10 0 1
0 0 0
1 1 0

Clearly, 1 �10 (1 ⊕10 1) = 1 �= (1 �10 1) �10 1 = 0 contradicts id10. It is readily verified
that (K,⊕10,⊗10,�10, 0, 1) |= A′ \ {id10}.

Consider the identity id11: For all k1 ∈ K, k1 ⊗ (k2 � k3) = (k1 ⊗ k2) � k3. Consider
(K = {0, 1},⊕11,⊗11,�11, 0, 1) with

⊕11 0 1
0 0 1
1 1 0

⊗11 0 1
0 0 0
1 0 1

�11 0 1
0 0 1
1 1 0

Clearly, 0 ⊗11 (0 �11 1) = 0 �= (0 ⊗11 0) �11 1 = 1 contradicts id11. It is readily verified
that (K,⊕11,⊗11,�11, 0, 1) |= A′ \ {id11}.

Finally, consider the identity id12: For all k1, k2 ∈ K, (k1 � (k1 � k2)) ⊕ (k1 � k2) = k1.
Consider (K = {0, 1},⊕12,⊗12,�12, 0, 1) with
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⊕12 0 1
0 0 0
1 0 0

⊗12 0 1
0 0 0
1 0 1

�12 0 1
0 0 0
1 0 0

Clearly, (1 �12 (1 �12 0)) ⊕12 (1 �12 0) = 0 �= 1 contradicts id12. It is readily verified
that (K,⊕12,⊗12,�12, 0, 1) |= A′ \ {id12}.
Proof of Theorem 5.3

We show that every spm-semiring is derived from some seba-structure, and, vice versa,
every structure derived from a seba-structure is an spm-semiring. We start by showing
that, given a seba-structure (K, B, d, ı), its derived structure (K,⊕,⊗,�, 0, 1) is an spm-
semiring. We do this by verifying the identities A′ given in Figure 2. Since (K,⊕,⊗, 0, 1)
is a semiring, the identities id1–id8 are already satisfied. It thus remains to show that
id9–id12 hold as well. We do this by leveraging the fact that K is a semiring, B a boolean
algebra, and the properties of the mappings d and ı as stated in the definition of
seba-structures (Definition 5.1).

Let k1, k2, k3 ∈ K. We first show that id9 holds:

k1 � k1 = k1 ⊗ ı(d(k1)) (by def.)
= 0. (by sb7)

Also, id10 holds:

k1 � (k2 ⊕ k3) = k1 ⊗ ı(d(k2 ⊕ k3)) (by def.)

= k1 ⊗ ı(d(k2) ∨ d(k3)) (by sb3)

= k1 ⊗ ı(d(k2) ∧ d(k3)) (De Morgan)

= k1 ⊗ (
ı(d(k2)) ⊗ ı(d(k3))

)
(by sb6)

= (
k1 ⊗ ı(d(k2))

)⊗ ı(d(k3)) (by id7)

= (k1 � k2) � k3. (by def.)

Similarly, id11 holds:

k1 ⊗ (k2 � k3) = k1 ⊗ (k2 ⊗ ı(d(k3))) (by def.)

= (k1 ⊗ k2) ⊗ ı(d(k3)) (by id7)
= (k1 ⊗ k2) � k3. (by def.)

Finally, we verify that id12 holds:

(k1 � (k1 � k2)) ⊕ (k1 � k2) = (
k1 ⊗ ı(d(k1 ⊗ ı(d(k2))))

)⊕ (
k1 ⊗ ı(d(k2))

)
(by def.)

= (
k1 ⊗ ı(d(k1) ∧ d(k2))

)⊕ (
k1 ⊗ ı(d(k2))

)
(by sb5)

= (
k1 ⊗ ı(d(k1) ∨ d(k2))

)⊕ (
k1 ⊗ ı(d(k2))

)
(De Morgan)

= (
k1 ⊗ (ı(d(k1)) ⊕ (ı(d(k1)) ⊗ ı(d(k2))))

)⊕ (k1 ⊗ ı(d(k2)))
(by sb4)

= (
k1 ⊗ ı(d(k1))

)⊕ (
k1 ⊗ (ı(d(k1)) ⊗ ı(d(k2)))

)⊕ (
k1 ⊗ ı(d(k2))

)
(by id8)
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= (
(k1 ⊗ ı(d(k1))) ⊗ ı(d(k2))

)⊕ (
k1 ⊗ ı(d(k2))

)
(by sb7,id3, id7)

= (
k1 ⊗ ı(d(k2))

)⊕ (
k1 ⊗ ı(d(k2))

)
(by k1 ⊗ ı(d(k1)) = k1)

= k1 ⊗ (
ı(d(k2)) ⊕ ı(d(k2))

)
(by id8)

= k1 ⊗ (
ı(d(k2)) ⊕ (ı(d(k2)) ⊗ 1)

)
(by id1)

= k1 ⊗ (
ı(d(k2)) ⊕ (ı(d(k2)) ⊗ ı(�))

)
(by sb2)

= k1 ⊗ (
ı(d(k2) ∨ �)

)
(by sb4)

= k1 ⊗ (ı(�)) (by b ∨ � = �)
= k1. (by id1, sb2)

Observe that here we use known identities of boolean algebras and the identity that
states that for any k1 ∈ K, k1 ⊗ ı(d(k1)) = k1. The latter identity holds in every seba-
structure:

k1 = k1 ⊗ 1 (by id1)
= k1 ⊗ ı(�) (by sb2)

= k1 ⊗ ı(d(k1) ∨ d(k1)) (by b ∨ b = �)

= k1 ⊗ (
ı(d(k1)) ⊕ (ı(d(k1)) ⊗ ı(d(k1)))

)
(by sb4)

= (
k1 ⊗ (ı(d(k1)))

)⊕ (
k1 ⊗ (ı(d(k1)) ⊗ ı(d(k1)))

)
(by id8)

= (
k1 ⊗ (ı(d(k1)))

)⊕ (
(k1 ⊗ ı(d(k1))) ⊗ ı(d(k1))

)
(by id7)

= k1 ⊗ (ı(d(k1))). (by id2, id3, sb7)

From this, we may conclude that an algebraic structure derived from a seba-structure
is indeed an spm-semiring.

For the converse, we need to show that every spm-semiring is derived from some
seba-structure. Let (K,⊕,⊗,�, 0, 1) be an spm-semiring. We next define a boolean
algebra (B,∨,∧,⊥,�) together with the mappings d : K → B and ı : B → K, such that
(K,⊕,⊗,�, 0, 1) is derived from (K, B, d, ı).

Let d : K → K be defined such that for every k ∈ K,

d(k) := 1 � (1 � k).

Furthermore, the domain of the boolean algebra is defined as

B := {b ∈ K | ∃k ∈ K, b = d(k)}.
In other words, d is a mapping from K to B. We equip Bwith disjunction (∨), conjunction
(∧), and complementation (¯), as follows. Let b, b1, and b2 be elements in B. In addition,
let k, k1, and k2 be elements in K such that b = d(k), b1 = d(k1), and b2 = d(k2). We
define

b1 ∨ b2 := 1 � (1 � (k1 ⊕ k2)), b̄ := 1 � k and b1 ∧ b2 := b1 ∨ b2.

Finally, we set ⊥ := d(0) and � := d(1) and define ı : B → K to be the identity mapping.
We conclude the proof of Theorem 5.3 by showing the following three claims:

CLAIM 1. The operations ∨, ∧, ¯ on B are well-defined. Furthermore, the structure
(B,∨,∧, ¯,⊥,�) is a boolean algebra.

CLAIM 2. (K, B, d, ı) is a seba-structure.

CLAIM 3. (K,⊕,⊗,�, 0, 1) is derived from (K, B, d, ı).
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Fig. 5. Identities used in the proof of Claims 1, 2, and 3.

It remains to verify the three claims, which we do next.
We start by verifying that a number of identities, id13–id18, as shown in Figure 5,

are implied by the identities A′ that define spm-semirings. These auxilliary identities
will be used extensively in the proofs of the three claims. Recall that, apart from the
identities in A′, we may also use id2 and id3 because these are already shown to be
implied by A′ in Proposition 4.6. We further observe that id13 is shown to be implied by
A′ in Proposition 4.4.

The following derivations have been both manually verified and verified with
Prover9 [McCune 2010], which proves identities in equational logic, among other
things.

We start by showing that A′ |= id14. This identity states that (k1 ⊕ k2) � k3 = (k1 � k3) ⊕
(k2 � k3) for all k1, k2 and k3 in K.

(k1 ⊕ k2) � k3 = (k1 ⊕ k2) ⊗ (1 � k3) (by id1 and id11)
= (k1 ⊗ (1 � k3)) ⊕ (k2 ⊗ (1 � k3)) (by id8)
= (k1 � k3) ⊕ (k2 � k3). (by id1 and id11)

We also have that A′ |= id15, where id15 states that for all k1, k2, k3, and k4 in K,
(k1 � k2) ⊗ (k3 � k4) = (k1 ⊗ k3) � (k2 ⊕ k4).

(k1 � k2) ⊗ (k3 � k4) = (k1 ⊗ (1 � k2)) ⊗ (k3 ⊗ (1 � k4)) (by id1 and id11)
= (k1 ⊗ k3) ⊗ (1 � k2) ⊗ (1 � k4) (by id5 and id7)
= (k1 ⊗ k3) ⊗ ((1 � k2) � k4) (by id1 and id11)
= (k1 ⊗ k3) ⊗ (1 � (k2 ⊕ k4)) (by id10)
= (k1 ⊗ k3) � (k2 ⊕ k4). (by id1 and id11)

We next verify that id16 is implied by A′. This identity states that for all k1, k2 ∈ K,
k1 � (k1 � (k1 � k2)) = k1 � k2. To show that A′ |= id16, we assume that the following
additional identities are shown to be implied by A′:
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id19: k1 � (k1 � (k1 � k2)) = (k1 � k2) � (k1 � (k1 � k2))
id20: k1 � (k1 � (k2 � k1)) = 0

Given these, we then have that A′ |= id16:

k1 � k2 = (k1 � k2) � 0 (by id13)
= (k1 � k2) � ((k1 � k2) � ((k1 � k2) � (k1 � (k1 � k2)))) (by id20)
= ((k1 � k2) � (k1 � (k1 � k2)))

� ((k1 � k2) � ((k1 � k2) � (k1 � (k1 � k2)))) (by id19)
= (k1 � k2) � (k1 � (k1 � k2)) (by id20)
= k1 � (k1 � (k1 � k2)). (by id19)

We next verify that A′ |= id19:

k1 � (k1 � (k1 � k2)) = (k1 � (k1 � (k1 � k2))) ⊕ 0 (by id3)
= (k1 � (k1 � (k1 � k2)))

⊕ ((k1 � (k1 � k2)) � (k1 � (k1 � k2))) (by id9)
= (k1 ⊕ (k1 � (k1 � k2))) � (k1 � (k1 � k2)) (by id14)
= (((k1 � k2) ⊕ (k1 � (k1 � k2)))

⊕ (k1 � (k1 � k2))) � (k1 � (k1 � k2)) (by id4 and id12)
= ((k1 � k2) � (k1 � (k1 � k2))) ⊕ 0 ⊕ 0 (by id6, id9, and id14)
= (k1 � k2) � (k1 � (k1 � k2)) (by id3)

To verify that A′ |= id20, we use the identity

id21: (k1 ⊗ k2) � (k1 � (k2 � k1)) = 0,

which is implied by A′:

0 = k2 ⊗ 0 (by id2)
= k2 ⊗ ((k1 � (k2 � k1)) � (k1 � (k2 � k1))) (by id9)
= ((k2 ⊗ k1) � (k2 � k1)) � (k1 � (k2 � k1)) (by id11)
= (0 ⊕ ((k2 ⊗ k1) � (k2 � k1))) � (k1 � (k2 � k1)) (by id3)
= ((k2 ⊗ 0) ⊕ ((k2 ⊗ k1) � (k2 � k1))) � (k1 � (k2 � k1)) (by id2)
= ((k2 ⊗ (k1 � k1)) ⊕ ((k2 ⊗ k1) � (k2 � k1))) � (k1 � (k2 � k1)) (by id9)
= ((k1 ⊗ (k2 � k1)) ⊕ (k1 ⊗ (k2 � (k2 � k1)))) � (k1 � (k2 � k1)) (by id5 and id11)
= (k1 ⊗ ((k2 � k1) ⊕ (k2 � (k2 � k1)))) � (k1 � (k2 � k1)) (by id4 and id8)
= (k1 ⊗ k2) � (k1 � (k2 � k1)). (by id12)

From this, it follows that A′ |= id20:

k1 � (k1 � (k2 � k1)) = (k1 � (k1 � (k2 � k1))) ⊕ 0 (by id3)
= (k1 � (k1 � (k2 � k1))) ⊕ ((k1 ⊗ k2) � (k1 � (k2 � k1))) (by id21)
= (k1 ⊕ (k1 ⊗ k2)) � (k1 � (k2 � k1)) (by id14)
= k1 ⊗ ((1 ⊕ k2) � (k1 � (k2 � k1))) (by id1, id8, and id11)
= k1 ⊗ ((1 ⊕ k2) � ((k1 ⊗ 1) � (k2 � k1))) (by id1)
= k1 ⊗ ((1 ⊕ k2) � ((k1 ⊗ ((1 � k1) ⊕ (1 � (1 � k1)))) � (k2 � k1)))

(by id12)
= k1 ⊗ ((1 ⊕ k2) � ((k1 � k1) ⊕ (k1 � (1 � k1))) � (k2 � k1))

(by id8 and id11)
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= k1 ⊗ ((1 ⊕ k2) � (0 ⊕ (k1 � (1 � k1))) � (k2 � k1)) (by id9)
= k1 ⊗ ((1 ⊕ k2) � ((k1 � (1 � k1)) � (k2 � k1))) (by id3)
= k1 ⊗ ((1 ⊕ k2) � (k1 � ((1 � k1) ⊕ (k2 � k1)))) (by id10)
= k1 ⊗ ((1 ⊕ k2) � (k1 � ((1 ⊕ k2) � k1))) (by id14)
= (k1 ⊗ (1 ⊕ k2)) � (k1 � ((1 ⊕ k2) � k1)) (by id11)
= 0. (by id21)

We next consider id17, which states that (k1 � k2) � (1 � k3) = k1 � (1 � (k3 � k2)) for all
k1, k2 and k3 in K. To verify that A′ |= id17, we need the following auxiliary identities:

id22: k1 � (1 � k2) = k1 � (k1 � k2)
id23: (k1 � k2) � (k3 � k2) = (k1 � k2) � k3
id24: k1 � (1 � (k3 � k2)) = (k1 � k2) � (1 � (k3 � k2))

Indeed, given these, we have that

(k1 � k2) � (1 � k3) = (k1 � k2) � ((k1 � k2) � k3) (by id22)
= (k1 � k2) � ((k1 � k2) � (k3 � k2)) (by id23)
= (k1 � k2) � (1 � (k3 � k2)) (by id22)
= k1 � (1 � (k3 � k2)). (by id24)

It remains to verify that id22, id23, and id24 are implied by A′. We start by verifying
A′ |= id22:

k1 � (1 � k2) = k1 ⊗ (1 � (1 � k2)) (by id11)
= (1 � (1 � k2)) ⊗ k1 (by id5)
= (1 � (1 � k2)) ⊗ ((k1 � (1 � (1 � k2)))

⊕ (k1 � (k1 � (1 � (1 � k2))))) (by id4 and id12)
= ((1 � (1 � k2)) ⊗ (k1 � (1 � (1 � k2))))

⊕ ((1 � (1 � k2)) ⊗ (k1 � (k1 � (1 � (1 � k2))))) (by id8)
= (k1 ⊗ ((1 � (1 � k2)) � (1 � (1 � k2))))

⊕ ((1 � (1 � k2)) ⊗ (k1 � (k1 � (1 � (1 � k2))))) (by id4 and id11)
= 0 ⊕ ((1 � (1 � k2)) ⊗ (k1 � (k1 � (1 � (1 � k2))))) (by id2 and id9)
= (k1 ⊗ (1 � (1 � k2))) � (k1 � (1 � (1 � k2))) (by id3, id5, and id11)
= (k1 ⊗ (1 � (1 � k2))) � (k1 ⊗ (1 � (1 � (1 � k2)))) (by id1 and id11)
= (k1 ⊗ (1 � (1 � k2))) � (k1 � k2) (by id1, id11, and id16)
= 0 ⊕ ((k1 ⊗ (1 � (1 � k2))) � (k1 � k2)) (by id3)
= ((k1 � k2) � (k1 � k2)) ⊕ ((k1 ⊗ (1 � (1 � k2))) � (k1 � k2)) (by id9)
= ((k1 � k2) ⊕ (k1 � (1 � k2))) � (k1 � k2) (by id11 and id14)
= (k1 ⊗ ((1 � k2) ⊕ (1 � (1 � k2)))) � (k1 � k2) (by id8 and id11)
= (k1 ⊗ 1) � (k1 � k2) (by id4 and id12)
= k1 � (k1 � k2). (by id11)
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To show A′ |= id23, we proceed as follows. Assume that

id25: k1 � (k2 � k1) = k1
id26: k1 � (k2 � (k3 � k1)) = k1 � k2

is implied by A′. Then,

(k1 � k2) � k3 = (k1 � k2) � (k3 � (k2 � (k1 � k2))) (by id26)
= (k1 � k2) � ((k3 � (k2 � (k1 � k2))) � 0) (by id13)
= (k1 � k2) � ((k3 � (k2 � (k1 � k2))) � (k2 � (k2 � (k1 � k2)))) (by id20)
= (k1 � k2) � (k3 � ((k2 � (k1 � k2)) ⊕ (k2 � (k2 � (k1 � k2))))) (by id10)
= (k1 � k2) � (k3 � k2). (by id4 and id12)

The identity id25 is indeed implied by A′:

k1 = (k1 � (k2 � k1)) ⊕ (k1 � (k1 � (k2 � k1))) (by id4 and id12)
= (k1 � (k2 � k1)). (by id3 and id20)

The same holds for the identity id26:

k1 � k2 = k1 � ((k2 � (1 � (k3 � k1))) ⊕ (k2 � (k2 � (1 � (k3 � k1))))) (by id4 and id12)
= (k1 � (k2 � (1 � (k3 � k1)))) � (k2 � (k2 � (1 � (k3 � k1)))) (by id10)
= (((k1 � (k3 � k1)) ⊕ (k1 � (k1 � (k3 � k1))))

� (k2 � (1 � (k3 � k1)))) � (k2 � (k2 � (1 � (k3 � k1)))) (by id4 and id12)
= (((k1 � (k3 � k1)) ⊕ 0) � (k2 � (1 � (k3 � k1))))

� (k2 � (k2 � (1 � (k3 � k1)))) (by id20)
= ((k1 � (k3 � k1)) � (k2 � (1 � (k3 � k1))))

� (k2 � (k2 � (1 � (k3 � k1)))) (by id3)
= (k1 ⊗ ((1 � (k3 � k1)) � (k2 � (1 � (k3 � k1)))))

� (k2 � (k2 � (1 � (k3 � k1)))) (by id1 and id11)
= (k1 ⊗ (1 � (k3 � k1))) � (k2 � (k2 � (1 � (k3 � k1)))) (by id25)
= (k1 � (k3 � k1)) � (k2 � (k2 � (1 � (k3 � k1)))) (by id1 and id11)
= k1 � (k2 � (k2 � (1 � (k3 � k1)))) (by id25)
= k1 � (k2 � (k2 � (k2 � (k3 � k1)))) (by id22)
= k1 � (k2 � (k3 � k1)). (by id16)

We next show that A′ |= id24, which states that (k1 � k2) � (1 � (k3 � k2)) = k1 � (1 �
(k3 � k2)) for all k1, k2, and k3 in K. Assume that

id27: k1 � (k2 � (1 � (k3 � k1))) = k1

is implied by A′. Then, A′ |= id24:

(k1 � k2) � (1 � (k3 � k2)) = (k1 � (k2 � (1 � k2))) � (1 � (k3 � k2)) (by id25)
= (k1� (k2� (1 � (k2 � (k1� (1 � (k3� k2))))))) � (1 � (k3� k2))

(by id27)
= (k1 � (1 � (k3 � k2))) � (k2� (1 � (k2� (k1� (1� (k3� k2))))))

(by id4 and id10)
= k1 � (1 � (k3 � k2)). (by id27)
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The identity id27 is indeed implied by A′:

k1 = k1 � (k3 � k1) (by id25)
= k1 ⊗ (1 � (k3 � k1)) (by id11)
= k1 ⊗ ((1 � (k3 � k1)) � (k2 � (1 � (k3 � k1)))) (by id25)
= (k1 � (k3 � k1)) � (k2 � (1 � (k3 � k1))) (by id11)
= k1 � (k2 � (1 � (k3 � k1))) (by id25)

Finally, we verify that A′ implies id18, which states that k1 � (k2 ⊕ k2) = k1 � k2 for all
k1, k2 in K.

k1 � k2 = (k1 � k2) ⊗ 1 (by id1)
= (k1 � k2) ⊗ ((1 � k2) ⊕ (1 � (1 � k2))) (by id4 and id12)
= ((k1 � k2) � k2) ⊕ ((k1 � k2) � (1 � k2)) (by id1, id8, and id11)
= ((k1 � k2) � k2) ⊕ (k1 � (k2 ⊕ (1 � k2))) (by id10)
= ((k1 � k2) � k2) ⊕ (k1 ⊗ (1 � (k2 ⊕ (1 � k2))))

(by id1 and id11)
= ((k1 � k2) � k2) ⊕ (k1 ⊗ ((1 � k2) � (1 � k2))) (by id10)
= ((k1 � k2) � k2) ⊕ (k1 ⊗ 0) (by id9)
= k1 � (k2 ⊕ k2). (by id2, id3, and id10)

Hence, A′ |= {id1, . . . , id18}. We are now ready to prove the three claims.

PROOF OF CLAIM 1. We first check whether the definitions of disjunction, conjunction,
and complementation are independent of the choice of elements in K and thus that
these operations are well-defined. Since conjunction is defined in terms of disjunction
and complementation, it suffices to consider disjunction and complementation only. Let
k, k1, k2, 
, 
1, and 
2 be elements in K such that b = d(k) = d(
), b1 = d(k1) = d(
1), and
b2 = d(k2) = d(
2). We start by showing that complementation is well-defined:

b̄ := 1 � k (by def.)
= 1 � (1 � (1 � k)) (by id16)
= 1 � (1 � (1 � 
)) (by d(k) = d(
))
= 1 � 
. (by id16)

For disjunction, we observe the following:

b1 ∨ b2 := 1 � (1 � (k1 ⊕ k2)) (by def.)
= 1 � ((1 � k1) � k2) (by id10)
= 1 � ((1 � 
1) � k2) (by d(k) = d(
))
= 1 � (1 � (
1 ⊕ k2)) (by id10)
= 1 � (1 � (k2 ⊕ 
1)) (by id4)
= 1 � ((1 � k2) � 
1) (by id10)
= 1 � ((1 � 
2) � 
1) (by d(k) = d(
))
= 1 � (1 � (
2 ⊕ 
1)) (by id10)
= 1 � (1 � (
1 ⊕ 
2)). (by id4)

Hence, ¯ and ∨ are well-defined and so is ∧.
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Fig. 6. Axiomatization of Boolean algebras.

We next verify that (B,∨,∧, ¯,⊥,�) is indeed a Boolean algebra. We do this by showing
that this structure satisfies the three identities b1, b2, and b3 (the “fourth set” of
postulates, [Huntington 1933b, page 280] and corrected in Huntington [1933a]) shown
in Figure 6. The commutativity (b1) of the disjunction (∨) follows immediately from the
definition of disjunction and the fact that ⊕ is commutative (id4). For associativity (b2),
we observe the following. Let b1, b2, and b3 in B and k1, k2, and k3 in K be such that
bi = d(ki), for i = 1, 2, 3.

b1 ∨ (b2 ∨ b3) := 1 � (1 � (k1 ⊕ (1 � (1 � (k2 ⊕ k3))))) (by def.)
= 1 � ((1 � k1) � (1 � (1 � (k2 ⊕ k3)))) (by id10)
= 1 � ((1 � k1) ⊗ (1 � (1 � (1 � (k2 ⊕ k3))))) (by id1 and id11)
= 1 � ((1 � k1) ⊗ (1 � (k2 ⊕ k3))) (by id16)
= 1 � ((1 � k1) � (k2 ⊕ k3)) (by id1 and id11)
= 1 � (1 � (k1 ⊕ (k2 ⊕ k3))) (by id10)
= 1 � (1 � ((k1 ⊕ k2) ⊕ k3)) (by id6)
= 1 � ((1 � k3) � (k1 ⊕ k2)) (by id4 and id10)
= 1 � ((1 � k3) ⊗ (1 � (k1 ⊕ k2))) (by id1 and id11)
= 1 � ((1 � k3) ⊗ (1 � (1 � (1 � (k1 ⊕ k2))))) (by id16)
= 1 � ((1 � k3) � (1 � (1 � (k1 ⊕ k2)))) (by id1 and id11)
= 1 � (1 � ((1 � (1 � (k1 ⊕ k2))) ⊕ k3)) (by id4 and id10)
:= (b1 ∨ b2) ∨ b3 (by def.)

It remains to verify (b3). Let k1, k2 ∈ K and b1, b2 ∈ Bsuch that b1 = d(k1) and b2 = d(k2).
Recall that, by definition, b1 ∧ b2 := (b̄1 ∨ b̄2) ∨ (b̄1 ∨ b2). Let us first consider (b̄1 ∨ b̄2)
and b̄1 ∨ b2.

(b̄1 ∨ b̄2) = 1 � (1 � (1 � ((1 � (1 � (1 � k1))) ⊕ (1 � (1 � (1 � k2)))))) (by def.)
= 1 � (1 � (1 � ((1 � k1) ⊕ (1 � k2)))) (by id16)
= 1 � ((1 � k1) ⊕ (1 � k2)), (by id16)

and similarly,

b̄1 ∨ b2 = 1 � ((1 � k1) ⊕ (1 � (1 � k2))).

Hence, (b̄1 ∨ b̄2) ∨ (b̄1 ∨ b2) is equal to

1 � (1 � ((1 � ((1 � k1) ⊕ (1 � k2))) ⊕ (1 � ((1 � k1) ⊕ (1 � (1 � k2)))))) (by def.)
= 1 � (1 � (((1 � (1 � k2)) � (1 � k1)) ⊕ ((1 � (1 � (1 � k2))) � (1 � k1))))

(by id4 and id10)
= 1 � (1 � (((1 � (1 � k2)) � (1 � k1)) ⊕ ((1 � k2) � (1 � k1)))) (by id16)
= 1 � (1 � ((((1 � (1 � k2)) ⊕ (1 � k2)) � (1 � k1)))) (by id14)
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= 1 � (1 � (1 � (1 � k1))) (by id12)
= 1 � (1 � k1), (by id16)

which in turn is equal to b1.
Hence, ∨ and ¯ satisfy b1–b3. It has been shown in Huntington [1933b] that when ∧

is defined in terms of ∨ and ¯, as we do, then � is uniquely determined by � = b ∨ b̄.
In addition, ⊥ := �̄. It is known that these operations and constants define a Boolean
algebra [Huntington 1933b]. Since we defined � := d(1) and ⊥ := d(0), it remains to be
shown that d(1) = b ∨ b̄ for any b ∈ B and that d(0) = d(1). Observe the following: Let
b ∈ B and k ∈ K such that b = d(k). Then,

b ∨ b̄ := 1 � (1 � (k ⊕ (1 � k))) (by def.)
= 1 � ((1 � k) � (1 � k)) (by id10)
= 1 � 0 (by id9)
= 1 � (1 � 1) (by id9)
= d(1) (by def.)

Furthermore, d(1) = 1 � (1 � (1 � 1)) = 1 � (1 � 0) = d(0) by id9 and the definition
of d. Hence, we may conclude that (B,∨,∧, ¯,⊥,�) is indeed a boolean algebra. This
concludes the proof of Claim 1.

PROOF OF CLAIM 2. We need to verify that (K, B, d, ı) satisfies sb1–sb7.
Since we defined ⊥ := d(0) and � := d(1), sb1 is automatically satisfied. For sb2, we

observe that ı(⊥) = ı(d(0)) = d(0) = 0 and ı(�) = ı(d(1)) = d(1) = 1. This follows from
the definition of d and ı, and identities id9 and id13.

We next show that sb3 holds; that is, for any k, 
 ∈ K, d(k ⊕ 
) = d(k) ∨ d(
). Observe
that d(k⊕ 
) = 1 � (1 � (k⊕ 
)) which is equal to d(k) ∨ d(
) by the definition of d and ∨.

We verify sb5; that is, for any k ∈ K, b ∈ B, d(k⊗ ı(b)) = d(k) ∧ b, as follows. Let 
 ∈ K
be such that b = d(
). Then,

d(k ⊗ (1 � (1 � 
))) = 1 � (1 � (k ⊗ (1 � (1 � 
)))) (by def.)
= 1 � (1 � (k � (1 � 
)))) (by id1 and id11)
= (1 � (1 � 
)) � (1 � k) (by id17)
= 1 � ((1 � k) ⊕ (1 � 
)) (by id4 and id10)

= d(k) ∨ d(
) (by id16 and def.)
= d(k) ∧ b. (by def.)

For sb4, we need to show that for any b, b′ ∈ B, ı(b ∨ b′) = ı(b) ⊕ (ı(b̄) ⊗ ı(b′)). Since, ı is
the identity mapping, this is equivalent to showing that for any k, 
 ∈ K, d(k) ∨ d(
) =
d(k) ⊕ (d(k) ⊗ d(
)).

d(k) ∨ d(
) = 1 � (1 � (k ⊕ 
)) (by def.)
= 1 � ((1 � k) ⊗ (1 � 
)) (by id15)
= ((1 � k) ⊕ (1 � (1 � k))) � ((1 � k) ⊗ (1 � 
)) (by id12)
= ((1 � k) � ((1 � k) ⊗ (1 � 
))) ⊕ ((1 � (1 � k)) � ((1 � k) ⊗ (1 � 
)))

(by id14)
= ((1 � k) � (1 � 
)) ⊕ ((1 � (1 � k)) � ((1 � k) ⊗ (1 � 
))) (by id16)
= ((1 � (k ⊕ (1 � 
)))) ⊕ ((1 � (1 � k)) � ((1 � k) ⊗ (1 � 
)))

(by id1, id11, and id12)
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= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ ((1 � (1 � k)) � ((1 � k) ⊗ (1 � 
))) (by id15)
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � ((1 � k) ⊕ ((1 � k) ⊗ (1 � 
)))) (by id10)
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � ((1 � k) ⊗ (1 ⊕ (1 � 
)))) (by id8 )
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � ((1 � k) ⊗ (((1 � 
)

⊕ (1 � (1 � 
))) ⊕ (1 � 
)))) (by id4 and id12)
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � (((1 � k) ⊗ (1 � 
))

⊕ ((1 � k) ⊗ (1 � (1 � 
))) ⊕ ((1 � k) ⊗ (1 � 
)))) (by id8)
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � (((1 � k) ⊗ (1 � 
))

⊕ ((1 � k) ⊗ (1 � (1 � 
))))) (by id4, id10, and id18)
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � ((1 � k) ⊗ ((1 � 
) ⊕ (1 � (1 � 
))))) (by id8)
= ((1 � k) ⊗ (1 � (1 � 
))) ⊕ (1 � (1 � k)) (by id1, id4, and id12)

= d(k) ⊕ (d(k) ⊗ d(
)) (by id4, id16, and def.)

For sb6, we need to show that for any b, b′ ∈ B, ı(b ∧ b′) = ı(b) ⊗ ı(b′). Since ı is the
identity mapping, this is equivalent to showing that, for any k, 
 ∈ K, d(k) ∧ d(
) =
d(k) ⊗ d(
):

d(k) ∧ d(
) = 1 � ((1 � k) ⊕ (1 � 
)) (by def.)
= (1 � (1 � k)) ⊗ (1 � (1 � 
)) (by id1, id10, and id11)
= d(k) ⊗ d(
) (by def.)

Finally, for sb7 we verify that for any k ∈ K, k⊗ d(k) = 0. It is indeed readily verified
that

k ⊗ d(k) = k ⊗ (1 � (1 � (1 � k))) = k ⊗ (1 � k) = k � k = 0. (by id1, id11, and id16)

In other words, (K, B, d, ı) is indeed a seba-structure. This concludes the proof of
Claim 2.

PROOF OF CLAIM 3. We need to verify that (K,⊕,⊗,�, 0, 1) is derived from (K, B, d, ı).
For this, we need to verify that k1 � k2 = k1 ⊗ ı(d(k2) for all k1, k2 ∈ K. Observe the
following:

k1 � k2 = k1 ⊗ (1 � k2) (by id1 and id11)
= k1 ⊗ (1 � (1 � (1 � k2))) (by id16)

= k1 ⊗ d(k2). (by def.)

This concludes the proof of Claim 3.
This concludes the proof of Theorem 5.3.

Proof of Lemma 6.8

Let S be a set of monomials and consider (P, N) ∈ C(S) and a pair (P ′, N′) whose
monomials belong to S. We first show that

[bP,N] · [bP ′,N′ ] =
{

[bP,N] if s(P ′) ⊆ P and s(N′) ⊆ N
[0] otherwise.

Here, s(P ′) and s(N′) denote the “set versions” of P ′ and N′, respectively. Recall that
[bP ′,N′ ] = [bs(P ′),s(N′)] because of the idempotence of “·” for variables in BX and B̄X. We
can thus safely use bs(P ′),s(N′) instead of bP ′,N′ . Since (P, N) ∈ C(S), every monomial μ
in S either appears in P or in N.

Journal of the ACM, Vol. 63, No. 1, Article 7, Publication date: February 2016.



Algebraic Structures for Capturing the Provenance of SPARQL Queries 7:53

First, assume that s(P ′) ⊆ P and s(N′) ⊆ N. Then, every monomial in s(P ′) already
appears in P and similarly for s(N′) and N. The idempotence of “·” implies that [bP,N] ·
[bs(P ′),s(N′)] = [bP,N]. Suppose next that s(P ′) contains a monomial μ that does not
appear in P. This implies that μ appears in N and thus [bP,N]·[bs(P ′),s(N′)] contains b̄μ ·bμ

which, by the properties of θ, is equivalent to 0. Hence, also [bP,N] · [bs(P ′),s(N′)] = [0].
The case that s(N′) �⊆ N can be dealt with similarly.

We next show that ⎡
⎣ ∑

(P,N)∈C(S)

bP,N

⎤
⎦ = [1]

by induction on the size of S. For the base case, assume that S consists of a single
monomial μ. Then, C(S) = {({μ},∅), (∅, {μ})}, and thus the sum corresponds to [bμ + b̄μ]
which, by the properties of θ is equal to [1]. Suppose next that the property holds
for sets S of size k. Consider S′ = S ∪ {μ} for some monomial μ �∈ S. Note that any
(P ′, N′) ∈ C(S′) can be written either as (P∪{μ}, N′) with (P, N′) ∈ C(S) or as (P ′, N∪{μ})
with (P ′, N) ∈ C(S). Similarly, for (P, N) ∈ C(S), we have that either (P∪{μ}, N) ∈ C(S′),
provided that [bP∪{μ},N] �= [0], or (P, N ∪ {μ}) ∈ C(S′), provided that [bP,N∪{μ}] �= [0]. We
can thus write⎡

⎣ ∑
(P ′,N′)∈C(S′)

bP,N

⎤
⎦ =

⎡
⎣ ∑

(P,N)∈C(S)

bμ · bP,N

⎤
⎦+

⎡
⎣ ∑

(P,N)∈C(S)

b̄μ · bP,N

⎤
⎦

=
⎡
⎣(bμ + b̄μ) ·

∑
(P,N)∈C(S)

bP,N

⎤
⎦ =

⎡
⎣ ∑

(P,N)∈C(S)

bP,N

⎤
⎦ = [1],

where the last equality follows from the induction hypothesis and the fact that bμ + b̄μ

is equivalent to 1.

Proof of Proposition 6.14

We show that every polynomial p[XB] in N[XB] is equivalent to its expanded version
pe[XB]. Assume that p[XB] = ∑

(P,N)∈T bP,N · pP,N[X] for some T ⊆ PN and non-zero
polynomials pP,N[X] ∈ N[X]. It is easily verified that any polynomial in N[XB] can
be written in this form. Recall that P and N are, in general, multisets of monomi-
als. Denote by s(P) and s(N) their corresponding set versions obtained by ignoring
multiplicities of the monomials in P and N, respectively.

Consider the set of monomials Sp obtained from the polynomial p[XB] (cf. Defini-
tion 6.9). Observe that Sp contains all monomials μ that appear as bμ or b̄μ in pairs
(P, N) ∈ T and those that appear in any of the polynomials pP,N[X]. In other words, Sp
and T are defined over the same set of monomials. We construct pe[XB] in two steps,
as illustrated in Example 6.11.

Step 1. We first multiply p[XB] with
∑

(P,N)∈C(Sp) bP,N, which by Property (2) in
Lemma 6.8 is equivalent to [1], and we simplify the terms, using Property (1) in
Lemma 6.8, just as in Example 6.11. The general form of the resulting polynomial
p1[XB] is then given by

p1[XB] =
∑

(P ′,N′)∈C(Sp)\U1

bP ′,N′ ·
⎛
⎝ ∑

(P,N)∈T ,s(P)⊆P ′,s(N)⊆N′
pP,N[X]

⎞
⎠ ,
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where U1 denotes the set of pairs (P ′, N′) ∈ C(Sp) for which {(P, N) ∈ T , s(P) ⊆
P ′, s(N) ⊆ N′} is empty. In terms of equivalence classes, it is safe to eliminate the terms
corresponding to U1 because these are equivalent to 0 by Property (1) in Lemma 6.8.

Step 2. Next, for (P ′, N′) ∈ C(Sp) \ U1, denote by p′
P,N[X] the polynomial in N[X]

obtained by removing all monomials μ from pP,N[X] such that μ ∈ N. If no monomials
are left in p′

P,N[X], we treat it as the zero polynomial. Furthermore, let rP ′,N′ [X] =∑
(P,N)∈T ,s(P)⊆P ′,s(N)⊆N′ p′

P,N[X]. We can then write p1[XB] equivalently as

pe[XB] =
∑

(P ′,N′)∈C(Sp)\(U1∪U2)

bP ′,N′ · rP ′,N′[X],

where U2 ⊆ C(Sp) \ U1 consists of all (P ′, N′) for which rP ′,N′[X] = 0. In terms of
equivalence classes, it is safe to eliminate the terms corresponding to U2 because this
corresponds to the application of [b̄μ] · [μ] = [0].

We next verify that pe[XB] is the expanded version of p[XB] as defined in Defini-
tion 6.15. For this, we need to show that (i) the polynomials rP ′,N′ [X] are non-zero and
do not contain monomials that occur in N′, and (ii) C(Sp) \ (U1U2) = Sp-supp(p[XB]).

Clearly, (i) follows from the construction of pe[XB]. We next verify (ii).
We first show that Sp-supp(p[XB]) ⊆ C(Sp)\ (U1 ∪U2). Let (P, N) ∈ C(Sp) and assume

that (P, N) ∈ Sp-supp(p[XB]) but (P, N) ∈ U1 ∪U2. This is impossible, however. Indeed,
(P, N) ∈ Sp-supp(p[XB]) implies that [0] �= [bP,N · p[XB]] = [bP,N · pe[XB]]. On the other
hand, (P, N) ∈ (U1 ∪ U2) implies that [bP,N · pe[XB]] = [0].

To show that C(Sp) \ (U1 ∪ U2) ⊆ Sp-supp(p[XB]), let (P ′, N′) ∈ C(Sp) \ (U1 ∪ U2)
and assume that (P ′, N′) �∈ Sp-supp(p[XB]). The latter implies that [bP ′,N′ · p[XB]] =
[0], and (P ′, N′) ∈ C(Sp) \ (U1 ∪ U2) implies that there exists a non-zero polynomial
rP ′,N′[X] in pe[XB]. Hence, [bP ′,N′ · rP ′,N′[X]] = [0] and there must be a μ in rP ′,N′ [X] that
belongs to N′. This contradicts the assumption that (P ′, N′) ∈ C(Sp) \ (U1 ∪ U2). We
may thus conclude that C(Sp) \ (U1 ∪ U2) ⊆ Sp-supp(p[XB]). Hence, C(Sp) \ (U1 ∪ U2) =
Sp-supp(p[XB]).

We conclude by showing that pe[XB] is uniquely determined by p[XB]. Let p′[XB] =∑
(P ′,N′)∈Sp-supp(p[XB]) bP ′,N′ · sP ′,N′ [X] for some non-zero sP ′,N′ [X] ∈ N[X] none of whose

monomials appears in N′. Assume that (a) [p[XB]] = [p′[XB]] and (b) pe[XB] �= p′[XB]
where pe[XB] is of the form (‡). From (a) we know that [pe[XB]] = [p′[XB]] and that
[bP ′,N′ · pe[XB]] = [bP ′,N′ · rP ′,N′ [X]] = [bP ′,N′ · sP ′,N′[X]] = [bP ′,N′ · p′[XB]]. From (b), we
know that there is a pair (P ′, N′) in Sp-supp(p[XB]) such that rP ′,N′ [X] �= sP ′,N′[X].
More specifically, let rP ′,N′ [X] = ∑

μ rμ · μ and sP ′,N′[X] = ∑
μ sμ · μ and let μ be such

that rμ �= sμ. Without loss of generality, we may assume that sμ > rμ. To ensure that
[bP ′,N′ · rP ′,N′ [X]] = [bP ′,N′ · sP ′,N′[X]], we thus must be able to go from bP ′,N′ · rP ′,N′[X] to
bP ′,N′ · sP ′,N′ [X] by applying a sequence of rules (i)–(iv) as given in the definition of θ . In
particular, we must add bP ′,N′ · (rμ − sμ) · μ to bP ′,N′ · rP ′,N′[X] to obtain bP ′,N′ · sP ′,N′[X].
From the definition of θ , however, we can only introduce such a term using rule (iii).
That is, whenever μ ∈ N. This is impossible since sP ′,N′ [X] is such that none of its
monomials occurs in N′. Hence, [bP ′,N′ · rP ′,N′ [X]] �= [bP ′,N′ · sP ′,N′[X]], which contradicts
(i). Hence, pe[XB] must be equal to p′[XB].

Proof of Proposition 6.16

Suppose that [p[XB]] = [q[XB]]. Recall that this implies that S-supp(p[XB]) =
S-supp(q[XB]) for any S ⊆ mon(X). This holds in particular for S = Sp ∪ Sq.
Furthermore, along the same lines as the proof of Proposition 6.14, one can show
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that

[pe[XB]] =
⎡
⎣ ∑

(P,N)∈(Sp ∪ Sq)-supp(p[XB])

bP,N · rP|Sp ,N|Sp
[X]

⎤
⎦

[qe[XB]] =
⎡
⎣ ∑

(P,N)∈(Sp ∪ Sq)-supp(p[XB])

bP,N · sP|Sq ,N|Sq
[X]

⎤
⎦ ,

and that rP|Sp ,N|Sp
[X] = sP|Sq ,N|Sq

[X] for any (P, N) ∈ (Sp ∪ Sq)-supp(p[XB]). Conversely,
assume that rP|Sp ,N|Sp

[X] = sP|Sq ,N|Sq
[X] for any (P, N) ∈ (Sp ∪ Sq)-supp(p[XB]). Then,

clearly, [pe[XB]] = [qe[XB]] and thus [p[XB]] = [q[XB]] by Proposition 6.14.

Proof of Proposition 6.18

We show that deciding equivalence of two polynomials in N[XB] is coNP-complete.
Let p[XB] = ∑

(P,N)∈T bP,N · pP,N[X] and q[XB] = ∑
(P,N)∈T ′ bP,N · qP,N[X] for some

T , T ′ ⊆ PN and non-zero polynomials pP,N[X] and qP,N[X] in N[X]. Let S = Sp∪Sq. The
following algorithm decides the complement problem (i.e., whether [p[XB]] �= [q[XB]]
holds):

(1) Guess an element (P, N) ∈ C(S). Denote by bP,N the corresponding monomial.
(2) Verify the following:

(a) Compute p′[XB] = bP,N · p[XB] and q′[XB] = bP,N · q[XB].
(b) Simplify p′[XB] and q′[XB] such that they are of the form bP,N ·r[X] and bP,N ·s[X]

in which neither r[X] nor s[X] contains monomials μ that occur in N.
(c) Check whether r[X] �= s[X]. If so, return “yes.”

Clearly, the algorithm is in NP. Indeed, in Step (1) we can guess elements (P, N)
from C(S) since their sizes are bounded by a polynomial in |S|. Furthermore, Step (2)
is in PTIME. Indeed, it involves the PTIME computation of a product of polynomials
(Step (2.a)), a PTIME simplification procedure (Step (2.b)) as given in the proof of
Propositon 6.14, and a simple equality check (Step (2.c)). The algorithm is to find
two terms in the expanded versions of p[XB] and q[XB] for which the condition in
Proposition 6.16 is not satisfied, and hence these terms witness the fact that p[XB]
and q[XB] are not equivalent. The correctness of the algorithm is thus immediate from
Proposition 6.16. We may conclude that deciding whether [p[XB]] = [q[XB]] holds is in
coNP.

For the lower bound, we prove the coNP-hardness by reduction from the tautology
problem. An instance of the latter problem is φ = C1 ∨ · · · ∨ Cn, where all the variables
in φ are x1, . . . , xk, Cj is of the form lj1 ∧ lj2 ∧ lj3 , and li j is either xs or x̄s, s ∈ [1, k]. The
problem is to determine whether all truth assignments make φ true. This problem is
known to be coNP-complete (cf. Garey and Johnson [1979]).

Given an instance φ, we define a polynomial pφ[X, BX, B̄X] with X = {x1, . . . , xk} such
that [pφ[XB]] = [1] if and only if φ is a tautology. The polynomial pφ[XB] consists of n
terms pCi , one for each clause Ci in φ, where pCi is the product of three variables in
BX ∪ B̄X corresponding to the literals in the corresponding clause. That is, if in clause Ci,

 ji is a variable in xm ∈ X, then we put bxm in the product; if 
 ji is a negated variable x̄m,
for xm ∈ X, then we put b̄xm in the product. For example, if φ = (x̄1 ∧x2 ∧x3)∨(x1 ∧ x̄2 ∧x4),
then pφ = b̄x1 · bx2 · bx3 + bx1 · b̄x2 · bx4 . We claim that [pφ[XB]] = [1] iff φ is a tautology.

Consider a truth assignment τ : X → {0, 1}. We associate with τ a pair (Pτ , Nτ ) ∈ C(S)
such that xi ∈ Pτ if τ (xi) = 1 and xi ∈ Nτ if τ (xi) = 0. Conversely, given an element
(P, N) ∈ C(S), we define the associated truth assignment τP,N such that τP,N(xi) = 1
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if xi ∈ P, and τP,N(xi) = 0 if xi ∈ N. Observe the following: if τ makes Ci true,
then [bPτ ,Nτ

· pCi ] = [bPτ ,Nτ
] and if τ makes Ci false, then [bPτ ,Nτ

· pCi ] = [0]. Hence,
if φ is a tautology then, for each truth assignment τ , there exists at least one Ci
in φ such that [bPτ ,Nτ

· pCi ] = [bPτ ,Nτ
]. Hence, for each assignment τ , [bPτ ,Nτ

· pφ] =
[bPτ ,Nτ

]. Furthermore, since [
∑

τ bPτ ,Nτ
] = [1] we have that [pφ[XB]] = [1]. Similarly, if

[pφ[XB]] = [1], then [bP,N · pφ] = [bP,N] for each (P, N) ∈ C(S). In other words, for each
(P, N) ∈ C(S), there must exist at least one term pCi in pφ such that [bP,N · pCi ] = [bP,N].
This implies that, for every truth assignment τP,N, there is at least one clause Ci that
evaluates to true and thus φ is a tautology.

Proof of Proposition 6.21

We show that (BX,∨b,∧b,
b,⊥b,�b) is a boolean algebra. We first verify that the op-

erations ∨b, ∧b, and b are well-defined (i.e., that they do not depend on the chosen
representative) and are internal (i.e., their result is again an element in the boolean
algebra). We first consider ∨b and ∧b.

Let [pT ] and [pT ′] be two elements in BX. Recall that [pT ] ∨b [pT ′] := [pT + pT ′] and
[pT ] ∧b [pT ′ ] := [pT · pT ′]. Clearly, if [pT ] = [pT1 ] and [pT ′] = [pT ′

1
], then [pT + pT ′] =

[pT1 + pT ′
1
] and [pT · pT ′] = [pT1 · pT ′

1
] since equivalence classes are defined in terms of

the congruence relation θ , which in turn is compatible with addition and multiplication
(cf. definition of congruence relation at the beginning of Section 6.2). Hence, ∨b and ∧b
are well-defined.

To show that [pT ]∨b [pT ′ ] ∈ BX, we provide an explicit representative for [pT ]∨b [pT ′]
by leveraging Lemma 6.19. This lemma indicates how to obtain a representative of the
sum and product of two boolynomials in terms of their extended versions.

For boolynomials in BX, observe that the extended versions of pT and pT ′ coincide
with pT and pT ′ , respectively. Indeed, consider pT with carrier set S and thus T ⊆
C(S). It is clear that the set of monomials bP,N that occur in pT precisely corresponds
with the elements (P, N) ∈ T . That is, T is the S-support of pT . In other words,∑

(P,N)∈S-support(pT ) bP,N ·1 is the expanded version of pT , which is precisely pT . Similarly
for T ′ with carrier set S′. Lemma 6.19 then tells us that

[pT + pT ′] =

⎡
⎢⎢⎣ ∑

(P,N)∈C(S∪S′)
(P|S,N|S)∈T or (P|S′ ,N|S′ )∈T ′

bP,N

⎤
⎥⎥⎦ ,

which is clearly in BX. Along the same lines, Lemma 6.19 implies that

[pT · pT ′] =

⎡
⎢⎢⎣ ∑

(P,N)∈C(S∪S′)
(P|S,N|S)∈T and (P|S′ ,N|S′ )∈T ′

bP,N

⎤
⎥⎥⎦ ,

and thus [pT · pT ′] also belongs to BX.
We next consider complementation. Recall that [pT ]

b
:= [pC(S)\T ], where S is the

carrier set of T . Clearly, [pC(S)\T ] ∈ BX and hence it remains to show that [pT ]
b

is well-defined. Let [pT ] = [pT ′]. We need to show that [pC(S)\T ] = [pC(S′)\T ′], where
S′ is the carrier set of T ′. Clearly, [pC(S)\T ] = [

∑
(P,N)∈(S ∪ S′)-supp(pC(S)\T ) bP,N]. Further-

more, (S ∪ S′)-supp(pC(S)\T ) = {(P, N) ∈ C(S ∪ S′) | (P|S, N|S) ∈ C(S) \ T } and hence,
(S ∪ S′)-supp(pC(S)\T ) = C(S ∪ S′) \ {(P, N) ∈ C(S ∪ S′) | (P|S, N|S) ∈ T }. In other words,
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(S ∪ S′)-supp(pC(S)\T ) = C(S ∪ S′) \ (S ∪ S′)-supp(pT ). From this, we may infer that

[pT ]
b =

⎡
⎣ ∑

(P,N)∈C(S∪S′)\(S∪S′)-supp(pT )

bP,N

⎤
⎦ .

Because [pT ] = [pT ′] and hence (S ∪ S′)-supp(pT ) = (S ∪ S′)-supp(pT ′), we may con-
clude that [pT ]

b = [
∑

(P,N)∈C(S∪S′)\(S ∪ S′)-supp(pT ′ ) bP,N] = [pT ′]
b
. Hence, complementation

is well-defined as well.
From the preceding, it is worth observing that disjunction, conjunction, and com-

plementation of boolynomials in BX translate directly into the set operations union,
intersection, and difference, respectively, on supports of their defining polynomials.
It is this correspondence that allows us to verify later that (BX,∨b,∧b,

b,⊥b,�b) is a
boolean algebra. Note that the correspondence does not hold, however, when it concerns
general boolynomials in Nθ [XB] (cf. Lemma 6.19 and Example 6.20).

Similar to the proof of Theorem 5.3, we verify that (BX,∨b,∧b,
b,⊥b,�b) is a boolean

algebra by checking the validity of Huntington’s axioms (b1), (b2), and (b3). These
axioms are shown in Figure 6. That is, first we need to verify that ∨b is commu-
tative (b1) and associative (b2). This, however, is a direct consequence of the def-
inition of ∨b in terms of addition in the semiring of boolynomials, which is com-
mutative and associative. Alternatively, we can rely on the commutativity and as-
sociativity of the union set operation on supports, hereby leveraging the correspon-
dence previously mentioned. Next, we need to verify axiom (b3), which states that
[pT ] = ([pT ]∧b[pT ′])∨b([pT ]∧b[pT ′]

b
). This axiom indeed holds, as we will show next. Re-

call that [pT ] = [
∑

(P,N)∈(S∪S′)-supp(pT ) bP,N]. Furthermore, (S ∪ S′)-supp(pT ) is equal to

(S ∪ S′)-supp(pT ) ∩ C(S ∪ S′) (by (S ∪ S′)-supp(pT ) ⊆ C(S ∪ S′))
= (S ∪ S′)-supp(pT ) ∩ (S ∪ S′)-supp(pC(S′)) (by def. support)
= (S ∪ S′)-supp(pT ) ∩ (S ∪ S′)-supp(pT ′∪(C(S′)\T ′)) (by X ∪ (Y \ X) = X on sets)
= (S ∪ S′)-supp(pT ) ∩ ((S ∪ S′)-supp(pT ′) ∪ (S ∪ S′)-supp(pC(S′)\T ′)) (by def. support)
= ((S ∪ S′)-supp(pT ) ∩ (S ∪ S′)-supp(pT ′))

∪ ((S ∪ S′)-supp(pT ) ∩ (S ∪ S′)-supp(pC(S′)\T ′)), (�)

where the last identity follows from distributivity of ∪ and ∩. It is now easily verified
that ([pT ] ∧b [pT ′]) ∨b ([pT ] ∧b [pT ′]

b
) is equal to [pT ′′], where T ′′ is given by the

expression (�). Hence, the identity (b3) holds.
Huntington defined boolean algebra’s solely by using disjunction (∨) and complemen-

tation ( ) [Huntington 1933a]. Conjunction is defined as b1 ∧ b2 := b1 ∨ b2, ⊥ is defined
as the unique element such that ⊥ = b ∧ b, and � as the unique element satisfying
� = b ∨ b. We verify whether the definitions of ∧b, ⊥b, and �b are consistent with this.

For ⊥b, it suffices to observe that [pT ] ∧b [pT ]
b = [pT ] ∧b [pC(S)\T ], which in turn is

equal to

⎡
⎣ ∑

(P,N)∈S-supp(pT )∩S-supp(pC(S)\T )

bP,N

⎤
⎦ =

⎡
⎣ ∑

(P,N)∈S-supp(pT )∩(C(S)\S-supp(pT ))

bP,N

⎤
⎦ = [p∅] = ⊥b.
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Similarly for �b, [pT ] ∨b [pT ]
b = [pT ] ∨b [pC(S)\T ], which in turn is equal to⎡

⎣ ∑
(P,N)∈S-supp(pT )∪S-supp(pC(S)\T )

bP,N

⎤
⎦ =

⎡
⎣ ∑

(P,N)∈S-supp(pT )∪(C(S)\S-supp(pT ))

bP,N

⎤
⎦ = [pC(S)] = �b.

Finally, we verify whether [pT ] ∧b [pT ′] = [pT ]
b ∨b [pT ′]

b
b

. This again follows from the
correspondence between the logical operations on BX and the set operations on the
supports of its elements. More precisely, we show that [pT ] ∧b [pT ′ ] is given by [pT ′′]
where T ′′ = (S ∪ S′)-supp(pT ) ∩ (S ∪ S′)-supp(pT ′). Since supports are sets, we can
write T ′′ as C(S ∪ S′) \ ((C(S ∪ S′) \ (S ∪ S′)-supp(pT )) ∪ (C(S ∪ S′) \ (S ∪ S′)-supp(pT ′))).

The latter is precisely the support of [pT ]
b ∨b [pT ′]

b
b
, as desired.

Proof of Theorem 6.22

We complete the proof of Theorem 6.22 by showing that (Nθ [XB], BX, db, ıb) is a seba-
structure and that the mapping h is a well-defined seba-homomorphism.

We first show that (Nθ [XB], BX, db, ıb) is a seba-structure. Since (Nθ [XB],+, ·, 0, 1) is,
by definition, a semiring and (BX,∨b,∧b,

b,⊥b,�b) is a boolean algebra (Lemma 6.21),
it remains to verify that db and ıb satisfy the conditions sb1–sb7 as given in the definition
of seba-structures (Definition 5.1).

Conditions sb1 and sb2 hold by definition of ⊥b and �b and the mappings db and ıb.
Indeed, db([0]) = [p{x1}-supp(0)] = [p∅] = ⊥b and db([1]) = [pC(x1)] = �b, and since ıb is the
identity mapping, ıb(⊥b) = ıb([0]) = [0] and ıb(�b) = ıb([1]) = [1].

For sb3, let p[XB] and q[XB] in N[XB] and let S = Sp ∪ Sq. We have that db([p[XB]] +
[q[XB]]) = db([p[XB] + q[XB]]), which in turn is equal to [pS-supp(p[XB]+q[XB])]. From
Lemma 6.19, we know that S-supp(p[XB]+q[XB]) = S-supp(p[XB])∪S-supp(q[XB]). Fur-
thermore, in the proof of Lemma 6.21, it is shown that [pS-supp(p[XB])] ∨b [pS-supp(q[XB])] =
[pS-supp(p[XB])∪S-supp(q[XB])]. Since [pS-supp(p[XB])] = [pSp-supp(p[XB])] and [pS-supp(q[XB])] =
[pSq-supp(q[XB])], we have that

db([p[XB]] + [q[XB]]) = db([p[XB]]) ∨b db([q[XB]]),

as desired by sb3.
For sb4, consider [pT ] and [pT ′] in BX. By definition, [pT ]∧b [pT ′] = [pT · pT ′], which in

turn is equal to [pT ] ·[pT ′] since equivalence classes are compatible with multiplication.
Since ıb is the identity mapping, ıb([pT ] ∧b [pT ′]) = ıb([pT ]) · ıb([pT ′]) and thus sb4 holds.

For sb5, consider db([p[XB]]·ıb([pT ])) for some polynomial p[XB] ∈ N[XB] and [pT ] ∈ BX
with carrier set S. Since ıb is the identity mapping, it suffices to identify the support of
[p[XB]] · [pT ]. Let S′ = Sp∪ S. Then, Lemma 6.19 implies that we can find a representa-
tive for [p[XB]] · [pT ] of the form

∑
(P,N)∈T ′ bP,N · rP,N[X], where T ′ = {(P, N) | (P, N) ∈

S′-supp(p[XB]), (P|S, N|S) ∈ T }. Clearly, T ′ = {(P, N) | (P, N) ∈ S′-supp(p[XB])} ∩
{(P, N) | (P, N) ∈ S′-supp(pT )} and thus [pT ′ ] = [pS′-supp(p[XB])] ∧b [pS′-supp(pT )]. Since
[pS′-supp(p[XB])] = [pSp-supp(p[XB])] and [pS′-supp(pT )] = [pT ], we may conclude that

db([p[XB]] · ıb([pT ])) = db([p[XB]]) ∧b [pT ] .

For sb6, we need to show that ıb([pT ]∨b [pT ′]) = ıb([pT ])+ (ıb([pT ]
b
) · ıb([pT ′])). Since ıb

is the identity mapping, this follows from the correspondence between the boolean op-
erations on elements in BX and boolean operations on supports (cf. Lemma 6.21). More
specifically, denote by S and S′ the carrier sets of T and T ′, respectively. Furthermore,
let S′′ = S∪S′. Then, [pT ]∨b[pT ′] = [pT ′′ ], where T ′′ = {(P ′′, N′′) ∈ C(S′′) | (P ′′|S, N′′|S) ∈
T , or (P ′′|S′ , N′′|S′′ ) ∈ T ′}. Clearly, T ′′ = {(P ′′, N′′) ∈ C(S′′) | (P ′′|S, N′′|S) ∈ T } ∪
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({(P ′′, N′′) ∈ C(S′′) | (P ′′|S′ , N′′|S′′ ) ∈ T ′} \ {(P ′′, N′′) ∈ C(S′′) | (P ′′|S, N′′|S) ∈ T }), which in
turn can be written as T ′′ = {(P ′′, N′′) ∈ C(S′′) | (P ′′|S, N′′|S) ∈ T } ∪ ({(P ′′, N′′) ∈ C(S′′) |
(P ′′|S′ , N′′|S′′ ) ∈ T ′} ∩ (C(S′′) \ {(P ′′, N′′) ∈ C(S′′) | (P ′′|S, N′′|S) ∈ T })). From the proof of
Lemma 6.21, we may conclude that [pT ′′] is precisely [pT ] + ([pT ]

b · [pT ′ ]).
Finally, we verify sb7. We observe that [p[XB]] · ıb(db([p[XB]])

b
) is equal to [p[XB]] ·

[pC(Sp)\Sp-supp(p[XB])]. From Lemma 6.19, it follows that this product has an empty sup-
port. Hence, it is equivalent to [p∅] = [0].

We next verify that (h, β) is well-defined. In other words, we show that whenever
[p[XB]] = [q[XB]] for p[XB] and q[XB] in N[XB], then h([p[XB]]) = h([q[XB]]) holds.
Similarly, for any [pT ] = [pT ′] in BX, we must have that β([pT ]) = β([pT ′]).

Let us consider first the mapping h. We first show that h([p[XB]]) = h([pe[XB]]) where
pe[XB] is the expanded version of p[XB]. Second, we leverage Lemma 6.16 to show
that h([pe[XB]]) = h([qe[XB]]), where qe[XB] is the expanded version of q[XB]. Since
h([q[XB]]) = h([qe[XB]]), we may then conclude that h([p[XB]]) = h([q[XB]]).

Recall the construction of the expanded version pe[XB] of p[XB] as given in the proof
of Proposition 6.14. In a nutshell, the expanded version is constructed in a number of
steps. Let p[XB] = ∑

(P,N)∈T bP,N · pP,N[X] for some T ⊆ PN and non-zero polynomials
pP,N[X] ∈ N[X]. In the first step, the multisets P and N are reduced to sets s(P) and
s(N), respectively, and the polynomials pP,N[X] are grouped together whenever these
correspond to the same sets s(P) and s(N). It was shown in the proof of Proposition 6.14
that p[XB] is equivalent to the polynomial

p1[XB] =
∑

(P ′,N′)∈Ts

bP ′,N′ ·
⎛
⎝ ∑

(P,N)∈T ,P ′=s(P),N′=s(N)

pP,N[X]

⎞
⎠ ,

where Ts denotes the set {(s(P), s(N)) | (P, N) ∈ T }. We verify that h([p[XB]]) =
h([p1[XB]]). Indeed, recall that h([p[XB]]) is given by

⊕
(P,N)∈T

⎛
⎝⊗

μ∈P

h([bμ]) ⊗
⊗
μ∈N

h([b̄μ])

⎞
⎠⊗ h([pP,N[X]]).

It now suffices to observe that h([bμ]) ⊗ h([bμ]) = ı(d(ν([μ]))) ⊗ ı(d(ν([μ]))) = ı(d(ν(μ)) ∧
d(ν(μ))) = ı(d(ν(μ))) = h([bμ]); and, similarly, h([bμ]) ⊗ h([bμ]) = h([bμ]). In other words,
we can eliminate multiple occurrences of h([bμ]) and h([b̄μ]) and thus h([p[XB]]) is equal
to

⊕
(P ′,N′)∈Ts

⎛
⎝⊗

μ∈P

h([bμ]) ⊗
⊗
μ∈N

h([b̄μ])

⎞
⎠⊗

⎛
⎝ ⊕

(P,N)∈T ,P ′=s(P),N′=s(N)

h([pP,N[X]])

⎞
⎠ ,

which is precisely h([p1[XB]]). Furthermore, p1[XB] was shown to be equivalent to a
polynomial p2[XB] in which Ts is expanded to elements in C(Sp). More specifically,

p2[XB] =
∑

(P ′,N′)∈C(Sp)

bP ′,N′ ·
⎛
⎝ ∑

(P,N)∈T ,s(P)⊆P ′,s(N)⊆N′
pP,N[X]

⎞
⎠ .

The equivalence between p1[XB] and p2[XB] stems from (a) [p1[XB]] = [(bμ + b̄μ)p1[XB]],
which allows us to expand Ts to Sp-complete monomials; and (b) for (P, N) ∈ C(Sp) and
(P ′, N′) ∈ Ts, [bP,N · bP ′,N′] = [bP,N] if P ′ ⊆ P and N′ ⊆ N, and [bP,N · bP ′,N′] = [0]
otherwise. This allows us to consider elements from C(Sp) only. For (a), observe that
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h([(bμ + b̄μ)p1[XB]]) = h([[bμ + b̄μ]) ⊗ h([p1[XB]]) and that h([bμ + b̄μ]) = ı(d(ν([μ]))) ⊕
ı(d(ν([μ]))) = ı(d(ν([μ])) ∨ �) = ı(�) = 1K and thus h([(bμ + b̄μ)p1[XB]]) = 1K ⊗
h([p1[XB]]) = h([p1[XB]]). For (b), it is readily verified that h([bP,N · bP ′,N′ ]) = h([bP,N])
if P ′ ⊆ P and N′ ⊆ N, and h([bP,N · bP ′,N′]) = 0K otherwise. From this, we may infer
that h([p1[XB]]) is equal to

⊕
(P ′,N′)∈C(Sp)

⎛
⎝⊗

μ∈P ′
h([bμ]) ⊗

⊗
μ∈N′

h([b̄μ])

⎞
⎠⊗

⎛
⎝ ⊕

(P,N)∈T ,s(P)⊆P ′,s(N)⊆N′
h([pP,N[X]])

⎞
⎠ ,

which is precisely h([p2[XB]]). Finally, the expanded version pe[XB] is obtained from
p2[XB] by eliminating all zero terms, hereby leveraging that [b̄μ · μ] = [0]. Since h([b̄μ ·
μ]) = h([b̄μ]) ⊗ ν([μ]) = ı(d(ν([μ]))) ⊗ ν([μ]) = 0K, we may conclude that h([p2[XB]]), and
thus also h([p[XB]]) is equal to

⊕
(P,N)∈Sp-supp(p[XB])

⎛
⎝⊗

μ∈P

h([bμ]) ⊗
⊗
μ∈N

h([b̄μ])

⎞
⎠⊗ h([rP,N[X]]),

where the polynomials rP,N[X] do not contain monomials that appear in N. This is
precisely h([pe[XB]]). We refer to the proof of Proposition 6.14 for the precise definition
of rP,N[X].

It remains to verify that for any two equivalent expanded polynomials, pe[XB] and
qe[XB], h([pe[XB]]) = h([qe[XB]]). Lemma 6.16 tells us that the non-zero terms in
(�μ∈Sq\Sp(bμ + b̄μ)) · pe[XB] must be equal to those in (�μ∈Sp\Sq (bμ + b̄μ)) · qe[XB]. We
have already shown that these extra factors do not affect the value of h([pe[XB]])
and h([qe[XB]]), respectively. We may thus conclude that h([p[XB]]) = h([pe[XB]]) =
h([qe[XB]]) = h([q[XB]]).

For the boolean algebra homomorphism β, it suffices to observe (as we did in the
proof of Proposition 6.21) that elements in BX consist of boolynomials [pT ] that are
already in expanded form. In a similar way as earlier, it is then readily verified that
β([pT ]) = β([pT ′]) for two equivalent pT and pT ′ .

We already mentioned in Section 6.4 that it is easy to verify that h is a semi-
ring homomorphism and that β commutes with complementation. We next verify that
h(ıb([pT ])) = ı(β([pT ])) and β(db([p[XB]])) = d(h([p[XB]])) so that we may conclude that
(h, β) is a seba-homomorphism. Indeed, consider

d(h([p[XB]])) = d

⎛
⎝ ⊕

(P,N)∈T

h([bP,N]) ⊗ h([pP,N[X]])

⎞
⎠ (by def. h)

=
∨

(P,N)∈T

d
(
h([bP,N]) ⊗ h([pP,N[X]])

)
(by sb3)

=
∨

(P,N)∈T

d

⎛
⎝⊗

μ∈P

ı(d(ν([μ]))) ⊗
⊗
μ∈N

ı(d(ν([μ]))) ⊗ h([pP,N[X]])

⎞
⎠ (by def. h)

=
∨

(P,N)∈T

⎛
⎝∧

μ∈P

d(ν([μ])) ∧
∧
μ∈N

d(ν([μ]))

⎞
⎠ ∧ d(h([pP,N[X]])) (by sb5)
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Observe now that for pP,N[X] = ∑
μ aP,N,μ · μ, we have that d(h([pP,N[X]])) =∨

μ,aP,N,μ �=0 d(ν([μ])). This implies that

d(h([p[XB]])) =
∨

(P,N)∈T

⎛
⎝∧

μ∈P

d(ν([μ])) ∧
∧
μ∈N

d(ν([μ]))

⎞
⎠ ∧

⎛
⎝ ∨

μ′,aP,N,μ′ �=0

d(ν([μ′]))

⎞
⎠

=
∨

(P,N)∈T

⎛
⎝∧

μ∈P

d(ν([μ])) ∧
∧
μ∈N

d(ν([μ]))

⎞
⎠ ∧

⎛
⎝ ∨

μ′,aP,N,μ′ �=0,μ′ �∈N

d(ν([μ′]))

⎞
⎠ ,

where in the last step we use that d(ν(μ))∧d(ν) is false. Since
∧

μ(d(ν([μ]))∨d(ν([μ]))) is
true, we can use it to expand T in elements in C(Sp). After eliminating all conjunctions
in which both d(ν([μ])) and d(ν([μ])) occur, we may conclude that

d(h([p[XB]])) =
∨

(P,N)∈Sp-supp(p[XB])

∧
μ∈P

d(ν([μ])) ∧
∧
μ∈N

d(ν([μ])),

which is precisely β(db([p[XB]])).
To show that h(ıb([pT ])) = ı(β([pT ])), we proceed as follows:

ı(β([pT ])) = ı

⎛
⎝ ∨

(P,N)∈T

∧
μ∈P

d(ν([μ])) ∧
∧
μ∈N

d(ν([μ]))

⎞
⎠ (by def. β)

= ı
(
β
( [

p(P1,N1)
] ))⊕ ı(β([p(P1,N1)]

b
)) ⊗ ı

(
β
( [

pT \{(P1,N1)}
] ))

(by sb4)

= ı
(
β
( [

p(P1,N1)
] ))⊕ ı(β(

[
p(P1,N1)

]b
)) ⊗ ı

(
β
( [

pT \{(P1,N1)}
] ))

⊕ ı
(
β
( [

p(P1,N1)
] ))⊗ ı

(
β
( [

pT \{(P1,N1)}
] ))

,

where we use that ı(β([p(P1,N1)] · [pT \{(P1,N1)}])) = 0K. Furthermore, since β commutes
with complementation,

ı(β([pT ])) = ı(β([p(P1,N1)])) ⊕ (ı(β([p(P1,N1)])) ⊕ ı(β([p(P1,N1)]))) ⊗ ı(β([pT \{(P1,N1)}])),

and ı(b) ⊕ ı(b) = ı(b ∨ �) = ı(�) = 1K, we have that

ı(β([pT ])) = ı(β([p(P1,N1)])) ⊕ ı(β([pT \{(P1,N1)}])). (�)

We use (�) to show by induction on the number of elements in T that h(ıb([pT ])) =
ı(β([pT ])). Clearly, h(ıb([p(P,N)])) = ⊗

μ∈P ı(d(ν([μ]))) ⊗ ⊗
μ∈N ı(d(ν([μ]))) is equal to

ı(
∧

μ∈P d(ν([μ])) ∧∧μ∈N d(ν([μ]))) by (sb6), which in turn is equal to ı(β([pT ])). Hence,
h(ıb([pT ])) = ı(β([pT ])) holds when T consists of a single pair (P, N). Assume that
h(ıb([pT ])) = ı(β([pT ])) holds for T consisting of 
 elements. Consider a set T of 
 + 1
elements. Then, from (�) we can infer that

ı(β([pT ])) = h
(
ıb
( [

p(P1,N1)
] ))⊕ h

(
ıb
( [

pT \{(P1,N1)}
] ))

= h
(
ıb
( [

p(P1,N1)
] )+ ıb

( [
pT \{(P1,N1)}

] ))
= h

([
p(P1,N1)

]+ [
pT \{(P1,N1)}

])
= h([pT ]) = h

(
ıb([pT ])

)
,

where we use that ıb is the identity mapping.
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